1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_SCHED_MM_H |
3 | #define _LINUX_SCHED_MM_H |
4 | |
5 | #include <linux/kernel.h> |
6 | #include <linux/atomic.h> |
7 | #include <linux/sched.h> |
8 | #include <linux/mm_types.h> |
9 | #include <linux/gfp.h> |
10 | #include <linux/sync_core.h> |
11 | |
12 | /* |
13 | * Routines for handling mm_structs |
14 | */ |
15 | extern struct mm_struct *mm_alloc(void); |
16 | |
17 | /** |
18 | * mmgrab() - Pin a &struct mm_struct. |
19 | * @mm: The &struct mm_struct to pin. |
20 | * |
21 | * Make sure that @mm will not get freed even after the owning task |
22 | * exits. This doesn't guarantee that the associated address space |
23 | * will still exist later on and mmget_not_zero() has to be used before |
24 | * accessing it. |
25 | * |
26 | * This is a preferred way to pin @mm for a longer/unbounded amount |
27 | * of time. |
28 | * |
29 | * Use mmdrop() to release the reference acquired by mmgrab(). |
30 | * |
31 | * See also <Documentation/mm/active_mm.rst> for an in-depth explanation |
32 | * of &mm_struct.mm_count vs &mm_struct.mm_users. |
33 | */ |
34 | static inline void mmgrab(struct mm_struct *mm) |
35 | { |
36 | atomic_inc(v: &mm->mm_count); |
37 | } |
38 | |
39 | static inline void smp_mb__after_mmgrab(void) |
40 | { |
41 | smp_mb__after_atomic(); |
42 | } |
43 | |
44 | extern void __mmdrop(struct mm_struct *mm); |
45 | |
46 | static inline void mmdrop(struct mm_struct *mm) |
47 | { |
48 | /* |
49 | * The implicit full barrier implied by atomic_dec_and_test() is |
50 | * required by the membarrier system call before returning to |
51 | * user-space, after storing to rq->curr. |
52 | */ |
53 | if (unlikely(atomic_dec_and_test(&mm->mm_count))) |
54 | __mmdrop(mm); |
55 | } |
56 | |
57 | #ifdef CONFIG_PREEMPT_RT |
58 | /* |
59 | * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is |
60 | * by far the least expensive way to do that. |
61 | */ |
62 | static inline void __mmdrop_delayed(struct rcu_head *rhp) |
63 | { |
64 | struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); |
65 | |
66 | __mmdrop(mm); |
67 | } |
68 | |
69 | /* |
70 | * Invoked from finish_task_switch(). Delegates the heavy lifting on RT |
71 | * kernels via RCU. |
72 | */ |
73 | static inline void mmdrop_sched(struct mm_struct *mm) |
74 | { |
75 | /* Provides a full memory barrier. See mmdrop() */ |
76 | if (atomic_dec_and_test(&mm->mm_count)) |
77 | call_rcu(&mm->delayed_drop, __mmdrop_delayed); |
78 | } |
79 | #else |
80 | static inline void mmdrop_sched(struct mm_struct *mm) |
81 | { |
82 | mmdrop(mm); |
83 | } |
84 | #endif |
85 | |
86 | /* Helpers for lazy TLB mm refcounting */ |
87 | static inline void mmgrab_lazy_tlb(struct mm_struct *mm) |
88 | { |
89 | if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) |
90 | mmgrab(mm); |
91 | } |
92 | |
93 | static inline void mmdrop_lazy_tlb(struct mm_struct *mm) |
94 | { |
95 | if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) { |
96 | mmdrop(mm); |
97 | } else { |
98 | /* |
99 | * mmdrop_lazy_tlb must provide a full memory barrier, see the |
100 | * membarrier comment finish_task_switch which relies on this. |
101 | */ |
102 | smp_mb(); |
103 | } |
104 | } |
105 | |
106 | static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm) |
107 | { |
108 | if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) |
109 | mmdrop_sched(mm); |
110 | else |
111 | smp_mb(); /* see mmdrop_lazy_tlb() above */ |
112 | } |
113 | |
114 | /** |
115 | * mmget() - Pin the address space associated with a &struct mm_struct. |
116 | * @mm: The address space to pin. |
117 | * |
118 | * Make sure that the address space of the given &struct mm_struct doesn't |
119 | * go away. This does not protect against parts of the address space being |
120 | * modified or freed, however. |
121 | * |
122 | * Never use this function to pin this address space for an |
123 | * unbounded/indefinite amount of time. |
124 | * |
125 | * Use mmput() to release the reference acquired by mmget(). |
126 | * |
127 | * See also <Documentation/mm/active_mm.rst> for an in-depth explanation |
128 | * of &mm_struct.mm_count vs &mm_struct.mm_users. |
129 | */ |
130 | static inline void mmget(struct mm_struct *mm) |
131 | { |
132 | atomic_inc(v: &mm->mm_users); |
133 | } |
134 | |
135 | static inline bool mmget_not_zero(struct mm_struct *mm) |
136 | { |
137 | return atomic_inc_not_zero(v: &mm->mm_users); |
138 | } |
139 | |
140 | /* mmput gets rid of the mappings and all user-space */ |
141 | extern void mmput(struct mm_struct *); |
142 | #ifdef CONFIG_MMU |
143 | /* same as above but performs the slow path from the async context. Can |
144 | * be called from the atomic context as well |
145 | */ |
146 | void mmput_async(struct mm_struct *); |
147 | #endif |
148 | |
149 | /* Grab a reference to a task's mm, if it is not already going away */ |
150 | extern struct mm_struct *get_task_mm(struct task_struct *task); |
151 | /* |
152 | * Grab a reference to a task's mm, if it is not already going away |
153 | * and ptrace_may_access with the mode parameter passed to it |
154 | * succeeds. |
155 | */ |
156 | extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); |
157 | /* Remove the current tasks stale references to the old mm_struct on exit() */ |
158 | extern void exit_mm_release(struct task_struct *, struct mm_struct *); |
159 | /* Remove the current tasks stale references to the old mm_struct on exec() */ |
160 | extern void exec_mm_release(struct task_struct *, struct mm_struct *); |
161 | |
162 | #ifdef CONFIG_MEMCG |
163 | extern void mm_update_next_owner(struct mm_struct *mm); |
164 | #else |
165 | static inline void mm_update_next_owner(struct mm_struct *mm) |
166 | { |
167 | } |
168 | #endif /* CONFIG_MEMCG */ |
169 | |
170 | #ifdef CONFIG_MMU |
171 | #ifndef arch_get_mmap_end |
172 | #define arch_get_mmap_end(addr, len, flags) (TASK_SIZE) |
173 | #endif |
174 | |
175 | #ifndef arch_get_mmap_base |
176 | #define arch_get_mmap_base(addr, base) (base) |
177 | #endif |
178 | |
179 | extern void arch_pick_mmap_layout(struct mm_struct *mm, |
180 | struct rlimit *rlim_stack); |
181 | extern unsigned long |
182 | arch_get_unmapped_area(struct file *, unsigned long, unsigned long, |
183 | unsigned long, unsigned long); |
184 | extern unsigned long |
185 | arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
186 | unsigned long len, unsigned long pgoff, |
187 | unsigned long flags); |
188 | |
189 | unsigned long |
190 | generic_get_unmapped_area(struct file *filp, unsigned long addr, |
191 | unsigned long len, unsigned long pgoff, |
192 | unsigned long flags); |
193 | unsigned long |
194 | generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
195 | unsigned long len, unsigned long pgoff, |
196 | unsigned long flags); |
197 | #else |
198 | static inline void arch_pick_mmap_layout(struct mm_struct *mm, |
199 | struct rlimit *rlim_stack) {} |
200 | #endif |
201 | |
202 | static inline bool in_vfork(struct task_struct *tsk) |
203 | { |
204 | bool ret; |
205 | |
206 | /* |
207 | * need RCU to access ->real_parent if CLONE_VM was used along with |
208 | * CLONE_PARENT. |
209 | * |
210 | * We check real_parent->mm == tsk->mm because CLONE_VFORK does not |
211 | * imply CLONE_VM |
212 | * |
213 | * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus |
214 | * ->real_parent is not necessarily the task doing vfork(), so in |
215 | * theory we can't rely on task_lock() if we want to dereference it. |
216 | * |
217 | * And in this case we can't trust the real_parent->mm == tsk->mm |
218 | * check, it can be false negative. But we do not care, if init or |
219 | * another oom-unkillable task does this it should blame itself. |
220 | */ |
221 | rcu_read_lock(); |
222 | ret = tsk->vfork_done && |
223 | rcu_dereference(tsk->real_parent)->mm == tsk->mm; |
224 | rcu_read_unlock(); |
225 | |
226 | return ret; |
227 | } |
228 | |
229 | /* |
230 | * Applies per-task gfp context to the given allocation flags. |
231 | * PF_MEMALLOC_NOIO implies GFP_NOIO |
232 | * PF_MEMALLOC_NOFS implies GFP_NOFS |
233 | * PF_MEMALLOC_PIN implies !GFP_MOVABLE |
234 | */ |
235 | static inline gfp_t current_gfp_context(gfp_t flags) |
236 | { |
237 | unsigned int pflags = READ_ONCE(current->flags); |
238 | |
239 | if (unlikely(pflags & (PF_MEMALLOC_NOIO | |
240 | PF_MEMALLOC_NOFS | |
241 | PF_MEMALLOC_NORECLAIM | |
242 | PF_MEMALLOC_NOWARN | |
243 | PF_MEMALLOC_PIN))) { |
244 | /* |
245 | * Stronger flags before weaker flags: |
246 | * NORECLAIM implies NOIO, which in turn implies NOFS |
247 | */ |
248 | if (pflags & PF_MEMALLOC_NORECLAIM) |
249 | flags &= ~__GFP_DIRECT_RECLAIM; |
250 | else if (pflags & PF_MEMALLOC_NOIO) |
251 | flags &= ~(__GFP_IO | __GFP_FS); |
252 | else if (pflags & PF_MEMALLOC_NOFS) |
253 | flags &= ~__GFP_FS; |
254 | |
255 | if (pflags & PF_MEMALLOC_NOWARN) |
256 | flags |= __GFP_NOWARN; |
257 | |
258 | if (pflags & PF_MEMALLOC_PIN) |
259 | flags &= ~__GFP_MOVABLE; |
260 | } |
261 | return flags; |
262 | } |
263 | |
264 | #ifdef CONFIG_LOCKDEP |
265 | extern void __fs_reclaim_acquire(unsigned long ip); |
266 | extern void __fs_reclaim_release(unsigned long ip); |
267 | extern void fs_reclaim_acquire(gfp_t gfp_mask); |
268 | extern void fs_reclaim_release(gfp_t gfp_mask); |
269 | #else |
270 | static inline void __fs_reclaim_acquire(unsigned long ip) { } |
271 | static inline void __fs_reclaim_release(unsigned long ip) { } |
272 | static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } |
273 | static inline void fs_reclaim_release(gfp_t gfp_mask) { } |
274 | #endif |
275 | |
276 | /* Any memory-allocation retry loop should use |
277 | * memalloc_retry_wait(), and pass the flags for the most |
278 | * constrained allocation attempt that might have failed. |
279 | * This provides useful documentation of where loops are, |
280 | * and a central place to fine tune the waiting as the MM |
281 | * implementation changes. |
282 | */ |
283 | static inline void memalloc_retry_wait(gfp_t gfp_flags) |
284 | { |
285 | /* We use io_schedule_timeout because waiting for memory |
286 | * typically included waiting for dirty pages to be |
287 | * written out, which requires IO. |
288 | */ |
289 | __set_current_state(TASK_UNINTERRUPTIBLE); |
290 | gfp_flags = current_gfp_context(flags: gfp_flags); |
291 | if (gfpflags_allow_blocking(gfp_flags) && |
292 | !(gfp_flags & __GFP_NORETRY)) |
293 | /* Probably waited already, no need for much more */ |
294 | io_schedule_timeout(timeout: 1); |
295 | else |
296 | /* Probably didn't wait, and has now released a lock, |
297 | * so now is a good time to wait |
298 | */ |
299 | io_schedule_timeout(HZ/50); |
300 | } |
301 | |
302 | /** |
303 | * might_alloc - Mark possible allocation sites |
304 | * @gfp_mask: gfp_t flags that would be used to allocate |
305 | * |
306 | * Similar to might_sleep() and other annotations, this can be used in functions |
307 | * that might allocate, but often don't. Compiles to nothing without |
308 | * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking. |
309 | */ |
310 | static inline void might_alloc(gfp_t gfp_mask) |
311 | { |
312 | fs_reclaim_acquire(gfp_mask); |
313 | fs_reclaim_release(gfp_mask); |
314 | |
315 | might_sleep_if(gfpflags_allow_blocking(gfp_mask)); |
316 | } |
317 | |
318 | /** |
319 | * memalloc_flags_save - Add a PF_* flag to current->flags, save old value |
320 | * |
321 | * This allows PF_* flags to be conveniently added, irrespective of current |
322 | * value, and then the old version restored with memalloc_flags_restore(). |
323 | */ |
324 | static inline unsigned memalloc_flags_save(unsigned flags) |
325 | { |
326 | unsigned oldflags = ~current->flags & flags; |
327 | current->flags |= flags; |
328 | return oldflags; |
329 | } |
330 | |
331 | static inline void memalloc_flags_restore(unsigned flags) |
332 | { |
333 | current->flags &= ~flags; |
334 | } |
335 | |
336 | /** |
337 | * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. |
338 | * |
339 | * This functions marks the beginning of the GFP_NOIO allocation scope. |
340 | * All further allocations will implicitly drop __GFP_IO flag and so |
341 | * they are safe for the IO critical section from the allocation recursion |
342 | * point of view. Use memalloc_noio_restore to end the scope with flags |
343 | * returned by this function. |
344 | * |
345 | * Context: This function is safe to be used from any context. |
346 | * Return: The saved flags to be passed to memalloc_noio_restore. |
347 | */ |
348 | static inline unsigned int memalloc_noio_save(void) |
349 | { |
350 | return memalloc_flags_save(PF_MEMALLOC_NOIO); |
351 | } |
352 | |
353 | /** |
354 | * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. |
355 | * @flags: Flags to restore. |
356 | * |
357 | * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. |
358 | * Always make sure that the given flags is the return value from the |
359 | * pairing memalloc_noio_save call. |
360 | */ |
361 | static inline void memalloc_noio_restore(unsigned int flags) |
362 | { |
363 | memalloc_flags_restore(flags); |
364 | } |
365 | |
366 | /** |
367 | * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. |
368 | * |
369 | * This functions marks the beginning of the GFP_NOFS allocation scope. |
370 | * All further allocations will implicitly drop __GFP_FS flag and so |
371 | * they are safe for the FS critical section from the allocation recursion |
372 | * point of view. Use memalloc_nofs_restore to end the scope with flags |
373 | * returned by this function. |
374 | * |
375 | * Context: This function is safe to be used from any context. |
376 | * Return: The saved flags to be passed to memalloc_nofs_restore. |
377 | */ |
378 | static inline unsigned int memalloc_nofs_save(void) |
379 | { |
380 | return memalloc_flags_save(PF_MEMALLOC_NOFS); |
381 | } |
382 | |
383 | /** |
384 | * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. |
385 | * @flags: Flags to restore. |
386 | * |
387 | * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. |
388 | * Always make sure that the given flags is the return value from the |
389 | * pairing memalloc_nofs_save call. |
390 | */ |
391 | static inline void memalloc_nofs_restore(unsigned int flags) |
392 | { |
393 | memalloc_flags_restore(flags); |
394 | } |
395 | |
396 | /** |
397 | * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope. |
398 | * |
399 | * This function marks the beginning of the __GFP_MEMALLOC allocation scope. |
400 | * All further allocations will implicitly add the __GFP_MEMALLOC flag, which |
401 | * prevents entering reclaim and allows access to all memory reserves. This |
402 | * should only be used when the caller guarantees the allocation will allow more |
403 | * memory to be freed very shortly, i.e. it needs to allocate some memory in |
404 | * the process of freeing memory, and cannot reclaim due to potential recursion. |
405 | * |
406 | * Users of this scope have to be extremely careful to not deplete the reserves |
407 | * completely and implement a throttling mechanism which controls the |
408 | * consumption of the reserve based on the amount of freed memory. Usage of a |
409 | * pre-allocated pool (e.g. mempool) should be always considered before using |
410 | * this scope. |
411 | * |
412 | * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC |
413 | * |
414 | * Context: This function should not be used in an interrupt context as that one |
415 | * does not give PF_MEMALLOC access to reserves. |
416 | * See __gfp_pfmemalloc_flags(). |
417 | * Return: The saved flags to be passed to memalloc_noreclaim_restore. |
418 | */ |
419 | static inline unsigned int memalloc_noreclaim_save(void) |
420 | { |
421 | return memalloc_flags_save(PF_MEMALLOC); |
422 | } |
423 | |
424 | /** |
425 | * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope. |
426 | * @flags: Flags to restore. |
427 | * |
428 | * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save |
429 | * function. Always make sure that the given flags is the return value from the |
430 | * pairing memalloc_noreclaim_save call. |
431 | */ |
432 | static inline void memalloc_noreclaim_restore(unsigned int flags) |
433 | { |
434 | memalloc_flags_restore(flags); |
435 | } |
436 | |
437 | /** |
438 | * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope. |
439 | * |
440 | * This function marks the beginning of the ~__GFP_MOVABLE allocation scope. |
441 | * All further allocations will implicitly remove the __GFP_MOVABLE flag, which |
442 | * will constraint the allocations to zones that allow long term pinning, i.e. |
443 | * not ZONE_MOVABLE zones. |
444 | * |
445 | * Return: The saved flags to be passed to memalloc_pin_restore. |
446 | */ |
447 | static inline unsigned int memalloc_pin_save(void) |
448 | { |
449 | return memalloc_flags_save(PF_MEMALLOC_PIN); |
450 | } |
451 | |
452 | /** |
453 | * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope. |
454 | * @flags: Flags to restore. |
455 | * |
456 | * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function. |
457 | * Always make sure that the given flags is the return value from the pairing |
458 | * memalloc_pin_save call. |
459 | */ |
460 | static inline void memalloc_pin_restore(unsigned int flags) |
461 | { |
462 | memalloc_flags_restore(flags); |
463 | } |
464 | |
465 | #ifdef CONFIG_MEMCG |
466 | DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); |
467 | /** |
468 | * set_active_memcg - Starts the remote memcg charging scope. |
469 | * @memcg: memcg to charge. |
470 | * |
471 | * This function marks the beginning of the remote memcg charging scope. All the |
472 | * __GFP_ACCOUNT allocations till the end of the scope will be charged to the |
473 | * given memcg. |
474 | * |
475 | * Please, make sure that caller has a reference to the passed memcg structure, |
476 | * so its lifetime is guaranteed to exceed the scope between two |
477 | * set_active_memcg() calls. |
478 | * |
479 | * NOTE: This function can nest. Users must save the return value and |
480 | * reset the previous value after their own charging scope is over. |
481 | */ |
482 | static inline struct mem_cgroup * |
483 | set_active_memcg(struct mem_cgroup *memcg) |
484 | { |
485 | struct mem_cgroup *old; |
486 | |
487 | if (!in_task()) { |
488 | old = this_cpu_read(int_active_memcg); |
489 | this_cpu_write(int_active_memcg, memcg); |
490 | } else { |
491 | old = current->active_memcg; |
492 | current->active_memcg = memcg; |
493 | } |
494 | |
495 | return old; |
496 | } |
497 | #else |
498 | static inline struct mem_cgroup * |
499 | set_active_memcg(struct mem_cgroup *memcg) |
500 | { |
501 | return NULL; |
502 | } |
503 | #endif |
504 | |
505 | #ifdef CONFIG_MEMBARRIER |
506 | enum { |
507 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), |
508 | MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), |
509 | MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), |
510 | MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), |
511 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), |
512 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), |
513 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), |
514 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), |
515 | }; |
516 | |
517 | enum { |
518 | MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), |
519 | MEMBARRIER_FLAG_RSEQ = (1U << 1), |
520 | }; |
521 | |
522 | #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS |
523 | #include <asm/membarrier.h> |
524 | #endif |
525 | |
526 | static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) |
527 | { |
528 | if (current->mm != mm) |
529 | return; |
530 | if (likely(!(atomic_read(&mm->membarrier_state) & |
531 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) |
532 | return; |
533 | sync_core_before_usermode(); |
534 | } |
535 | |
536 | extern void membarrier_exec_mmap(struct mm_struct *mm); |
537 | |
538 | extern void membarrier_update_current_mm(struct mm_struct *next_mm); |
539 | |
540 | #else |
541 | #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS |
542 | static inline void membarrier_arch_switch_mm(struct mm_struct *prev, |
543 | struct mm_struct *next, |
544 | struct task_struct *tsk) |
545 | { |
546 | } |
547 | #endif |
548 | static inline void membarrier_exec_mmap(struct mm_struct *mm) |
549 | { |
550 | } |
551 | static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) |
552 | { |
553 | } |
554 | static inline void membarrier_update_current_mm(struct mm_struct *next_mm) |
555 | { |
556 | } |
557 | #endif |
558 | |
559 | #endif /* _LINUX_SCHED_MM_H */ |
560 | |