1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_SCHED_SIGNAL_H |
3 | #define _LINUX_SCHED_SIGNAL_H |
4 | |
5 | #include <linux/rculist.h> |
6 | #include <linux/signal.h> |
7 | #include <linux/sched.h> |
8 | #include <linux/sched/jobctl.h> |
9 | #include <linux/sched/task.h> |
10 | #include <linux/cred.h> |
11 | #include <linux/refcount.h> |
12 | #include <linux/pid.h> |
13 | #include <linux/posix-timers.h> |
14 | #include <linux/mm_types.h> |
15 | #include <asm/ptrace.h> |
16 | |
17 | /* |
18 | * Types defining task->signal and task->sighand and APIs using them: |
19 | */ |
20 | |
21 | struct sighand_struct { |
22 | spinlock_t siglock; |
23 | refcount_t count; |
24 | wait_queue_head_t signalfd_wqh; |
25 | struct k_sigaction action[_NSIG]; |
26 | }; |
27 | |
28 | /* |
29 | * Per-process accounting stats: |
30 | */ |
31 | struct pacct_struct { |
32 | int ac_flag; |
33 | long ac_exitcode; |
34 | unsigned long ac_mem; |
35 | u64 ac_utime, ac_stime; |
36 | unsigned long ac_minflt, ac_majflt; |
37 | }; |
38 | |
39 | struct cpu_itimer { |
40 | u64 expires; |
41 | u64 incr; |
42 | }; |
43 | |
44 | /* |
45 | * This is the atomic variant of task_cputime, which can be used for |
46 | * storing and updating task_cputime statistics without locking. |
47 | */ |
48 | struct task_cputime_atomic { |
49 | atomic64_t utime; |
50 | atomic64_t stime; |
51 | atomic64_t sum_exec_runtime; |
52 | }; |
53 | |
54 | #define INIT_CPUTIME_ATOMIC \ |
55 | (struct task_cputime_atomic) { \ |
56 | .utime = ATOMIC64_INIT(0), \ |
57 | .stime = ATOMIC64_INIT(0), \ |
58 | .sum_exec_runtime = ATOMIC64_INIT(0), \ |
59 | } |
60 | /** |
61 | * struct thread_group_cputimer - thread group interval timer counts |
62 | * @cputime_atomic: atomic thread group interval timers. |
63 | * |
64 | * This structure contains the version of task_cputime, above, that is |
65 | * used for thread group CPU timer calculations. |
66 | */ |
67 | struct thread_group_cputimer { |
68 | struct task_cputime_atomic cputime_atomic; |
69 | }; |
70 | |
71 | struct multiprocess_signals { |
72 | sigset_t signal; |
73 | struct hlist_node node; |
74 | }; |
75 | |
76 | struct core_thread { |
77 | struct task_struct *task; |
78 | struct core_thread *next; |
79 | }; |
80 | |
81 | struct core_state { |
82 | atomic_t nr_threads; |
83 | struct core_thread dumper; |
84 | struct completion startup; |
85 | }; |
86 | |
87 | /* |
88 | * NOTE! "signal_struct" does not have its own |
89 | * locking, because a shared signal_struct always |
90 | * implies a shared sighand_struct, so locking |
91 | * sighand_struct is always a proper superset of |
92 | * the locking of signal_struct. |
93 | */ |
94 | struct signal_struct { |
95 | refcount_t sigcnt; |
96 | atomic_t live; |
97 | int nr_threads; |
98 | int quick_threads; |
99 | struct list_head thread_head; |
100 | |
101 | wait_queue_head_t wait_chldexit; /* for wait4() */ |
102 | |
103 | /* current thread group signal load-balancing target: */ |
104 | struct task_struct *curr_target; |
105 | |
106 | /* shared signal handling: */ |
107 | struct sigpending shared_pending; |
108 | |
109 | /* For collecting multiprocess signals during fork */ |
110 | struct hlist_head multiprocess; |
111 | |
112 | /* thread group exit support */ |
113 | int group_exit_code; |
114 | /* notify group_exec_task when notify_count is less or equal to 0 */ |
115 | int notify_count; |
116 | struct task_struct *group_exec_task; |
117 | |
118 | /* thread group stop support, overloads group_exit_code too */ |
119 | int group_stop_count; |
120 | unsigned int flags; /* see SIGNAL_* flags below */ |
121 | |
122 | struct core_state *core_state; /* coredumping support */ |
123 | |
124 | /* |
125 | * PR_SET_CHILD_SUBREAPER marks a process, like a service |
126 | * manager, to re-parent orphan (double-forking) child processes |
127 | * to this process instead of 'init'. The service manager is |
128 | * able to receive SIGCHLD signals and is able to investigate |
129 | * the process until it calls wait(). All children of this |
130 | * process will inherit a flag if they should look for a |
131 | * child_subreaper process at exit. |
132 | */ |
133 | unsigned int is_child_subreaper:1; |
134 | unsigned int has_child_subreaper:1; |
135 | |
136 | #ifdef CONFIG_POSIX_TIMERS |
137 | |
138 | /* POSIX.1b Interval Timers */ |
139 | unsigned int next_posix_timer_id; |
140 | struct list_head posix_timers; |
141 | |
142 | /* ITIMER_REAL timer for the process */ |
143 | struct hrtimer real_timer; |
144 | ktime_t it_real_incr; |
145 | |
146 | /* |
147 | * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use |
148 | * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these |
149 | * values are defined to 0 and 1 respectively |
150 | */ |
151 | struct cpu_itimer it[2]; |
152 | |
153 | /* |
154 | * Thread group totals for process CPU timers. |
155 | * See thread_group_cputimer(), et al, for details. |
156 | */ |
157 | struct thread_group_cputimer cputimer; |
158 | |
159 | #endif |
160 | /* Empty if CONFIG_POSIX_TIMERS=n */ |
161 | struct posix_cputimers posix_cputimers; |
162 | |
163 | /* PID/PID hash table linkage. */ |
164 | struct pid *pids[PIDTYPE_MAX]; |
165 | |
166 | #ifdef CONFIG_NO_HZ_FULL |
167 | atomic_t tick_dep_mask; |
168 | #endif |
169 | |
170 | struct pid *tty_old_pgrp; |
171 | |
172 | /* boolean value for session group leader */ |
173 | int leader; |
174 | |
175 | struct tty_struct *tty; /* NULL if no tty */ |
176 | |
177 | #ifdef CONFIG_SCHED_AUTOGROUP |
178 | struct autogroup *autogroup; |
179 | #endif |
180 | /* |
181 | * Cumulative resource counters for dead threads in the group, |
182 | * and for reaped dead child processes forked by this group. |
183 | * Live threads maintain their own counters and add to these |
184 | * in __exit_signal, except for the group leader. |
185 | */ |
186 | seqlock_t stats_lock; |
187 | u64 utime, stime, cutime, cstime; |
188 | u64 gtime; |
189 | u64 cgtime; |
190 | struct prev_cputime prev_cputime; |
191 | unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; |
192 | unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; |
193 | unsigned long inblock, oublock, cinblock, coublock; |
194 | unsigned long , ; |
195 | struct task_io_accounting ioac; |
196 | |
197 | /* |
198 | * Cumulative ns of schedule CPU time fo dead threads in the |
199 | * group, not including a zombie group leader, (This only differs |
200 | * from jiffies_to_ns(utime + stime) if sched_clock uses something |
201 | * other than jiffies.) |
202 | */ |
203 | unsigned long long sum_sched_runtime; |
204 | |
205 | /* |
206 | * We don't bother to synchronize most readers of this at all, |
207 | * because there is no reader checking a limit that actually needs |
208 | * to get both rlim_cur and rlim_max atomically, and either one |
209 | * alone is a single word that can safely be read normally. |
210 | * getrlimit/setrlimit use task_lock(current->group_leader) to |
211 | * protect this instead of the siglock, because they really |
212 | * have no need to disable irqs. |
213 | */ |
214 | struct rlimit rlim[RLIM_NLIMITS]; |
215 | |
216 | #ifdef CONFIG_BSD_PROCESS_ACCT |
217 | struct pacct_struct pacct; /* per-process accounting information */ |
218 | #endif |
219 | #ifdef CONFIG_TASKSTATS |
220 | struct taskstats *stats; |
221 | #endif |
222 | #ifdef CONFIG_AUDIT |
223 | unsigned audit_tty; |
224 | struct tty_audit_buf *tty_audit_buf; |
225 | #endif |
226 | |
227 | /* |
228 | * Thread is the potential origin of an oom condition; kill first on |
229 | * oom |
230 | */ |
231 | bool oom_flag_origin; |
232 | short oom_score_adj; /* OOM kill score adjustment */ |
233 | short oom_score_adj_min; /* OOM kill score adjustment min value. |
234 | * Only settable by CAP_SYS_RESOURCE. */ |
235 | struct mm_struct *oom_mm; /* recorded mm when the thread group got |
236 | * killed by the oom killer */ |
237 | |
238 | struct mutex cred_guard_mutex; /* guard against foreign influences on |
239 | * credential calculations |
240 | * (notably. ptrace) |
241 | * Deprecated do not use in new code. |
242 | * Use exec_update_lock instead. |
243 | */ |
244 | struct rw_semaphore exec_update_lock; /* Held while task_struct is |
245 | * being updated during exec, |
246 | * and may have inconsistent |
247 | * permissions. |
248 | */ |
249 | } __randomize_layout; |
250 | |
251 | /* |
252 | * Bits in flags field of signal_struct. |
253 | */ |
254 | #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ |
255 | #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ |
256 | #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ |
257 | /* |
258 | * Pending notifications to parent. |
259 | */ |
260 | #define SIGNAL_CLD_STOPPED 0x00000010 |
261 | #define SIGNAL_CLD_CONTINUED 0x00000020 |
262 | #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) |
263 | |
264 | #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ |
265 | |
266 | #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ |
267 | SIGNAL_STOP_CONTINUED) |
268 | |
269 | static inline void signal_set_stop_flags(struct signal_struct *sig, |
270 | unsigned int flags) |
271 | { |
272 | WARN_ON(sig->flags & SIGNAL_GROUP_EXIT); |
273 | sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; |
274 | } |
275 | |
276 | extern void flush_signals(struct task_struct *); |
277 | extern void ignore_signals(struct task_struct *); |
278 | extern void flush_signal_handlers(struct task_struct *, int force_default); |
279 | extern int dequeue_signal(struct task_struct *task, sigset_t *mask, |
280 | kernel_siginfo_t *info, enum pid_type *type); |
281 | |
282 | static inline int kernel_dequeue_signal(void) |
283 | { |
284 | struct task_struct *task = current; |
285 | kernel_siginfo_t __info; |
286 | enum pid_type __type; |
287 | int ret; |
288 | |
289 | spin_lock_irq(lock: &task->sighand->siglock); |
290 | ret = dequeue_signal(task, mask: &task->blocked, info: &__info, type: &__type); |
291 | spin_unlock_irq(lock: &task->sighand->siglock); |
292 | |
293 | return ret; |
294 | } |
295 | |
296 | static inline void kernel_signal_stop(void) |
297 | { |
298 | spin_lock_irq(lock: ¤t->sighand->siglock); |
299 | if (current->jobctl & JOBCTL_STOP_DEQUEUED) { |
300 | current->jobctl |= JOBCTL_STOPPED; |
301 | set_special_state(TASK_STOPPED); |
302 | } |
303 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
304 | |
305 | schedule(); |
306 | } |
307 | |
308 | int force_sig_fault_to_task(int sig, int code, void __user *addr, |
309 | struct task_struct *t); |
310 | int force_sig_fault(int sig, int code, void __user *addr); |
311 | int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t); |
312 | |
313 | int force_sig_mceerr(int code, void __user *, short); |
314 | int send_sig_mceerr(int code, void __user *, short, struct task_struct *); |
315 | |
316 | int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); |
317 | int force_sig_pkuerr(void __user *addr, u32 pkey); |
318 | int send_sig_perf(void __user *addr, u32 type, u64 sig_data); |
319 | |
320 | int force_sig_ptrace_errno_trap(int errno, void __user *addr); |
321 | int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno); |
322 | int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, |
323 | struct task_struct *t); |
324 | int force_sig_seccomp(int syscall, int reason, bool force_coredump); |
325 | |
326 | extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); |
327 | extern void force_sigsegv(int sig); |
328 | extern int force_sig_info(struct kernel_siginfo *); |
329 | extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); |
330 | extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); |
331 | extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, |
332 | const struct cred *); |
333 | extern int kill_pgrp(struct pid *pid, int sig, int priv); |
334 | extern int kill_pid(struct pid *pid, int sig, int priv); |
335 | extern __must_check bool do_notify_parent(struct task_struct *, int); |
336 | extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); |
337 | extern void force_sig(int); |
338 | extern void force_fatal_sig(int); |
339 | extern void force_exit_sig(int); |
340 | extern int send_sig(int, struct task_struct *, int); |
341 | extern int zap_other_threads(struct task_struct *p); |
342 | extern struct sigqueue *sigqueue_alloc(void); |
343 | extern void sigqueue_free(struct sigqueue *); |
344 | extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); |
345 | extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); |
346 | |
347 | static inline void clear_notify_signal(void) |
348 | { |
349 | clear_thread_flag(TIF_NOTIFY_SIGNAL); |
350 | smp_mb__after_atomic(); |
351 | } |
352 | |
353 | /* |
354 | * Returns 'true' if kick_process() is needed to force a transition from |
355 | * user -> kernel to guarantee expedient run of TWA_SIGNAL based task_work. |
356 | */ |
357 | static inline bool __set_notify_signal(struct task_struct *task) |
358 | { |
359 | return !test_and_set_tsk_thread_flag(tsk: task, TIF_NOTIFY_SIGNAL) && |
360 | !wake_up_state(tsk: task, TASK_INTERRUPTIBLE); |
361 | } |
362 | |
363 | /* |
364 | * Called to break out of interruptible wait loops, and enter the |
365 | * exit_to_user_mode_loop(). |
366 | */ |
367 | static inline void set_notify_signal(struct task_struct *task) |
368 | { |
369 | if (__set_notify_signal(task)) |
370 | kick_process(tsk: task); |
371 | } |
372 | |
373 | static inline int restart_syscall(void) |
374 | { |
375 | set_tsk_thread_flag(current, TIF_SIGPENDING); |
376 | return -ERESTARTNOINTR; |
377 | } |
378 | |
379 | static inline int task_sigpending(struct task_struct *p) |
380 | { |
381 | return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); |
382 | } |
383 | |
384 | static inline int signal_pending(struct task_struct *p) |
385 | { |
386 | /* |
387 | * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same |
388 | * behavior in terms of ensuring that we break out of wait loops |
389 | * so that notify signal callbacks can be processed. |
390 | */ |
391 | if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) |
392 | return 1; |
393 | return task_sigpending(p); |
394 | } |
395 | |
396 | static inline int __fatal_signal_pending(struct task_struct *p) |
397 | { |
398 | return unlikely(sigismember(&p->pending.signal, SIGKILL)); |
399 | } |
400 | |
401 | static inline int fatal_signal_pending(struct task_struct *p) |
402 | { |
403 | return task_sigpending(p) && __fatal_signal_pending(p); |
404 | } |
405 | |
406 | static inline int signal_pending_state(unsigned int state, struct task_struct *p) |
407 | { |
408 | if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) |
409 | return 0; |
410 | if (!signal_pending(p)) |
411 | return 0; |
412 | |
413 | return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); |
414 | } |
415 | |
416 | /* |
417 | * This should only be used in fault handlers to decide whether we |
418 | * should stop the current fault routine to handle the signals |
419 | * instead, especially with the case where we've got interrupted with |
420 | * a VM_FAULT_RETRY. |
421 | */ |
422 | static inline bool fault_signal_pending(vm_fault_t fault_flags, |
423 | struct pt_regs *regs) |
424 | { |
425 | return unlikely((fault_flags & VM_FAULT_RETRY) && |
426 | (fatal_signal_pending(current) || |
427 | (user_mode(regs) && signal_pending(current)))); |
428 | } |
429 | |
430 | /* |
431 | * Reevaluate whether the task has signals pending delivery. |
432 | * Wake the task if so. |
433 | * This is required every time the blocked sigset_t changes. |
434 | * callers must hold sighand->siglock. |
435 | */ |
436 | extern void recalc_sigpending(void); |
437 | extern void calculate_sigpending(void); |
438 | |
439 | extern void signal_wake_up_state(struct task_struct *t, unsigned int state); |
440 | |
441 | static inline void signal_wake_up(struct task_struct *t, bool fatal) |
442 | { |
443 | unsigned int state = 0; |
444 | if (fatal && !(t->jobctl & JOBCTL_PTRACE_FROZEN)) { |
445 | t->jobctl &= ~(JOBCTL_STOPPED | JOBCTL_TRACED); |
446 | state = TASK_WAKEKILL | __TASK_TRACED; |
447 | } |
448 | signal_wake_up_state(t, state); |
449 | } |
450 | static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) |
451 | { |
452 | unsigned int state = 0; |
453 | if (resume) { |
454 | t->jobctl &= ~JOBCTL_TRACED; |
455 | state = __TASK_TRACED; |
456 | } |
457 | signal_wake_up_state(t, state); |
458 | } |
459 | |
460 | void task_join_group_stop(struct task_struct *task); |
461 | |
462 | #ifdef TIF_RESTORE_SIGMASK |
463 | /* |
464 | * Legacy restore_sigmask accessors. These are inefficient on |
465 | * SMP architectures because they require atomic operations. |
466 | */ |
467 | |
468 | /** |
469 | * set_restore_sigmask() - make sure saved_sigmask processing gets done |
470 | * |
471 | * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code |
472 | * will run before returning to user mode, to process the flag. For |
473 | * all callers, TIF_SIGPENDING is already set or it's no harm to set |
474 | * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the |
475 | * arch code will notice on return to user mode, in case those bits |
476 | * are scarce. We set TIF_SIGPENDING here to ensure that the arch |
477 | * signal code always gets run when TIF_RESTORE_SIGMASK is set. |
478 | */ |
479 | static inline void set_restore_sigmask(void) |
480 | { |
481 | set_thread_flag(TIF_RESTORE_SIGMASK); |
482 | } |
483 | |
484 | static inline void clear_tsk_restore_sigmask(struct task_struct *task) |
485 | { |
486 | clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); |
487 | } |
488 | |
489 | static inline void clear_restore_sigmask(void) |
490 | { |
491 | clear_thread_flag(TIF_RESTORE_SIGMASK); |
492 | } |
493 | static inline bool test_tsk_restore_sigmask(struct task_struct *task) |
494 | { |
495 | return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); |
496 | } |
497 | static inline bool test_restore_sigmask(void) |
498 | { |
499 | return test_thread_flag(TIF_RESTORE_SIGMASK); |
500 | } |
501 | static inline bool test_and_clear_restore_sigmask(void) |
502 | { |
503 | return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); |
504 | } |
505 | |
506 | #else /* TIF_RESTORE_SIGMASK */ |
507 | |
508 | /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ |
509 | static inline void set_restore_sigmask(void) |
510 | { |
511 | current->restore_sigmask = true; |
512 | } |
513 | static inline void clear_tsk_restore_sigmask(struct task_struct *task) |
514 | { |
515 | task->restore_sigmask = false; |
516 | } |
517 | static inline void clear_restore_sigmask(void) |
518 | { |
519 | current->restore_sigmask = false; |
520 | } |
521 | static inline bool test_restore_sigmask(void) |
522 | { |
523 | return current->restore_sigmask; |
524 | } |
525 | static inline bool test_tsk_restore_sigmask(struct task_struct *task) |
526 | { |
527 | return task->restore_sigmask; |
528 | } |
529 | static inline bool test_and_clear_restore_sigmask(void) |
530 | { |
531 | if (!current->restore_sigmask) |
532 | return false; |
533 | current->restore_sigmask = false; |
534 | return true; |
535 | } |
536 | #endif |
537 | |
538 | static inline void restore_saved_sigmask(void) |
539 | { |
540 | if (test_and_clear_restore_sigmask()) |
541 | __set_current_blocked(¤t->saved_sigmask); |
542 | } |
543 | |
544 | extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); |
545 | |
546 | static inline void restore_saved_sigmask_unless(bool interrupted) |
547 | { |
548 | if (interrupted) |
549 | WARN_ON(!signal_pending(current)); |
550 | else |
551 | restore_saved_sigmask(); |
552 | } |
553 | |
554 | static inline sigset_t *sigmask_to_save(void) |
555 | { |
556 | sigset_t *res = ¤t->blocked; |
557 | if (unlikely(test_restore_sigmask())) |
558 | res = ¤t->saved_sigmask; |
559 | return res; |
560 | } |
561 | |
562 | static inline int kill_cad_pid(int sig, int priv) |
563 | { |
564 | return kill_pid(pid: cad_pid, sig, priv); |
565 | } |
566 | |
567 | /* These can be the second arg to send_sig_info/send_group_sig_info. */ |
568 | #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) |
569 | #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) |
570 | |
571 | static inline int __on_sig_stack(unsigned long sp) |
572 | { |
573 | #ifdef CONFIG_STACK_GROWSUP |
574 | return sp >= current->sas_ss_sp && |
575 | sp - current->sas_ss_sp < current->sas_ss_size; |
576 | #else |
577 | return sp > current->sas_ss_sp && |
578 | sp - current->sas_ss_sp <= current->sas_ss_size; |
579 | #endif |
580 | } |
581 | |
582 | /* |
583 | * True if we are on the alternate signal stack. |
584 | */ |
585 | static inline int on_sig_stack(unsigned long sp) |
586 | { |
587 | /* |
588 | * If the signal stack is SS_AUTODISARM then, by construction, we |
589 | * can't be on the signal stack unless user code deliberately set |
590 | * SS_AUTODISARM when we were already on it. |
591 | * |
592 | * This improves reliability: if user state gets corrupted such that |
593 | * the stack pointer points very close to the end of the signal stack, |
594 | * then this check will enable the signal to be handled anyway. |
595 | */ |
596 | if (current->sas_ss_flags & SS_AUTODISARM) |
597 | return 0; |
598 | |
599 | return __on_sig_stack(sp); |
600 | } |
601 | |
602 | static inline int sas_ss_flags(unsigned long sp) |
603 | { |
604 | if (!current->sas_ss_size) |
605 | return SS_DISABLE; |
606 | |
607 | return on_sig_stack(sp) ? SS_ONSTACK : 0; |
608 | } |
609 | |
610 | static inline void sas_ss_reset(struct task_struct *p) |
611 | { |
612 | p->sas_ss_sp = 0; |
613 | p->sas_ss_size = 0; |
614 | p->sas_ss_flags = SS_DISABLE; |
615 | } |
616 | |
617 | static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) |
618 | { |
619 | if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) |
620 | #ifdef CONFIG_STACK_GROWSUP |
621 | return current->sas_ss_sp; |
622 | #else |
623 | return current->sas_ss_sp + current->sas_ss_size; |
624 | #endif |
625 | return sp; |
626 | } |
627 | |
628 | extern void __cleanup_sighand(struct sighand_struct *); |
629 | extern void flush_itimer_signals(void); |
630 | |
631 | #define tasklist_empty() \ |
632 | list_empty(&init_task.tasks) |
633 | |
634 | #define next_task(p) \ |
635 | list_entry_rcu((p)->tasks.next, struct task_struct, tasks) |
636 | |
637 | #define for_each_process(p) \ |
638 | for (p = &init_task ; (p = next_task(p)) != &init_task ; ) |
639 | |
640 | extern bool current_is_single_threaded(void); |
641 | |
642 | /* |
643 | * Without tasklist/siglock it is only rcu-safe if g can't exit/exec, |
644 | * otherwise next_thread(t) will never reach g after list_del_rcu(g). |
645 | */ |
646 | #define while_each_thread(g, t) \ |
647 | while ((t = next_thread(t)) != g) |
648 | |
649 | #define for_other_threads(p, t) \ |
650 | for (t = p; (t = next_thread(t)) != p; ) |
651 | |
652 | #define __for_each_thread(signal, t) \ |
653 | list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node, \ |
654 | lockdep_is_held(&tasklist_lock)) |
655 | |
656 | #define for_each_thread(p, t) \ |
657 | __for_each_thread((p)->signal, t) |
658 | |
659 | /* Careful: this is a double loop, 'break' won't work as expected. */ |
660 | #define for_each_process_thread(p, t) \ |
661 | for_each_process(p) for_each_thread(p, t) |
662 | |
663 | typedef int (*proc_visitor)(struct task_struct *p, void *data); |
664 | void walk_process_tree(struct task_struct *top, proc_visitor, void *); |
665 | |
666 | static inline |
667 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) |
668 | { |
669 | struct pid *pid; |
670 | if (type == PIDTYPE_PID) |
671 | pid = task_pid(task); |
672 | else |
673 | pid = task->signal->pids[type]; |
674 | return pid; |
675 | } |
676 | |
677 | static inline struct pid *task_tgid(struct task_struct *task) |
678 | { |
679 | return task->signal->pids[PIDTYPE_TGID]; |
680 | } |
681 | |
682 | /* |
683 | * Without tasklist or RCU lock it is not safe to dereference |
684 | * the result of task_pgrp/task_session even if task == current, |
685 | * we can race with another thread doing sys_setsid/sys_setpgid. |
686 | */ |
687 | static inline struct pid *task_pgrp(struct task_struct *task) |
688 | { |
689 | return task->signal->pids[PIDTYPE_PGID]; |
690 | } |
691 | |
692 | static inline struct pid *task_session(struct task_struct *task) |
693 | { |
694 | return task->signal->pids[PIDTYPE_SID]; |
695 | } |
696 | |
697 | static inline int get_nr_threads(struct task_struct *task) |
698 | { |
699 | return task->signal->nr_threads; |
700 | } |
701 | |
702 | static inline bool thread_group_leader(struct task_struct *p) |
703 | { |
704 | return p->exit_signal >= 0; |
705 | } |
706 | |
707 | static inline |
708 | bool same_thread_group(struct task_struct *p1, struct task_struct *p2) |
709 | { |
710 | return p1->signal == p2->signal; |
711 | } |
712 | |
713 | /* |
714 | * returns NULL if p is the last thread in the thread group |
715 | */ |
716 | static inline struct task_struct *__next_thread(struct task_struct *p) |
717 | { |
718 | return list_next_or_null_rcu(&p->signal->thread_head, |
719 | &p->thread_node, |
720 | struct task_struct, |
721 | thread_node); |
722 | } |
723 | |
724 | static inline struct task_struct *next_thread(struct task_struct *p) |
725 | { |
726 | return __next_thread(p) ?: p->group_leader; |
727 | } |
728 | |
729 | static inline int thread_group_empty(struct task_struct *p) |
730 | { |
731 | return thread_group_leader(p) && |
732 | list_is_last(list: &p->thread_node, head: &p->signal->thread_head); |
733 | } |
734 | |
735 | #define delay_group_leader(p) \ |
736 | (thread_group_leader(p) && !thread_group_empty(p)) |
737 | |
738 | extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, |
739 | unsigned long *flags); |
740 | |
741 | static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, |
742 | unsigned long *flags) |
743 | { |
744 | struct sighand_struct *ret; |
745 | |
746 | ret = __lock_task_sighand(task, flags); |
747 | (void)__cond_lock(&task->sighand->siglock, ret); |
748 | return ret; |
749 | } |
750 | |
751 | static inline void unlock_task_sighand(struct task_struct *task, |
752 | unsigned long *flags) |
753 | { |
754 | spin_unlock_irqrestore(lock: &task->sighand->siglock, flags: *flags); |
755 | } |
756 | |
757 | #ifdef CONFIG_LOCKDEP |
758 | extern void lockdep_assert_task_sighand_held(struct task_struct *task); |
759 | #else |
760 | static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { } |
761 | #endif |
762 | |
763 | static inline unsigned long task_rlimit(const struct task_struct *task, |
764 | unsigned int limit) |
765 | { |
766 | return READ_ONCE(task->signal->rlim[limit].rlim_cur); |
767 | } |
768 | |
769 | static inline unsigned long task_rlimit_max(const struct task_struct *task, |
770 | unsigned int limit) |
771 | { |
772 | return READ_ONCE(task->signal->rlim[limit].rlim_max); |
773 | } |
774 | |
775 | static inline unsigned long rlimit(unsigned int limit) |
776 | { |
777 | return task_rlimit(current, limit); |
778 | } |
779 | |
780 | static inline unsigned long rlimit_max(unsigned int limit) |
781 | { |
782 | return task_rlimit_max(current, limit); |
783 | } |
784 | |
785 | #endif /* _LINUX_SCHED_SIGNAL_H */ |
786 | |