1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2 *
3 * Copyright 2016-2023 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8#ifndef HABANALABS_H_
9#define HABANALABS_H_
10
11#include <drm/drm.h>
12
13/*
14 * Defines that are asic-specific but constitutes as ABI between kernel driver
15 * and userspace
16 */
17#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
18#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START 0x80 /* 128 bytes */
19
20/*
21 * 128 SOBs reserved for collective wait
22 * 16 SOBs reserved for sync stream
23 */
24#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 144
25
26/*
27 * 64 monitors reserved for collective wait
28 * 8 monitors reserved for sync stream
29 */
30#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72
31
32/* Max number of elements in timestamps registration buffers */
33#define TS_MAX_ELEMENTS_NUM (1 << 20) /* 1MB */
34
35/*
36 * Goya queue Numbering
37 *
38 * The external queues (PCI DMA channels) MUST be before the internal queues
39 * and each group (PCI DMA channels and internal) must be contiguous inside
40 * itself but there can be a gap between the two groups (although not
41 * recommended)
42 */
43
44enum goya_queue_id {
45 GOYA_QUEUE_ID_DMA_0 = 0,
46 GOYA_QUEUE_ID_DMA_1 = 1,
47 GOYA_QUEUE_ID_DMA_2 = 2,
48 GOYA_QUEUE_ID_DMA_3 = 3,
49 GOYA_QUEUE_ID_DMA_4 = 4,
50 GOYA_QUEUE_ID_CPU_PQ = 5,
51 GOYA_QUEUE_ID_MME = 6, /* Internal queues start here */
52 GOYA_QUEUE_ID_TPC0 = 7,
53 GOYA_QUEUE_ID_TPC1 = 8,
54 GOYA_QUEUE_ID_TPC2 = 9,
55 GOYA_QUEUE_ID_TPC3 = 10,
56 GOYA_QUEUE_ID_TPC4 = 11,
57 GOYA_QUEUE_ID_TPC5 = 12,
58 GOYA_QUEUE_ID_TPC6 = 13,
59 GOYA_QUEUE_ID_TPC7 = 14,
60 GOYA_QUEUE_ID_SIZE
61};
62
63/*
64 * Gaudi queue Numbering
65 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
66 * Except one CPU queue, all the rest are internal queues.
67 */
68
69enum gaudi_queue_id {
70 GAUDI_QUEUE_ID_DMA_0_0 = 0, /* external */
71 GAUDI_QUEUE_ID_DMA_0_1 = 1, /* external */
72 GAUDI_QUEUE_ID_DMA_0_2 = 2, /* external */
73 GAUDI_QUEUE_ID_DMA_0_3 = 3, /* external */
74 GAUDI_QUEUE_ID_DMA_1_0 = 4, /* external */
75 GAUDI_QUEUE_ID_DMA_1_1 = 5, /* external */
76 GAUDI_QUEUE_ID_DMA_1_2 = 6, /* external */
77 GAUDI_QUEUE_ID_DMA_1_3 = 7, /* external */
78 GAUDI_QUEUE_ID_CPU_PQ = 8, /* CPU */
79 GAUDI_QUEUE_ID_DMA_2_0 = 9, /* internal */
80 GAUDI_QUEUE_ID_DMA_2_1 = 10, /* internal */
81 GAUDI_QUEUE_ID_DMA_2_2 = 11, /* internal */
82 GAUDI_QUEUE_ID_DMA_2_3 = 12, /* internal */
83 GAUDI_QUEUE_ID_DMA_3_0 = 13, /* internal */
84 GAUDI_QUEUE_ID_DMA_3_1 = 14, /* internal */
85 GAUDI_QUEUE_ID_DMA_3_2 = 15, /* internal */
86 GAUDI_QUEUE_ID_DMA_3_3 = 16, /* internal */
87 GAUDI_QUEUE_ID_DMA_4_0 = 17, /* internal */
88 GAUDI_QUEUE_ID_DMA_4_1 = 18, /* internal */
89 GAUDI_QUEUE_ID_DMA_4_2 = 19, /* internal */
90 GAUDI_QUEUE_ID_DMA_4_3 = 20, /* internal */
91 GAUDI_QUEUE_ID_DMA_5_0 = 21, /* internal */
92 GAUDI_QUEUE_ID_DMA_5_1 = 22, /* internal */
93 GAUDI_QUEUE_ID_DMA_5_2 = 23, /* internal */
94 GAUDI_QUEUE_ID_DMA_5_3 = 24, /* internal */
95 GAUDI_QUEUE_ID_DMA_6_0 = 25, /* internal */
96 GAUDI_QUEUE_ID_DMA_6_1 = 26, /* internal */
97 GAUDI_QUEUE_ID_DMA_6_2 = 27, /* internal */
98 GAUDI_QUEUE_ID_DMA_6_3 = 28, /* internal */
99 GAUDI_QUEUE_ID_DMA_7_0 = 29, /* internal */
100 GAUDI_QUEUE_ID_DMA_7_1 = 30, /* internal */
101 GAUDI_QUEUE_ID_DMA_7_2 = 31, /* internal */
102 GAUDI_QUEUE_ID_DMA_7_3 = 32, /* internal */
103 GAUDI_QUEUE_ID_MME_0_0 = 33, /* internal */
104 GAUDI_QUEUE_ID_MME_0_1 = 34, /* internal */
105 GAUDI_QUEUE_ID_MME_0_2 = 35, /* internal */
106 GAUDI_QUEUE_ID_MME_0_3 = 36, /* internal */
107 GAUDI_QUEUE_ID_MME_1_0 = 37, /* internal */
108 GAUDI_QUEUE_ID_MME_1_1 = 38, /* internal */
109 GAUDI_QUEUE_ID_MME_1_2 = 39, /* internal */
110 GAUDI_QUEUE_ID_MME_1_3 = 40, /* internal */
111 GAUDI_QUEUE_ID_TPC_0_0 = 41, /* internal */
112 GAUDI_QUEUE_ID_TPC_0_1 = 42, /* internal */
113 GAUDI_QUEUE_ID_TPC_0_2 = 43, /* internal */
114 GAUDI_QUEUE_ID_TPC_0_3 = 44, /* internal */
115 GAUDI_QUEUE_ID_TPC_1_0 = 45, /* internal */
116 GAUDI_QUEUE_ID_TPC_1_1 = 46, /* internal */
117 GAUDI_QUEUE_ID_TPC_1_2 = 47, /* internal */
118 GAUDI_QUEUE_ID_TPC_1_3 = 48, /* internal */
119 GAUDI_QUEUE_ID_TPC_2_0 = 49, /* internal */
120 GAUDI_QUEUE_ID_TPC_2_1 = 50, /* internal */
121 GAUDI_QUEUE_ID_TPC_2_2 = 51, /* internal */
122 GAUDI_QUEUE_ID_TPC_2_3 = 52, /* internal */
123 GAUDI_QUEUE_ID_TPC_3_0 = 53, /* internal */
124 GAUDI_QUEUE_ID_TPC_3_1 = 54, /* internal */
125 GAUDI_QUEUE_ID_TPC_3_2 = 55, /* internal */
126 GAUDI_QUEUE_ID_TPC_3_3 = 56, /* internal */
127 GAUDI_QUEUE_ID_TPC_4_0 = 57, /* internal */
128 GAUDI_QUEUE_ID_TPC_4_1 = 58, /* internal */
129 GAUDI_QUEUE_ID_TPC_4_2 = 59, /* internal */
130 GAUDI_QUEUE_ID_TPC_4_3 = 60, /* internal */
131 GAUDI_QUEUE_ID_TPC_5_0 = 61, /* internal */
132 GAUDI_QUEUE_ID_TPC_5_1 = 62, /* internal */
133 GAUDI_QUEUE_ID_TPC_5_2 = 63, /* internal */
134 GAUDI_QUEUE_ID_TPC_5_3 = 64, /* internal */
135 GAUDI_QUEUE_ID_TPC_6_0 = 65, /* internal */
136 GAUDI_QUEUE_ID_TPC_6_1 = 66, /* internal */
137 GAUDI_QUEUE_ID_TPC_6_2 = 67, /* internal */
138 GAUDI_QUEUE_ID_TPC_6_3 = 68, /* internal */
139 GAUDI_QUEUE_ID_TPC_7_0 = 69, /* internal */
140 GAUDI_QUEUE_ID_TPC_7_1 = 70, /* internal */
141 GAUDI_QUEUE_ID_TPC_7_2 = 71, /* internal */
142 GAUDI_QUEUE_ID_TPC_7_3 = 72, /* internal */
143 GAUDI_QUEUE_ID_NIC_0_0 = 73, /* internal */
144 GAUDI_QUEUE_ID_NIC_0_1 = 74, /* internal */
145 GAUDI_QUEUE_ID_NIC_0_2 = 75, /* internal */
146 GAUDI_QUEUE_ID_NIC_0_3 = 76, /* internal */
147 GAUDI_QUEUE_ID_NIC_1_0 = 77, /* internal */
148 GAUDI_QUEUE_ID_NIC_1_1 = 78, /* internal */
149 GAUDI_QUEUE_ID_NIC_1_2 = 79, /* internal */
150 GAUDI_QUEUE_ID_NIC_1_3 = 80, /* internal */
151 GAUDI_QUEUE_ID_NIC_2_0 = 81, /* internal */
152 GAUDI_QUEUE_ID_NIC_2_1 = 82, /* internal */
153 GAUDI_QUEUE_ID_NIC_2_2 = 83, /* internal */
154 GAUDI_QUEUE_ID_NIC_2_3 = 84, /* internal */
155 GAUDI_QUEUE_ID_NIC_3_0 = 85, /* internal */
156 GAUDI_QUEUE_ID_NIC_3_1 = 86, /* internal */
157 GAUDI_QUEUE_ID_NIC_3_2 = 87, /* internal */
158 GAUDI_QUEUE_ID_NIC_3_3 = 88, /* internal */
159 GAUDI_QUEUE_ID_NIC_4_0 = 89, /* internal */
160 GAUDI_QUEUE_ID_NIC_4_1 = 90, /* internal */
161 GAUDI_QUEUE_ID_NIC_4_2 = 91, /* internal */
162 GAUDI_QUEUE_ID_NIC_4_3 = 92, /* internal */
163 GAUDI_QUEUE_ID_NIC_5_0 = 93, /* internal */
164 GAUDI_QUEUE_ID_NIC_5_1 = 94, /* internal */
165 GAUDI_QUEUE_ID_NIC_5_2 = 95, /* internal */
166 GAUDI_QUEUE_ID_NIC_5_3 = 96, /* internal */
167 GAUDI_QUEUE_ID_NIC_6_0 = 97, /* internal */
168 GAUDI_QUEUE_ID_NIC_6_1 = 98, /* internal */
169 GAUDI_QUEUE_ID_NIC_6_2 = 99, /* internal */
170 GAUDI_QUEUE_ID_NIC_6_3 = 100, /* internal */
171 GAUDI_QUEUE_ID_NIC_7_0 = 101, /* internal */
172 GAUDI_QUEUE_ID_NIC_7_1 = 102, /* internal */
173 GAUDI_QUEUE_ID_NIC_7_2 = 103, /* internal */
174 GAUDI_QUEUE_ID_NIC_7_3 = 104, /* internal */
175 GAUDI_QUEUE_ID_NIC_8_0 = 105, /* internal */
176 GAUDI_QUEUE_ID_NIC_8_1 = 106, /* internal */
177 GAUDI_QUEUE_ID_NIC_8_2 = 107, /* internal */
178 GAUDI_QUEUE_ID_NIC_8_3 = 108, /* internal */
179 GAUDI_QUEUE_ID_NIC_9_0 = 109, /* internal */
180 GAUDI_QUEUE_ID_NIC_9_1 = 110, /* internal */
181 GAUDI_QUEUE_ID_NIC_9_2 = 111, /* internal */
182 GAUDI_QUEUE_ID_NIC_9_3 = 112, /* internal */
183 GAUDI_QUEUE_ID_SIZE
184};
185
186/*
187 * In GAUDI2 we have two modes of operation in regard to queues:
188 * 1. Legacy mode, where each QMAN exposes 4 streams to the user
189 * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
190 *
191 * When in legacy mode, the user sends the queue id per JOB according to
192 * enum gaudi2_queue_id below.
193 *
194 * When in F/W mode, the user sends a stream id per Command Submission. The
195 * stream id is a running number from 0 up to (N-1), where N is the number
196 * of streams the F/W exposes and is passed to the user in
197 * struct hl_info_hw_ip_info
198 */
199
200enum gaudi2_queue_id {
201 GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
202 GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
203 GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
204 GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
205 GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
206 GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
207 GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
208 GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
209 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
210 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
211 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
212 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
213 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
214 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
215 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
216 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
217 GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
218 GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
219 GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
220 GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
221 GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
222 GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
223 GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
224 GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
225 GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
226 GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
227 GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
228 GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
229 GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
230 GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
231 GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
232 GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
233 GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
234 GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
235 GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
236 GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
237 GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
238 GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
239 GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
240 GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
241 GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
242 GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
243 GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
244 GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
245 GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
246 GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
247 GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
248 GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
249 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
250 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
251 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
252 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
253 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
254 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
255 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
256 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
257 GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
258 GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
259 GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
260 GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
261 GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
262 GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
263 GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
264 GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
265 GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
266 GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
267 GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
268 GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
269 GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
270 GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
271 GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
272 GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
273 GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
274 GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
275 GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
276 GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
277 GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
278 GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
279 GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
280 GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
281 GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
282 GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
283 GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
284 GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
285 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
286 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
287 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
288 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
289 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
290 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
291 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
292 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
293 GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
294 GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
295 GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
296 GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
297 GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
298 GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
299 GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
300 GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
301 GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
302 GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
303 GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
304 GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
305 GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
306 GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
307 GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
308 GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
309 GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
310 GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
311 GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
312 GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
313 GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
314 GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
315 GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
316 GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
317 GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
318 GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
319 GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
320 GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
321 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
322 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
323 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
324 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
325 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
326 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
327 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
328 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
329 GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
330 GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
331 GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
332 GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
333 GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
334 GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
335 GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
336 GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
337 GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
338 GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
339 GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
340 GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
341 GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
342 GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
343 GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
344 GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
345 GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
346 GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
347 GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
348 GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
349 GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
350 GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
351 GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
352 GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
353 GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
354 GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
355 GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
356 GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
357 GAUDI2_QUEUE_ID_NIC_0_0 = 156,
358 GAUDI2_QUEUE_ID_NIC_0_1 = 157,
359 GAUDI2_QUEUE_ID_NIC_0_2 = 158,
360 GAUDI2_QUEUE_ID_NIC_0_3 = 159,
361 GAUDI2_QUEUE_ID_NIC_1_0 = 160,
362 GAUDI2_QUEUE_ID_NIC_1_1 = 161,
363 GAUDI2_QUEUE_ID_NIC_1_2 = 162,
364 GAUDI2_QUEUE_ID_NIC_1_3 = 163,
365 GAUDI2_QUEUE_ID_NIC_2_0 = 164,
366 GAUDI2_QUEUE_ID_NIC_2_1 = 165,
367 GAUDI2_QUEUE_ID_NIC_2_2 = 166,
368 GAUDI2_QUEUE_ID_NIC_2_3 = 167,
369 GAUDI2_QUEUE_ID_NIC_3_0 = 168,
370 GAUDI2_QUEUE_ID_NIC_3_1 = 169,
371 GAUDI2_QUEUE_ID_NIC_3_2 = 170,
372 GAUDI2_QUEUE_ID_NIC_3_3 = 171,
373 GAUDI2_QUEUE_ID_NIC_4_0 = 172,
374 GAUDI2_QUEUE_ID_NIC_4_1 = 173,
375 GAUDI2_QUEUE_ID_NIC_4_2 = 174,
376 GAUDI2_QUEUE_ID_NIC_4_3 = 175,
377 GAUDI2_QUEUE_ID_NIC_5_0 = 176,
378 GAUDI2_QUEUE_ID_NIC_5_1 = 177,
379 GAUDI2_QUEUE_ID_NIC_5_2 = 178,
380 GAUDI2_QUEUE_ID_NIC_5_3 = 179,
381 GAUDI2_QUEUE_ID_NIC_6_0 = 180,
382 GAUDI2_QUEUE_ID_NIC_6_1 = 181,
383 GAUDI2_QUEUE_ID_NIC_6_2 = 182,
384 GAUDI2_QUEUE_ID_NIC_6_3 = 183,
385 GAUDI2_QUEUE_ID_NIC_7_0 = 184,
386 GAUDI2_QUEUE_ID_NIC_7_1 = 185,
387 GAUDI2_QUEUE_ID_NIC_7_2 = 186,
388 GAUDI2_QUEUE_ID_NIC_7_3 = 187,
389 GAUDI2_QUEUE_ID_NIC_8_0 = 188,
390 GAUDI2_QUEUE_ID_NIC_8_1 = 189,
391 GAUDI2_QUEUE_ID_NIC_8_2 = 190,
392 GAUDI2_QUEUE_ID_NIC_8_3 = 191,
393 GAUDI2_QUEUE_ID_NIC_9_0 = 192,
394 GAUDI2_QUEUE_ID_NIC_9_1 = 193,
395 GAUDI2_QUEUE_ID_NIC_9_2 = 194,
396 GAUDI2_QUEUE_ID_NIC_9_3 = 195,
397 GAUDI2_QUEUE_ID_NIC_10_0 = 196,
398 GAUDI2_QUEUE_ID_NIC_10_1 = 197,
399 GAUDI2_QUEUE_ID_NIC_10_2 = 198,
400 GAUDI2_QUEUE_ID_NIC_10_3 = 199,
401 GAUDI2_QUEUE_ID_NIC_11_0 = 200,
402 GAUDI2_QUEUE_ID_NIC_11_1 = 201,
403 GAUDI2_QUEUE_ID_NIC_11_2 = 202,
404 GAUDI2_QUEUE_ID_NIC_11_3 = 203,
405 GAUDI2_QUEUE_ID_NIC_12_0 = 204,
406 GAUDI2_QUEUE_ID_NIC_12_1 = 205,
407 GAUDI2_QUEUE_ID_NIC_12_2 = 206,
408 GAUDI2_QUEUE_ID_NIC_12_3 = 207,
409 GAUDI2_QUEUE_ID_NIC_13_0 = 208,
410 GAUDI2_QUEUE_ID_NIC_13_1 = 209,
411 GAUDI2_QUEUE_ID_NIC_13_2 = 210,
412 GAUDI2_QUEUE_ID_NIC_13_3 = 211,
413 GAUDI2_QUEUE_ID_NIC_14_0 = 212,
414 GAUDI2_QUEUE_ID_NIC_14_1 = 213,
415 GAUDI2_QUEUE_ID_NIC_14_2 = 214,
416 GAUDI2_QUEUE_ID_NIC_14_3 = 215,
417 GAUDI2_QUEUE_ID_NIC_15_0 = 216,
418 GAUDI2_QUEUE_ID_NIC_15_1 = 217,
419 GAUDI2_QUEUE_ID_NIC_15_2 = 218,
420 GAUDI2_QUEUE_ID_NIC_15_3 = 219,
421 GAUDI2_QUEUE_ID_NIC_16_0 = 220,
422 GAUDI2_QUEUE_ID_NIC_16_1 = 221,
423 GAUDI2_QUEUE_ID_NIC_16_2 = 222,
424 GAUDI2_QUEUE_ID_NIC_16_3 = 223,
425 GAUDI2_QUEUE_ID_NIC_17_0 = 224,
426 GAUDI2_QUEUE_ID_NIC_17_1 = 225,
427 GAUDI2_QUEUE_ID_NIC_17_2 = 226,
428 GAUDI2_QUEUE_ID_NIC_17_3 = 227,
429 GAUDI2_QUEUE_ID_NIC_18_0 = 228,
430 GAUDI2_QUEUE_ID_NIC_18_1 = 229,
431 GAUDI2_QUEUE_ID_NIC_18_2 = 230,
432 GAUDI2_QUEUE_ID_NIC_18_3 = 231,
433 GAUDI2_QUEUE_ID_NIC_19_0 = 232,
434 GAUDI2_QUEUE_ID_NIC_19_1 = 233,
435 GAUDI2_QUEUE_ID_NIC_19_2 = 234,
436 GAUDI2_QUEUE_ID_NIC_19_3 = 235,
437 GAUDI2_QUEUE_ID_NIC_20_0 = 236,
438 GAUDI2_QUEUE_ID_NIC_20_1 = 237,
439 GAUDI2_QUEUE_ID_NIC_20_2 = 238,
440 GAUDI2_QUEUE_ID_NIC_20_3 = 239,
441 GAUDI2_QUEUE_ID_NIC_21_0 = 240,
442 GAUDI2_QUEUE_ID_NIC_21_1 = 241,
443 GAUDI2_QUEUE_ID_NIC_21_2 = 242,
444 GAUDI2_QUEUE_ID_NIC_21_3 = 243,
445 GAUDI2_QUEUE_ID_NIC_22_0 = 244,
446 GAUDI2_QUEUE_ID_NIC_22_1 = 245,
447 GAUDI2_QUEUE_ID_NIC_22_2 = 246,
448 GAUDI2_QUEUE_ID_NIC_22_3 = 247,
449 GAUDI2_QUEUE_ID_NIC_23_0 = 248,
450 GAUDI2_QUEUE_ID_NIC_23_1 = 249,
451 GAUDI2_QUEUE_ID_NIC_23_2 = 250,
452 GAUDI2_QUEUE_ID_NIC_23_3 = 251,
453 GAUDI2_QUEUE_ID_ROT_0_0 = 252,
454 GAUDI2_QUEUE_ID_ROT_0_1 = 253,
455 GAUDI2_QUEUE_ID_ROT_0_2 = 254,
456 GAUDI2_QUEUE_ID_ROT_0_3 = 255,
457 GAUDI2_QUEUE_ID_ROT_1_0 = 256,
458 GAUDI2_QUEUE_ID_ROT_1_1 = 257,
459 GAUDI2_QUEUE_ID_ROT_1_2 = 258,
460 GAUDI2_QUEUE_ID_ROT_1_3 = 259,
461 GAUDI2_QUEUE_ID_CPU_PQ = 260,
462 GAUDI2_QUEUE_ID_SIZE
463};
464
465/*
466 * Engine Numbering
467 *
468 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
469 */
470
471enum goya_engine_id {
472 GOYA_ENGINE_ID_DMA_0 = 0,
473 GOYA_ENGINE_ID_DMA_1,
474 GOYA_ENGINE_ID_DMA_2,
475 GOYA_ENGINE_ID_DMA_3,
476 GOYA_ENGINE_ID_DMA_4,
477 GOYA_ENGINE_ID_MME_0,
478 GOYA_ENGINE_ID_TPC_0,
479 GOYA_ENGINE_ID_TPC_1,
480 GOYA_ENGINE_ID_TPC_2,
481 GOYA_ENGINE_ID_TPC_3,
482 GOYA_ENGINE_ID_TPC_4,
483 GOYA_ENGINE_ID_TPC_5,
484 GOYA_ENGINE_ID_TPC_6,
485 GOYA_ENGINE_ID_TPC_7,
486 GOYA_ENGINE_ID_SIZE
487};
488
489enum gaudi_engine_id {
490 GAUDI_ENGINE_ID_DMA_0 = 0,
491 GAUDI_ENGINE_ID_DMA_1,
492 GAUDI_ENGINE_ID_DMA_2,
493 GAUDI_ENGINE_ID_DMA_3,
494 GAUDI_ENGINE_ID_DMA_4,
495 GAUDI_ENGINE_ID_DMA_5,
496 GAUDI_ENGINE_ID_DMA_6,
497 GAUDI_ENGINE_ID_DMA_7,
498 GAUDI_ENGINE_ID_MME_0,
499 GAUDI_ENGINE_ID_MME_1,
500 GAUDI_ENGINE_ID_MME_2,
501 GAUDI_ENGINE_ID_MME_3,
502 GAUDI_ENGINE_ID_TPC_0,
503 GAUDI_ENGINE_ID_TPC_1,
504 GAUDI_ENGINE_ID_TPC_2,
505 GAUDI_ENGINE_ID_TPC_3,
506 GAUDI_ENGINE_ID_TPC_4,
507 GAUDI_ENGINE_ID_TPC_5,
508 GAUDI_ENGINE_ID_TPC_6,
509 GAUDI_ENGINE_ID_TPC_7,
510 GAUDI_ENGINE_ID_NIC_0,
511 GAUDI_ENGINE_ID_NIC_1,
512 GAUDI_ENGINE_ID_NIC_2,
513 GAUDI_ENGINE_ID_NIC_3,
514 GAUDI_ENGINE_ID_NIC_4,
515 GAUDI_ENGINE_ID_NIC_5,
516 GAUDI_ENGINE_ID_NIC_6,
517 GAUDI_ENGINE_ID_NIC_7,
518 GAUDI_ENGINE_ID_NIC_8,
519 GAUDI_ENGINE_ID_NIC_9,
520 GAUDI_ENGINE_ID_SIZE
521};
522
523enum gaudi2_engine_id {
524 GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
525 GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
526 GAUDI2_DCORE0_ENGINE_ID_MME,
527 GAUDI2_DCORE0_ENGINE_ID_TPC_0,
528 GAUDI2_DCORE0_ENGINE_ID_TPC_1,
529 GAUDI2_DCORE0_ENGINE_ID_TPC_2,
530 GAUDI2_DCORE0_ENGINE_ID_TPC_3,
531 GAUDI2_DCORE0_ENGINE_ID_TPC_4,
532 GAUDI2_DCORE0_ENGINE_ID_TPC_5,
533 GAUDI2_DCORE0_ENGINE_ID_DEC_0,
534 GAUDI2_DCORE0_ENGINE_ID_DEC_1,
535 GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
536 GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
537 GAUDI2_DCORE1_ENGINE_ID_MME,
538 GAUDI2_DCORE1_ENGINE_ID_TPC_0,
539 GAUDI2_DCORE1_ENGINE_ID_TPC_1,
540 GAUDI2_DCORE1_ENGINE_ID_TPC_2,
541 GAUDI2_DCORE1_ENGINE_ID_TPC_3,
542 GAUDI2_DCORE1_ENGINE_ID_TPC_4,
543 GAUDI2_DCORE1_ENGINE_ID_TPC_5,
544 GAUDI2_DCORE1_ENGINE_ID_DEC_0,
545 GAUDI2_DCORE1_ENGINE_ID_DEC_1,
546 GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
547 GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
548 GAUDI2_DCORE2_ENGINE_ID_MME,
549 GAUDI2_DCORE2_ENGINE_ID_TPC_0,
550 GAUDI2_DCORE2_ENGINE_ID_TPC_1,
551 GAUDI2_DCORE2_ENGINE_ID_TPC_2,
552 GAUDI2_DCORE2_ENGINE_ID_TPC_3,
553 GAUDI2_DCORE2_ENGINE_ID_TPC_4,
554 GAUDI2_DCORE2_ENGINE_ID_TPC_5,
555 GAUDI2_DCORE2_ENGINE_ID_DEC_0,
556 GAUDI2_DCORE2_ENGINE_ID_DEC_1,
557 GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
558 GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
559 GAUDI2_DCORE3_ENGINE_ID_MME,
560 GAUDI2_DCORE3_ENGINE_ID_TPC_0,
561 GAUDI2_DCORE3_ENGINE_ID_TPC_1,
562 GAUDI2_DCORE3_ENGINE_ID_TPC_2,
563 GAUDI2_DCORE3_ENGINE_ID_TPC_3,
564 GAUDI2_DCORE3_ENGINE_ID_TPC_4,
565 GAUDI2_DCORE3_ENGINE_ID_TPC_5,
566 GAUDI2_DCORE3_ENGINE_ID_DEC_0,
567 GAUDI2_DCORE3_ENGINE_ID_DEC_1,
568 GAUDI2_DCORE0_ENGINE_ID_TPC_6,
569 GAUDI2_ENGINE_ID_PDMA_0,
570 GAUDI2_ENGINE_ID_PDMA_1,
571 GAUDI2_ENGINE_ID_ROT_0,
572 GAUDI2_ENGINE_ID_ROT_1,
573 GAUDI2_PCIE_ENGINE_ID_DEC_0,
574 GAUDI2_PCIE_ENGINE_ID_DEC_1,
575 GAUDI2_ENGINE_ID_NIC0_0,
576 GAUDI2_ENGINE_ID_NIC0_1,
577 GAUDI2_ENGINE_ID_NIC1_0,
578 GAUDI2_ENGINE_ID_NIC1_1,
579 GAUDI2_ENGINE_ID_NIC2_0,
580 GAUDI2_ENGINE_ID_NIC2_1,
581 GAUDI2_ENGINE_ID_NIC3_0,
582 GAUDI2_ENGINE_ID_NIC3_1,
583 GAUDI2_ENGINE_ID_NIC4_0,
584 GAUDI2_ENGINE_ID_NIC4_1,
585 GAUDI2_ENGINE_ID_NIC5_0,
586 GAUDI2_ENGINE_ID_NIC5_1,
587 GAUDI2_ENGINE_ID_NIC6_0,
588 GAUDI2_ENGINE_ID_NIC6_1,
589 GAUDI2_ENGINE_ID_NIC7_0,
590 GAUDI2_ENGINE_ID_NIC7_1,
591 GAUDI2_ENGINE_ID_NIC8_0,
592 GAUDI2_ENGINE_ID_NIC8_1,
593 GAUDI2_ENGINE_ID_NIC9_0,
594 GAUDI2_ENGINE_ID_NIC9_1,
595 GAUDI2_ENGINE_ID_NIC10_0,
596 GAUDI2_ENGINE_ID_NIC10_1,
597 GAUDI2_ENGINE_ID_NIC11_0,
598 GAUDI2_ENGINE_ID_NIC11_1,
599 GAUDI2_ENGINE_ID_PCIE,
600 GAUDI2_ENGINE_ID_PSOC,
601 GAUDI2_ENGINE_ID_ARC_FARM,
602 GAUDI2_ENGINE_ID_KDMA,
603 GAUDI2_ENGINE_ID_SIZE
604};
605
606/*
607 * ASIC specific PLL index
608 *
609 * Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under
610 * DRM_IOCTL_HL_INFO IOCTL.
611 * The enums need to be used as an index in struct hl_pll_frequency_info.
612 */
613
614enum hl_goya_pll_index {
615 HL_GOYA_CPU_PLL = 0,
616 HL_GOYA_IC_PLL,
617 HL_GOYA_MC_PLL,
618 HL_GOYA_MME_PLL,
619 HL_GOYA_PCI_PLL,
620 HL_GOYA_EMMC_PLL,
621 HL_GOYA_TPC_PLL,
622 HL_GOYA_PLL_MAX
623};
624
625enum hl_gaudi_pll_index {
626 HL_GAUDI_CPU_PLL = 0,
627 HL_GAUDI_PCI_PLL,
628 HL_GAUDI_SRAM_PLL,
629 HL_GAUDI_HBM_PLL,
630 HL_GAUDI_NIC_PLL,
631 HL_GAUDI_DMA_PLL,
632 HL_GAUDI_MESH_PLL,
633 HL_GAUDI_MME_PLL,
634 HL_GAUDI_TPC_PLL,
635 HL_GAUDI_IF_PLL,
636 HL_GAUDI_PLL_MAX
637};
638
639enum hl_gaudi2_pll_index {
640 HL_GAUDI2_CPU_PLL = 0,
641 HL_GAUDI2_PCI_PLL,
642 HL_GAUDI2_SRAM_PLL,
643 HL_GAUDI2_HBM_PLL,
644 HL_GAUDI2_NIC_PLL,
645 HL_GAUDI2_DMA_PLL,
646 HL_GAUDI2_MESH_PLL,
647 HL_GAUDI2_MME_PLL,
648 HL_GAUDI2_TPC_PLL,
649 HL_GAUDI2_IF_PLL,
650 HL_GAUDI2_VID_PLL,
651 HL_GAUDI2_MSS_PLL,
652 HL_GAUDI2_PLL_MAX
653};
654
655/**
656 * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
657 * submitted to the GOYA's DMA QMAN. This attribute is not relevant
658 * to the H/W but the kernel driver use it to parse the packet's
659 * addresses and patch/validate them.
660 * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
661 * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
662 * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
663 * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
664 * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
665 * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
666 * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
667 * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
668 * @HL_DMA_ENUM_MAX: number of values in enum
669 */
670enum hl_goya_dma_direction {
671 HL_DMA_HOST_TO_DRAM,
672 HL_DMA_HOST_TO_SRAM,
673 HL_DMA_DRAM_TO_SRAM,
674 HL_DMA_SRAM_TO_DRAM,
675 HL_DMA_SRAM_TO_HOST,
676 HL_DMA_DRAM_TO_HOST,
677 HL_DMA_DRAM_TO_DRAM,
678 HL_DMA_SRAM_TO_SRAM,
679 HL_DMA_ENUM_MAX
680};
681
682/**
683 * enum hl_device_status - Device status information.
684 * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
685 * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
686 * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
687 * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
688 * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
689 * progress.
690 * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
691 * triggered because the user released the device
692 * @HL_DEVICE_STATUS_LAST: Last status.
693 */
694enum hl_device_status {
695 HL_DEVICE_STATUS_OPERATIONAL,
696 HL_DEVICE_STATUS_IN_RESET,
697 HL_DEVICE_STATUS_MALFUNCTION,
698 HL_DEVICE_STATUS_NEEDS_RESET,
699 HL_DEVICE_STATUS_IN_DEVICE_CREATION,
700 HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
701 HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
702};
703
704enum hl_server_type {
705 HL_SERVER_TYPE_UNKNOWN = 0,
706 HL_SERVER_GAUDI_HLS1 = 1,
707 HL_SERVER_GAUDI_HLS1H = 2,
708 HL_SERVER_GAUDI_TYPE1 = 3,
709 HL_SERVER_GAUDI_TYPE2 = 4,
710 HL_SERVER_GAUDI2_HLS2 = 5,
711 HL_SERVER_GAUDI2_TYPE1 = 7
712};
713
714/*
715 * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
716 *
717 * HL_NOTIFIER_EVENT_TPC_ASSERT - Indicates TPC assert event
718 * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE - Indicates undefined operation code
719 * HL_NOTIFIER_EVENT_DEVICE_RESET - Indicates device requires a reset
720 * HL_NOTIFIER_EVENT_CS_TIMEOUT - Indicates CS timeout error
721 * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE - Indicates device is unavailable
722 * HL_NOTIFIER_EVENT_USER_ENGINE_ERR - Indicates device engine in error state
723 * HL_NOTIFIER_EVENT_GENERAL_HW_ERR - Indicates device HW error
724 * HL_NOTIFIER_EVENT_RAZWI - Indicates razwi happened
725 * HL_NOTIFIER_EVENT_PAGE_FAULT - Indicates page fault happened
726 * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR - Indicates a HW error that requires SW abort and
727 * HW reset
728 * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR - Indicates a FW error that requires SW abort and
729 * HW reset
730 */
731#define HL_NOTIFIER_EVENT_TPC_ASSERT (1ULL << 0)
732#define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE (1ULL << 1)
733#define HL_NOTIFIER_EVENT_DEVICE_RESET (1ULL << 2)
734#define HL_NOTIFIER_EVENT_CS_TIMEOUT (1ULL << 3)
735#define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE (1ULL << 4)
736#define HL_NOTIFIER_EVENT_USER_ENGINE_ERR (1ULL << 5)
737#define HL_NOTIFIER_EVENT_GENERAL_HW_ERR (1ULL << 6)
738#define HL_NOTIFIER_EVENT_RAZWI (1ULL << 7)
739#define HL_NOTIFIER_EVENT_PAGE_FAULT (1ULL << 8)
740#define HL_NOTIFIER_EVENT_CRITICL_HW_ERR (1ULL << 9)
741#define HL_NOTIFIER_EVENT_CRITICL_FW_ERR (1ULL << 10)
742
743/* Opcode for management ioctl
744 *
745 * HW_IP_INFO - Receive information about different IP blocks in the
746 * device.
747 * HL_INFO_HW_EVENTS - Receive an array describing how many times each event
748 * occurred since the last hard reset.
749 * HL_INFO_DRAM_USAGE - Retrieve the dram usage inside the device and of the
750 * specific context. This is relevant only for devices
751 * where the dram is managed by the kernel driver
752 * HL_INFO_HW_IDLE - Retrieve information about the idle status of each
753 * internal engine.
754 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
755 * require an open context.
756 * HL_INFO_DEVICE_UTILIZATION - Retrieve the total utilization of the device
757 * over the last period specified by the user.
758 * The period can be between 100ms to 1s, in
759 * resolution of 100ms. The return value is a
760 * percentage of the utilization rate.
761 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
762 * event occurred since the driver was loaded.
763 * HL_INFO_CLK_RATE - Retrieve the current and maximum clock rate
764 * of the device in MHz. The maximum clock rate is
765 * configurable via sysfs parameter
766 * HL_INFO_RESET_COUNT - Retrieve the counts of the soft and hard reset
767 * operations performed on the device since the last
768 * time the driver was loaded.
769 * HL_INFO_TIME_SYNC - Retrieve the device's time alongside the host's time
770 * for synchronization.
771 * HL_INFO_CS_COUNTERS - Retrieve command submission counters
772 * HL_INFO_PCI_COUNTERS - Retrieve PCI counters
773 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
774 * HL_INFO_SYNC_MANAGER - Retrieve sync manager info per dcore
775 * HL_INFO_TOTAL_ENERGY - Retrieve total energy consumption
776 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
777 * HL_INFO_POWER - Retrieve power information
778 * HL_INFO_OPEN_STATS - Retrieve info regarding recent device open calls
779 * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
780 * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
781 * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
782 * and CS timeout or razwi error occurred.
783 * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
784 * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
785 * Timestamp of razwi.
786 * The address which accessing it caused the razwi.
787 * Razwi initiator.
788 * Razwi cause, was it a page fault or MMU access error.
789 * May return 0 even though no new data is available, in that case
790 * timestamp will be 0.
791 * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
792 * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
793 * HL_INFO_REGISTER_EVENTFD - Register eventfd for event notifications.
794 * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
795 * HL_INFO_GET_EVENTS - Retrieve the last occurred events
796 * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
797 * May return 0 even though no new data is available, in that case
798 * timestamp will be 0.
799 * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
800 * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
801 * May return 0 even though no new data is available, in that case
802 * timestamp will be 0.
803 * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
804 * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
805 * HL_INFO_HW_ERR_EVENT - Retrieve information on the reported HW error.
806 * May return 0 even though no new data is available, in that case
807 * timestamp will be 0.
808 * HL_INFO_FW_ERR_EVENT - Retrieve information on the reported FW error.
809 * May return 0 even though no new data is available, in that case
810 * timestamp will be 0.
811 * HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error.
812 */
813#define HL_INFO_HW_IP_INFO 0
814#define HL_INFO_HW_EVENTS 1
815#define HL_INFO_DRAM_USAGE 2
816#define HL_INFO_HW_IDLE 3
817#define HL_INFO_DEVICE_STATUS 4
818#define HL_INFO_DEVICE_UTILIZATION 6
819#define HL_INFO_HW_EVENTS_AGGREGATE 7
820#define HL_INFO_CLK_RATE 8
821#define HL_INFO_RESET_COUNT 9
822#define HL_INFO_TIME_SYNC 10
823#define HL_INFO_CS_COUNTERS 11
824#define HL_INFO_PCI_COUNTERS 12
825#define HL_INFO_CLK_THROTTLE_REASON 13
826#define HL_INFO_SYNC_MANAGER 14
827#define HL_INFO_TOTAL_ENERGY 15
828#define HL_INFO_PLL_FREQUENCY 16
829#define HL_INFO_POWER 17
830#define HL_INFO_OPEN_STATS 18
831#define HL_INFO_DRAM_REPLACED_ROWS 21
832#define HL_INFO_DRAM_PENDING_ROWS 22
833#define HL_INFO_LAST_ERR_OPEN_DEV_TIME 23
834#define HL_INFO_CS_TIMEOUT_EVENT 24
835#define HL_INFO_RAZWI_EVENT 25
836#define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES 26
837#define HL_INFO_SECURED_ATTESTATION 27
838#define HL_INFO_REGISTER_EVENTFD 28
839#define HL_INFO_UNREGISTER_EVENTFD 29
840#define HL_INFO_GET_EVENTS 30
841#define HL_INFO_UNDEFINED_OPCODE_EVENT 31
842#define HL_INFO_ENGINE_STATUS 32
843#define HL_INFO_PAGE_FAULT_EVENT 33
844#define HL_INFO_USER_MAPPINGS 34
845#define HL_INFO_FW_GENERIC_REQ 35
846#define HL_INFO_HW_ERR_EVENT 36
847#define HL_INFO_FW_ERR_EVENT 37
848#define HL_INFO_USER_ENGINE_ERR_EVENT 38
849
850#define HL_INFO_VERSION_MAX_LEN 128
851#define HL_INFO_CARD_NAME_MAX_LEN 16
852
853/* Maximum buffer size for retrieving engines status */
854#define HL_ENGINES_DATA_MAX_SIZE SZ_1M
855
856/**
857 * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
858 * @sram_base_address: The first SRAM physical base address that is free to be
859 * used by the user.
860 * @dram_base_address: The first DRAM virtual or physical base address that is
861 * free to be used by the user.
862 * @dram_size: The DRAM size that is available to the user.
863 * @sram_size: The SRAM size that is available to the user.
864 * @num_of_events: The number of events that can be received from the f/w. This
865 * is needed so the user can what is the size of the h/w events
866 * array he needs to pass to the kernel when he wants to fetch
867 * the event counters.
868 * @device_id: PCI device ID of the ASIC.
869 * @module_id: Module ID of the ASIC for mezzanine cards in servers
870 * (From OCP spec).
871 * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
872 * @first_available_interrupt_id: The first available interrupt ID for the user
873 * to be used when it works with user interrupts.
874 * Relevant for Gaudi2 and later.
875 * @server_type: Server type that the Gaudi ASIC is currently installed in.
876 * The value is according to enum hl_server_type
877 * @cpld_version: CPLD version on the board.
878 * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
879 * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
880 * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
881 * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
882 * in some ASICs.
883 * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
884 * for Goya/Gaudi only.
885 * @dram_enabled: Whether the DRAM is enabled.
886 * @security_enabled: Whether security is enabled on device.
887 * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
888 * configuration. Relevant for Gaudi2 and later.
889 * @cpucp_version: The CPUCP f/w version.
890 * @card_name: The card name as passed by the f/w.
891 * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
892 * Relevant for Gaudi2 and later.
893 * @dram_page_size: The DRAM physical page size.
894 * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
895 * Relevant for Gaudi2 and later.
896 * @number_of_user_interrupts: The number of interrupts that are available to the userspace
897 * application to use. Relevant for Gaudi2 and later.
898 * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
899 * @revision_id: PCI revision ID of the ASIC.
900 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
901 * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
902 * Relevant for Gaudi3 and later.
903 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
904 * in order to raise events toward FW.
905 * @reserved_dram_size: DRAM size reserved for driver and firmware.
906 */
907struct hl_info_hw_ip_info {
908 __u64 sram_base_address;
909 __u64 dram_base_address;
910 __u64 dram_size;
911 __u32 sram_size;
912 __u32 num_of_events;
913 __u32 device_id;
914 __u32 module_id;
915 __u32 decoder_enabled_mask;
916 __u16 first_available_interrupt_id;
917 __u16 server_type;
918 __u32 cpld_version;
919 __u32 psoc_pci_pll_nr;
920 __u32 psoc_pci_pll_nf;
921 __u32 psoc_pci_pll_od;
922 __u32 psoc_pci_pll_div_factor;
923 __u8 tpc_enabled_mask;
924 __u8 dram_enabled;
925 __u8 security_enabled;
926 __u8 mme_master_slave_mode;
927 __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
928 __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
929 __u64 tpc_enabled_mask_ext;
930 __u64 dram_page_size;
931 __u32 edma_enabled_mask;
932 __u16 number_of_user_interrupts;
933 __u8 reserved1;
934 __u8 reserved2;
935 __u64 reserved3;
936 __u64 device_mem_alloc_default_page_size;
937 __u64 reserved4;
938 __u64 reserved5;
939 __u32 reserved6;
940 __u8 reserved7;
941 __u8 revision_id;
942 __u16 tpc_interrupt_id;
943 __u32 rotator_enabled_mask;
944 __u32 reserved9;
945 __u64 engine_core_interrupt_reg_addr;
946 __u64 reserved_dram_size;
947};
948
949struct hl_info_dram_usage {
950 __u64 dram_free_mem;
951 __u64 ctx_dram_mem;
952};
953
954#define HL_BUSY_ENGINES_MASK_EXT_SIZE 4
955
956struct hl_info_hw_idle {
957 __u32 is_idle;
958 /*
959 * Bitmask of busy engines.
960 * Bits definition is according to `enum <chip>_engine_id'.
961 */
962 __u32 busy_engines_mask;
963
964 /*
965 * Extended Bitmask of busy engines.
966 * Bits definition is according to `enum <chip>_engine_id'.
967 */
968 __u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
969};
970
971struct hl_info_device_status {
972 __u32 status;
973 __u32 pad;
974};
975
976struct hl_info_device_utilization {
977 __u32 utilization;
978 __u32 pad;
979};
980
981struct hl_info_clk_rate {
982 __u32 cur_clk_rate_mhz;
983 __u32 max_clk_rate_mhz;
984};
985
986struct hl_info_reset_count {
987 __u32 hard_reset_cnt;
988 __u32 soft_reset_cnt;
989};
990
991struct hl_info_time_sync {
992 __u64 device_time;
993 __u64 host_time;
994 __u64 tsc_time;
995};
996
997/**
998 * struct hl_info_pci_counters - pci counters
999 * @rx_throughput: PCI rx throughput KBps
1000 * @tx_throughput: PCI tx throughput KBps
1001 * @replay_cnt: PCI replay counter
1002 */
1003struct hl_info_pci_counters {
1004 __u64 rx_throughput;
1005 __u64 tx_throughput;
1006 __u64 replay_cnt;
1007};
1008
1009enum hl_clk_throttling_type {
1010 HL_CLK_THROTTLE_TYPE_POWER,
1011 HL_CLK_THROTTLE_TYPE_THERMAL,
1012 HL_CLK_THROTTLE_TYPE_MAX
1013};
1014
1015/* clk_throttling_reason masks */
1016#define HL_CLK_THROTTLE_POWER (1 << HL_CLK_THROTTLE_TYPE_POWER)
1017#define HL_CLK_THROTTLE_THERMAL (1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1018
1019/**
1020 * struct hl_info_clk_throttle - clock throttling reason
1021 * @clk_throttling_reason: each bit represents a clk throttling reason
1022 * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1023 * @clk_throttling_duration_ns: the clock throttle time in nanosec
1024 */
1025struct hl_info_clk_throttle {
1026 __u32 clk_throttling_reason;
1027 __u32 pad;
1028 __u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1029 __u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1030};
1031
1032/**
1033 * struct hl_info_energy - device energy information
1034 * @total_energy_consumption: total device energy consumption
1035 */
1036struct hl_info_energy {
1037 __u64 total_energy_consumption;
1038};
1039
1040#define HL_PLL_NUM_OUTPUTS 4
1041
1042struct hl_pll_frequency_info {
1043 __u16 output[HL_PLL_NUM_OUTPUTS];
1044};
1045
1046/**
1047 * struct hl_open_stats_info - device open statistics information
1048 * @open_counter: ever growing counter, increased on each successful dev open
1049 * @last_open_period_ms: duration (ms) device was open last time
1050 * @is_compute_ctx_active: Whether there is an active compute context executing
1051 * @compute_ctx_in_release: true if the current compute context is being released
1052 */
1053struct hl_open_stats_info {
1054 __u64 open_counter;
1055 __u64 last_open_period_ms;
1056 __u8 is_compute_ctx_active;
1057 __u8 compute_ctx_in_release;
1058 __u8 pad[6];
1059};
1060
1061/**
1062 * struct hl_power_info - power information
1063 * @power: power consumption
1064 */
1065struct hl_power_info {
1066 __u64 power;
1067};
1068
1069/**
1070 * struct hl_info_sync_manager - sync manager information
1071 * @first_available_sync_object: first available sob
1072 * @first_available_monitor: first available monitor
1073 * @first_available_cq: first available cq
1074 */
1075struct hl_info_sync_manager {
1076 __u32 first_available_sync_object;
1077 __u32 first_available_monitor;
1078 __u32 first_available_cq;
1079 __u32 reserved;
1080};
1081
1082/**
1083 * struct hl_info_cs_counters - command submission counters
1084 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1085 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1086 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1087 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1088 * @total_queue_full_drop_cnt: total dropped due to queue full
1089 * @ctx_queue_full_drop_cnt: context dropped due to queue full
1090 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1091 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1092 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1093 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1094 * @total_validation_drop_cnt: total dropped due to validation error
1095 * @ctx_validation_drop_cnt: context dropped due to validation error
1096 */
1097struct hl_info_cs_counters {
1098 __u64 total_out_of_mem_drop_cnt;
1099 __u64 ctx_out_of_mem_drop_cnt;
1100 __u64 total_parsing_drop_cnt;
1101 __u64 ctx_parsing_drop_cnt;
1102 __u64 total_queue_full_drop_cnt;
1103 __u64 ctx_queue_full_drop_cnt;
1104 __u64 total_device_in_reset_drop_cnt;
1105 __u64 ctx_device_in_reset_drop_cnt;
1106 __u64 total_max_cs_in_flight_drop_cnt;
1107 __u64 ctx_max_cs_in_flight_drop_cnt;
1108 __u64 total_validation_drop_cnt;
1109 __u64 ctx_validation_drop_cnt;
1110};
1111
1112/**
1113 * struct hl_info_last_err_open_dev_time - last error boot information.
1114 * @timestamp: timestamp of last time the device was opened and error occurred.
1115 */
1116struct hl_info_last_err_open_dev_time {
1117 __s64 timestamp;
1118};
1119
1120/**
1121 * struct hl_info_cs_timeout_event - last CS timeout information.
1122 * @timestamp: timestamp when last CS timeout event occurred.
1123 * @seq: sequence number of last CS timeout event.
1124 */
1125struct hl_info_cs_timeout_event {
1126 __s64 timestamp;
1127 __u64 seq;
1128};
1129
1130#define HL_RAZWI_NA_ENG_ID U16_MAX
1131#define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1132#define HL_RAZWI_READ BIT(0)
1133#define HL_RAZWI_WRITE BIT(1)
1134#define HL_RAZWI_LBW BIT(2)
1135#define HL_RAZWI_HBW BIT(3)
1136#define HL_RAZWI_RR BIT(4)
1137#define HL_RAZWI_ADDR_DEC BIT(5)
1138
1139/**
1140 * struct hl_info_razwi_event - razwi information.
1141 * @timestamp: timestamp of razwi.
1142 * @addr: address which accessing it caused razwi.
1143 * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1144 * have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1145 * engines which caused the razwi, it will hold all of them.
1146 * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1147 * might be common for several engines and there is no way to get the
1148 * exact engine. In this way, engine_id array will be filled with all
1149 * possible engines caused this razwi. Also, there might be possibility
1150 * in gaudi, where we don't indication on specific engine, in that case
1151 * the value of this parameter will be zero.
1152 * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1153 * HL_RAZWI_WRITE - razwi caused by write operation
1154 * HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1155 * HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1156 * HL_RAZWI_RR - razwi caused by range register
1157 * HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1158 * Note: this data is not supported by all asics, in that case the relevant bits will not
1159 * be set.
1160 */
1161struct hl_info_razwi_event {
1162 __s64 timestamp;
1163 __u64 addr;
1164 __u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1165 __u16 num_of_possible_engines;
1166 __u8 flags;
1167 __u8 pad[5];
1168};
1169
1170#define MAX_QMAN_STREAMS_INFO 4
1171#define OPCODE_INFO_MAX_ADDR_SIZE 8
1172/**
1173 * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1174 * @timestamp: timestamp of the undefined opcode error
1175 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1176 * entries. In case all streams array entries are
1177 * filled with values, it means the execution was in Lower-CP.
1178 * @cq_addr: the address of the current handled command buffer
1179 * @cq_size: the size of the current handled command buffer
1180 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1181 * should be equal to 1 in case of undefined opcode
1182 * in Upper-CP (specific stream) and equal to 4 incase
1183 * of undefined opcode in Lower-CP.
1184 * @engine_id: engine-id that the error occurred on
1185 * @stream_id: the stream id the error occurred on. In case the stream equals to
1186 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1187 */
1188struct hl_info_undefined_opcode_event {
1189 __s64 timestamp;
1190 __u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1191 __u64 cq_addr;
1192 __u32 cq_size;
1193 __u32 cb_addr_streams_len;
1194 __u32 engine_id;
1195 __u32 stream_id;
1196};
1197
1198/**
1199 * struct hl_info_hw_err_event - info about HW error
1200 * @timestamp: timestamp of error occurrence
1201 * @event_id: The async event ID (specific to each device type).
1202 * @pad: size padding for u64 granularity.
1203 */
1204struct hl_info_hw_err_event {
1205 __s64 timestamp;
1206 __u16 event_id;
1207 __u16 pad[3];
1208};
1209
1210/* FW error definition for event_type in struct hl_info_fw_err_event */
1211enum hl_info_fw_err_type {
1212 HL_INFO_FW_HEARTBEAT_ERR,
1213 HL_INFO_FW_REPORTED_ERR,
1214};
1215
1216/**
1217 * struct hl_info_fw_err_event - info about FW error
1218 * @timestamp: time-stamp of error occurrence
1219 * @err_type: The type of event as defined in hl_info_fw_err_type.
1220 * @event_id: The async event ID (specific to each device type, applicable only when event type is
1221 * HL_INFO_FW_REPORTED_ERR).
1222 * @pad: size padding for u64 granularity.
1223 */
1224struct hl_info_fw_err_event {
1225 __s64 timestamp;
1226 __u16 err_type;
1227 __u16 event_id;
1228 __u32 pad;
1229};
1230
1231/**
1232 * struct hl_info_engine_err_event - engine error info
1233 * @timestamp: time-stamp of error occurrence
1234 * @engine_id: engine id who reported the error.
1235 * @error_count: Amount of errors reported.
1236 * @pad: size padding for u64 granularity.
1237 */
1238struct hl_info_engine_err_event {
1239 __s64 timestamp;
1240 __u16 engine_id;
1241 __u16 error_count;
1242 __u32 pad;
1243};
1244
1245/**
1246 * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1247 * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1248 * (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1249 */
1250struct hl_info_dev_memalloc_page_sizes {
1251 __u64 page_order_bitmask;
1252};
1253
1254#define SEC_PCR_DATA_BUF_SZ 256
1255#define SEC_PCR_QUOTE_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */
1256#define SEC_SIGNATURE_BUF_SZ 255 /* (256 - 1) 1 byte used for size */
1257#define SEC_PUB_DATA_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */
1258#define SEC_CERTIFICATE_BUF_SZ 2046 /* (2048 - 2) 2 bytes used for size */
1259
1260/*
1261 * struct hl_info_sec_attest - attestation report of the boot
1262 * @nonce: number only used once. random number provided by host. this also passed to the quote
1263 * command as a qualifying data.
1264 * @pcr_quote_len: length of the attestation quote data (bytes)
1265 * @pub_data_len: length of the public data (bytes)
1266 * @certificate_len: length of the certificate (bytes)
1267 * @pcr_num_reg: number of PCR registers in the pcr_data array
1268 * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1269 * @quote_sig_len: length of the attestation report signature (bytes)
1270 * @pcr_data: raw values of the PCR registers
1271 * @pcr_quote: attestation report data structure
1272 * @quote_sig: signature structure of the attestation report
1273 * @public_data: public key for the signed attestation
1274 * (outPublic + name + qualifiedName)
1275 * @certificate: certificate for the attestation signing key
1276 */
1277struct hl_info_sec_attest {
1278 __u32 nonce;
1279 __u16 pcr_quote_len;
1280 __u16 pub_data_len;
1281 __u16 certificate_len;
1282 __u8 pcr_num_reg;
1283 __u8 pcr_reg_len;
1284 __u8 quote_sig_len;
1285 __u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1286 __u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1287 __u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1288 __u8 public_data[SEC_PUB_DATA_BUF_SZ];
1289 __u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1290 __u8 pad0[2];
1291};
1292
1293/**
1294 * struct hl_page_fault_info - page fault information.
1295 * @timestamp: timestamp of page fault.
1296 * @addr: address which accessing it caused page fault.
1297 * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1298 */
1299struct hl_page_fault_info {
1300 __s64 timestamp;
1301 __u64 addr;
1302 __u16 engine_id;
1303 __u8 pad[6];
1304};
1305
1306/**
1307 * struct hl_user_mapping - user mapping information.
1308 * @dev_va: device virtual address.
1309 * @size: virtual address mapping size.
1310 */
1311struct hl_user_mapping {
1312 __u64 dev_va;
1313 __u64 size;
1314};
1315
1316enum gaudi_dcores {
1317 HL_GAUDI_WS_DCORE,
1318 HL_GAUDI_WN_DCORE,
1319 HL_GAUDI_EN_DCORE,
1320 HL_GAUDI_ES_DCORE
1321};
1322
1323/**
1324 * struct hl_info_args - Main structure to retrieve device related information.
1325 * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1326 * mentioned in @op.
1327 * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1328 * limits how many bytes the kernel can write. For hw_events array, the size should be
1329 * hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1330 * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1331 * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1332 * @ctx_id: Context ID of the user. Currently not in use.
1333 * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1334 * resolution. Currently not in use.
1335 * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1336 * @eventfd: event file descriptor for event notifications.
1337 * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1338 * driver. It is possible for the user to allocate buffer larger than
1339 * needed, hence updating this variable so user will know the exact amount
1340 * of bytes copied by the kernel to the buffer.
1341 * @sec_attest_nonce: Nonce number used for attestation report.
1342 * @array_size: Number of array members copied to user buffer.
1343 * Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1344 * @fw_sub_opcode: generic requests sub opcodes.
1345 * @pad: Padding to 64 bit.
1346 */
1347struct hl_info_args {
1348 __u64 return_pointer;
1349 __u32 return_size;
1350 __u32 op;
1351
1352 union {
1353 __u32 dcore_id;
1354 __u32 ctx_id;
1355 __u32 period_ms;
1356 __u32 pll_index;
1357 __u32 eventfd;
1358 __u32 user_buffer_actual_size;
1359 __u32 sec_attest_nonce;
1360 __u32 array_size;
1361 __u32 fw_sub_opcode;
1362 };
1363
1364 __u32 pad;
1365};
1366
1367/* Opcode to create a new command buffer */
1368#define HL_CB_OP_CREATE 0
1369/* Opcode to destroy previously created command buffer */
1370#define HL_CB_OP_DESTROY 1
1371/* Opcode to retrieve information about a command buffer */
1372#define HL_CB_OP_INFO 2
1373
1374/* 2MB minus 32 bytes for 2xMSG_PROT */
1375#define HL_MAX_CB_SIZE (0x200000 - 32)
1376
1377/* Indicates whether the command buffer should be mapped to the device's MMU */
1378#define HL_CB_FLAGS_MAP 0x1
1379
1380/* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1381#define HL_CB_FLAGS_GET_DEVICE_VA 0x2
1382
1383struct hl_cb_in {
1384 /* Handle of CB or 0 if we want to create one */
1385 __u64 cb_handle;
1386 /* HL_CB_OP_* */
1387 __u32 op;
1388
1389 /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1390 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1391 */
1392 __u32 cb_size;
1393
1394 /* Context ID - Currently not in use */
1395 __u32 ctx_id;
1396 /* HL_CB_FLAGS_* */
1397 __u32 flags;
1398};
1399
1400struct hl_cb_out {
1401 union {
1402 /* Handle of CB */
1403 __u64 cb_handle;
1404
1405 union {
1406 /* Information about CB */
1407 struct {
1408 /* Usage count of CB */
1409 __u32 usage_cnt;
1410 __u32 pad;
1411 };
1412
1413 /* CB mapped address to device MMU */
1414 __u64 device_va;
1415 };
1416 };
1417};
1418
1419union hl_cb_args {
1420 struct hl_cb_in in;
1421 struct hl_cb_out out;
1422};
1423
1424/* HL_CS_CHUNK_FLAGS_ values
1425 *
1426 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1427 * Indicates if the CB was allocated and mapped by userspace
1428 * (relevant to Gaudi2 and later). User allocated CB is a command buffer,
1429 * allocated by the user, via malloc (or similar). After allocating the
1430 * CB, the user invokes - “memory ioctl” to map the user memory into a
1431 * device virtual address. The user provides this address via the
1432 * cb_handle field. The interface provides the ability to create a
1433 * large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1434 * increases the PCI-DMA queues throughput. This CB allocation method
1435 * also reduces the use of Linux DMA-able memory pool. Which are limited
1436 * and used by other Linux sub-systems.
1437 */
1438#define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1439
1440/*
1441 * This structure size must always be fixed to 64-bytes for backward
1442 * compatibility
1443 */
1444struct hl_cs_chunk {
1445 union {
1446 /* Goya/Gaudi:
1447 * For external queue, this represents a Handle of CB on the
1448 * Host.
1449 * For internal queue in Goya, this represents an SRAM or
1450 * a DRAM address of the internal CB. In Gaudi, this might also
1451 * represent a mapped host address of the CB.
1452 *
1453 * Gaudi2 onwards:
1454 * For H/W queue, this represents either a Handle of CB on the
1455 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1456 *
1457 * A mapped host address is in the device address space, after
1458 * a host address was mapped by the device MMU.
1459 */
1460 __u64 cb_handle;
1461
1462 /* Relevant only when HL_CS_FLAGS_WAIT or
1463 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1464 * This holds address of array of u64 values that contain
1465 * signal CS sequence numbers. The wait described by
1466 * this job will listen on all those signals
1467 * (wait event per signal)
1468 */
1469 __u64 signal_seq_arr;
1470
1471 /*
1472 * Relevant only when HL_CS_FLAGS_WAIT or
1473 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1474 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1475 * This is the CS sequence which has the encapsulated signals.
1476 */
1477 __u64 encaps_signal_seq;
1478 };
1479
1480 /* Index of queue to put the CB on */
1481 __u32 queue_index;
1482
1483 union {
1484 /*
1485 * Size of command buffer with valid packets
1486 * Can be smaller then actual CB size
1487 */
1488 __u32 cb_size;
1489
1490 /* Relevant only when HL_CS_FLAGS_WAIT or
1491 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1492 * Number of entries in signal_seq_arr
1493 */
1494 __u32 num_signal_seq_arr;
1495
1496 /* Relevant only when HL_CS_FLAGS_WAIT or
1497 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1498 * with HL_CS_FLAGS_ENCAP_SIGNALS
1499 * This set the signals range that the user want to wait for
1500 * out of the whole reserved signals range.
1501 * e.g if the signals range is 20, and user don't want
1502 * to wait for signal 8, so he set this offset to 7, then
1503 * he call the API again with 9 and so on till 20.
1504 */
1505 __u32 encaps_signal_offset;
1506 };
1507
1508 /* HL_CS_CHUNK_FLAGS_* */
1509 __u32 cs_chunk_flags;
1510
1511 /* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1512 * This holds the collective engine ID. The wait described by this job
1513 * will sync with this engine and with all NICs before completion.
1514 */
1515 __u32 collective_engine_id;
1516
1517 /* Align structure to 64 bytes */
1518 __u32 pad[10];
1519};
1520
1521/* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1522#define HL_CS_FLAGS_FORCE_RESTORE 0x1
1523#define HL_CS_FLAGS_SIGNAL 0x2
1524#define HL_CS_FLAGS_WAIT 0x4
1525#define HL_CS_FLAGS_COLLECTIVE_WAIT 0x8
1526
1527#define HL_CS_FLAGS_TIMESTAMP 0x20
1528#define HL_CS_FLAGS_STAGED_SUBMISSION 0x40
1529#define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 0x80
1530#define HL_CS_FLAGS_STAGED_SUBMISSION_LAST 0x100
1531#define HL_CS_FLAGS_CUSTOM_TIMEOUT 0x200
1532#define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT 0x400
1533
1534/*
1535 * The encapsulated signals CS is merged into the existing CS ioctls.
1536 * In order to use this feature need to follow the below procedure:
1537 * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1538 * the output of this API will be the SOB offset from CFG_BASE.
1539 * this address will be used to patch CB cmds to do the signaling for this
1540 * SOB by incrementing it's value.
1541 * for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1542 * CS type, note that this might fail if out-of-sync happened to the SOB
1543 * value, in case other signaling request to the same SOB occurred between
1544 * reserve-unreserve calls.
1545 * 2. Use the staged CS to do the encapsulated signaling jobs.
1546 * use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1547 * along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1548 * field. This offset allows app to wait on part of the reserved signals.
1549 * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1550 * to wait for the encapsulated signals.
1551 */
1552#define HL_CS_FLAGS_ENCAP_SIGNALS 0x800
1553#define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY 0x1000
1554#define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY 0x2000
1555
1556/*
1557 * The engine cores CS is merged into the existing CS ioctls.
1558 * Use it to control the engine cores mode.
1559 */
1560#define HL_CS_FLAGS_ENGINE_CORE_COMMAND 0x4000
1561
1562/*
1563 * The flush HBW PCI writes is merged into the existing CS ioctls.
1564 * Used to flush all HBW PCI writes.
1565 * This is a blocking operation and for this reason the user shall not use
1566 * the return sequence number (which will be invalid anyway)
1567 */
1568#define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES 0x8000
1569
1570/*
1571 * The engines CS is merged into the existing CS ioctls.
1572 * Use it to control engines modes.
1573 */
1574#define HL_CS_FLAGS_ENGINES_COMMAND 0x10000
1575
1576#define HL_CS_STATUS_SUCCESS 0
1577
1578#define HL_MAX_JOBS_PER_CS 512
1579
1580/*
1581 * enum hl_engine_command - engine command
1582 *
1583 * @HL_ENGINE_CORE_HALT: engine core halt
1584 * @HL_ENGINE_CORE_RUN: engine core run
1585 * @HL_ENGINE_STALL: user engine/s stall
1586 * @HL_ENGINE_RESUME: user engine/s resume
1587 */
1588enum hl_engine_command {
1589 HL_ENGINE_CORE_HALT = 1,
1590 HL_ENGINE_CORE_RUN = 2,
1591 HL_ENGINE_STALL = 3,
1592 HL_ENGINE_RESUME = 4,
1593 HL_ENGINE_COMMAND_MAX
1594};
1595
1596struct hl_cs_in {
1597
1598 union {
1599 struct {
1600 /* this holds address of array of hl_cs_chunk for restore phase */
1601 __u64 chunks_restore;
1602
1603 /* holds address of array of hl_cs_chunk for execution phase */
1604 __u64 chunks_execute;
1605 };
1606
1607 /* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1608 struct {
1609 /* this holds address of array of uint32 for engine_cores */
1610 __u64 engine_cores;
1611
1612 /* number of engine cores in engine_cores array */
1613 __u32 num_engine_cores;
1614
1615 /* the core command to be sent towards engine cores */
1616 __u32 core_command;
1617 };
1618
1619 /* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1620 struct {
1621 /* this holds address of array of uint32 for engines */
1622 __u64 engines;
1623
1624 /* number of engines in engines array */
1625 __u32 num_engines;
1626
1627 /* the engine command to be sent towards engines */
1628 __u32 engine_command;
1629 };
1630 };
1631
1632 union {
1633 /*
1634 * Sequence number of a staged submission CS
1635 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1636 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1637 */
1638 __u64 seq;
1639
1640 /*
1641 * Encapsulated signals handle id
1642 * Valid for two flows:
1643 * 1. CS with encapsulated signals:
1644 * when HL_CS_FLAGS_STAGED_SUBMISSION and
1645 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1646 * and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1647 * 2. unreserve signals:
1648 * valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1649 */
1650 __u32 encaps_sig_handle_id;
1651
1652 /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1653 struct {
1654 /* Encapsulated signals number */
1655 __u32 encaps_signals_count;
1656
1657 /* Encapsulated signals queue index (stream) */
1658 __u32 encaps_signals_q_idx;
1659 };
1660 };
1661
1662 /* Number of chunks in restore phase array. Maximum number is
1663 * HL_MAX_JOBS_PER_CS
1664 */
1665 __u32 num_chunks_restore;
1666
1667 /* Number of chunks in execution array. Maximum number is
1668 * HL_MAX_JOBS_PER_CS
1669 */
1670 __u32 num_chunks_execute;
1671
1672 /* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1673 * is set
1674 */
1675 __u32 timeout;
1676
1677 /* HL_CS_FLAGS_* */
1678 __u32 cs_flags;
1679
1680 /* Context ID - Currently not in use */
1681 __u32 ctx_id;
1682 __u8 pad[4];
1683};
1684
1685struct hl_cs_out {
1686 union {
1687 /*
1688 * seq holds the sequence number of the CS to pass to wait
1689 * ioctl. All values are valid except for 0 and ULLONG_MAX
1690 */
1691 __u64 seq;
1692
1693 /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1694 struct {
1695 /* This is the reserved signal handle id */
1696 __u32 handle_id;
1697
1698 /* This is the signals count */
1699 __u32 count;
1700 };
1701 };
1702
1703 /* HL_CS_STATUS */
1704 __u32 status;
1705
1706 /*
1707 * SOB base address offset
1708 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1709 */
1710 __u32 sob_base_addr_offset;
1711
1712 /*
1713 * Count of completed signals in SOB before current signal submission.
1714 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1715 * or HL_CS_FLAGS_SIGNAL is set
1716 */
1717 __u16 sob_count_before_submission;
1718 __u16 pad[3];
1719};
1720
1721union hl_cs_args {
1722 struct hl_cs_in in;
1723 struct hl_cs_out out;
1724};
1725
1726#define HL_WAIT_CS_FLAGS_INTERRUPT 0x2
1727#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000
1728#define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT 0xFFF00000
1729#define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT 0xFFE00000
1730#define HL_WAIT_CS_FLAGS_MULTI_CS 0x4
1731#define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10
1732#define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT 0x20
1733
1734#define HL_WAIT_MULTI_CS_LIST_MAX_LEN 32
1735
1736struct hl_wait_cs_in {
1737 union {
1738 struct {
1739 /*
1740 * In case of wait_cs holds the CS sequence number.
1741 * In case of wait for multi CS hold a user pointer to
1742 * an array of CS sequence numbers
1743 */
1744 __u64 seq;
1745 /* Absolute timeout to wait for command submission
1746 * in microseconds
1747 */
1748 __u64 timeout_us;
1749 };
1750
1751 struct {
1752 union {
1753 /* User address for completion comparison.
1754 * upon interrupt, driver will compare the value pointed
1755 * by this address with the supplied target value.
1756 * in order not to perform any comparison, set address
1757 * to all 1s.
1758 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1759 */
1760 __u64 addr;
1761
1762 /* cq_counters_handle to a kernel mapped cb which contains
1763 * cq counters.
1764 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1765 */
1766 __u64 cq_counters_handle;
1767 };
1768
1769 /* Target value for completion comparison */
1770 __u64 target;
1771 };
1772 };
1773
1774 /* Context ID - Currently not in use */
1775 __u32 ctx_id;
1776
1777 /* HL_WAIT_CS_FLAGS_*
1778 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1779 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1780 *
1781 * in order to wait for any CQ interrupt, set interrupt value to
1782 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1783 *
1784 * in order to wait for any decoder interrupt, set interrupt value to
1785 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1786 */
1787 __u32 flags;
1788
1789 union {
1790 struct {
1791 /* Multi CS API info- valid entries in multi-CS array */
1792 __u8 seq_arr_len;
1793 __u8 pad[7];
1794 };
1795
1796 /* Absolute timeout to wait for an interrupt in microseconds.
1797 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1798 */
1799 __u64 interrupt_timeout_us;
1800 };
1801
1802 /*
1803 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1804 * upon interrupt, driver will compare the value pointed
1805 * by this address (cq_counters_handle + cq_counters_offset)
1806 * with the supplied target value.
1807 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1808 */
1809 __u64 cq_counters_offset;
1810
1811 /*
1812 * Timestamp_handle timestamps buffer handle.
1813 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1814 */
1815 __u64 timestamp_handle;
1816
1817 /*
1818 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1819 * upon interrupt, if the cq reached the target value then driver will write
1820 * timestamp to this offset.
1821 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1822 */
1823 __u64 timestamp_offset;
1824};
1825
1826#define HL_WAIT_CS_STATUS_COMPLETED 0
1827#define HL_WAIT_CS_STATUS_BUSY 1
1828#define HL_WAIT_CS_STATUS_TIMEDOUT 2
1829#define HL_WAIT_CS_STATUS_ABORTED 3
1830
1831#define HL_WAIT_CS_STATUS_FLAG_GONE 0x1
1832#define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD 0x2
1833
1834struct hl_wait_cs_out {
1835 /* HL_WAIT_CS_STATUS_* */
1836 __u32 status;
1837 /* HL_WAIT_CS_STATUS_FLAG* */
1838 __u32 flags;
1839 /*
1840 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1841 * for wait_cs: timestamp of CS completion
1842 * for wait_multi_cs: timestamp of FIRST CS completion
1843 */
1844 __s64 timestamp_nsec;
1845 /* multi CS completion bitmap */
1846 __u32 cs_completion_map;
1847 __u32 pad;
1848};
1849
1850union hl_wait_cs_args {
1851 struct hl_wait_cs_in in;
1852 struct hl_wait_cs_out out;
1853};
1854
1855/* Opcode to allocate device memory */
1856#define HL_MEM_OP_ALLOC 0
1857
1858/* Opcode to free previously allocated device memory */
1859#define HL_MEM_OP_FREE 1
1860
1861/* Opcode to map host and device memory */
1862#define HL_MEM_OP_MAP 2
1863
1864/* Opcode to unmap previously mapped host and device memory */
1865#define HL_MEM_OP_UNMAP 3
1866
1867/* Opcode to map a hw block */
1868#define HL_MEM_OP_MAP_BLOCK 4
1869
1870/* Opcode to create DMA-BUF object for an existing device memory allocation
1871 * and to export an FD of that DMA-BUF back to the caller
1872 */
1873#define HL_MEM_OP_EXPORT_DMABUF_FD 5
1874
1875/* Opcode to create timestamps pool for user interrupts registration support
1876 * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1877 * will get handle to it for mmap, and another internal buffer used by the
1878 * driver for registration management
1879 * The memory will be freed when the user closes the file descriptor(ctx close)
1880 */
1881#define HL_MEM_OP_TS_ALLOC 6
1882
1883/* Memory flags */
1884#define HL_MEM_CONTIGUOUS 0x1
1885#define HL_MEM_SHARED 0x2
1886#define HL_MEM_USERPTR 0x4
1887#define HL_MEM_FORCE_HINT 0x8
1888#define HL_MEM_PREFETCH 0x40
1889
1890/**
1891 * structure hl_mem_in - structure that handle input args for memory IOCTL
1892 * @union arg: union of structures to be used based on the input operation
1893 * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1894 * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1895 * For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1896 * @ctx_id: context ID - currently not in use.
1897 * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1898 */
1899struct hl_mem_in {
1900 union {
1901 /**
1902 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1903 * @mem_size: memory size to allocate
1904 * @page_size: page size to use on allocation. when the value is 0 the default page
1905 * size will be taken.
1906 */
1907 struct {
1908 __u64 mem_size;
1909 __u64 page_size;
1910 } alloc;
1911
1912 /**
1913 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1914 * @handle: handle returned from HL_MEM_OP_ALLOC
1915 */
1916 struct {
1917 __u64 handle;
1918 } free;
1919
1920 /**
1921 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1922 * @hint_addr: requested virtual address of mapped memory.
1923 * the driver will try to map the requested region to this hint
1924 * address, as long as the address is valid and not already mapped.
1925 * the user should check the returned address of the IOCTL to make
1926 * sure he got the hint address.
1927 * passing 0 here means that the driver will choose the address itself.
1928 * @handle: handle returned from HL_MEM_OP_ALLOC.
1929 */
1930 struct {
1931 __u64 hint_addr;
1932 __u64 handle;
1933 } map_device;
1934
1935 /**
1936 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1937 * @host_virt_addr: address of allocated host memory.
1938 * @hint_addr: requested virtual address of mapped memory.
1939 * the driver will try to map the requested region to this hint
1940 * address, as long as the address is valid and not already mapped.
1941 * the user should check the returned address of the IOCTL to make
1942 * sure he got the hint address.
1943 * passing 0 here means that the driver will choose the address itself.
1944 * @size: size of allocated host memory.
1945 */
1946 struct {
1947 __u64 host_virt_addr;
1948 __u64 hint_addr;
1949 __u64 mem_size;
1950 } map_host;
1951
1952 /**
1953 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1954 * @block_addr:HW block address to map, a handle and size will be returned
1955 * to the user and will be used to mmap the relevant block.
1956 * only addresses from configuration space are allowed.
1957 */
1958 struct {
1959 __u64 block_addr;
1960 } map_block;
1961
1962 /**
1963 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1964 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1965 */
1966 struct {
1967 __u64 device_virt_addr;
1968 } unmap;
1969
1970 /**
1971 * structure for exporting DMABUF object (used with
1972 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
1973 * @addr: for Gaudi1, the driver expects a physical address
1974 * inside the device's DRAM. this is because in Gaudi1
1975 * we don't have MMU that covers the device's DRAM.
1976 * for all other ASICs, the driver expects a device
1977 * virtual address that represents the start address of
1978 * a mapped DRAM memory area inside the device.
1979 * the address must be the same as was received from the
1980 * driver during a previous HL_MEM_OP_MAP operation.
1981 * @mem_size: size of memory to export.
1982 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
1983 * the driver expects an offset inside of the memory area
1984 * describe by addr. the offset represents the start
1985 * address of that the exported dma-buf object describes.
1986 */
1987 struct {
1988 __u64 addr;
1989 __u64 mem_size;
1990 __u64 offset;
1991 } export_dmabuf_fd;
1992 };
1993
1994 __u32 op;
1995 __u32 flags;
1996 __u32 ctx_id;
1997 __u32 num_of_elements;
1998};
1999
2000struct hl_mem_out {
2001 union {
2002 /*
2003 * Used for HL_MEM_OP_MAP as the virtual address that was
2004 * assigned in the device VA space.
2005 * A value of 0 means the requested operation failed.
2006 */
2007 __u64 device_virt_addr;
2008
2009 /*
2010 * Used in HL_MEM_OP_ALLOC
2011 * This is the assigned handle for the allocated memory
2012 */
2013 __u64 handle;
2014
2015 struct {
2016 /*
2017 * Used in HL_MEM_OP_MAP_BLOCK.
2018 * This is the assigned handle for the mapped block
2019 */
2020 __u64 block_handle;
2021
2022 /*
2023 * Used in HL_MEM_OP_MAP_BLOCK
2024 * This is the size of the mapped block
2025 */
2026 __u32 block_size;
2027
2028 __u32 pad;
2029 };
2030
2031 /* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2032 * DMA-BUF object that was created to describe a memory
2033 * allocation on the device's memory space. The FD should be
2034 * passed to the importer driver
2035 */
2036 __s32 fd;
2037 };
2038};
2039
2040union hl_mem_args {
2041 struct hl_mem_in in;
2042 struct hl_mem_out out;
2043};
2044
2045#define HL_DEBUG_MAX_AUX_VALUES 10
2046
2047struct hl_debug_params_etr {
2048 /* Address in memory to allocate buffer */
2049 __u64 buffer_address;
2050
2051 /* Size of buffer to allocate */
2052 __u64 buffer_size;
2053
2054 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2055 __u32 sink_mode;
2056 __u32 pad;
2057};
2058
2059struct hl_debug_params_etf {
2060 /* Address in memory to allocate buffer */
2061 __u64 buffer_address;
2062
2063 /* Size of buffer to allocate */
2064 __u64 buffer_size;
2065
2066 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2067 __u32 sink_mode;
2068 __u32 pad;
2069};
2070
2071struct hl_debug_params_stm {
2072 /* Two bit masks for HW event and Stimulus Port */
2073 __u64 he_mask;
2074 __u64 sp_mask;
2075
2076 /* Trace source ID */
2077 __u32 id;
2078
2079 /* Frequency for the timestamp register */
2080 __u32 frequency;
2081};
2082
2083struct hl_debug_params_bmon {
2084 /* Two address ranges that the user can request to filter */
2085 __u64 start_addr0;
2086 __u64 addr_mask0;
2087
2088 __u64 start_addr1;
2089 __u64 addr_mask1;
2090
2091 /* Capture window configuration */
2092 __u32 bw_win;
2093 __u32 win_capture;
2094
2095 /* Trace source ID */
2096 __u32 id;
2097
2098 /* Control register */
2099 __u32 control;
2100
2101 /* Two more address ranges that the user can request to filter */
2102 __u64 start_addr2;
2103 __u64 end_addr2;
2104
2105 __u64 start_addr3;
2106 __u64 end_addr3;
2107};
2108
2109struct hl_debug_params_spmu {
2110 /* Event types selection */
2111 __u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2112
2113 /* Number of event types selection */
2114 __u32 event_types_num;
2115
2116 /* TRC configuration register values */
2117 __u32 pmtrc_val;
2118 __u32 trc_ctrl_host_val;
2119 __u32 trc_en_host_val;
2120};
2121
2122/* Opcode for ETR component */
2123#define HL_DEBUG_OP_ETR 0
2124/* Opcode for ETF component */
2125#define HL_DEBUG_OP_ETF 1
2126/* Opcode for STM component */
2127#define HL_DEBUG_OP_STM 2
2128/* Opcode for FUNNEL component */
2129#define HL_DEBUG_OP_FUNNEL 3
2130/* Opcode for BMON component */
2131#define HL_DEBUG_OP_BMON 4
2132/* Opcode for SPMU component */
2133#define HL_DEBUG_OP_SPMU 5
2134/* Opcode for timestamp (deprecated) */
2135#define HL_DEBUG_OP_TIMESTAMP 6
2136/* Opcode for setting the device into or out of debug mode. The enable
2137 * variable should be 1 for enabling debug mode and 0 for disabling it
2138 */
2139#define HL_DEBUG_OP_SET_MODE 7
2140
2141struct hl_debug_args {
2142 /*
2143 * Pointer to user input structure.
2144 * This field is relevant to specific opcodes.
2145 */
2146 __u64 input_ptr;
2147 /* Pointer to user output structure */
2148 __u64 output_ptr;
2149 /* Size of user input structure */
2150 __u32 input_size;
2151 /* Size of user output structure */
2152 __u32 output_size;
2153 /* HL_DEBUG_OP_* */
2154 __u32 op;
2155 /*
2156 * Register index in the component, taken from the debug_regs_index enum
2157 * in the various ASIC header files
2158 */
2159 __u32 reg_idx;
2160 /* Enable/disable */
2161 __u32 enable;
2162 /* Context ID - Currently not in use */
2163 __u32 ctx_id;
2164};
2165
2166#define HL_IOCTL_INFO 0x00
2167#define HL_IOCTL_CB 0x01
2168#define HL_IOCTL_CS 0x02
2169#define HL_IOCTL_WAIT_CS 0x03
2170#define HL_IOCTL_MEMORY 0x04
2171#define HL_IOCTL_DEBUG 0x05
2172
2173/*
2174 * Various information operations such as:
2175 * - H/W IP information
2176 * - Current dram usage
2177 *
2178 * The user calls this IOCTL with an opcode that describes the required
2179 * information. The user should supply a pointer to a user-allocated memory
2180 * chunk, which will be filled by the driver with the requested information.
2181 *
2182 * The user supplies the maximum amount of size to copy into the user's memory,
2183 * in order to prevent data corruption in case of differences between the
2184 * definitions of structures in kernel and userspace, e.g. in case of old
2185 * userspace and new kernel driver
2186 */
2187#define DRM_IOCTL_HL_INFO DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args)
2188
2189/*
2190 * Command Buffer
2191 * - Request a Command Buffer
2192 * - Destroy a Command Buffer
2193 *
2194 * The command buffers are memory blocks that reside in DMA-able address
2195 * space and are physically contiguous so they can be accessed by the device
2196 * directly. They are allocated using the coherent DMA API.
2197 *
2198 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2199 * process needs to use that handle to mmap the buffer so it can access them.
2200 *
2201 * In some instances, the device must access the command buffer through the
2202 * device's MMU, and thus its memory should be mapped. In these cases, user can
2203 * indicate the driver that such a mapping is required.
2204 * The resulting device virtual address will be used internally by the driver,
2205 * and won't be returned to user.
2206 *
2207 */
2208#define DRM_IOCTL_HL_CB DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args)
2209
2210/*
2211 * Command Submission
2212 *
2213 * To submit work to the device, the user need to call this IOCTL with a set
2214 * of JOBS. That set of JOBS constitutes a CS object.
2215 * Each JOB will be enqueued on a specific queue, according to the user's input.
2216 * There can be more then one JOB per queue.
2217 *
2218 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2219 * and a second set is for "execution" phase.
2220 * The JOBS on the "restore" phase are enqueued only after context-switch
2221 * (or if its the first CS for this context). The user can also order the
2222 * driver to run the "restore" phase explicitly
2223 *
2224 * Goya/Gaudi:
2225 * There are two types of queues - external and internal. External queues
2226 * are DMA queues which transfer data from/to the Host. All other queues are
2227 * internal. The driver will get completion notifications from the device only
2228 * on JOBS which are enqueued in the external queues.
2229 *
2230 * Gaudi2 onwards:
2231 * There is a single type of queue for all types of engines, either DMA engines
2232 * for transfers from/to the host or inside the device, or compute engines.
2233 * The driver will get completion notifications from the device for all queues.
2234 *
2235 * For jobs on external queues, the user needs to create command buffers
2236 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2237 * internal queues, the user needs to prepare a "command buffer" with packets
2238 * on either the device SRAM/DRAM or the host, and give the device address of
2239 * that buffer to the CS ioctl.
2240 * For jobs on H/W queues both options of command buffers are valid.
2241 *
2242 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2243 * means it returns immediately after ALL the JOBS were enqueued on their
2244 * relevant queues. Therefore, the user mustn't assume the CS has been completed
2245 * or has even started to execute.
2246 *
2247 * Upon successful enqueue, the IOCTL returns a sequence number which the user
2248 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2249 * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2250 * which can execute AFTER the external JOBS have finished, the driver might
2251 * report that the CS has finished executing BEFORE the internal JOBS have
2252 * actually finished executing.
2253 *
2254 * Even though the sequence number increments per CS, the user can NOT
2255 * automatically assume that if CS with sequence number N finished, then CS
2256 * with sequence number N-1 also finished. The user can make this assumption if
2257 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2258 * queues).
2259 */
2260#define DRM_IOCTL_HL_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args)
2261
2262/*
2263 * Wait for Command Submission
2264 *
2265 * The user can call this IOCTL with a handle it received from the CS IOCTL
2266 * to wait until the handle's CS has finished executing. The user will wait
2267 * inside the kernel until the CS has finished or until the user-requested
2268 * timeout has expired.
2269 *
2270 * If the timeout value is 0, the driver won't sleep at all. It will check
2271 * the status of the CS and return immediately
2272 *
2273 * The return value of the IOCTL is a standard Linux error code. The possible
2274 * values are:
2275 *
2276 * EINTR - Kernel waiting has been interrupted, e.g. due to OS signal
2277 * that the user process received
2278 * ETIMEDOUT - The CS has caused a timeout on the device
2279 * EIO - The CS was aborted (usually because the device was reset)
2280 * ENODEV - The device wants to do hard-reset (so user need to close FD)
2281 *
2282 * The driver also returns a custom define in case the IOCTL call returned 0.
2283 * The define can be one of the following:
2284 *
2285 * HL_WAIT_CS_STATUS_COMPLETED - The CS has been completed successfully (0)
2286 * HL_WAIT_CS_STATUS_BUSY - The CS is still executing (0)
2287 * HL_WAIT_CS_STATUS_TIMEDOUT - The CS has caused a timeout on the device
2288 * (ETIMEDOUT)
2289 * HL_WAIT_CS_STATUS_ABORTED - The CS was aborted, usually because the
2290 * device was reset (EIO)
2291 */
2292#define DRM_IOCTL_HL_WAIT_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args)
2293
2294/*
2295 * Memory
2296 * - Map host memory to device MMU
2297 * - Unmap host memory from device MMU
2298 *
2299 * This IOCTL allows the user to map host memory to the device MMU
2300 *
2301 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2302 * to allocate the memory in user-space (malloc/new). The driver pins the
2303 * physical pages (up to the allowed limit by the OS), assigns a virtual
2304 * address in the device VA space and initializes the device MMU.
2305 *
2306 * There is an option for the user to specify the requested virtual address.
2307 *
2308 */
2309#define DRM_IOCTL_HL_MEMORY DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args)
2310
2311/*
2312 * Debug
2313 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2314 *
2315 * This IOCTL allows the user to get debug traces from the chip.
2316 *
2317 * Before the user can send configuration requests of the various
2318 * debug/profile engines, it needs to set the device into debug mode.
2319 * This is because the debug/profile infrastructure is shared component in the
2320 * device and we can't allow multiple users to access it at the same time.
2321 *
2322 * Once a user set the device into debug mode, the driver won't allow other
2323 * users to "work" with the device, i.e. open a FD. If there are multiple users
2324 * opened on the device, the driver won't allow any user to debug the device.
2325 *
2326 * For each configuration request, the user needs to provide the register index
2327 * and essential data such as buffer address and size.
2328 *
2329 * Once the user has finished using the debug/profile engines, he should
2330 * set the device into non-debug mode, i.e. disable debug mode.
2331 *
2332 * The driver can decide to "kick out" the user if he abuses this interface.
2333 *
2334 */
2335#define DRM_IOCTL_HL_DEBUG DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args)
2336
2337#define HL_COMMAND_START (DRM_COMMAND_BASE + HL_IOCTL_INFO)
2338#define HL_COMMAND_END (DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1)
2339
2340#endif /* HABANALABS_H_ */
2341

source code of linux/include/uapi/drm/habanalabs_accel.h