1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
17 * Place - Suite 330, Boston, MA 02111-1307 USA.
18 *
19 * Authors:
20 * Haiyang Zhang <haiyangz@microsoft.com>
21 * Hank Janssen <hjanssen@microsoft.com>
22 * K. Y. Srinivasan <kys@microsoft.com>
23 *
24 */
25
26#ifndef _UAPI_HYPERV_H
27#define _UAPI_HYPERV_H
28
29#include <linux/types.h>
30
31/*
32 * Framework version for util services.
33 */
34#define UTIL_FW_MINOR 0
35
36#define UTIL_WS2K8_FW_MAJOR 1
37#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38
39#define UTIL_FW_MAJOR 3
40#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
41
42
43/*
44 * Implementation of host controlled snapshot of the guest.
45 */
46
47#define VSS_OP_REGISTER 128
48
49/*
50 Daemon code with full handshake support.
51 */
52#define VSS_OP_REGISTER1 129
53
54enum hv_vss_op {
55 VSS_OP_CREATE = 0,
56 VSS_OP_DELETE,
57 VSS_OP_HOT_BACKUP,
58 VSS_OP_GET_DM_INFO,
59 VSS_OP_BU_COMPLETE,
60 /*
61 * Following operations are only supported with IC version >= 5.0
62 */
63 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
64 VSS_OP_THAW, /* Unfreeze the file systems */
65 VSS_OP_AUTO_RECOVER,
66 VSS_OP_COUNT /* Number of operations, must be last */
67};
68
69
70/*
71 * Header for all VSS messages.
72 */
73struct hv_vss_hdr {
74 __u8 operation;
75 __u8 reserved[7];
76} __attribute__((packed));
77
78
79/*
80 * Flag values for the hv_vss_check_feature. Linux supports only
81 * one value.
82 */
83#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
84
85struct hv_vss_check_feature {
86 __u32 flags;
87} __attribute__((packed));
88
89struct hv_vss_check_dm_info {
90 __u32 flags;
91} __attribute__((packed));
92
93/*
94 * struct hv_vss_msg encodes the fields that the Linux VSS
95 * driver accesses. However, FREEZE messages from Hyper-V contain
96 * additional LUN information that Linux doesn't use and are not
97 * represented in struct hv_vss_msg. A received FREEZE message may
98 * be as large as 6,260 bytes, so the driver must allocate at least
99 * that much space, not sizeof(struct hv_vss_msg). Other messages
100 * such as AUTO_RECOVER may be as large as 12,500 bytes. However,
101 * because the Linux VSS driver responds that it doesn't support
102 * auto-recovery, it should not receive such messages.
103 */
104struct hv_vss_msg {
105 union {
106 struct hv_vss_hdr vss_hdr;
107 int error;
108 };
109 union {
110 struct hv_vss_check_feature vss_cf;
111 struct hv_vss_check_dm_info dm_info;
112 };
113} __attribute__((packed));
114
115/*
116 * Implementation of a host to guest copy facility.
117 */
118
119#define FCOPY_VERSION_0 0
120#define FCOPY_VERSION_1 1
121#define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
122#define W_MAX_PATH 260
123
124enum hv_fcopy_op {
125 START_FILE_COPY = 0,
126 WRITE_TO_FILE,
127 COMPLETE_FCOPY,
128 CANCEL_FCOPY,
129};
130
131struct hv_fcopy_hdr {
132 __u32 operation;
133 __u8 service_id0[16]; /* currently unused */
134 __u8 service_id1[16]; /* currently unused */
135} __attribute__((packed));
136
137#define OVER_WRITE 0x1
138#define CREATE_PATH 0x2
139
140struct hv_start_fcopy {
141 struct hv_fcopy_hdr hdr;
142 __u16 file_name[W_MAX_PATH];
143 __u16 path_name[W_MAX_PATH];
144 __u32 copy_flags;
145 __u64 file_size;
146} __attribute__((packed));
147
148/*
149 * The file is chunked into fragments.
150 */
151#define DATA_FRAGMENT (6 * 1024)
152
153struct hv_do_fcopy {
154 struct hv_fcopy_hdr hdr;
155 __u32 pad;
156 __u64 offset;
157 __u32 size;
158 __u8 data[DATA_FRAGMENT];
159} __attribute__((packed));
160
161/*
162 * An implementation of HyperV key value pair (KVP) functionality for Linux.
163 *
164 *
165 * Copyright (C) 2010, Novell, Inc.
166 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
167 *
168 */
169
170/*
171 * Maximum value size - used for both key names and value data, and includes
172 * any applicable NULL terminators.
173 *
174 * Note: This limit is somewhat arbitrary, but falls easily within what is
175 * supported for all native guests (back to Win 2000) and what is reasonable
176 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
177 * limited to 255 character key names.
178 *
179 * MSDN recommends not storing data values larger than 2048 bytes in the
180 * registry.
181 *
182 * Note: This value is used in defining the KVP exchange message - this value
183 * cannot be modified without affecting the message size and compatibility.
184 */
185
186/*
187 * bytes, including any null terminators
188 */
189#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
190
191
192/*
193 * Maximum key size - the registry limit for the length of an entry name
194 * is 256 characters, including the null terminator
195 */
196
197#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
198
199/*
200 * In Linux, we implement the KVP functionality in two components:
201 * 1) The kernel component which is packaged as part of the hv_utils driver
202 * is responsible for communicating with the host and responsible for
203 * implementing the host/guest protocol. 2) A user level daemon that is
204 * responsible for data gathering.
205 *
206 * Host/Guest Protocol: The host iterates over an index and expects the guest
207 * to assign a key name to the index and also return the value corresponding to
208 * the key. The host will have atmost one KVP transaction outstanding at any
209 * given point in time. The host side iteration stops when the guest returns
210 * an error. Microsoft has specified the following mapping of key names to
211 * host specified index:
212 *
213 * Index Key Name
214 * 0 FullyQualifiedDomainName
215 * 1 IntegrationServicesVersion
216 * 2 NetworkAddressIPv4
217 * 3 NetworkAddressIPv6
218 * 4 OSBuildNumber
219 * 5 OSName
220 * 6 OSMajorVersion
221 * 7 OSMinorVersion
222 * 8 OSVersion
223 * 9 ProcessorArchitecture
224 *
225 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
226 *
227 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
228 * data gathering functionality in a user mode daemon. The user level daemon
229 * is also responsible for binding the key name to the index as well. The
230 * kernel and user-level daemon communicate using a connector channel.
231 *
232 * The user mode component first registers with the
233 * kernel component. Subsequently, the kernel component requests, data
234 * for the specified keys. In response to this message the user mode component
235 * fills in the value corresponding to the specified key. We overload the
236 * sequence field in the cn_msg header to define our KVP message types.
237 *
238 *
239 * The kernel component simply acts as a conduit for communication between the
240 * Windows host and the user-level daemon. The kernel component passes up the
241 * index received from the Host to the user-level daemon. If the index is
242 * valid (supported), the corresponding key as well as its
243 * value (both are strings) is returned. If the index is invalid
244 * (not supported), a NULL key string is returned.
245 */
246
247
248/*
249 * Registry value types.
250 */
251
252#define REG_SZ 1
253#define REG_U32 4
254#define REG_U64 8
255
256/*
257 * As we look at expanding the KVP functionality to include
258 * IP injection functionality, we need to maintain binary
259 * compatibility with older daemons.
260 *
261 * The KVP opcodes are defined by the host and it was unfortunate
262 * that I chose to treat the registration operation as part of the
263 * KVP operations defined by the host.
264 * Here is the level of compatibility
265 * (between the user level daemon and the kernel KVP driver) that we
266 * will implement:
267 *
268 * An older daemon will always be supported on a newer driver.
269 * A given user level daemon will require a minimal version of the
270 * kernel driver.
271 * If we cannot handle the version differences, we will fail gracefully
272 * (this can happen when we have a user level daemon that is more
273 * advanced than the KVP driver.
274 *
275 * We will use values used in this handshake for determining if we have
276 * workable user level daemon and the kernel driver. We begin by taking the
277 * registration opcode out of the KVP opcode namespace. We will however,
278 * maintain compatibility with the existing user-level daemon code.
279 */
280
281/*
282 * Daemon code not supporting IP injection (legacy daemon).
283 */
284
285#define KVP_OP_REGISTER 4
286
287/*
288 * Daemon code supporting IP injection.
289 * The KVP opcode field is used to communicate the
290 * registration information; so define a namespace that
291 * will be distinct from the host defined KVP opcode.
292 */
293
294#define KVP_OP_REGISTER1 100
295
296enum hv_kvp_exchg_op {
297 KVP_OP_GET = 0,
298 KVP_OP_SET,
299 KVP_OP_DELETE,
300 KVP_OP_ENUMERATE,
301 KVP_OP_GET_IP_INFO,
302 KVP_OP_SET_IP_INFO,
303 KVP_OP_COUNT /* Number of operations, must be last. */
304};
305
306enum hv_kvp_exchg_pool {
307 KVP_POOL_EXTERNAL = 0,
308 KVP_POOL_GUEST,
309 KVP_POOL_AUTO,
310 KVP_POOL_AUTO_EXTERNAL,
311 KVP_POOL_AUTO_INTERNAL,
312 KVP_POOL_COUNT /* Number of pools, must be last. */
313};
314
315/*
316 * Some Hyper-V status codes.
317 */
318
319#define HV_S_OK 0x00000000
320#define HV_E_FAIL 0x80004005
321#define HV_S_CONT 0x80070103
322#define HV_ERROR_NOT_SUPPORTED 0x80070032
323#define HV_ERROR_MACHINE_LOCKED 0x800704F7
324#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
325#define HV_INVALIDARG 0x80070057
326#define HV_GUID_NOTFOUND 0x80041002
327#define HV_ERROR_ALREADY_EXISTS 0x80070050
328#define HV_ERROR_DISK_FULL 0x80070070
329
330#define ADDR_FAMILY_NONE 0x00
331#define ADDR_FAMILY_IPV4 0x01
332#define ADDR_FAMILY_IPV6 0x02
333
334#define MAX_ADAPTER_ID_SIZE 128
335#define MAX_IP_ADDR_SIZE 1024
336#define MAX_GATEWAY_SIZE 512
337
338
339struct hv_kvp_ipaddr_value {
340 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
341 __u8 addr_family;
342 __u8 dhcp_enabled;
343 __u16 ip_addr[MAX_IP_ADDR_SIZE];
344 __u16 sub_net[MAX_IP_ADDR_SIZE];
345 __u16 gate_way[MAX_GATEWAY_SIZE];
346 __u16 dns_addr[MAX_IP_ADDR_SIZE];
347} __attribute__((packed));
348
349
350struct hv_kvp_hdr {
351 __u8 operation;
352 __u8 pool;
353 __u16 pad;
354} __attribute__((packed));
355
356struct hv_kvp_exchg_msg_value {
357 __u32 value_type;
358 __u32 key_size;
359 __u32 value_size;
360 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
361 union {
362 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
363 __u32 value_u32;
364 __u64 value_u64;
365 };
366} __attribute__((packed));
367
368struct hv_kvp_msg_enumerate {
369 __u32 index;
370 struct hv_kvp_exchg_msg_value data;
371} __attribute__((packed));
372
373struct hv_kvp_msg_get {
374 struct hv_kvp_exchg_msg_value data;
375};
376
377struct hv_kvp_msg_set {
378 struct hv_kvp_exchg_msg_value data;
379};
380
381struct hv_kvp_msg_delete {
382 __u32 key_size;
383 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
384};
385
386struct hv_kvp_register {
387 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
388};
389
390struct hv_kvp_msg {
391 union {
392 struct hv_kvp_hdr kvp_hdr;
393 int error;
394 };
395 union {
396 struct hv_kvp_msg_get kvp_get;
397 struct hv_kvp_msg_set kvp_set;
398 struct hv_kvp_msg_delete kvp_delete;
399 struct hv_kvp_msg_enumerate kvp_enum_data;
400 struct hv_kvp_ipaddr_value kvp_ip_val;
401 struct hv_kvp_register kvp_register;
402 } body;
403} __attribute__((packed));
404
405struct hv_kvp_ip_msg {
406 __u8 operation;
407 __u8 pool;
408 struct hv_kvp_ipaddr_value kvp_ip_val;
409} __attribute__((packed));
410
411#endif /* _UAPI_HYPERV_H */
412

source code of linux/include/uapi/linux/hyperv.h