1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <net/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49#include <linux/bits.h>
50
51#include <linux/sched/signal.h>
52#include <linux/fs.h>
53#include <linux/file.h>
54#include <linux/fdtable.h>
55#include <linux/mm.h>
56#include <linux/mman.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/bvec.h>
60#include <linux/net.h>
61#include <net/sock.h>
62#include <net/af_unix.h>
63#include <net/scm.h>
64#include <linux/anon_inodes.h>
65#include <linux/sched/mm.h>
66#include <linux/uaccess.h>
67#include <linux/nospec.h>
68#include <linux/highmem.h>
69#include <linux/fsnotify.h>
70#include <linux/fadvise.h>
71#include <linux/task_work.h>
72#include <linux/io_uring.h>
73#include <linux/audit.h>
74#include <linux/security.h>
75#include <asm/shmparam.h>
76
77#define CREATE_TRACE_POINTS
78#include <trace/events/io_uring.h>
79
80#include <uapi/linux/io_uring.h>
81
82#include "io-wq.h"
83
84#include "io_uring.h"
85#include "opdef.h"
86#include "refs.h"
87#include "tctx.h"
88#include "sqpoll.h"
89#include "fdinfo.h"
90#include "kbuf.h"
91#include "rsrc.h"
92#include "cancel.h"
93#include "net.h"
94#include "notif.h"
95#include "waitid.h"
96#include "futex.h"
97
98#include "timeout.h"
99#include "poll.h"
100#include "rw.h"
101#include "alloc_cache.h"
102
103#define IORING_MAX_ENTRIES 32768
104#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
105
106#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
107 IORING_REGISTER_LAST + IORING_OP_LAST)
108
109#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111
112#define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
113 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
114
115#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
116 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 REQ_F_ASYNC_DATA)
118
119#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 IO_REQ_CLEAN_FLAGS)
121
122#define IO_TCTX_REFS_CACHE_NR (1U << 10)
123
124#define IO_COMPL_BATCH 32
125#define IO_REQ_ALLOC_BATCH 8
126
127enum {
128 IO_CHECK_CQ_OVERFLOW_BIT,
129 IO_CHECK_CQ_DROPPED_BIT,
130};
131
132enum {
133 IO_EVENTFD_OP_SIGNAL_BIT,
134 IO_EVENTFD_OP_FREE_BIT,
135};
136
137struct io_defer_entry {
138 struct list_head list;
139 struct io_kiocb *req;
140 u32 seq;
141};
142
143/* requests with any of those set should undergo io_disarm_next() */
144#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
145#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
146
147static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
148 struct task_struct *task,
149 bool cancel_all);
150
151static void io_queue_sqe(struct io_kiocb *req);
152
153struct kmem_cache *req_cachep;
154
155static int __read_mostly sysctl_io_uring_disabled;
156static int __read_mostly sysctl_io_uring_group = -1;
157
158#ifdef CONFIG_SYSCTL
159static struct ctl_table kernel_io_uring_disabled_table[] = {
160 {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
164 .mode = 0644,
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
168 },
169 {
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
173 .mode = 0644,
174 .proc_handler = proc_dointvec,
175 },
176 {},
177};
178#endif
179
180struct sock *io_uring_get_socket(struct file *file)
181{
182#if defined(CONFIG_UNIX)
183 if (io_is_uring_fops(file)) {
184 struct io_ring_ctx *ctx = file->private_data;
185
186 return ctx->ring_sock->sk;
187 }
188#endif
189 return NULL;
190}
191EXPORT_SYMBOL(io_uring_get_socket);
192
193static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
194{
195 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
196 ctx->submit_state.cqes_count)
197 __io_submit_flush_completions(ctx);
198}
199
200static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
201{
202 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203}
204
205static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
206{
207 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208}
209
210static bool io_match_linked(struct io_kiocb *head)
211{
212 struct io_kiocb *req;
213
214 io_for_each_link(req, head) {
215 if (req->flags & REQ_F_INFLIGHT)
216 return true;
217 }
218 return false;
219}
220
221/*
222 * As io_match_task() but protected against racing with linked timeouts.
223 * User must not hold timeout_lock.
224 */
225bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
226 bool cancel_all)
227{
228 bool matched;
229
230 if (task && head->task != task)
231 return false;
232 if (cancel_all)
233 return true;
234
235 if (head->flags & REQ_F_LINK_TIMEOUT) {
236 struct io_ring_ctx *ctx = head->ctx;
237
238 /* protect against races with linked timeouts */
239 spin_lock_irq(lock: &ctx->timeout_lock);
240 matched = io_match_linked(head);
241 spin_unlock_irq(lock: &ctx->timeout_lock);
242 } else {
243 matched = io_match_linked(head);
244 }
245 return matched;
246}
247
248static inline void req_fail_link_node(struct io_kiocb *req, int res)
249{
250 req_set_fail(req);
251 io_req_set_res(req, res, cflags: 0);
252}
253
254static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
255{
256 wq_stack_add_head(node: &req->comp_list, stack: &ctx->submit_state.free_list);
257}
258
259static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
260{
261 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
262
263 complete(&ctx->ref_comp);
264}
265
266static __cold void io_fallback_req_func(struct work_struct *work)
267{
268 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
269 fallback_work.work);
270 struct llist_node *node = llist_del_all(head: &ctx->fallback_llist);
271 struct io_kiocb *req, *tmp;
272 struct io_tw_state ts = { .locked = true, };
273
274 mutex_lock(&ctx->uring_lock);
275 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
276 req->io_task_work.func(req, &ts);
277 if (WARN_ON_ONCE(!ts.locked))
278 return;
279 io_submit_flush_completions(ctx);
280 mutex_unlock(lock: &ctx->uring_lock);
281}
282
283static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
284{
285 unsigned hash_buckets = 1U << bits;
286 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
287
288 table->hbs = kmalloc(size: hash_size, GFP_KERNEL);
289 if (!table->hbs)
290 return -ENOMEM;
291
292 table->hash_bits = bits;
293 init_hash_table(table, size: hash_buckets);
294 return 0;
295}
296
297static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
298{
299 struct io_ring_ctx *ctx;
300 int hash_bits;
301
302 ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL);
303 if (!ctx)
304 return NULL;
305
306 xa_init(xa: &ctx->io_bl_xa);
307
308 /*
309 * Use 5 bits less than the max cq entries, that should give us around
310 * 32 entries per hash list if totally full and uniformly spread, but
311 * don't keep too many buckets to not overconsume memory.
312 */
313 hash_bits = ilog2(p->cq_entries) - 5;
314 hash_bits = clamp(hash_bits, 1, 8);
315 if (io_alloc_hash_table(table: &ctx->cancel_table, bits: hash_bits))
316 goto err;
317 if (io_alloc_hash_table(table: &ctx->cancel_table_locked, bits: hash_bits))
318 goto err;
319 if (percpu_ref_init(ref: &ctx->refs, release: io_ring_ctx_ref_free,
320 flags: 0, GFP_KERNEL))
321 goto err;
322
323 ctx->flags = p->flags;
324 init_waitqueue_head(&ctx->sqo_sq_wait);
325 INIT_LIST_HEAD(list: &ctx->sqd_list);
326 INIT_LIST_HEAD(list: &ctx->cq_overflow_list);
327 INIT_LIST_HEAD(list: &ctx->io_buffers_cache);
328 io_alloc_cache_init(cache: &ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
329 size: sizeof(struct io_rsrc_node));
330 io_alloc_cache_init(cache: &ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
331 size: sizeof(struct async_poll));
332 io_alloc_cache_init(cache: &ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
333 size: sizeof(struct io_async_msghdr));
334 io_futex_cache_init(ctx);
335 init_completion(x: &ctx->ref_comp);
336 xa_init_flags(xa: &ctx->personalities, XA_FLAGS_ALLOC1);
337 mutex_init(&ctx->uring_lock);
338 init_waitqueue_head(&ctx->cq_wait);
339 init_waitqueue_head(&ctx->poll_wq);
340 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
341 spin_lock_init(&ctx->completion_lock);
342 spin_lock_init(&ctx->timeout_lock);
343 INIT_WQ_LIST(&ctx->iopoll_list);
344 INIT_LIST_HEAD(list: &ctx->io_buffers_comp);
345 INIT_LIST_HEAD(list: &ctx->defer_list);
346 INIT_LIST_HEAD(list: &ctx->timeout_list);
347 INIT_LIST_HEAD(list: &ctx->ltimeout_list);
348 INIT_LIST_HEAD(list: &ctx->rsrc_ref_list);
349 init_llist_head(list: &ctx->work_llist);
350 INIT_LIST_HEAD(list: &ctx->tctx_list);
351 ctx->submit_state.free_list.next = NULL;
352 INIT_WQ_LIST(&ctx->locked_free_list);
353 INIT_HLIST_HEAD(&ctx->waitid_list);
354#ifdef CONFIG_FUTEX
355 INIT_HLIST_HEAD(&ctx->futex_list);
356#endif
357 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
358 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
359 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
360 return ctx;
361err:
362 kfree(objp: ctx->cancel_table.hbs);
363 kfree(objp: ctx->cancel_table_locked.hbs);
364 kfree(objp: ctx->io_bl);
365 xa_destroy(&ctx->io_bl_xa);
366 kfree(objp: ctx);
367 return NULL;
368}
369
370static void io_account_cq_overflow(struct io_ring_ctx *ctx)
371{
372 struct io_rings *r = ctx->rings;
373
374 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
375 ctx->cq_extra--;
376}
377
378static bool req_need_defer(struct io_kiocb *req, u32 seq)
379{
380 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
381 struct io_ring_ctx *ctx = req->ctx;
382
383 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
384 }
385
386 return false;
387}
388
389static void io_clean_op(struct io_kiocb *req)
390{
391 if (req->flags & REQ_F_BUFFER_SELECTED) {
392 spin_lock(lock: &req->ctx->completion_lock);
393 io_put_kbuf_comp(req);
394 spin_unlock(lock: &req->ctx->completion_lock);
395 }
396
397 if (req->flags & REQ_F_NEED_CLEANUP) {
398 const struct io_cold_def *def = &io_cold_defs[req->opcode];
399
400 if (def->cleanup)
401 def->cleanup(req);
402 }
403 if ((req->flags & REQ_F_POLLED) && req->apoll) {
404 kfree(objp: req->apoll->double_poll);
405 kfree(objp: req->apoll);
406 req->apoll = NULL;
407 }
408 if (req->flags & REQ_F_INFLIGHT) {
409 struct io_uring_task *tctx = req->task->io_uring;
410
411 atomic_dec(v: &tctx->inflight_tracked);
412 }
413 if (req->flags & REQ_F_CREDS)
414 put_cred(cred: req->creds);
415 if (req->flags & REQ_F_ASYNC_DATA) {
416 kfree(objp: req->async_data);
417 req->async_data = NULL;
418 }
419 req->flags &= ~IO_REQ_CLEAN_FLAGS;
420}
421
422static inline void io_req_track_inflight(struct io_kiocb *req)
423{
424 if (!(req->flags & REQ_F_INFLIGHT)) {
425 req->flags |= REQ_F_INFLIGHT;
426 atomic_inc(v: &req->task->io_uring->inflight_tracked);
427 }
428}
429
430static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431{
432 if (WARN_ON_ONCE(!req->link))
433 return NULL;
434
435 req->flags &= ~REQ_F_ARM_LTIMEOUT;
436 req->flags |= REQ_F_LINK_TIMEOUT;
437
438 /* linked timeouts should have two refs once prep'ed */
439 io_req_set_refcount(req);
440 __io_req_set_refcount(req: req->link, nr: 2);
441 return req->link;
442}
443
444static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
445{
446 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
447 return NULL;
448 return __io_prep_linked_timeout(req);
449}
450
451static noinline void __io_arm_ltimeout(struct io_kiocb *req)
452{
453 io_queue_linked_timeout(req: __io_prep_linked_timeout(req));
454}
455
456static inline void io_arm_ltimeout(struct io_kiocb *req)
457{
458 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
459 __io_arm_ltimeout(req);
460}
461
462static void io_prep_async_work(struct io_kiocb *req)
463{
464 const struct io_issue_def *def = &io_issue_defs[req->opcode];
465 struct io_ring_ctx *ctx = req->ctx;
466
467 if (!(req->flags & REQ_F_CREDS)) {
468 req->flags |= REQ_F_CREDS;
469 req->creds = get_current_cred();
470 }
471
472 req->work.list.next = NULL;
473 req->work.flags = 0;
474 req->work.cancel_seq = atomic_read(v: &ctx->cancel_seq);
475 if (req->flags & REQ_F_FORCE_ASYNC)
476 req->work.flags |= IO_WQ_WORK_CONCURRENT;
477
478 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
479 req->flags |= io_file_get_flags(file: req->file);
480
481 if (req->file && (req->flags & REQ_F_ISREG)) {
482 bool should_hash = def->hash_reg_file;
483
484 /* don't serialize this request if the fs doesn't need it */
485 if (should_hash && (req->file->f_flags & O_DIRECT) &&
486 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
487 should_hash = false;
488 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
489 io_wq_hash_work(work: &req->work, val: file_inode(f: req->file));
490 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
491 if (def->unbound_nonreg_file)
492 req->work.flags |= IO_WQ_WORK_UNBOUND;
493 }
494}
495
496static void io_prep_async_link(struct io_kiocb *req)
497{
498 struct io_kiocb *cur;
499
500 if (req->flags & REQ_F_LINK_TIMEOUT) {
501 struct io_ring_ctx *ctx = req->ctx;
502
503 spin_lock_irq(lock: &ctx->timeout_lock);
504 io_for_each_link(cur, req)
505 io_prep_async_work(req: cur);
506 spin_unlock_irq(lock: &ctx->timeout_lock);
507 } else {
508 io_for_each_link(cur, req)
509 io_prep_async_work(req: cur);
510 }
511}
512
513void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
514{
515 struct io_kiocb *link = io_prep_linked_timeout(req);
516 struct io_uring_task *tctx = req->task->io_uring;
517
518 BUG_ON(!tctx);
519 BUG_ON(!tctx->io_wq);
520
521 /* init ->work of the whole link before punting */
522 io_prep_async_link(req);
523
524 /*
525 * Not expected to happen, but if we do have a bug where this _can_
526 * happen, catch it here and ensure the request is marked as
527 * canceled. That will make io-wq go through the usual work cancel
528 * procedure rather than attempt to run this request (or create a new
529 * worker for it).
530 */
531 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
532 req->work.flags |= IO_WQ_WORK_CANCEL;
533
534 trace_io_uring_queue_async_work(req, rw: io_wq_is_hashed(work: &req->work));
535 io_wq_enqueue(wq: tctx->io_wq, work: &req->work);
536 if (link)
537 io_queue_linked_timeout(req: link);
538}
539
540static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
541{
542 while (!list_empty(head: &ctx->defer_list)) {
543 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
544 struct io_defer_entry, list);
545
546 if (req_need_defer(req: de->req, seq: de->seq))
547 break;
548 list_del_init(entry: &de->list);
549 io_req_task_queue(req: de->req);
550 kfree(objp: de);
551 }
552}
553
554
555static void io_eventfd_ops(struct rcu_head *rcu)
556{
557 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
558 int ops = atomic_xchg(v: &ev_fd->ops, new: 0);
559
560 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
561 eventfd_signal_mask(ctx: ev_fd->cq_ev_fd, n: 1, EPOLL_URING_WAKE);
562
563 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
564 * ordering in a race but if references are 0 we know we have to free
565 * it regardless.
566 */
567 if (atomic_dec_and_test(v: &ev_fd->refs)) {
568 eventfd_ctx_put(ctx: ev_fd->cq_ev_fd);
569 kfree(objp: ev_fd);
570 }
571}
572
573static void io_eventfd_signal(struct io_ring_ctx *ctx)
574{
575 struct io_ev_fd *ev_fd = NULL;
576
577 rcu_read_lock();
578 /*
579 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
580 * and eventfd_signal
581 */
582 ev_fd = rcu_dereference(ctx->io_ev_fd);
583
584 /*
585 * Check again if ev_fd exists incase an io_eventfd_unregister call
586 * completed between the NULL check of ctx->io_ev_fd at the start of
587 * the function and rcu_read_lock.
588 */
589 if (unlikely(!ev_fd))
590 goto out;
591 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
592 goto out;
593 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
594 goto out;
595
596 if (likely(eventfd_signal_allowed())) {
597 eventfd_signal_mask(ctx: ev_fd->cq_ev_fd, n: 1, EPOLL_URING_WAKE);
598 } else {
599 atomic_inc(v: &ev_fd->refs);
600 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), v: &ev_fd->ops))
601 call_rcu_hurry(head: &ev_fd->rcu, func: io_eventfd_ops);
602 else
603 atomic_dec(v: &ev_fd->refs);
604 }
605
606out:
607 rcu_read_unlock();
608}
609
610static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
611{
612 bool skip;
613
614 spin_lock(lock: &ctx->completion_lock);
615
616 /*
617 * Eventfd should only get triggered when at least one event has been
618 * posted. Some applications rely on the eventfd notification count
619 * only changing IFF a new CQE has been added to the CQ ring. There's
620 * no depedency on 1:1 relationship between how many times this
621 * function is called (and hence the eventfd count) and number of CQEs
622 * posted to the CQ ring.
623 */
624 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
625 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
626 spin_unlock(lock: &ctx->completion_lock);
627 if (skip)
628 return;
629
630 io_eventfd_signal(ctx);
631}
632
633void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
634{
635 if (ctx->poll_activated)
636 io_poll_wq_wake(ctx);
637 if (ctx->off_timeout_used)
638 io_flush_timeouts(ctx);
639 if (ctx->drain_active) {
640 spin_lock(lock: &ctx->completion_lock);
641 io_queue_deferred(ctx);
642 spin_unlock(lock: &ctx->completion_lock);
643 }
644 if (ctx->has_evfd)
645 io_eventfd_flush_signal(ctx);
646}
647
648static inline void __io_cq_lock(struct io_ring_ctx *ctx)
649{
650 if (!ctx->lockless_cq)
651 spin_lock(lock: &ctx->completion_lock);
652}
653
654static inline void io_cq_lock(struct io_ring_ctx *ctx)
655 __acquires(ctx->completion_lock)
656{
657 spin_lock(lock: &ctx->completion_lock);
658}
659
660static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
661{
662 io_commit_cqring(ctx);
663 if (!ctx->task_complete) {
664 if (!ctx->lockless_cq)
665 spin_unlock(lock: &ctx->completion_lock);
666 /* IOPOLL rings only need to wake up if it's also SQPOLL */
667 if (!ctx->syscall_iopoll)
668 io_cqring_wake(ctx);
669 }
670 io_commit_cqring_flush(ctx);
671}
672
673static void io_cq_unlock_post(struct io_ring_ctx *ctx)
674 __releases(ctx->completion_lock)
675{
676 io_commit_cqring(ctx);
677 spin_unlock(lock: &ctx->completion_lock);
678 io_cqring_wake(ctx);
679 io_commit_cqring_flush(ctx);
680}
681
682/* Returns true if there are no backlogged entries after the flush */
683static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
684{
685 struct io_overflow_cqe *ocqe;
686 LIST_HEAD(list);
687
688 spin_lock(lock: &ctx->completion_lock);
689 list_splice_init(list: &ctx->cq_overflow_list, head: &list);
690 clear_bit(nr: IO_CHECK_CQ_OVERFLOW_BIT, addr: &ctx->check_cq);
691 spin_unlock(lock: &ctx->completion_lock);
692
693 while (!list_empty(head: &list)) {
694 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
695 list_del(entry: &ocqe->list);
696 kfree(objp: ocqe);
697 }
698}
699
700static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
701{
702 size_t cqe_size = sizeof(struct io_uring_cqe);
703
704 if (__io_cqring_events(ctx) == ctx->cq_entries)
705 return;
706
707 if (ctx->flags & IORING_SETUP_CQE32)
708 cqe_size <<= 1;
709
710 io_cq_lock(ctx);
711 while (!list_empty(head: &ctx->cq_overflow_list)) {
712 struct io_uring_cqe *cqe;
713 struct io_overflow_cqe *ocqe;
714
715 if (!io_get_cqe_overflow(ctx, ret: &cqe, overflow: true))
716 break;
717 ocqe = list_first_entry(&ctx->cq_overflow_list,
718 struct io_overflow_cqe, list);
719 memcpy(cqe, &ocqe->cqe, cqe_size);
720 list_del(entry: &ocqe->list);
721 kfree(objp: ocqe);
722 }
723
724 if (list_empty(head: &ctx->cq_overflow_list)) {
725 clear_bit(nr: IO_CHECK_CQ_OVERFLOW_BIT, addr: &ctx->check_cq);
726 atomic_andnot(IORING_SQ_CQ_OVERFLOW, v: &ctx->rings->sq_flags);
727 }
728 io_cq_unlock_post(ctx);
729}
730
731static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
732{
733 /* iopoll syncs against uring_lock, not completion_lock */
734 if (ctx->flags & IORING_SETUP_IOPOLL)
735 mutex_lock(&ctx->uring_lock);
736 __io_cqring_overflow_flush(ctx);
737 if (ctx->flags & IORING_SETUP_IOPOLL)
738 mutex_unlock(lock: &ctx->uring_lock);
739}
740
741static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
742{
743 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
744 io_cqring_do_overflow_flush(ctx);
745}
746
747/* can be called by any task */
748static void io_put_task_remote(struct task_struct *task)
749{
750 struct io_uring_task *tctx = task->io_uring;
751
752 percpu_counter_sub(fbc: &tctx->inflight, amount: 1);
753 if (unlikely(atomic_read(&tctx->in_cancel)))
754 wake_up(&tctx->wait);
755 put_task_struct(t: task);
756}
757
758/* used by a task to put its own references */
759static void io_put_task_local(struct task_struct *task)
760{
761 task->io_uring->cached_refs++;
762}
763
764/* must to be called somewhat shortly after putting a request */
765static inline void io_put_task(struct task_struct *task)
766{
767 if (likely(task == current))
768 io_put_task_local(task);
769 else
770 io_put_task_remote(task);
771}
772
773void io_task_refs_refill(struct io_uring_task *tctx)
774{
775 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
776
777 percpu_counter_add(fbc: &tctx->inflight, amount: refill);
778 refcount_add(i: refill, r: &current->usage);
779 tctx->cached_refs += refill;
780}
781
782static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
783{
784 struct io_uring_task *tctx = task->io_uring;
785 unsigned int refs = tctx->cached_refs;
786
787 if (refs) {
788 tctx->cached_refs = 0;
789 percpu_counter_sub(fbc: &tctx->inflight, amount: refs);
790 put_task_struct_many(t: task, nr: refs);
791 }
792}
793
794static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
795 s32 res, u32 cflags, u64 extra1, u64 extra2)
796{
797 struct io_overflow_cqe *ocqe;
798 size_t ocq_size = sizeof(struct io_overflow_cqe);
799 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
800
801 lockdep_assert_held(&ctx->completion_lock);
802
803 if (is_cqe32)
804 ocq_size += sizeof(struct io_uring_cqe);
805
806 ocqe = kmalloc(size: ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
807 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
808 if (!ocqe) {
809 /*
810 * If we're in ring overflow flush mode, or in task cancel mode,
811 * or cannot allocate an overflow entry, then we need to drop it
812 * on the floor.
813 */
814 io_account_cq_overflow(ctx);
815 set_bit(nr: IO_CHECK_CQ_DROPPED_BIT, addr: &ctx->check_cq);
816 return false;
817 }
818 if (list_empty(head: &ctx->cq_overflow_list)) {
819 set_bit(nr: IO_CHECK_CQ_OVERFLOW_BIT, addr: &ctx->check_cq);
820 atomic_or(IORING_SQ_CQ_OVERFLOW, v: &ctx->rings->sq_flags);
821
822 }
823 ocqe->cqe.user_data = user_data;
824 ocqe->cqe.res = res;
825 ocqe->cqe.flags = cflags;
826 if (is_cqe32) {
827 ocqe->cqe.big_cqe[0] = extra1;
828 ocqe->cqe.big_cqe[1] = extra2;
829 }
830 list_add_tail(new: &ocqe->list, head: &ctx->cq_overflow_list);
831 return true;
832}
833
834void io_req_cqe_overflow(struct io_kiocb *req)
835{
836 io_cqring_event_overflow(ctx: req->ctx, user_data: req->cqe.user_data,
837 res: req->cqe.res, cflags: req->cqe.flags,
838 extra1: req->big_cqe.extra1, extra2: req->big_cqe.extra2);
839 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
840}
841
842/*
843 * writes to the cq entry need to come after reading head; the
844 * control dependency is enough as we're using WRITE_ONCE to
845 * fill the cq entry
846 */
847bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
848{
849 struct io_rings *rings = ctx->rings;
850 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
851 unsigned int free, queued, len;
852
853 /*
854 * Posting into the CQ when there are pending overflowed CQEs may break
855 * ordering guarantees, which will affect links, F_MORE users and more.
856 * Force overflow the completion.
857 */
858 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
859 return false;
860
861 /* userspace may cheat modifying the tail, be safe and do min */
862 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
863 free = ctx->cq_entries - queued;
864 /* we need a contiguous range, limit based on the current array offset */
865 len = min(free, ctx->cq_entries - off);
866 if (!len)
867 return false;
868
869 if (ctx->flags & IORING_SETUP_CQE32) {
870 off <<= 1;
871 len <<= 1;
872 }
873
874 ctx->cqe_cached = &rings->cqes[off];
875 ctx->cqe_sentinel = ctx->cqe_cached + len;
876 return true;
877}
878
879static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
880 u32 cflags)
881{
882 struct io_uring_cqe *cqe;
883
884 ctx->cq_extra++;
885
886 /*
887 * If we can't get a cq entry, userspace overflowed the
888 * submission (by quite a lot). Increment the overflow count in
889 * the ring.
890 */
891 if (likely(io_get_cqe(ctx, &cqe))) {
892 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, extra1: 0, extra2: 0);
893
894 WRITE_ONCE(cqe->user_data, user_data);
895 WRITE_ONCE(cqe->res, res);
896 WRITE_ONCE(cqe->flags, cflags);
897
898 if (ctx->flags & IORING_SETUP_CQE32) {
899 WRITE_ONCE(cqe->big_cqe[0], 0);
900 WRITE_ONCE(cqe->big_cqe[1], 0);
901 }
902 return true;
903 }
904 return false;
905}
906
907static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
908 __must_hold(&ctx->uring_lock)
909{
910 struct io_submit_state *state = &ctx->submit_state;
911 unsigned int i;
912
913 lockdep_assert_held(&ctx->uring_lock);
914 for (i = 0; i < state->cqes_count; i++) {
915 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
916
917 if (!io_fill_cqe_aux(ctx, user_data: cqe->user_data, res: cqe->res, cflags: cqe->flags)) {
918 if (ctx->lockless_cq) {
919 spin_lock(lock: &ctx->completion_lock);
920 io_cqring_event_overflow(ctx, user_data: cqe->user_data,
921 res: cqe->res, cflags: cqe->flags, extra1: 0, extra2: 0);
922 spin_unlock(lock: &ctx->completion_lock);
923 } else {
924 io_cqring_event_overflow(ctx, user_data: cqe->user_data,
925 res: cqe->res, cflags: cqe->flags, extra1: 0, extra2: 0);
926 }
927 }
928 }
929 state->cqes_count = 0;
930}
931
932static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
933 bool allow_overflow)
934{
935 bool filled;
936
937 io_cq_lock(ctx);
938 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
939 if (!filled && allow_overflow)
940 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, extra1: 0, extra2: 0);
941
942 io_cq_unlock_post(ctx);
943 return filled;
944}
945
946bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
947{
948 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow: true);
949}
950
951/*
952 * A helper for multishot requests posting additional CQEs.
953 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
954 */
955bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
956{
957 struct io_ring_ctx *ctx = req->ctx;
958 u64 user_data = req->cqe.user_data;
959 struct io_uring_cqe *cqe;
960
961 if (!defer)
962 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow: false);
963
964 lockdep_assert_held(&ctx->uring_lock);
965
966 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
967 __io_cq_lock(ctx);
968 __io_flush_post_cqes(ctx);
969 /* no need to flush - flush is deferred */
970 __io_cq_unlock_post(ctx);
971 }
972
973 /* For defered completions this is not as strict as it is otherwise,
974 * however it's main job is to prevent unbounded posted completions,
975 * and in that it works just as well.
976 */
977 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
978 return false;
979
980 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
981 cqe->user_data = user_data;
982 cqe->res = res;
983 cqe->flags = cflags;
984 return true;
985}
986
987static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
988{
989 struct io_ring_ctx *ctx = req->ctx;
990 struct io_rsrc_node *rsrc_node = NULL;
991
992 io_cq_lock(ctx);
993 if (!(req->flags & REQ_F_CQE_SKIP)) {
994 if (!io_fill_cqe_req(ctx, req))
995 io_req_cqe_overflow(req);
996 }
997
998 /*
999 * If we're the last reference to this request, add to our locked
1000 * free_list cache.
1001 */
1002 if (req_ref_put_and_test(req)) {
1003 if (req->flags & IO_REQ_LINK_FLAGS) {
1004 if (req->flags & IO_DISARM_MASK)
1005 io_disarm_next(req);
1006 if (req->link) {
1007 io_req_task_queue(req: req->link);
1008 req->link = NULL;
1009 }
1010 }
1011 io_put_kbuf_comp(req);
1012 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1013 io_clean_op(req);
1014 io_put_file(req);
1015
1016 rsrc_node = req->rsrc_node;
1017 /*
1018 * Selected buffer deallocation in io_clean_op() assumes that
1019 * we don't hold ->completion_lock. Clean them here to avoid
1020 * deadlocks.
1021 */
1022 io_put_task_remote(task: req->task);
1023 wq_list_add_head(node: &req->comp_list, list: &ctx->locked_free_list);
1024 ctx->locked_free_nr++;
1025 }
1026 io_cq_unlock_post(ctx);
1027
1028 if (rsrc_node) {
1029 io_ring_submit_lock(ctx, issue_flags);
1030 io_put_rsrc_node(ctx, node: rsrc_node);
1031 io_ring_submit_unlock(ctx, issue_flags);
1032 }
1033}
1034
1035void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1036{
1037 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1038 req->io_task_work.func = io_req_task_complete;
1039 io_req_task_work_add(req);
1040 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1041 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1042 __io_req_complete_post(req, issue_flags);
1043 } else {
1044 struct io_ring_ctx *ctx = req->ctx;
1045
1046 mutex_lock(&ctx->uring_lock);
1047 __io_req_complete_post(req, issue_flags: issue_flags & ~IO_URING_F_UNLOCKED);
1048 mutex_unlock(lock: &ctx->uring_lock);
1049 }
1050}
1051
1052void io_req_defer_failed(struct io_kiocb *req, s32 res)
1053 __must_hold(&ctx->uring_lock)
1054{
1055 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1056
1057 lockdep_assert_held(&req->ctx->uring_lock);
1058
1059 req_set_fail(req);
1060 io_req_set_res(req, res, cflags: io_put_kbuf(req, issue_flags: IO_URING_F_UNLOCKED));
1061 if (def->fail)
1062 def->fail(req);
1063 io_req_complete_defer(req);
1064}
1065
1066/*
1067 * Don't initialise the fields below on every allocation, but do that in
1068 * advance and keep them valid across allocations.
1069 */
1070static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1071{
1072 req->ctx = ctx;
1073 req->link = NULL;
1074 req->async_data = NULL;
1075 /* not necessary, but safer to zero */
1076 memset(&req->cqe, 0, sizeof(req->cqe));
1077 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1078}
1079
1080static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1081 struct io_submit_state *state)
1082{
1083 spin_lock(lock: &ctx->completion_lock);
1084 wq_list_splice(list: &ctx->locked_free_list, to: &state->free_list);
1085 ctx->locked_free_nr = 0;
1086 spin_unlock(lock: &ctx->completion_lock);
1087}
1088
1089/*
1090 * A request might get retired back into the request caches even before opcode
1091 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1092 * Because of that, io_alloc_req() should be called only under ->uring_lock
1093 * and with extra caution to not get a request that is still worked on.
1094 */
1095__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1096 __must_hold(&ctx->uring_lock)
1097{
1098 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1099 void *reqs[IO_REQ_ALLOC_BATCH];
1100 int ret, i;
1101
1102 /*
1103 * If we have more than a batch's worth of requests in our IRQ side
1104 * locked cache, grab the lock and move them over to our submission
1105 * side cache.
1106 */
1107 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1108 io_flush_cached_locked_reqs(ctx, state: &ctx->submit_state);
1109 if (!io_req_cache_empty(ctx))
1110 return true;
1111 }
1112
1113 ret = kmem_cache_alloc_bulk(s: req_cachep, flags: gfp, ARRAY_SIZE(reqs), p: reqs);
1114
1115 /*
1116 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1117 * retry single alloc to be on the safe side.
1118 */
1119 if (unlikely(ret <= 0)) {
1120 reqs[0] = kmem_cache_alloc(cachep: req_cachep, flags: gfp);
1121 if (!reqs[0])
1122 return false;
1123 ret = 1;
1124 }
1125
1126 percpu_ref_get_many(ref: &ctx->refs, nr: ret);
1127 for (i = 0; i < ret; i++) {
1128 struct io_kiocb *req = reqs[i];
1129
1130 io_preinit_req(req, ctx);
1131 io_req_add_to_cache(req, ctx);
1132 }
1133 return true;
1134}
1135
1136__cold void io_free_req(struct io_kiocb *req)
1137{
1138 /* refs were already put, restore them for io_req_task_complete() */
1139 req->flags &= ~REQ_F_REFCOUNT;
1140 /* we only want to free it, don't post CQEs */
1141 req->flags |= REQ_F_CQE_SKIP;
1142 req->io_task_work.func = io_req_task_complete;
1143 io_req_task_work_add(req);
1144}
1145
1146static void __io_req_find_next_prep(struct io_kiocb *req)
1147{
1148 struct io_ring_ctx *ctx = req->ctx;
1149
1150 spin_lock(lock: &ctx->completion_lock);
1151 io_disarm_next(req);
1152 spin_unlock(lock: &ctx->completion_lock);
1153}
1154
1155static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1156{
1157 struct io_kiocb *nxt;
1158
1159 /*
1160 * If LINK is set, we have dependent requests in this chain. If we
1161 * didn't fail this request, queue the first one up, moving any other
1162 * dependencies to the next request. In case of failure, fail the rest
1163 * of the chain.
1164 */
1165 if (unlikely(req->flags & IO_DISARM_MASK))
1166 __io_req_find_next_prep(req);
1167 nxt = req->link;
1168 req->link = NULL;
1169 return nxt;
1170}
1171
1172static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1173{
1174 if (!ctx)
1175 return;
1176 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1177 atomic_andnot(IORING_SQ_TASKRUN, v: &ctx->rings->sq_flags);
1178 if (ts->locked) {
1179 io_submit_flush_completions(ctx);
1180 mutex_unlock(lock: &ctx->uring_lock);
1181 ts->locked = false;
1182 }
1183 percpu_ref_put(ref: &ctx->refs);
1184}
1185
1186static unsigned int handle_tw_list(struct llist_node *node,
1187 struct io_ring_ctx **ctx,
1188 struct io_tw_state *ts,
1189 struct llist_node *last)
1190{
1191 unsigned int count = 0;
1192
1193 while (node && node != last) {
1194 struct llist_node *next = node->next;
1195 struct io_kiocb *req = container_of(node, struct io_kiocb,
1196 io_task_work.node);
1197
1198 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1199
1200 if (req->ctx != *ctx) {
1201 ctx_flush_and_put(ctx: *ctx, ts);
1202 *ctx = req->ctx;
1203 /* if not contended, grab and improve batching */
1204 ts->locked = mutex_trylock(lock: &(*ctx)->uring_lock);
1205 percpu_ref_get(ref: &(*ctx)->refs);
1206 }
1207 INDIRECT_CALL_2(req->io_task_work.func,
1208 io_poll_task_func, io_req_rw_complete,
1209 req, ts);
1210 node = next;
1211 count++;
1212 if (unlikely(need_resched())) {
1213 ctx_flush_and_put(ctx: *ctx, ts);
1214 *ctx = NULL;
1215 cond_resched();
1216 }
1217 }
1218
1219 return count;
1220}
1221
1222/**
1223 * io_llist_xchg - swap all entries in a lock-less list
1224 * @head: the head of lock-less list to delete all entries
1225 * @new: new entry as the head of the list
1226 *
1227 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1228 * The order of entries returned is from the newest to the oldest added one.
1229 */
1230static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1231 struct llist_node *new)
1232{
1233 return xchg(&head->first, new);
1234}
1235
1236/**
1237 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1238 * @head: the head of lock-less list to delete all entries
1239 * @old: expected old value of the first entry of the list
1240 * @new: new entry as the head of the list
1241 *
1242 * perform a cmpxchg on the first entry of the list.
1243 */
1244
1245static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1246 struct llist_node *old,
1247 struct llist_node *new)
1248{
1249 return cmpxchg(&head->first, old, new);
1250}
1251
1252static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1253{
1254 struct llist_node *node = llist_del_all(head: &tctx->task_list);
1255 struct io_ring_ctx *last_ctx = NULL;
1256 struct io_kiocb *req;
1257
1258 while (node) {
1259 req = container_of(node, struct io_kiocb, io_task_work.node);
1260 node = node->next;
1261 if (sync && last_ctx != req->ctx) {
1262 if (last_ctx) {
1263 flush_delayed_work(dwork: &last_ctx->fallback_work);
1264 percpu_ref_put(ref: &last_ctx->refs);
1265 }
1266 last_ctx = req->ctx;
1267 percpu_ref_get(ref: &last_ctx->refs);
1268 }
1269 if (llist_add(new: &req->io_task_work.node,
1270 head: &req->ctx->fallback_llist))
1271 schedule_delayed_work(dwork: &req->ctx->fallback_work, delay: 1);
1272 }
1273
1274 if (last_ctx) {
1275 flush_delayed_work(dwork: &last_ctx->fallback_work);
1276 percpu_ref_put(ref: &last_ctx->refs);
1277 }
1278}
1279
1280void tctx_task_work(struct callback_head *cb)
1281{
1282 struct io_tw_state ts = {};
1283 struct io_ring_ctx *ctx = NULL;
1284 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1285 task_work);
1286 struct llist_node fake = {};
1287 struct llist_node *node;
1288 unsigned int loops = 0;
1289 unsigned int count = 0;
1290
1291 if (unlikely(current->flags & PF_EXITING)) {
1292 io_fallback_tw(tctx, sync: true);
1293 return;
1294 }
1295
1296 do {
1297 loops++;
1298 node = io_llist_xchg(head: &tctx->task_list, new: &fake);
1299 count += handle_tw_list(node, ctx: &ctx, ts: &ts, last: &fake);
1300
1301 /* skip expensive cmpxchg if there are items in the list */
1302 if (READ_ONCE(tctx->task_list.first) != &fake)
1303 continue;
1304 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1305 io_submit_flush_completions(ctx);
1306 if (READ_ONCE(tctx->task_list.first) != &fake)
1307 continue;
1308 }
1309 node = io_llist_cmpxchg(head: &tctx->task_list, old: &fake, NULL);
1310 } while (node != &fake);
1311
1312 ctx_flush_and_put(ctx, ts: &ts);
1313
1314 /* relaxed read is enough as only the task itself sets ->in_cancel */
1315 if (unlikely(atomic_read(&tctx->in_cancel)))
1316 io_uring_drop_tctx_refs(current);
1317
1318 trace_io_uring_task_work_run(tctx, count, loops);
1319}
1320
1321static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1322{
1323 struct io_ring_ctx *ctx = req->ctx;
1324 unsigned nr_wait, nr_tw, nr_tw_prev;
1325 struct llist_node *first;
1326
1327 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1328 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1329
1330 first = READ_ONCE(ctx->work_llist.first);
1331 do {
1332 nr_tw_prev = 0;
1333 if (first) {
1334 struct io_kiocb *first_req = container_of(first,
1335 struct io_kiocb,
1336 io_task_work.node);
1337 /*
1338 * Might be executed at any moment, rely on
1339 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1340 */
1341 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1342 }
1343 nr_tw = nr_tw_prev + 1;
1344 /* Large enough to fail the nr_wait comparison below */
1345 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1346 nr_tw = -1U;
1347
1348 req->nr_tw = nr_tw;
1349 req->io_task_work.node.next = first;
1350 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1351 &req->io_task_work.node));
1352
1353 if (!first) {
1354 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1355 atomic_or(IORING_SQ_TASKRUN, v: &ctx->rings->sq_flags);
1356 if (ctx->has_evfd)
1357 io_eventfd_signal(ctx);
1358 }
1359
1360 nr_wait = atomic_read(v: &ctx->cq_wait_nr);
1361 /* no one is waiting */
1362 if (!nr_wait)
1363 return;
1364 /* either not enough or the previous add has already woken it up */
1365 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1366 return;
1367 /* pairs with set_current_state() in io_cqring_wait() */
1368 smp_mb__after_atomic();
1369 wake_up_state(tsk: ctx->submitter_task, TASK_INTERRUPTIBLE);
1370}
1371
1372static void io_req_normal_work_add(struct io_kiocb *req)
1373{
1374 struct io_uring_task *tctx = req->task->io_uring;
1375 struct io_ring_ctx *ctx = req->ctx;
1376
1377 /* task_work already pending, we're done */
1378 if (!llist_add(new: &req->io_task_work.node, head: &tctx->task_list))
1379 return;
1380
1381 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1382 atomic_or(IORING_SQ_TASKRUN, v: &ctx->rings->sq_flags);
1383
1384 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1385 return;
1386
1387 io_fallback_tw(tctx, sync: false);
1388}
1389
1390void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1391{
1392 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1393 rcu_read_lock();
1394 io_req_local_work_add(req, flags);
1395 rcu_read_unlock();
1396 } else {
1397 io_req_normal_work_add(req);
1398 }
1399}
1400
1401static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1402{
1403 struct llist_node *node;
1404
1405 node = llist_del_all(head: &ctx->work_llist);
1406 while (node) {
1407 struct io_kiocb *req = container_of(node, struct io_kiocb,
1408 io_task_work.node);
1409
1410 node = node->next;
1411 io_req_normal_work_add(req);
1412 }
1413}
1414
1415static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1416{
1417 struct llist_node *node;
1418 unsigned int loops = 0;
1419 int ret = 0;
1420
1421 if (WARN_ON_ONCE(ctx->submitter_task != current))
1422 return -EEXIST;
1423 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1424 atomic_andnot(IORING_SQ_TASKRUN, v: &ctx->rings->sq_flags);
1425again:
1426 /*
1427 * llists are in reverse order, flip it back the right way before
1428 * running the pending items.
1429 */
1430 node = llist_reverse_order(head: io_llist_xchg(head: &ctx->work_llist, NULL));
1431 while (node) {
1432 struct llist_node *next = node->next;
1433 struct io_kiocb *req = container_of(node, struct io_kiocb,
1434 io_task_work.node);
1435 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1436 INDIRECT_CALL_2(req->io_task_work.func,
1437 io_poll_task_func, io_req_rw_complete,
1438 req, ts);
1439 ret++;
1440 node = next;
1441 }
1442 loops++;
1443
1444 if (!llist_empty(head: &ctx->work_llist))
1445 goto again;
1446 if (ts->locked) {
1447 io_submit_flush_completions(ctx);
1448 if (!llist_empty(head: &ctx->work_llist))
1449 goto again;
1450 }
1451 trace_io_uring_local_work_run(ctx, count: ret, loops);
1452 return ret;
1453}
1454
1455static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1456{
1457 struct io_tw_state ts = { .locked = true, };
1458 int ret;
1459
1460 if (llist_empty(head: &ctx->work_llist))
1461 return 0;
1462
1463 ret = __io_run_local_work(ctx, ts: &ts);
1464 /* shouldn't happen! */
1465 if (WARN_ON_ONCE(!ts.locked))
1466 mutex_lock(&ctx->uring_lock);
1467 return ret;
1468}
1469
1470static int io_run_local_work(struct io_ring_ctx *ctx)
1471{
1472 struct io_tw_state ts = {};
1473 int ret;
1474
1475 ts.locked = mutex_trylock(lock: &ctx->uring_lock);
1476 ret = __io_run_local_work(ctx, ts: &ts);
1477 if (ts.locked)
1478 mutex_unlock(lock: &ctx->uring_lock);
1479
1480 return ret;
1481}
1482
1483static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1484{
1485 io_tw_lock(ctx: req->ctx, ts);
1486 io_req_defer_failed(req, res: req->cqe.res);
1487}
1488
1489void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1490{
1491 io_tw_lock(ctx: req->ctx, ts);
1492 /* req->task == current here, checking PF_EXITING is safe */
1493 if (unlikely(req->task->flags & PF_EXITING))
1494 io_req_defer_failed(req, res: -EFAULT);
1495 else if (req->flags & REQ_F_FORCE_ASYNC)
1496 io_queue_iowq(req, ts_dont_use: ts);
1497 else
1498 io_queue_sqe(req);
1499}
1500
1501void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1502{
1503 io_req_set_res(req, res: ret, cflags: 0);
1504 req->io_task_work.func = io_req_task_cancel;
1505 io_req_task_work_add(req);
1506}
1507
1508void io_req_task_queue(struct io_kiocb *req)
1509{
1510 req->io_task_work.func = io_req_task_submit;
1511 io_req_task_work_add(req);
1512}
1513
1514void io_queue_next(struct io_kiocb *req)
1515{
1516 struct io_kiocb *nxt = io_req_find_next(req);
1517
1518 if (nxt)
1519 io_req_task_queue(req: nxt);
1520}
1521
1522static void io_free_batch_list(struct io_ring_ctx *ctx,
1523 struct io_wq_work_node *node)
1524 __must_hold(&ctx->uring_lock)
1525{
1526 do {
1527 struct io_kiocb *req = container_of(node, struct io_kiocb,
1528 comp_list);
1529
1530 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1531 if (req->flags & REQ_F_REFCOUNT) {
1532 node = req->comp_list.next;
1533 if (!req_ref_put_and_test(req))
1534 continue;
1535 }
1536 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1537 struct async_poll *apoll = req->apoll;
1538
1539 if (apoll->double_poll)
1540 kfree(objp: apoll->double_poll);
1541 if (!io_alloc_cache_put(cache: &ctx->apoll_cache, entry: &apoll->cache))
1542 kfree(objp: apoll);
1543 req->flags &= ~REQ_F_POLLED;
1544 }
1545 if (req->flags & IO_REQ_LINK_FLAGS)
1546 io_queue_next(req);
1547 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1548 io_clean_op(req);
1549 }
1550 io_put_file(req);
1551
1552 io_req_put_rsrc_locked(req, ctx);
1553
1554 io_put_task(task: req->task);
1555 node = req->comp_list.next;
1556 io_req_add_to_cache(req, ctx);
1557 } while (node);
1558}
1559
1560void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1561 __must_hold(&ctx->uring_lock)
1562{
1563 struct io_submit_state *state = &ctx->submit_state;
1564 struct io_wq_work_node *node;
1565
1566 __io_cq_lock(ctx);
1567 /* must come first to preserve CQE ordering in failure cases */
1568 if (state->cqes_count)
1569 __io_flush_post_cqes(ctx);
1570 __wq_list_for_each(node, &state->compl_reqs) {
1571 struct io_kiocb *req = container_of(node, struct io_kiocb,
1572 comp_list);
1573
1574 if (!(req->flags & REQ_F_CQE_SKIP) &&
1575 unlikely(!io_fill_cqe_req(ctx, req))) {
1576 if (ctx->lockless_cq) {
1577 spin_lock(lock: &ctx->completion_lock);
1578 io_req_cqe_overflow(req);
1579 spin_unlock(lock: &ctx->completion_lock);
1580 } else {
1581 io_req_cqe_overflow(req);
1582 }
1583 }
1584 }
1585 __io_cq_unlock_post(ctx);
1586
1587 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1588 io_free_batch_list(ctx, node: state->compl_reqs.first);
1589 INIT_WQ_LIST(&state->compl_reqs);
1590 }
1591}
1592
1593static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1594{
1595 /* See comment at the top of this file */
1596 smp_rmb();
1597 return __io_cqring_events(ctx);
1598}
1599
1600/*
1601 * We can't just wait for polled events to come to us, we have to actively
1602 * find and complete them.
1603 */
1604static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1605{
1606 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1607 return;
1608
1609 mutex_lock(&ctx->uring_lock);
1610 while (!wq_list_empty(&ctx->iopoll_list)) {
1611 /* let it sleep and repeat later if can't complete a request */
1612 if (io_do_iopoll(ctx, force_nonspin: true) == 0)
1613 break;
1614 /*
1615 * Ensure we allow local-to-the-cpu processing to take place,
1616 * in this case we need to ensure that we reap all events.
1617 * Also let task_work, etc. to progress by releasing the mutex
1618 */
1619 if (need_resched()) {
1620 mutex_unlock(lock: &ctx->uring_lock);
1621 cond_resched();
1622 mutex_lock(&ctx->uring_lock);
1623 }
1624 }
1625 mutex_unlock(lock: &ctx->uring_lock);
1626}
1627
1628static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1629{
1630 unsigned int nr_events = 0;
1631 unsigned long check_cq;
1632
1633 if (!io_allowed_run_tw(ctx))
1634 return -EEXIST;
1635
1636 check_cq = READ_ONCE(ctx->check_cq);
1637 if (unlikely(check_cq)) {
1638 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1639 __io_cqring_overflow_flush(ctx);
1640 /*
1641 * Similarly do not spin if we have not informed the user of any
1642 * dropped CQE.
1643 */
1644 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1645 return -EBADR;
1646 }
1647 /*
1648 * Don't enter poll loop if we already have events pending.
1649 * If we do, we can potentially be spinning for commands that
1650 * already triggered a CQE (eg in error).
1651 */
1652 if (io_cqring_events(ctx))
1653 return 0;
1654
1655 do {
1656 int ret = 0;
1657
1658 /*
1659 * If a submit got punted to a workqueue, we can have the
1660 * application entering polling for a command before it gets
1661 * issued. That app will hold the uring_lock for the duration
1662 * of the poll right here, so we need to take a breather every
1663 * now and then to ensure that the issue has a chance to add
1664 * the poll to the issued list. Otherwise we can spin here
1665 * forever, while the workqueue is stuck trying to acquire the
1666 * very same mutex.
1667 */
1668 if (wq_list_empty(&ctx->iopoll_list) ||
1669 io_task_work_pending(ctx)) {
1670 u32 tail = ctx->cached_cq_tail;
1671
1672 (void) io_run_local_work_locked(ctx);
1673
1674 if (task_work_pending(current) ||
1675 wq_list_empty(&ctx->iopoll_list)) {
1676 mutex_unlock(lock: &ctx->uring_lock);
1677 io_run_task_work();
1678 mutex_lock(&ctx->uring_lock);
1679 }
1680 /* some requests don't go through iopoll_list */
1681 if (tail != ctx->cached_cq_tail ||
1682 wq_list_empty(&ctx->iopoll_list))
1683 break;
1684 }
1685 ret = io_do_iopoll(ctx, force_nonspin: !min);
1686 if (unlikely(ret < 0))
1687 return ret;
1688
1689 if (task_sigpending(current))
1690 return -EINTR;
1691 if (need_resched())
1692 break;
1693
1694 nr_events += ret;
1695 } while (nr_events < min);
1696
1697 return 0;
1698}
1699
1700void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1701{
1702 if (ts->locked)
1703 io_req_complete_defer(req);
1704 else
1705 io_req_complete_post(req, issue_flags: IO_URING_F_UNLOCKED);
1706}
1707
1708/*
1709 * After the iocb has been issued, it's safe to be found on the poll list.
1710 * Adding the kiocb to the list AFTER submission ensures that we don't
1711 * find it from a io_do_iopoll() thread before the issuer is done
1712 * accessing the kiocb cookie.
1713 */
1714static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1715{
1716 struct io_ring_ctx *ctx = req->ctx;
1717 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1718
1719 /* workqueue context doesn't hold uring_lock, grab it now */
1720 if (unlikely(needs_lock))
1721 mutex_lock(&ctx->uring_lock);
1722
1723 /*
1724 * Track whether we have multiple files in our lists. This will impact
1725 * how we do polling eventually, not spinning if we're on potentially
1726 * different devices.
1727 */
1728 if (wq_list_empty(&ctx->iopoll_list)) {
1729 ctx->poll_multi_queue = false;
1730 } else if (!ctx->poll_multi_queue) {
1731 struct io_kiocb *list_req;
1732
1733 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1734 comp_list);
1735 if (list_req->file != req->file)
1736 ctx->poll_multi_queue = true;
1737 }
1738
1739 /*
1740 * For fast devices, IO may have already completed. If it has, add
1741 * it to the front so we find it first.
1742 */
1743 if (READ_ONCE(req->iopoll_completed))
1744 wq_list_add_head(node: &req->comp_list, list: &ctx->iopoll_list);
1745 else
1746 wq_list_add_tail(node: &req->comp_list, list: &ctx->iopoll_list);
1747
1748 if (unlikely(needs_lock)) {
1749 /*
1750 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1751 * in sq thread task context or in io worker task context. If
1752 * current task context is sq thread, we don't need to check
1753 * whether should wake up sq thread.
1754 */
1755 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1756 wq_has_sleeper(wq_head: &ctx->sq_data->wait))
1757 wake_up(&ctx->sq_data->wait);
1758
1759 mutex_unlock(lock: &ctx->uring_lock);
1760 }
1761}
1762
1763unsigned int io_file_get_flags(struct file *file)
1764{
1765 unsigned int res = 0;
1766
1767 if (S_ISREG(file_inode(file)->i_mode))
1768 res |= REQ_F_ISREG;
1769 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1770 res |= REQ_F_SUPPORT_NOWAIT;
1771 return res;
1772}
1773
1774bool io_alloc_async_data(struct io_kiocb *req)
1775{
1776 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1777 req->async_data = kmalloc(size: io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1778 if (req->async_data) {
1779 req->flags |= REQ_F_ASYNC_DATA;
1780 return false;
1781 }
1782 return true;
1783}
1784
1785int io_req_prep_async(struct io_kiocb *req)
1786{
1787 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1788 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789
1790 /* assign early for deferred execution for non-fixed file */
1791 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1792 req->file = io_file_get_normal(req, fd: req->cqe.fd);
1793 if (!cdef->prep_async)
1794 return 0;
1795 if (WARN_ON_ONCE(req_has_async_data(req)))
1796 return -EFAULT;
1797 if (!def->manual_alloc) {
1798 if (io_alloc_async_data(req))
1799 return -EAGAIN;
1800 }
1801 return cdef->prep_async(req);
1802}
1803
1804static u32 io_get_sequence(struct io_kiocb *req)
1805{
1806 u32 seq = req->ctx->cached_sq_head;
1807 struct io_kiocb *cur;
1808
1809 /* need original cached_sq_head, but it was increased for each req */
1810 io_for_each_link(cur, req)
1811 seq--;
1812 return seq;
1813}
1814
1815static __cold void io_drain_req(struct io_kiocb *req)
1816 __must_hold(&ctx->uring_lock)
1817{
1818 struct io_ring_ctx *ctx = req->ctx;
1819 struct io_defer_entry *de;
1820 int ret;
1821 u32 seq = io_get_sequence(req);
1822
1823 /* Still need defer if there is pending req in defer list. */
1824 spin_lock(lock: &ctx->completion_lock);
1825 if (!req_need_defer(req, seq) && list_empty_careful(head: &ctx->defer_list)) {
1826 spin_unlock(lock: &ctx->completion_lock);
1827queue:
1828 ctx->drain_active = false;
1829 io_req_task_queue(req);
1830 return;
1831 }
1832 spin_unlock(lock: &ctx->completion_lock);
1833
1834 io_prep_async_link(req);
1835 de = kmalloc(size: sizeof(*de), GFP_KERNEL);
1836 if (!de) {
1837 ret = -ENOMEM;
1838 io_req_defer_failed(req, res: ret);
1839 return;
1840 }
1841
1842 spin_lock(lock: &ctx->completion_lock);
1843 if (!req_need_defer(req, seq) && list_empty(head: &ctx->defer_list)) {
1844 spin_unlock(lock: &ctx->completion_lock);
1845 kfree(objp: de);
1846 goto queue;
1847 }
1848
1849 trace_io_uring_defer(req);
1850 de->req = req;
1851 de->seq = seq;
1852 list_add_tail(new: &de->list, head: &ctx->defer_list);
1853 spin_unlock(lock: &ctx->completion_lock);
1854}
1855
1856static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1857 unsigned int issue_flags)
1858{
1859 if (req->file || !def->needs_file)
1860 return true;
1861
1862 if (req->flags & REQ_F_FIXED_FILE)
1863 req->file = io_file_get_fixed(req, fd: req->cqe.fd, issue_flags);
1864 else
1865 req->file = io_file_get_normal(req, fd: req->cqe.fd);
1866
1867 return !!req->file;
1868}
1869
1870static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1871{
1872 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1873 const struct cred *creds = NULL;
1874 int ret;
1875
1876 if (unlikely(!io_assign_file(req, def, issue_flags)))
1877 return -EBADF;
1878
1879 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1880 creds = override_creds(req->creds);
1881
1882 if (!def->audit_skip)
1883 audit_uring_entry(op: req->opcode);
1884
1885 ret = def->issue(req, issue_flags);
1886
1887 if (!def->audit_skip)
1888 audit_uring_exit(success: !ret, code: ret);
1889
1890 if (creds)
1891 revert_creds(creds);
1892
1893 if (ret == IOU_OK) {
1894 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1895 io_req_complete_defer(req);
1896 else
1897 io_req_complete_post(req, issue_flags);
1898 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1899 return ret;
1900
1901 /* If the op doesn't have a file, we're not polling for it */
1902 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1903 io_iopoll_req_issued(req, issue_flags);
1904
1905 return 0;
1906}
1907
1908int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1909{
1910 io_tw_lock(ctx: req->ctx, ts);
1911 return io_issue_sqe(req, issue_flags: IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1912 IO_URING_F_COMPLETE_DEFER);
1913}
1914
1915struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1916{
1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918 struct io_kiocb *nxt = NULL;
1919
1920 if (req_ref_put_and_test(req)) {
1921 if (req->flags & IO_REQ_LINK_FLAGS)
1922 nxt = io_req_find_next(req);
1923 io_free_req(req);
1924 }
1925 return nxt ? &nxt->work : NULL;
1926}
1927
1928void io_wq_submit_work(struct io_wq_work *work)
1929{
1930 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1932 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1933 bool needs_poll = false;
1934 int ret = 0, err = -ECANCELED;
1935
1936 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1937 if (!(req->flags & REQ_F_REFCOUNT))
1938 __io_req_set_refcount(req, nr: 2);
1939 else
1940 req_ref_get(req);
1941
1942 io_arm_ltimeout(req);
1943
1944 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1945 if (work->flags & IO_WQ_WORK_CANCEL) {
1946fail:
1947 io_req_task_queue_fail(req, ret: err);
1948 return;
1949 }
1950 if (!io_assign_file(req, def, issue_flags)) {
1951 err = -EBADF;
1952 work->flags |= IO_WQ_WORK_CANCEL;
1953 goto fail;
1954 }
1955
1956 if (req->flags & REQ_F_FORCE_ASYNC) {
1957 bool opcode_poll = def->pollin || def->pollout;
1958
1959 if (opcode_poll && file_can_poll(file: req->file)) {
1960 needs_poll = true;
1961 issue_flags |= IO_URING_F_NONBLOCK;
1962 }
1963 }
1964
1965 do {
1966 ret = io_issue_sqe(req, issue_flags);
1967 if (ret != -EAGAIN)
1968 break;
1969
1970 /*
1971 * If REQ_F_NOWAIT is set, then don't wait or retry with
1972 * poll. -EAGAIN is final for that case.
1973 */
1974 if (req->flags & REQ_F_NOWAIT)
1975 break;
1976
1977 /*
1978 * We can get EAGAIN for iopolled IO even though we're
1979 * forcing a sync submission from here, since we can't
1980 * wait for request slots on the block side.
1981 */
1982 if (!needs_poll) {
1983 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1984 break;
1985 if (io_wq_worker_stopped())
1986 break;
1987 cond_resched();
1988 continue;
1989 }
1990
1991 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992 return;
1993 /* aborted or ready, in either case retry blocking */
1994 needs_poll = false;
1995 issue_flags &= ~IO_URING_F_NONBLOCK;
1996 } while (1);
1997
1998 /* avoid locking problems by failing it from a clean context */
1999 if (ret < 0)
2000 io_req_task_queue_fail(req, ret);
2001}
2002
2003inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004 unsigned int issue_flags)
2005{
2006 struct io_ring_ctx *ctx = req->ctx;
2007 struct io_fixed_file *slot;
2008 struct file *file = NULL;
2009
2010 io_ring_submit_lock(ctx, issue_flags);
2011
2012 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013 goto out;
2014 fd = array_index_nospec(fd, ctx->nr_user_files);
2015 slot = io_fixed_file_slot(table: &ctx->file_table, i: fd);
2016 file = io_slot_file(slot);
2017 req->flags |= io_slot_flags(slot);
2018 io_req_set_rsrc_node(req, ctx, issue_flags: 0);
2019out:
2020 io_ring_submit_unlock(ctx, issue_flags);
2021 return file;
2022}
2023
2024struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025{
2026 struct file *file = fget(fd);
2027
2028 trace_io_uring_file_get(req, fd);
2029
2030 /* we don't allow fixed io_uring files */
2031 if (file && io_is_uring_fops(file))
2032 io_req_track_inflight(req);
2033 return file;
2034}
2035
2036static void io_queue_async(struct io_kiocb *req, int ret)
2037 __must_hold(&req->ctx->uring_lock)
2038{
2039 struct io_kiocb *linked_timeout;
2040
2041 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042 io_req_defer_failed(req, res: ret);
2043 return;
2044 }
2045
2046 linked_timeout = io_prep_linked_timeout(req);
2047
2048 switch (io_arm_poll_handler(req, issue_flags: 0)) {
2049 case IO_APOLL_READY:
2050 io_kbuf_recycle(req, issue_flags: 0);
2051 io_req_task_queue(req);
2052 break;
2053 case IO_APOLL_ABORTED:
2054 io_kbuf_recycle(req, issue_flags: 0);
2055 io_queue_iowq(req, NULL);
2056 break;
2057 case IO_APOLL_OK:
2058 break;
2059 }
2060
2061 if (linked_timeout)
2062 io_queue_linked_timeout(req: linked_timeout);
2063}
2064
2065static inline void io_queue_sqe(struct io_kiocb *req)
2066 __must_hold(&req->ctx->uring_lock)
2067{
2068 int ret;
2069
2070 ret = io_issue_sqe(req, issue_flags: IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071
2072 /*
2073 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074 * doesn't support non-blocking read/write attempts
2075 */
2076 if (likely(!ret))
2077 io_arm_ltimeout(req);
2078 else
2079 io_queue_async(req, ret);
2080}
2081
2082static void io_queue_sqe_fallback(struct io_kiocb *req)
2083 __must_hold(&req->ctx->uring_lock)
2084{
2085 if (unlikely(req->flags & REQ_F_FAIL)) {
2086 /*
2087 * We don't submit, fail them all, for that replace hardlinks
2088 * with normal links. Extra REQ_F_LINK is tolerated.
2089 */
2090 req->flags &= ~REQ_F_HARDLINK;
2091 req->flags |= REQ_F_LINK;
2092 io_req_defer_failed(req, res: req->cqe.res);
2093 } else {
2094 int ret = io_req_prep_async(req);
2095
2096 if (unlikely(ret)) {
2097 io_req_defer_failed(req, res: ret);
2098 return;
2099 }
2100
2101 if (unlikely(req->ctx->drain_active))
2102 io_drain_req(req);
2103 else
2104 io_queue_iowq(req, NULL);
2105 }
2106}
2107
2108/*
2109 * Check SQE restrictions (opcode and flags).
2110 *
2111 * Returns 'true' if SQE is allowed, 'false' otherwise.
2112 */
2113static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114 struct io_kiocb *req,
2115 unsigned int sqe_flags)
2116{
2117 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118 return false;
2119
2120 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121 ctx->restrictions.sqe_flags_required)
2122 return false;
2123
2124 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125 ctx->restrictions.sqe_flags_required))
2126 return false;
2127
2128 return true;
2129}
2130
2131static void io_init_req_drain(struct io_kiocb *req)
2132{
2133 struct io_ring_ctx *ctx = req->ctx;
2134 struct io_kiocb *head = ctx->submit_state.link.head;
2135
2136 ctx->drain_active = true;
2137 if (head) {
2138 /*
2139 * If we need to drain a request in the middle of a link, drain
2140 * the head request and the next request/link after the current
2141 * link. Considering sequential execution of links,
2142 * REQ_F_IO_DRAIN will be maintained for every request of our
2143 * link.
2144 */
2145 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146 ctx->drain_next = true;
2147 }
2148}
2149
2150static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2151 const struct io_uring_sqe *sqe)
2152 __must_hold(&ctx->uring_lock)
2153{
2154 const struct io_issue_def *def;
2155 unsigned int sqe_flags;
2156 int personality;
2157 u8 opcode;
2158
2159 /* req is partially pre-initialised, see io_preinit_req() */
2160 req->opcode = opcode = READ_ONCE(sqe->opcode);
2161 /* same numerical values with corresponding REQ_F_*, safe to copy */
2162 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2163 req->cqe.user_data = READ_ONCE(sqe->user_data);
2164 req->file = NULL;
2165 req->rsrc_node = NULL;
2166 req->task = current;
2167
2168 if (unlikely(opcode >= IORING_OP_LAST)) {
2169 req->opcode = 0;
2170 return -EINVAL;
2171 }
2172 def = &io_issue_defs[opcode];
2173 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2174 /* enforce forwards compatibility on users */
2175 if (sqe_flags & ~SQE_VALID_FLAGS)
2176 return -EINVAL;
2177 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2178 if (!def->buffer_select)
2179 return -EOPNOTSUPP;
2180 req->buf_index = READ_ONCE(sqe->buf_group);
2181 }
2182 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2183 ctx->drain_disabled = true;
2184 if (sqe_flags & IOSQE_IO_DRAIN) {
2185 if (ctx->drain_disabled)
2186 return -EOPNOTSUPP;
2187 io_init_req_drain(req);
2188 }
2189 }
2190 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2191 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2192 return -EACCES;
2193 /* knock it to the slow queue path, will be drained there */
2194 if (ctx->drain_active)
2195 req->flags |= REQ_F_FORCE_ASYNC;
2196 /* if there is no link, we're at "next" request and need to drain */
2197 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2198 ctx->drain_next = false;
2199 ctx->drain_active = true;
2200 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2201 }
2202 }
2203
2204 if (!def->ioprio && sqe->ioprio)
2205 return -EINVAL;
2206 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2207 return -EINVAL;
2208
2209 if (def->needs_file) {
2210 struct io_submit_state *state = &ctx->submit_state;
2211
2212 req->cqe.fd = READ_ONCE(sqe->fd);
2213
2214 /*
2215 * Plug now if we have more than 2 IO left after this, and the
2216 * target is potentially a read/write to block based storage.
2217 */
2218 if (state->need_plug && def->plug) {
2219 state->plug_started = true;
2220 state->need_plug = false;
2221 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2222 }
2223 }
2224
2225 personality = READ_ONCE(sqe->personality);
2226 if (personality) {
2227 int ret;
2228
2229 req->creds = xa_load(&ctx->personalities, index: personality);
2230 if (!req->creds)
2231 return -EINVAL;
2232 get_cred(cred: req->creds);
2233 ret = security_uring_override_creds(new: req->creds);
2234 if (ret) {
2235 put_cred(cred: req->creds);
2236 return ret;
2237 }
2238 req->flags |= REQ_F_CREDS;
2239 }
2240
2241 return def->prep(req, sqe);
2242}
2243
2244static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2245 struct io_kiocb *req, int ret)
2246{
2247 struct io_ring_ctx *ctx = req->ctx;
2248 struct io_submit_link *link = &ctx->submit_state.link;
2249 struct io_kiocb *head = link->head;
2250
2251 trace_io_uring_req_failed(sqe, req, error: ret);
2252
2253 /*
2254 * Avoid breaking links in the middle as it renders links with SQPOLL
2255 * unusable. Instead of failing eagerly, continue assembling the link if
2256 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2257 * should find the flag and handle the rest.
2258 */
2259 req_fail_link_node(req, res: ret);
2260 if (head && !(head->flags & REQ_F_FAIL))
2261 req_fail_link_node(req: head, res: -ECANCELED);
2262
2263 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2264 if (head) {
2265 link->last->link = req;
2266 link->head = NULL;
2267 req = head;
2268 }
2269 io_queue_sqe_fallback(req);
2270 return ret;
2271 }
2272
2273 if (head)
2274 link->last->link = req;
2275 else
2276 link->head = req;
2277 link->last = req;
2278 return 0;
2279}
2280
2281static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2282 const struct io_uring_sqe *sqe)
2283 __must_hold(&ctx->uring_lock)
2284{
2285 struct io_submit_link *link = &ctx->submit_state.link;
2286 int ret;
2287
2288 ret = io_init_req(ctx, req, sqe);
2289 if (unlikely(ret))
2290 return io_submit_fail_init(sqe, req, ret);
2291
2292 trace_io_uring_submit_req(req);
2293
2294 /*
2295 * If we already have a head request, queue this one for async
2296 * submittal once the head completes. If we don't have a head but
2297 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2298 * submitted sync once the chain is complete. If none of those
2299 * conditions are true (normal request), then just queue it.
2300 */
2301 if (unlikely(link->head)) {
2302 ret = io_req_prep_async(req);
2303 if (unlikely(ret))
2304 return io_submit_fail_init(sqe, req, ret);
2305
2306 trace_io_uring_link(req, target_req: link->head);
2307 link->last->link = req;
2308 link->last = req;
2309
2310 if (req->flags & IO_REQ_LINK_FLAGS)
2311 return 0;
2312 /* last request of the link, flush it */
2313 req = link->head;
2314 link->head = NULL;
2315 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2316 goto fallback;
2317
2318 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2319 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2320 if (req->flags & IO_REQ_LINK_FLAGS) {
2321 link->head = req;
2322 link->last = req;
2323 } else {
2324fallback:
2325 io_queue_sqe_fallback(req);
2326 }
2327 return 0;
2328 }
2329
2330 io_queue_sqe(req);
2331 return 0;
2332}
2333
2334/*
2335 * Batched submission is done, ensure local IO is flushed out.
2336 */
2337static void io_submit_state_end(struct io_ring_ctx *ctx)
2338{
2339 struct io_submit_state *state = &ctx->submit_state;
2340
2341 if (unlikely(state->link.head))
2342 io_queue_sqe_fallback(req: state->link.head);
2343 /* flush only after queuing links as they can generate completions */
2344 io_submit_flush_completions(ctx);
2345 if (state->plug_started)
2346 blk_finish_plug(&state->plug);
2347}
2348
2349/*
2350 * Start submission side cache.
2351 */
2352static void io_submit_state_start(struct io_submit_state *state,
2353 unsigned int max_ios)
2354{
2355 state->plug_started = false;
2356 state->need_plug = max_ios > 2;
2357 state->submit_nr = max_ios;
2358 /* set only head, no need to init link_last in advance */
2359 state->link.head = NULL;
2360}
2361
2362static void io_commit_sqring(struct io_ring_ctx *ctx)
2363{
2364 struct io_rings *rings = ctx->rings;
2365
2366 /*
2367 * Ensure any loads from the SQEs are done at this point,
2368 * since once we write the new head, the application could
2369 * write new data to them.
2370 */
2371 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2372}
2373
2374/*
2375 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2376 * that is mapped by userspace. This means that care needs to be taken to
2377 * ensure that reads are stable, as we cannot rely on userspace always
2378 * being a good citizen. If members of the sqe are validated and then later
2379 * used, it's important that those reads are done through READ_ONCE() to
2380 * prevent a re-load down the line.
2381 */
2382static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2383{
2384 unsigned mask = ctx->sq_entries - 1;
2385 unsigned head = ctx->cached_sq_head++ & mask;
2386
2387 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2388 head = READ_ONCE(ctx->sq_array[head]);
2389 if (unlikely(head >= ctx->sq_entries)) {
2390 /* drop invalid entries */
2391 spin_lock(lock: &ctx->completion_lock);
2392 ctx->cq_extra--;
2393 spin_unlock(lock: &ctx->completion_lock);
2394 WRITE_ONCE(ctx->rings->sq_dropped,
2395 READ_ONCE(ctx->rings->sq_dropped) + 1);
2396 return false;
2397 }
2398 }
2399
2400 /*
2401 * The cached sq head (or cq tail) serves two purposes:
2402 *
2403 * 1) allows us to batch the cost of updating the user visible
2404 * head updates.
2405 * 2) allows the kernel side to track the head on its own, even
2406 * though the application is the one updating it.
2407 */
2408
2409 /* double index for 128-byte SQEs, twice as long */
2410 if (ctx->flags & IORING_SETUP_SQE128)
2411 head <<= 1;
2412 *sqe = &ctx->sq_sqes[head];
2413 return true;
2414}
2415
2416int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2417 __must_hold(&ctx->uring_lock)
2418{
2419 unsigned int entries = io_sqring_entries(ctx);
2420 unsigned int left;
2421 int ret;
2422
2423 if (unlikely(!entries))
2424 return 0;
2425 /* make sure SQ entry isn't read before tail */
2426 ret = left = min(nr, entries);
2427 io_get_task_refs(nr: left);
2428 io_submit_state_start(state: &ctx->submit_state, max_ios: left);
2429
2430 do {
2431 const struct io_uring_sqe *sqe;
2432 struct io_kiocb *req;
2433
2434 if (unlikely(!io_alloc_req(ctx, &req)))
2435 break;
2436 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2437 io_req_add_to_cache(req, ctx);
2438 break;
2439 }
2440
2441 /*
2442 * Continue submitting even for sqe failure if the
2443 * ring was setup with IORING_SETUP_SUBMIT_ALL
2444 */
2445 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2446 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2447 left--;
2448 break;
2449 }
2450 } while (--left);
2451
2452 if (unlikely(left)) {
2453 ret -= left;
2454 /* try again if it submitted nothing and can't allocate a req */
2455 if (!ret && io_req_cache_empty(ctx))
2456 ret = -EAGAIN;
2457 current->io_uring->cached_refs += left;
2458 }
2459
2460 io_submit_state_end(ctx);
2461 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2462 io_commit_sqring(ctx);
2463 return ret;
2464}
2465
2466struct io_wait_queue {
2467 struct wait_queue_entry wq;
2468 struct io_ring_ctx *ctx;
2469 unsigned cq_tail;
2470 unsigned nr_timeouts;
2471 ktime_t timeout;
2472};
2473
2474static inline bool io_has_work(struct io_ring_ctx *ctx)
2475{
2476 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2477 !llist_empty(head: &ctx->work_llist);
2478}
2479
2480static inline bool io_should_wake(struct io_wait_queue *iowq)
2481{
2482 struct io_ring_ctx *ctx = iowq->ctx;
2483 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2484
2485 /*
2486 * Wake up if we have enough events, or if a timeout occurred since we
2487 * started waiting. For timeouts, we always want to return to userspace,
2488 * regardless of event count.
2489 */
2490 return dist >= 0 || atomic_read(v: &ctx->cq_timeouts) != iowq->nr_timeouts;
2491}
2492
2493static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2494 int wake_flags, void *key)
2495{
2496 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2497
2498 /*
2499 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2500 * the task, and the next invocation will do it.
2501 */
2502 if (io_should_wake(iowq) || io_has_work(ctx: iowq->ctx))
2503 return autoremove_wake_function(wq_entry: curr, mode, sync: wake_flags, key);
2504 return -1;
2505}
2506
2507int io_run_task_work_sig(struct io_ring_ctx *ctx)
2508{
2509 if (!llist_empty(head: &ctx->work_llist)) {
2510 __set_current_state(TASK_RUNNING);
2511 if (io_run_local_work(ctx) > 0)
2512 return 0;
2513 }
2514 if (io_run_task_work() > 0)
2515 return 0;
2516 if (task_sigpending(current))
2517 return -EINTR;
2518 return 0;
2519}
2520
2521static bool current_pending_io(void)
2522{
2523 struct io_uring_task *tctx = current->io_uring;
2524
2525 if (!tctx)
2526 return false;
2527 return percpu_counter_read_positive(fbc: &tctx->inflight);
2528}
2529
2530/* when returns >0, the caller should retry */
2531static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2532 struct io_wait_queue *iowq)
2533{
2534 int io_wait, ret;
2535
2536 if (unlikely(READ_ONCE(ctx->check_cq)))
2537 return 1;
2538 if (unlikely(!llist_empty(&ctx->work_llist)))
2539 return 1;
2540 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2541 return 1;
2542 if (unlikely(task_sigpending(current)))
2543 return -EINTR;
2544 if (unlikely(io_should_wake(iowq)))
2545 return 0;
2546
2547 /*
2548 * Mark us as being in io_wait if we have pending requests, so cpufreq
2549 * can take into account that the task is waiting for IO - turns out
2550 * to be important for low QD IO.
2551 */
2552 io_wait = current->in_iowait;
2553 if (current_pending_io())
2554 current->in_iowait = 1;
2555 ret = 0;
2556 if (iowq->timeout == KTIME_MAX)
2557 schedule();
2558 else if (!schedule_hrtimeout(expires: &iowq->timeout, mode: HRTIMER_MODE_ABS))
2559 ret = -ETIME;
2560 current->in_iowait = io_wait;
2561 return ret;
2562}
2563
2564/*
2565 * Wait until events become available, if we don't already have some. The
2566 * application must reap them itself, as they reside on the shared cq ring.
2567 */
2568static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2569 const sigset_t __user *sig, size_t sigsz,
2570 struct __kernel_timespec __user *uts)
2571{
2572 struct io_wait_queue iowq;
2573 struct io_rings *rings = ctx->rings;
2574 int ret;
2575
2576 if (!io_allowed_run_tw(ctx))
2577 return -EEXIST;
2578 if (!llist_empty(head: &ctx->work_llist))
2579 io_run_local_work(ctx);
2580 io_run_task_work();
2581 io_cqring_overflow_flush(ctx);
2582 /* if user messes with these they will just get an early return */
2583 if (__io_cqring_events_user(ctx) >= min_events)
2584 return 0;
2585
2586 if (sig) {
2587#ifdef CONFIG_COMPAT
2588 if (in_compat_syscall())
2589 ret = set_compat_user_sigmask(umask: (const compat_sigset_t __user *)sig,
2590 sigsetsize: sigsz);
2591 else
2592#endif
2593 ret = set_user_sigmask(umask: sig, sigsetsize: sigsz);
2594
2595 if (ret)
2596 return ret;
2597 }
2598
2599 init_waitqueue_func_entry(wq_entry: &iowq.wq, func: io_wake_function);
2600 iowq.wq.private = current;
2601 INIT_LIST_HEAD(list: &iowq.wq.entry);
2602 iowq.ctx = ctx;
2603 iowq.nr_timeouts = atomic_read(v: &ctx->cq_timeouts);
2604 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2605 iowq.timeout = KTIME_MAX;
2606
2607 if (uts) {
2608 struct timespec64 ts;
2609
2610 if (get_timespec64(ts: &ts, uts))
2611 return -EFAULT;
2612 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2613 }
2614
2615 trace_io_uring_cqring_wait(ctx, min_events);
2616 do {
2617 unsigned long check_cq;
2618
2619 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2620 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2621
2622 atomic_set(v: &ctx->cq_wait_nr, i: nr_wait);
2623 set_current_state(TASK_INTERRUPTIBLE);
2624 } else {
2625 prepare_to_wait_exclusive(wq_head: &ctx->cq_wait, wq_entry: &iowq.wq,
2626 TASK_INTERRUPTIBLE);
2627 }
2628
2629 ret = io_cqring_wait_schedule(ctx, iowq: &iowq);
2630 __set_current_state(TASK_RUNNING);
2631 atomic_set(v: &ctx->cq_wait_nr, i: 0);
2632
2633 if (ret < 0)
2634 break;
2635 /*
2636 * Run task_work after scheduling and before io_should_wake().
2637 * If we got woken because of task_work being processed, run it
2638 * now rather than let the caller do another wait loop.
2639 */
2640 io_run_task_work();
2641 if (!llist_empty(head: &ctx->work_llist))
2642 io_run_local_work(ctx);
2643
2644 check_cq = READ_ONCE(ctx->check_cq);
2645 if (unlikely(check_cq)) {
2646 /* let the caller flush overflows, retry */
2647 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2648 io_cqring_do_overflow_flush(ctx);
2649 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2650 ret = -EBADR;
2651 break;
2652 }
2653 }
2654
2655 if (io_should_wake(iowq: &iowq)) {
2656 ret = 0;
2657 break;
2658 }
2659 cond_resched();
2660 } while (1);
2661
2662 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2663 finish_wait(wq_head: &ctx->cq_wait, wq_entry: &iowq.wq);
2664 restore_saved_sigmask_unless(interrupted: ret == -EINTR);
2665
2666 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2667}
2668
2669static void io_mem_free(void *ptr)
2670{
2671 if (!ptr)
2672 return;
2673
2674 folio_put(folio: virt_to_folio(x: ptr));
2675}
2676
2677static void io_pages_free(struct page ***pages, int npages)
2678{
2679 struct page **page_array;
2680 int i;
2681
2682 if (!pages)
2683 return;
2684
2685 page_array = *pages;
2686 if (!page_array)
2687 return;
2688
2689 for (i = 0; i < npages; i++)
2690 unpin_user_page(page: page_array[i]);
2691 kvfree(addr: page_array);
2692 *pages = NULL;
2693}
2694
2695static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2696 unsigned long uaddr, size_t size)
2697{
2698 struct page **page_array;
2699 unsigned int nr_pages;
2700 int ret, i;
2701
2702 *npages = 0;
2703
2704 if (uaddr & (PAGE_SIZE - 1) || !size)
2705 return ERR_PTR(error: -EINVAL);
2706
2707 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708 if (nr_pages > USHRT_MAX)
2709 return ERR_PTR(error: -EINVAL);
2710 page_array = kvmalloc_array(n: nr_pages, size: sizeof(struct page *), GFP_KERNEL);
2711 if (!page_array)
2712 return ERR_PTR(error: -ENOMEM);
2713
2714 ret = pin_user_pages_fast(start: uaddr, nr_pages, gup_flags: FOLL_WRITE | FOLL_LONGTERM,
2715 pages: page_array);
2716 if (ret != nr_pages) {
2717err:
2718 io_pages_free(pages: &page_array, npages: ret > 0 ? ret : 0);
2719 return ret < 0 ? ERR_PTR(error: ret) : ERR_PTR(error: -EFAULT);
2720 }
2721 /*
2722 * Should be a single page. If the ring is small enough that we can
2723 * use a normal page, that is fine. If we need multiple pages, then
2724 * userspace should use a huge page. That's the only way to guarantee
2725 * that we get contigious memory, outside of just being lucky or
2726 * (currently) having low memory fragmentation.
2727 */
2728 if (page_array[0] != page_array[ret - 1])
2729 goto err;
2730
2731 /*
2732 * Can't support mapping user allocated ring memory on 32-bit archs
2733 * where it could potentially reside in highmem. Just fail those with
2734 * -EINVAL, just like we did on kernels that didn't support this
2735 * feature.
2736 */
2737 for (i = 0; i < nr_pages; i++) {
2738 if (PageHighMem(page: page_array[i])) {
2739 ret = -EINVAL;
2740 goto err;
2741 }
2742 }
2743
2744 *pages = page_array;
2745 *npages = nr_pages;
2746 return page_to_virt(page_array[0]);
2747}
2748
2749static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2750 size_t size)
2751{
2752 return __io_uaddr_map(pages: &ctx->ring_pages, npages: &ctx->n_ring_pages, uaddr,
2753 size);
2754}
2755
2756static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2757 size_t size)
2758{
2759 return __io_uaddr_map(pages: &ctx->sqe_pages, npages: &ctx->n_sqe_pages, uaddr,
2760 size);
2761}
2762
2763static void io_rings_free(struct io_ring_ctx *ctx)
2764{
2765 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2766 io_mem_free(ptr: ctx->rings);
2767 io_mem_free(ptr: ctx->sq_sqes);
2768 ctx->rings = NULL;
2769 ctx->sq_sqes = NULL;
2770 } else {
2771 io_pages_free(pages: &ctx->ring_pages, npages: ctx->n_ring_pages);
2772 ctx->n_ring_pages = 0;
2773 io_pages_free(pages: &ctx->sqe_pages, npages: ctx->n_sqe_pages);
2774 ctx->n_sqe_pages = 0;
2775 }
2776}
2777
2778static void *io_mem_alloc(size_t size)
2779{
2780 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2781 void *ret;
2782
2783 ret = (void *) __get_free_pages(gfp_mask: gfp, order: get_order(size));
2784 if (ret)
2785 return ret;
2786 return ERR_PTR(error: -ENOMEM);
2787}
2788
2789static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2790 unsigned int cq_entries, size_t *sq_offset)
2791{
2792 struct io_rings *rings;
2793 size_t off, sq_array_size;
2794
2795 off = struct_size(rings, cqes, cq_entries);
2796 if (off == SIZE_MAX)
2797 return SIZE_MAX;
2798 if (ctx->flags & IORING_SETUP_CQE32) {
2799 if (check_shl_overflow(off, 1, &off))
2800 return SIZE_MAX;
2801 }
2802
2803#ifdef CONFIG_SMP
2804 off = ALIGN(off, SMP_CACHE_BYTES);
2805 if (off == 0)
2806 return SIZE_MAX;
2807#endif
2808
2809 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2810 if (sq_offset)
2811 *sq_offset = SIZE_MAX;
2812 return off;
2813 }
2814
2815 if (sq_offset)
2816 *sq_offset = off;
2817
2818 sq_array_size = array_size(sizeof(u32), sq_entries);
2819 if (sq_array_size == SIZE_MAX)
2820 return SIZE_MAX;
2821
2822 if (check_add_overflow(off, sq_array_size, &off))
2823 return SIZE_MAX;
2824
2825 return off;
2826}
2827
2828static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2829 unsigned int eventfd_async)
2830{
2831 struct io_ev_fd *ev_fd;
2832 __s32 __user *fds = arg;
2833 int fd;
2834
2835 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2836 lockdep_is_held(&ctx->uring_lock));
2837 if (ev_fd)
2838 return -EBUSY;
2839
2840 if (copy_from_user(to: &fd, from: fds, n: sizeof(*fds)))
2841 return -EFAULT;
2842
2843 ev_fd = kmalloc(size: sizeof(*ev_fd), GFP_KERNEL);
2844 if (!ev_fd)
2845 return -ENOMEM;
2846
2847 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2848 if (IS_ERR(ptr: ev_fd->cq_ev_fd)) {
2849 int ret = PTR_ERR(ptr: ev_fd->cq_ev_fd);
2850 kfree(objp: ev_fd);
2851 return ret;
2852 }
2853
2854 spin_lock(lock: &ctx->completion_lock);
2855 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2856 spin_unlock(lock: &ctx->completion_lock);
2857
2858 ev_fd->eventfd_async = eventfd_async;
2859 ctx->has_evfd = true;
2860 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2861 atomic_set(v: &ev_fd->refs, i: 1);
2862 atomic_set(v: &ev_fd->ops, i: 0);
2863 return 0;
2864}
2865
2866static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2867{
2868 struct io_ev_fd *ev_fd;
2869
2870 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2871 lockdep_is_held(&ctx->uring_lock));
2872 if (ev_fd) {
2873 ctx->has_evfd = false;
2874 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2875 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), v: &ev_fd->ops))
2876 call_rcu(head: &ev_fd->rcu, func: io_eventfd_ops);
2877 return 0;
2878 }
2879
2880 return -ENXIO;
2881}
2882
2883static void io_req_caches_free(struct io_ring_ctx *ctx)
2884{
2885 struct io_kiocb *req;
2886 int nr = 0;
2887
2888 mutex_lock(&ctx->uring_lock);
2889 io_flush_cached_locked_reqs(ctx, state: &ctx->submit_state);
2890
2891 while (!io_req_cache_empty(ctx)) {
2892 req = io_extract_req(ctx);
2893 kmem_cache_free(s: req_cachep, objp: req);
2894 nr++;
2895 }
2896 if (nr)
2897 percpu_ref_put_many(ref: &ctx->refs, nr);
2898 mutex_unlock(lock: &ctx->uring_lock);
2899}
2900
2901static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2902{
2903 kfree(container_of(entry, struct io_rsrc_node, cache));
2904}
2905
2906static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2907{
2908 io_sq_thread_finish(ctx);
2909 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2910 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2911 return;
2912
2913 mutex_lock(&ctx->uring_lock);
2914 if (ctx->buf_data)
2915 __io_sqe_buffers_unregister(ctx);
2916 if (ctx->file_data)
2917 __io_sqe_files_unregister(ctx);
2918 io_cqring_overflow_kill(ctx);
2919 io_eventfd_unregister(ctx);
2920 io_alloc_cache_free(cache: &ctx->apoll_cache, free: io_apoll_cache_free);
2921 io_alloc_cache_free(cache: &ctx->netmsg_cache, free: io_netmsg_cache_free);
2922 io_futex_cache_free(ctx);
2923 io_destroy_buffers(ctx);
2924 mutex_unlock(lock: &ctx->uring_lock);
2925 if (ctx->sq_creds)
2926 put_cred(cred: ctx->sq_creds);
2927 if (ctx->submitter_task)
2928 put_task_struct(t: ctx->submitter_task);
2929
2930 /* there are no registered resources left, nobody uses it */
2931 if (ctx->rsrc_node)
2932 io_rsrc_node_destroy(ctx, ref_node: ctx->rsrc_node);
2933
2934 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2935
2936#if defined(CONFIG_UNIX)
2937 if (ctx->ring_sock) {
2938 ctx->ring_sock->file = NULL; /* so that iput() is called */
2939 sock_release(sock: ctx->ring_sock);
2940 }
2941#endif
2942 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2943
2944 io_alloc_cache_free(cache: &ctx->rsrc_node_cache, free: io_rsrc_node_cache_free);
2945 if (ctx->mm_account) {
2946 mmdrop(mm: ctx->mm_account);
2947 ctx->mm_account = NULL;
2948 }
2949 io_rings_free(ctx);
2950
2951 percpu_ref_exit(ref: &ctx->refs);
2952 free_uid(ctx->user);
2953 io_req_caches_free(ctx);
2954 if (ctx->hash_map)
2955 io_wq_put_hash(hash: ctx->hash_map);
2956 kfree(objp: ctx->cancel_table.hbs);
2957 kfree(objp: ctx->cancel_table_locked.hbs);
2958 kfree(objp: ctx->io_bl);
2959 xa_destroy(&ctx->io_bl_xa);
2960 kfree(objp: ctx);
2961}
2962
2963static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2964{
2965 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2966 poll_wq_task_work);
2967
2968 mutex_lock(&ctx->uring_lock);
2969 ctx->poll_activated = true;
2970 mutex_unlock(lock: &ctx->uring_lock);
2971
2972 /*
2973 * Wake ups for some events between start of polling and activation
2974 * might've been lost due to loose synchronisation.
2975 */
2976 wake_up_all(&ctx->poll_wq);
2977 percpu_ref_put(ref: &ctx->refs);
2978}
2979
2980static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2981{
2982 spin_lock(lock: &ctx->completion_lock);
2983 /* already activated or in progress */
2984 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2985 goto out;
2986 if (WARN_ON_ONCE(!ctx->task_complete))
2987 goto out;
2988 if (!ctx->submitter_task)
2989 goto out;
2990 /*
2991 * with ->submitter_task only the submitter task completes requests, we
2992 * only need to sync with it, which is done by injecting a tw
2993 */
2994 init_task_work(twork: &ctx->poll_wq_task_work, func: io_activate_pollwq_cb);
2995 percpu_ref_get(ref: &ctx->refs);
2996 if (task_work_add(task: ctx->submitter_task, twork: &ctx->poll_wq_task_work, mode: TWA_SIGNAL))
2997 percpu_ref_put(ref: &ctx->refs);
2998out:
2999 spin_unlock(lock: &ctx->completion_lock);
3000}
3001
3002static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3003{
3004 struct io_ring_ctx *ctx = file->private_data;
3005 __poll_t mask = 0;
3006
3007 if (unlikely(!ctx->poll_activated))
3008 io_activate_pollwq(ctx);
3009
3010 poll_wait(filp: file, wait_address: &ctx->poll_wq, p: wait);
3011 /*
3012 * synchronizes with barrier from wq_has_sleeper call in
3013 * io_commit_cqring
3014 */
3015 smp_rmb();
3016 if (!io_sqring_full(ctx))
3017 mask |= EPOLLOUT | EPOLLWRNORM;
3018
3019 /*
3020 * Don't flush cqring overflow list here, just do a simple check.
3021 * Otherwise there could possible be ABBA deadlock:
3022 * CPU0 CPU1
3023 * ---- ----
3024 * lock(&ctx->uring_lock);
3025 * lock(&ep->mtx);
3026 * lock(&ctx->uring_lock);
3027 * lock(&ep->mtx);
3028 *
3029 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3030 * pushes them to do the flush.
3031 */
3032
3033 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3034 mask |= EPOLLIN | EPOLLRDNORM;
3035
3036 return mask;
3037}
3038
3039static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3040{
3041 const struct cred *creds;
3042
3043 creds = xa_erase(&ctx->personalities, index: id);
3044 if (creds) {
3045 put_cred(cred: creds);
3046 return 0;
3047 }
3048
3049 return -EINVAL;
3050}
3051
3052struct io_tctx_exit {
3053 struct callback_head task_work;
3054 struct completion completion;
3055 struct io_ring_ctx *ctx;
3056};
3057
3058static __cold void io_tctx_exit_cb(struct callback_head *cb)
3059{
3060 struct io_uring_task *tctx = current->io_uring;
3061 struct io_tctx_exit *work;
3062
3063 work = container_of(cb, struct io_tctx_exit, task_work);
3064 /*
3065 * When @in_cancel, we're in cancellation and it's racy to remove the
3066 * node. It'll be removed by the end of cancellation, just ignore it.
3067 * tctx can be NULL if the queueing of this task_work raced with
3068 * work cancelation off the exec path.
3069 */
3070 if (tctx && !atomic_read(v: &tctx->in_cancel))
3071 io_uring_del_tctx_node(index: (unsigned long)work->ctx);
3072 complete(&work->completion);
3073}
3074
3075static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3076{
3077 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3078
3079 return req->ctx == data;
3080}
3081
3082static __cold void io_ring_exit_work(struct work_struct *work)
3083{
3084 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3085 unsigned long timeout = jiffies + HZ * 60 * 5;
3086 unsigned long interval = HZ / 20;
3087 struct io_tctx_exit exit;
3088 struct io_tctx_node *node;
3089 int ret;
3090
3091 /*
3092 * If we're doing polled IO and end up having requests being
3093 * submitted async (out-of-line), then completions can come in while
3094 * we're waiting for refs to drop. We need to reap these manually,
3095 * as nobody else will be looking for them.
3096 */
3097 do {
3098 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3099 mutex_lock(&ctx->uring_lock);
3100 io_cqring_overflow_kill(ctx);
3101 mutex_unlock(lock: &ctx->uring_lock);
3102 }
3103
3104 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3105 io_move_task_work_from_local(ctx);
3106
3107 while (io_uring_try_cancel_requests(ctx, NULL, cancel_all: true))
3108 cond_resched();
3109
3110 if (ctx->sq_data) {
3111 struct io_sq_data *sqd = ctx->sq_data;
3112 struct task_struct *tsk;
3113
3114 io_sq_thread_park(sqd);
3115 tsk = sqd->thread;
3116 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3117 io_wq_cancel_cb(wq: tsk->io_uring->io_wq,
3118 cancel: io_cancel_ctx_cb, data: ctx, cancel_all: true);
3119 io_sq_thread_unpark(sqd);
3120 }
3121
3122 io_req_caches_free(ctx);
3123
3124 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3125 /* there is little hope left, don't run it too often */
3126 interval = HZ * 60;
3127 }
3128 /*
3129 * This is really an uninterruptible wait, as it has to be
3130 * complete. But it's also run from a kworker, which doesn't
3131 * take signals, so it's fine to make it interruptible. This
3132 * avoids scenarios where we knowingly can wait much longer
3133 * on completions, for example if someone does a SIGSTOP on
3134 * a task that needs to finish task_work to make this loop
3135 * complete. That's a synthetic situation that should not
3136 * cause a stuck task backtrace, and hence a potential panic
3137 * on stuck tasks if that is enabled.
3138 */
3139 } while (!wait_for_completion_interruptible_timeout(x: &ctx->ref_comp, timeout: interval));
3140
3141 init_completion(x: &exit.completion);
3142 init_task_work(twork: &exit.task_work, func: io_tctx_exit_cb);
3143 exit.ctx = ctx;
3144 /*
3145 * Some may use context even when all refs and requests have been put,
3146 * and they are free to do so while still holding uring_lock or
3147 * completion_lock, see io_req_task_submit(). Apart from other work,
3148 * this lock/unlock section also waits them to finish.
3149 */
3150 mutex_lock(&ctx->uring_lock);
3151 while (!list_empty(head: &ctx->tctx_list)) {
3152 WARN_ON_ONCE(time_after(jiffies, timeout));
3153
3154 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3155 ctx_node);
3156 /* don't spin on a single task if cancellation failed */
3157 list_rotate_left(head: &ctx->tctx_list);
3158 ret = task_work_add(task: node->task, twork: &exit.task_work, mode: TWA_SIGNAL);
3159 if (WARN_ON_ONCE(ret))
3160 continue;
3161
3162 mutex_unlock(lock: &ctx->uring_lock);
3163 /*
3164 * See comment above for
3165 * wait_for_completion_interruptible_timeout() on why this
3166 * wait is marked as interruptible.
3167 */
3168 wait_for_completion_interruptible(x: &exit.completion);
3169 mutex_lock(&ctx->uring_lock);
3170 }
3171 mutex_unlock(lock: &ctx->uring_lock);
3172 spin_lock(lock: &ctx->completion_lock);
3173 spin_unlock(lock: &ctx->completion_lock);
3174
3175 /* pairs with RCU read section in io_req_local_work_add() */
3176 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3177 synchronize_rcu();
3178
3179 io_ring_ctx_free(ctx);
3180}
3181
3182static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3183{
3184 unsigned long index;
3185 struct creds *creds;
3186
3187 mutex_lock(&ctx->uring_lock);
3188 percpu_ref_kill(ref: &ctx->refs);
3189 xa_for_each(&ctx->personalities, index, creds)
3190 io_unregister_personality(ctx, id: index);
3191 if (ctx->rings)
3192 io_poll_remove_all(ctx, NULL, cancel_all: true);
3193 mutex_unlock(lock: &ctx->uring_lock);
3194
3195 /*
3196 * If we failed setting up the ctx, we might not have any rings
3197 * and therefore did not submit any requests
3198 */
3199 if (ctx->rings)
3200 io_kill_timeouts(ctx, NULL, cancel_all: true);
3201
3202 flush_delayed_work(dwork: &ctx->fallback_work);
3203
3204 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3205 /*
3206 * Use system_unbound_wq to avoid spawning tons of event kworkers
3207 * if we're exiting a ton of rings at the same time. It just adds
3208 * noise and overhead, there's no discernable change in runtime
3209 * over using system_wq.
3210 */
3211 queue_work(wq: system_unbound_wq, work: &ctx->exit_work);
3212}
3213
3214static int io_uring_release(struct inode *inode, struct file *file)
3215{
3216 struct io_ring_ctx *ctx = file->private_data;
3217
3218 file->private_data = NULL;
3219 io_ring_ctx_wait_and_kill(ctx);
3220 return 0;
3221}
3222
3223struct io_task_cancel {
3224 struct task_struct *task;
3225 bool all;
3226};
3227
3228static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3229{
3230 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3231 struct io_task_cancel *cancel = data;
3232
3233 return io_match_task_safe(head: req, task: cancel->task, cancel_all: cancel->all);
3234}
3235
3236static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3237 struct task_struct *task,
3238 bool cancel_all)
3239{
3240 struct io_defer_entry *de;
3241 LIST_HEAD(list);
3242
3243 spin_lock(lock: &ctx->completion_lock);
3244 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3245 if (io_match_task_safe(head: de->req, task, cancel_all)) {
3246 list_cut_position(list: &list, head: &ctx->defer_list, entry: &de->list);
3247 break;
3248 }
3249 }
3250 spin_unlock(lock: &ctx->completion_lock);
3251 if (list_empty(head: &list))
3252 return false;
3253
3254 while (!list_empty(head: &list)) {
3255 de = list_first_entry(&list, struct io_defer_entry, list);
3256 list_del_init(entry: &de->list);
3257 io_req_task_queue_fail(req: de->req, ret: -ECANCELED);
3258 kfree(objp: de);
3259 }
3260 return true;
3261}
3262
3263static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3264{
3265 struct io_tctx_node *node;
3266 enum io_wq_cancel cret;
3267 bool ret = false;
3268
3269 mutex_lock(&ctx->uring_lock);
3270 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3271 struct io_uring_task *tctx = node->task->io_uring;
3272
3273 /*
3274 * io_wq will stay alive while we hold uring_lock, because it's
3275 * killed after ctx nodes, which requires to take the lock.
3276 */
3277 if (!tctx || !tctx->io_wq)
3278 continue;
3279 cret = io_wq_cancel_cb(wq: tctx->io_wq, cancel: io_cancel_ctx_cb, data: ctx, cancel_all: true);
3280 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3281 }
3282 mutex_unlock(lock: &ctx->uring_lock);
3283
3284 return ret;
3285}
3286
3287static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3288 struct task_struct *task, bool cancel_all)
3289{
3290 struct hlist_node *tmp;
3291 struct io_kiocb *req;
3292 bool ret = false;
3293
3294 lockdep_assert_held(&ctx->uring_lock);
3295
3296 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3297 hash_node) {
3298 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3299 struct io_uring_cmd);
3300 struct file *file = req->file;
3301
3302 if (!cancel_all && req->task != task)
3303 continue;
3304
3305 if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3306 /* ->sqe isn't available if no async data */
3307 if (!req_has_async_data(req))
3308 cmd->sqe = NULL;
3309 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3310 ret = true;
3311 }
3312 }
3313 io_submit_flush_completions(ctx);
3314
3315 return ret;
3316}
3317
3318static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3319 struct task_struct *task,
3320 bool cancel_all)
3321{
3322 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3323 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3324 enum io_wq_cancel cret;
3325 bool ret = false;
3326
3327 /* set it so io_req_local_work_add() would wake us up */
3328 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3329 atomic_set(v: &ctx->cq_wait_nr, i: 1);
3330 smp_mb();
3331 }
3332
3333 /* failed during ring init, it couldn't have issued any requests */
3334 if (!ctx->rings)
3335 return false;
3336
3337 if (!task) {
3338 ret |= io_uring_try_cancel_iowq(ctx);
3339 } else if (tctx && tctx->io_wq) {
3340 /*
3341 * Cancels requests of all rings, not only @ctx, but
3342 * it's fine as the task is in exit/exec.
3343 */
3344 cret = io_wq_cancel_cb(wq: tctx->io_wq, cancel: io_cancel_task_cb,
3345 data: &cancel, cancel_all: true);
3346 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3347 }
3348
3349 /* SQPOLL thread does its own polling */
3350 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3351 (ctx->sq_data && ctx->sq_data->thread == current)) {
3352 while (!wq_list_empty(&ctx->iopoll_list)) {
3353 io_iopoll_try_reap_events(ctx);
3354 ret = true;
3355 cond_resched();
3356 }
3357 }
3358
3359 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3360 io_allowed_defer_tw_run(ctx))
3361 ret |= io_run_local_work(ctx) > 0;
3362 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3363 mutex_lock(&ctx->uring_lock);
3364 ret |= io_poll_remove_all(ctx, tsk: task, cancel_all);
3365 ret |= io_waitid_remove_all(ctx, task, cancel_all);
3366 ret |= io_futex_remove_all(ctx, task, cancel_all);
3367 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3368 mutex_unlock(lock: &ctx->uring_lock);
3369 ret |= io_kill_timeouts(ctx, tsk: task, cancel_all);
3370 if (task)
3371 ret |= io_run_task_work() > 0;
3372 return ret;
3373}
3374
3375static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3376{
3377 if (tracked)
3378 return atomic_read(v: &tctx->inflight_tracked);
3379 return percpu_counter_sum(fbc: &tctx->inflight);
3380}
3381
3382/*
3383 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3384 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3385 */
3386__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3387{
3388 struct io_uring_task *tctx = current->io_uring;
3389 struct io_ring_ctx *ctx;
3390 struct io_tctx_node *node;
3391 unsigned long index;
3392 s64 inflight;
3393 DEFINE_WAIT(wait);
3394
3395 WARN_ON_ONCE(sqd && sqd->thread != current);
3396
3397 if (!current->io_uring)
3398 return;
3399 if (tctx->io_wq)
3400 io_wq_exit_start(wq: tctx->io_wq);
3401
3402 atomic_inc(v: &tctx->in_cancel);
3403 do {
3404 bool loop = false;
3405
3406 io_uring_drop_tctx_refs(current);
3407 /* read completions before cancelations */
3408 inflight = tctx_inflight(tctx, tracked: !cancel_all);
3409 if (!inflight)
3410 break;
3411
3412 if (!sqd) {
3413 xa_for_each(&tctx->xa, index, node) {
3414 /* sqpoll task will cancel all its requests */
3415 if (node->ctx->sq_data)
3416 continue;
3417 loop |= io_uring_try_cancel_requests(ctx: node->ctx,
3418 current, cancel_all);
3419 }
3420 } else {
3421 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3422 loop |= io_uring_try_cancel_requests(ctx,
3423 current,
3424 cancel_all);
3425 }
3426
3427 if (loop) {
3428 cond_resched();
3429 continue;
3430 }
3431
3432 prepare_to_wait(wq_head: &tctx->wait, wq_entry: &wait, TASK_INTERRUPTIBLE);
3433 io_run_task_work();
3434 io_uring_drop_tctx_refs(current);
3435 xa_for_each(&tctx->xa, index, node) {
3436 if (!llist_empty(head: &node->ctx->work_llist)) {
3437 WARN_ON_ONCE(node->ctx->submitter_task &&
3438 node->ctx->submitter_task != current);
3439 goto end_wait;
3440 }
3441 }
3442 /*
3443 * If we've seen completions, retry without waiting. This
3444 * avoids a race where a completion comes in before we did
3445 * prepare_to_wait().
3446 */
3447 if (inflight == tctx_inflight(tctx, tracked: !cancel_all))
3448 schedule();
3449end_wait:
3450 finish_wait(wq_head: &tctx->wait, wq_entry: &wait);
3451 } while (1);
3452
3453 io_uring_clean_tctx(tctx);
3454 if (cancel_all) {
3455 /*
3456 * We shouldn't run task_works after cancel, so just leave
3457 * ->in_cancel set for normal exit.
3458 */
3459 atomic_dec(v: &tctx->in_cancel);
3460 /* for exec all current's requests should be gone, kill tctx */
3461 __io_uring_free(current);
3462 }
3463}
3464
3465void __io_uring_cancel(bool cancel_all)
3466{
3467 io_uring_cancel_generic(cancel_all, NULL);
3468}
3469
3470static void *io_uring_validate_mmap_request(struct file *file,
3471 loff_t pgoff, size_t sz)
3472{
3473 struct io_ring_ctx *ctx = file->private_data;
3474 loff_t offset = pgoff << PAGE_SHIFT;
3475 struct page *page;
3476 void *ptr;
3477
3478 /* Don't allow mmap if the ring was setup without it */
3479 if (ctx->flags & IORING_SETUP_NO_MMAP)
3480 return ERR_PTR(error: -EINVAL);
3481
3482 switch (offset & IORING_OFF_MMAP_MASK) {
3483 case IORING_OFF_SQ_RING:
3484 case IORING_OFF_CQ_RING:
3485 ptr = ctx->rings;
3486 break;
3487 case IORING_OFF_SQES:
3488 ptr = ctx->sq_sqes;
3489 break;
3490 case IORING_OFF_PBUF_RING: {
3491 unsigned int bgid;
3492
3493 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3494 mutex_lock(&ctx->uring_lock);
3495 ptr = io_pbuf_get_address(ctx, bgid);
3496 mutex_unlock(lock: &ctx->uring_lock);
3497 if (!ptr)
3498 return ERR_PTR(error: -EINVAL);
3499 break;
3500 }
3501 default:
3502 return ERR_PTR(error: -EINVAL);
3503 }
3504
3505 page = virt_to_head_page(x: ptr);
3506 if (sz > page_size(page))
3507 return ERR_PTR(error: -EINVAL);
3508
3509 return ptr;
3510}
3511
3512#ifdef CONFIG_MMU
3513
3514static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3515{
3516 size_t sz = vma->vm_end - vma->vm_start;
3517 unsigned long pfn;
3518 void *ptr;
3519
3520 ptr = io_uring_validate_mmap_request(file, pgoff: vma->vm_pgoff, sz);
3521 if (IS_ERR(ptr))
3522 return PTR_ERR(ptr);
3523
3524 pfn = virt_to_phys(address: ptr) >> PAGE_SHIFT;
3525 return remap_pfn_range(vma, addr: vma->vm_start, pfn, size: sz, vma->vm_page_prot);
3526}
3527
3528static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3529 unsigned long addr, unsigned long len,
3530 unsigned long pgoff, unsigned long flags)
3531{
3532 void *ptr;
3533
3534 /*
3535 * Do not allow to map to user-provided address to avoid breaking the
3536 * aliasing rules. Userspace is not able to guess the offset address of
3537 * kernel kmalloc()ed memory area.
3538 */
3539 if (addr)
3540 return -EINVAL;
3541
3542 ptr = io_uring_validate_mmap_request(file: filp, pgoff, sz: len);
3543 if (IS_ERR(ptr))
3544 return -ENOMEM;
3545
3546 /*
3547 * Some architectures have strong cache aliasing requirements.
3548 * For such architectures we need a coherent mapping which aliases
3549 * kernel memory *and* userspace memory. To achieve that:
3550 * - use a NULL file pointer to reference physical memory, and
3551 * - use the kernel virtual address of the shared io_uring context
3552 * (instead of the userspace-provided address, which has to be 0UL
3553 * anyway).
3554 * - use the same pgoff which the get_unmapped_area() uses to
3555 * calculate the page colouring.
3556 * For architectures without such aliasing requirements, the
3557 * architecture will return any suitable mapping because addr is 0.
3558 */
3559 filp = NULL;
3560 flags |= MAP_SHARED;
3561 pgoff = 0; /* has been translated to ptr above */
3562#ifdef SHM_COLOUR
3563 addr = (uintptr_t) ptr;
3564 pgoff = addr >> PAGE_SHIFT;
3565#else
3566 addr = 0UL;
3567#endif
3568 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3569}
3570
3571#else /* !CONFIG_MMU */
3572
3573static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3574{
3575 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3576}
3577
3578static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3579{
3580 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3581}
3582
3583static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3584 unsigned long addr, unsigned long len,
3585 unsigned long pgoff, unsigned long flags)
3586{
3587 void *ptr;
3588
3589 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3590 if (IS_ERR(ptr))
3591 return PTR_ERR(ptr);
3592
3593 return (unsigned long) ptr;
3594}
3595
3596#endif /* !CONFIG_MMU */
3597
3598static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3599{
3600 if (flags & IORING_ENTER_EXT_ARG) {
3601 struct io_uring_getevents_arg arg;
3602
3603 if (argsz != sizeof(arg))
3604 return -EINVAL;
3605 if (copy_from_user(to: &arg, from: argp, n: sizeof(arg)))
3606 return -EFAULT;
3607 }
3608 return 0;
3609}
3610
3611static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3612 struct __kernel_timespec __user **ts,
3613 const sigset_t __user **sig)
3614{
3615 struct io_uring_getevents_arg arg;
3616
3617 /*
3618 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3619 * is just a pointer to the sigset_t.
3620 */
3621 if (!(flags & IORING_ENTER_EXT_ARG)) {
3622 *sig = (const sigset_t __user *) argp;
3623 *ts = NULL;
3624 return 0;
3625 }
3626
3627 /*
3628 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3629 * timespec and sigset_t pointers if good.
3630 */
3631 if (*argsz != sizeof(arg))
3632 return -EINVAL;
3633 if (copy_from_user(to: &arg, from: argp, n: sizeof(arg)))
3634 return -EFAULT;
3635 if (arg.pad)
3636 return -EINVAL;
3637 *sig = u64_to_user_ptr(arg.sigmask);
3638 *argsz = arg.sigmask_sz;
3639 *ts = u64_to_user_ptr(arg.ts);
3640 return 0;
3641}
3642
3643SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3644 u32, min_complete, u32, flags, const void __user *, argp,
3645 size_t, argsz)
3646{
3647 struct io_ring_ctx *ctx;
3648 struct fd f;
3649 long ret;
3650
3651 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3652 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3653 IORING_ENTER_REGISTERED_RING)))
3654 return -EINVAL;
3655
3656 /*
3657 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3658 * need only dereference our task private array to find it.
3659 */
3660 if (flags & IORING_ENTER_REGISTERED_RING) {
3661 struct io_uring_task *tctx = current->io_uring;
3662
3663 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3664 return -EINVAL;
3665 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3666 f.file = tctx->registered_rings[fd];
3667 f.flags = 0;
3668 if (unlikely(!f.file))
3669 return -EBADF;
3670 } else {
3671 f = fdget(fd);
3672 if (unlikely(!f.file))
3673 return -EBADF;
3674 ret = -EOPNOTSUPP;
3675 if (unlikely(!io_is_uring_fops(f.file)))
3676 goto out;
3677 }
3678
3679 ctx = f.file->private_data;
3680 ret = -EBADFD;
3681 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3682 goto out;
3683
3684 /*
3685 * For SQ polling, the thread will do all submissions and completions.
3686 * Just return the requested submit count, and wake the thread if
3687 * we were asked to.
3688 */
3689 ret = 0;
3690 if (ctx->flags & IORING_SETUP_SQPOLL) {
3691 io_cqring_overflow_flush(ctx);
3692
3693 if (unlikely(ctx->sq_data->thread == NULL)) {
3694 ret = -EOWNERDEAD;
3695 goto out;
3696 }
3697 if (flags & IORING_ENTER_SQ_WAKEUP)
3698 wake_up(&ctx->sq_data->wait);
3699 if (flags & IORING_ENTER_SQ_WAIT)
3700 io_sqpoll_wait_sq(ctx);
3701
3702 ret = to_submit;
3703 } else if (to_submit) {
3704 ret = io_uring_add_tctx_node(ctx);
3705 if (unlikely(ret))
3706 goto out;
3707
3708 mutex_lock(&ctx->uring_lock);
3709 ret = io_submit_sqes(ctx, nr: to_submit);
3710 if (ret != to_submit) {
3711 mutex_unlock(lock: &ctx->uring_lock);
3712 goto out;
3713 }
3714 if (flags & IORING_ENTER_GETEVENTS) {
3715 if (ctx->syscall_iopoll)
3716 goto iopoll_locked;
3717 /*
3718 * Ignore errors, we'll soon call io_cqring_wait() and
3719 * it should handle ownership problems if any.
3720 */
3721 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3722 (void)io_run_local_work_locked(ctx);
3723 }
3724 mutex_unlock(lock: &ctx->uring_lock);
3725 }
3726
3727 if (flags & IORING_ENTER_GETEVENTS) {
3728 int ret2;
3729
3730 if (ctx->syscall_iopoll) {
3731 /*
3732 * We disallow the app entering submit/complete with
3733 * polling, but we still need to lock the ring to
3734 * prevent racing with polled issue that got punted to
3735 * a workqueue.
3736 */
3737 mutex_lock(&ctx->uring_lock);
3738iopoll_locked:
3739 ret2 = io_validate_ext_arg(flags, argp, argsz);
3740 if (likely(!ret2)) {
3741 min_complete = min(min_complete,
3742 ctx->cq_entries);
3743 ret2 = io_iopoll_check(ctx, min: min_complete);
3744 }
3745 mutex_unlock(lock: &ctx->uring_lock);
3746 } else {
3747 const sigset_t __user *sig;
3748 struct __kernel_timespec __user *ts;
3749
3750 ret2 = io_get_ext_arg(flags, argp, argsz: &argsz, ts: &ts, sig: &sig);
3751 if (likely(!ret2)) {
3752 min_complete = min(min_complete,
3753 ctx->cq_entries);
3754 ret2 = io_cqring_wait(ctx, min_events: min_complete, sig,
3755 sigsz: argsz, uts: ts);
3756 }
3757 }
3758
3759 if (!ret) {
3760 ret = ret2;
3761
3762 /*
3763 * EBADR indicates that one or more CQE were dropped.
3764 * Once the user has been informed we can clear the bit
3765 * as they are obviously ok with those drops.
3766 */
3767 if (unlikely(ret2 == -EBADR))
3768 clear_bit(nr: IO_CHECK_CQ_DROPPED_BIT,
3769 addr: &ctx->check_cq);
3770 }
3771 }
3772out:
3773 fdput(fd: f);
3774 return ret;
3775}
3776
3777static const struct file_operations io_uring_fops = {
3778 .release = io_uring_release,
3779 .mmap = io_uring_mmap,
3780#ifndef CONFIG_MMU
3781 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3782 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3783#else
3784 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3785#endif
3786 .poll = io_uring_poll,
3787#ifdef CONFIG_PROC_FS
3788 .show_fdinfo = io_uring_show_fdinfo,
3789#endif
3790};
3791
3792bool io_is_uring_fops(struct file *file)
3793{
3794 return file->f_op == &io_uring_fops;
3795}
3796
3797static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3798 struct io_uring_params *p)
3799{
3800 struct io_rings *rings;
3801 size_t size, sq_array_offset;
3802 void *ptr;
3803
3804 /* make sure these are sane, as we already accounted them */
3805 ctx->sq_entries = p->sq_entries;
3806 ctx->cq_entries = p->cq_entries;
3807
3808 size = rings_size(ctx, sq_entries: p->sq_entries, cq_entries: p->cq_entries, sq_offset: &sq_array_offset);
3809 if (size == SIZE_MAX)
3810 return -EOVERFLOW;
3811
3812 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3813 rings = io_mem_alloc(size);
3814 else
3815 rings = io_rings_map(ctx, uaddr: p->cq_off.user_addr, size);
3816
3817 if (IS_ERR(ptr: rings))
3818 return PTR_ERR(ptr: rings);
3819
3820 ctx->rings = rings;
3821 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3822 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3823 rings->sq_ring_mask = p->sq_entries - 1;
3824 rings->cq_ring_mask = p->cq_entries - 1;
3825 rings->sq_ring_entries = p->sq_entries;
3826 rings->cq_ring_entries = p->cq_entries;
3827
3828 if (p->flags & IORING_SETUP_SQE128)
3829 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3830 else
3831 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3832 if (size == SIZE_MAX) {
3833 io_rings_free(ctx);
3834 return -EOVERFLOW;
3835 }
3836
3837 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3838 ptr = io_mem_alloc(size);
3839 else
3840 ptr = io_sqes_map(ctx, uaddr: p->sq_off.user_addr, size);
3841
3842 if (IS_ERR(ptr)) {
3843 io_rings_free(ctx);
3844 return PTR_ERR(ptr);
3845 }
3846
3847 ctx->sq_sqes = ptr;
3848 return 0;
3849}
3850
3851static int io_uring_install_fd(struct file *file)
3852{
3853 int fd;
3854
3855 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3856 if (fd < 0)
3857 return fd;
3858 fd_install(fd, file);
3859 return fd;
3860}
3861
3862/*
3863 * Allocate an anonymous fd, this is what constitutes the application
3864 * visible backing of an io_uring instance. The application mmaps this
3865 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3866 * we have to tie this fd to a socket for file garbage collection purposes.
3867 */
3868static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3869{
3870 struct file *file;
3871#if defined(CONFIG_UNIX)
3872 int ret;
3873
3874 ret = sock_create_kern(net: &init_net, PF_UNIX, type: SOCK_RAW, IPPROTO_IP,
3875 res: &ctx->ring_sock);
3876 if (ret)
3877 return ERR_PTR(error: ret);
3878#endif
3879
3880 file = anon_inode_getfile_secure(name: "[io_uring]", fops: &io_uring_fops, priv: ctx,
3881 O_RDWR | O_CLOEXEC, NULL);
3882#if defined(CONFIG_UNIX)
3883 if (IS_ERR(ptr: file)) {
3884 sock_release(sock: ctx->ring_sock);
3885 ctx->ring_sock = NULL;
3886 } else {
3887 ctx->ring_sock->file = file;
3888 }
3889#endif
3890 return file;
3891}
3892
3893static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3894 struct io_uring_params __user *params)
3895{
3896 struct io_ring_ctx *ctx;
3897 struct io_uring_task *tctx;
3898 struct file *file;
3899 int ret;
3900
3901 if (!entries)
3902 return -EINVAL;
3903 if (entries > IORING_MAX_ENTRIES) {
3904 if (!(p->flags & IORING_SETUP_CLAMP))
3905 return -EINVAL;
3906 entries = IORING_MAX_ENTRIES;
3907 }
3908
3909 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3910 && !(p->flags & IORING_SETUP_NO_MMAP))
3911 return -EINVAL;
3912
3913 /*
3914 * Use twice as many entries for the CQ ring. It's possible for the
3915 * application to drive a higher depth than the size of the SQ ring,
3916 * since the sqes are only used at submission time. This allows for
3917 * some flexibility in overcommitting a bit. If the application has
3918 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3919 * of CQ ring entries manually.
3920 */
3921 p->sq_entries = roundup_pow_of_two(entries);
3922 if (p->flags & IORING_SETUP_CQSIZE) {
3923 /*
3924 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3925 * to a power-of-two, if it isn't already. We do NOT impose
3926 * any cq vs sq ring sizing.
3927 */
3928 if (!p->cq_entries)
3929 return -EINVAL;
3930 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3931 if (!(p->flags & IORING_SETUP_CLAMP))
3932 return -EINVAL;
3933 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3934 }
3935 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3936 if (p->cq_entries < p->sq_entries)
3937 return -EINVAL;
3938 } else {
3939 p->cq_entries = 2 * p->sq_entries;
3940 }
3941
3942 ctx = io_ring_ctx_alloc(p);
3943 if (!ctx)
3944 return -ENOMEM;
3945
3946 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3947 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3948 !(ctx->flags & IORING_SETUP_SQPOLL))
3949 ctx->task_complete = true;
3950
3951 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3952 ctx->lockless_cq = true;
3953
3954 /*
3955 * lazy poll_wq activation relies on ->task_complete for synchronisation
3956 * purposes, see io_activate_pollwq()
3957 */
3958 if (!ctx->task_complete)
3959 ctx->poll_activated = true;
3960
3961 /*
3962 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3963 * space applications don't need to do io completion events
3964 * polling again, they can rely on io_sq_thread to do polling
3965 * work, which can reduce cpu usage and uring_lock contention.
3966 */
3967 if (ctx->flags & IORING_SETUP_IOPOLL &&
3968 !(ctx->flags & IORING_SETUP_SQPOLL))
3969 ctx->syscall_iopoll = 1;
3970
3971 ctx->compat = in_compat_syscall();
3972 if (!ns_capable_noaudit(ns: &init_user_ns, CAP_IPC_LOCK))
3973 ctx->user = get_uid(current_user());
3974
3975 /*
3976 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3977 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3978 */
3979 ret = -EINVAL;
3980 if (ctx->flags & IORING_SETUP_SQPOLL) {
3981 /* IPI related flags don't make sense with SQPOLL */
3982 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3983 IORING_SETUP_TASKRUN_FLAG |
3984 IORING_SETUP_DEFER_TASKRUN))
3985 goto err;
3986 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3987 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3988 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3989 } else {
3990 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3991 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3992 goto err;
3993 ctx->notify_method = TWA_SIGNAL;
3994 }
3995
3996 /*
3997 * For DEFER_TASKRUN we require the completion task to be the same as the
3998 * submission task. This implies that there is only one submitter, so enforce
3999 * that.
4000 */
4001 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
4002 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
4003 goto err;
4004 }
4005
4006 /*
4007 * This is just grabbed for accounting purposes. When a process exits,
4008 * the mm is exited and dropped before the files, hence we need to hang
4009 * on to this mm purely for the purposes of being able to unaccount
4010 * memory (locked/pinned vm). It's not used for anything else.
4011 */
4012 mmgrab(current->mm);
4013 ctx->mm_account = current->mm;
4014
4015 ret = io_allocate_scq_urings(ctx, p);
4016 if (ret)
4017 goto err;
4018
4019 ret = io_sq_offload_create(ctx, p);
4020 if (ret)
4021 goto err;
4022
4023 ret = io_rsrc_init(ctx);
4024 if (ret)
4025 goto err;
4026
4027 p->sq_off.head = offsetof(struct io_rings, sq.head);
4028 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4029 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4030 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4031 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4032 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4033 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4034 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4035 p->sq_off.resv1 = 0;
4036 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4037 p->sq_off.user_addr = 0;
4038
4039 p->cq_off.head = offsetof(struct io_rings, cq.head);
4040 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4041 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4042 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4043 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4044 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4045 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4046 p->cq_off.resv1 = 0;
4047 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4048 p->cq_off.user_addr = 0;
4049
4050 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4051 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4052 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4053 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4054 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4055 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4056 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4057
4058 if (copy_to_user(to: params, from: p, n: sizeof(*p))) {
4059 ret = -EFAULT;
4060 goto err;
4061 }
4062
4063 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4064 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4065 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4066
4067 file = io_uring_get_file(ctx);
4068 if (IS_ERR(ptr: file)) {
4069 ret = PTR_ERR(ptr: file);
4070 goto err;
4071 }
4072
4073 ret = __io_uring_add_tctx_node(ctx);
4074 if (ret)
4075 goto err_fput;
4076 tctx = current->io_uring;
4077
4078 /*
4079 * Install ring fd as the very last thing, so we don't risk someone
4080 * having closed it before we finish setup
4081 */
4082 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4083 ret = io_ring_add_registered_file(tctx, file, start: 0, IO_RINGFD_REG_MAX);
4084 else
4085 ret = io_uring_install_fd(file);
4086 if (ret < 0)
4087 goto err_fput;
4088
4089 trace_io_uring_create(fd: ret, ctx, sq_entries: p->sq_entries, cq_entries: p->cq_entries, flags: p->flags);
4090 return ret;
4091err:
4092 io_ring_ctx_wait_and_kill(ctx);
4093 return ret;
4094err_fput:
4095 fput(file);
4096 return ret;
4097}
4098
4099/*
4100 * Sets up an aio uring context, and returns the fd. Applications asks for a
4101 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4102 * params structure passed in.
4103 */
4104static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4105{
4106 struct io_uring_params p;
4107 int i;
4108
4109 if (copy_from_user(to: &p, from: params, n: sizeof(p)))
4110 return -EFAULT;
4111 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4112 if (p.resv[i])
4113 return -EINVAL;
4114 }
4115
4116 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4117 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4118 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4119 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4120 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4121 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4122 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4123 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4124 IORING_SETUP_NO_SQARRAY))
4125 return -EINVAL;
4126
4127 return io_uring_create(entries, p: &p, params);
4128}
4129
4130static inline bool io_uring_allowed(void)
4131{
4132 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4133 kgid_t io_uring_group;
4134
4135 if (disabled == 2)
4136 return false;
4137
4138 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4139 return true;
4140
4141 io_uring_group = make_kgid(from: &init_user_ns, gid: sysctl_io_uring_group);
4142 if (!gid_valid(gid: io_uring_group))
4143 return false;
4144
4145 return in_group_p(io_uring_group);
4146}
4147
4148SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4149 struct io_uring_params __user *, params)
4150{
4151 if (!io_uring_allowed())
4152 return -EPERM;
4153
4154 return io_uring_setup(entries, params);
4155}
4156
4157static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4158 unsigned nr_args)
4159{
4160 struct io_uring_probe *p;
4161 size_t size;
4162 int i, ret;
4163
4164 size = struct_size(p, ops, nr_args);
4165 if (size == SIZE_MAX)
4166 return -EOVERFLOW;
4167 p = kzalloc(size, GFP_KERNEL);
4168 if (!p)
4169 return -ENOMEM;
4170
4171 ret = -EFAULT;
4172 if (copy_from_user(to: p, from: arg, n: size))
4173 goto out;
4174 ret = -EINVAL;
4175 if (memchr_inv(p, c: 0, size))
4176 goto out;
4177
4178 p->last_op = IORING_OP_LAST - 1;
4179 if (nr_args > IORING_OP_LAST)
4180 nr_args = IORING_OP_LAST;
4181
4182 for (i = 0; i < nr_args; i++) {
4183 p->ops[i].op = i;
4184 if (!io_issue_defs[i].not_supported)
4185 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4186 }
4187 p->ops_len = i;
4188
4189 ret = 0;
4190 if (copy_to_user(to: arg, from: p, n: size))
4191 ret = -EFAULT;
4192out:
4193 kfree(objp: p);
4194 return ret;
4195}
4196
4197static int io_register_personality(struct io_ring_ctx *ctx)
4198{
4199 const struct cred *creds;
4200 u32 id;
4201 int ret;
4202
4203 creds = get_current_cred();
4204
4205 ret = xa_alloc_cyclic(xa: &ctx->personalities, id: &id, entry: (void *)creds,
4206 XA_LIMIT(0, USHRT_MAX), next: &ctx->pers_next, GFP_KERNEL);
4207 if (ret < 0) {
4208 put_cred(cred: creds);
4209 return ret;
4210 }
4211 return id;
4212}
4213
4214static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4215 void __user *arg, unsigned int nr_args)
4216{
4217 struct io_uring_restriction *res;
4218 size_t size;
4219 int i, ret;
4220
4221 /* Restrictions allowed only if rings started disabled */
4222 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4223 return -EBADFD;
4224
4225 /* We allow only a single restrictions registration */
4226 if (ctx->restrictions.registered)
4227 return -EBUSY;
4228
4229 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4230 return -EINVAL;
4231
4232 size = array_size(nr_args, sizeof(*res));
4233 if (size == SIZE_MAX)
4234 return -EOVERFLOW;
4235
4236 res = memdup_user(arg, size);
4237 if (IS_ERR(ptr: res))
4238 return PTR_ERR(ptr: res);
4239
4240 ret = 0;
4241
4242 for (i = 0; i < nr_args; i++) {
4243 switch (res[i].opcode) {
4244 case IORING_RESTRICTION_REGISTER_OP:
4245 if (res[i].register_op >= IORING_REGISTER_LAST) {
4246 ret = -EINVAL;
4247 goto out;
4248 }
4249
4250 __set_bit(res[i].register_op,
4251 ctx->restrictions.register_op);
4252 break;
4253 case IORING_RESTRICTION_SQE_OP:
4254 if (res[i].sqe_op >= IORING_OP_LAST) {
4255 ret = -EINVAL;
4256 goto out;
4257 }
4258
4259 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4260 break;
4261 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4262 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4263 break;
4264 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4265 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4266 break;
4267 default:
4268 ret = -EINVAL;
4269 goto out;
4270 }
4271 }
4272
4273out:
4274 /* Reset all restrictions if an error happened */
4275 if (ret != 0)
4276 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4277 else
4278 ctx->restrictions.registered = true;
4279
4280 kfree(objp: res);
4281 return ret;
4282}
4283
4284static int io_register_enable_rings(struct io_ring_ctx *ctx)
4285{
4286 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4287 return -EBADFD;
4288
4289 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4290 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4291 /*
4292 * Lazy activation attempts would fail if it was polled before
4293 * submitter_task is set.
4294 */
4295 if (wq_has_sleeper(wq_head: &ctx->poll_wq))
4296 io_activate_pollwq(ctx);
4297 }
4298
4299 if (ctx->restrictions.registered)
4300 ctx->restricted = 1;
4301
4302 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4303 if (ctx->sq_data && wq_has_sleeper(wq_head: &ctx->sq_data->wait))
4304 wake_up(&ctx->sq_data->wait);
4305 return 0;
4306}
4307
4308static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4309 cpumask_var_t new_mask)
4310{
4311 int ret;
4312
4313 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4314 ret = io_wq_cpu_affinity(current->io_uring, mask: new_mask);
4315 } else {
4316 mutex_unlock(lock: &ctx->uring_lock);
4317 ret = io_sqpoll_wq_cpu_affinity(ctx, mask: new_mask);
4318 mutex_lock(&ctx->uring_lock);
4319 }
4320
4321 return ret;
4322}
4323
4324static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4325 void __user *arg, unsigned len)
4326{
4327 cpumask_var_t new_mask;
4328 int ret;
4329
4330 if (!alloc_cpumask_var(mask: &new_mask, GFP_KERNEL))
4331 return -ENOMEM;
4332
4333 cpumask_clear(dstp: new_mask);
4334 if (len > cpumask_size())
4335 len = cpumask_size();
4336
4337 if (in_compat_syscall()) {
4338 ret = compat_get_bitmap(cpumask_bits(new_mask),
4339 umask: (const compat_ulong_t __user *)arg,
4340 bitmap_size: len * 8 /* CHAR_BIT */);
4341 } else {
4342 ret = copy_from_user(to: new_mask, from: arg, n: len);
4343 }
4344
4345 if (ret) {
4346 free_cpumask_var(mask: new_mask);
4347 return -EFAULT;
4348 }
4349
4350 ret = __io_register_iowq_aff(ctx, new_mask);
4351 free_cpumask_var(mask: new_mask);
4352 return ret;
4353}
4354
4355static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4356{
4357 return __io_register_iowq_aff(ctx, NULL);
4358}
4359
4360static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4361 void __user *arg)
4362 __must_hold(&ctx->uring_lock)
4363{
4364 struct io_tctx_node *node;
4365 struct io_uring_task *tctx = NULL;
4366 struct io_sq_data *sqd = NULL;
4367 __u32 new_count[2];
4368 int i, ret;
4369
4370 if (copy_from_user(to: new_count, from: arg, n: sizeof(new_count)))
4371 return -EFAULT;
4372 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4373 if (new_count[i] > INT_MAX)
4374 return -EINVAL;
4375
4376 if (ctx->flags & IORING_SETUP_SQPOLL) {
4377 sqd = ctx->sq_data;
4378 if (sqd) {
4379 /*
4380 * Observe the correct sqd->lock -> ctx->uring_lock
4381 * ordering. Fine to drop uring_lock here, we hold
4382 * a ref to the ctx.
4383 */
4384 refcount_inc(r: &sqd->refs);
4385 mutex_unlock(lock: &ctx->uring_lock);
4386 mutex_lock(&sqd->lock);
4387 mutex_lock(&ctx->uring_lock);
4388 if (sqd->thread)
4389 tctx = sqd->thread->io_uring;
4390 }
4391 } else {
4392 tctx = current->io_uring;
4393 }
4394
4395 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4396
4397 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4398 if (new_count[i])
4399 ctx->iowq_limits[i] = new_count[i];
4400 ctx->iowq_limits_set = true;
4401
4402 if (tctx && tctx->io_wq) {
4403 ret = io_wq_max_workers(wq: tctx->io_wq, new_count);
4404 if (ret)
4405 goto err;
4406 } else {
4407 memset(new_count, 0, sizeof(new_count));
4408 }
4409
4410 if (sqd) {
4411 mutex_unlock(lock: &sqd->lock);
4412 io_put_sq_data(sqd);
4413 }
4414
4415 if (copy_to_user(to: arg, from: new_count, n: sizeof(new_count)))
4416 return -EFAULT;
4417
4418 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4419 if (sqd)
4420 return 0;
4421
4422 /* now propagate the restriction to all registered users */
4423 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4424 struct io_uring_task *tctx = node->task->io_uring;
4425
4426 if (WARN_ON_ONCE(!tctx->io_wq))
4427 continue;
4428
4429 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4430 new_count[i] = ctx->iowq_limits[i];
4431 /* ignore errors, it always returns zero anyway */
4432 (void)io_wq_max_workers(wq: tctx->io_wq, new_count);
4433 }
4434 return 0;
4435err:
4436 if (sqd) {
4437 mutex_unlock(lock: &sqd->lock);
4438 io_put_sq_data(sqd);
4439 }
4440 return ret;
4441}
4442
4443static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4444 void __user *arg, unsigned nr_args)
4445 __releases(ctx->uring_lock)
4446 __acquires(ctx->uring_lock)
4447{
4448 int ret;
4449
4450 /*
4451 * We don't quiesce the refs for register anymore and so it can't be
4452 * dying as we're holding a file ref here.
4453 */
4454 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4455 return -ENXIO;
4456
4457 if (ctx->submitter_task && ctx->submitter_task != current)
4458 return -EEXIST;
4459
4460 if (ctx->restricted) {
4461 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4462 if (!test_bit(opcode, ctx->restrictions.register_op))
4463 return -EACCES;
4464 }
4465
4466 switch (opcode) {
4467 case IORING_REGISTER_BUFFERS:
4468 ret = -EFAULT;
4469 if (!arg)
4470 break;
4471 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4472 break;
4473 case IORING_UNREGISTER_BUFFERS:
4474 ret = -EINVAL;
4475 if (arg || nr_args)
4476 break;
4477 ret = io_sqe_buffers_unregister(ctx);
4478 break;
4479 case IORING_REGISTER_FILES:
4480 ret = -EFAULT;
4481 if (!arg)
4482 break;
4483 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4484 break;
4485 case IORING_UNREGISTER_FILES:
4486 ret = -EINVAL;
4487 if (arg || nr_args)
4488 break;
4489 ret = io_sqe_files_unregister(ctx);
4490 break;
4491 case IORING_REGISTER_FILES_UPDATE:
4492 ret = io_register_files_update(ctx, arg, nr_args);
4493 break;
4494 case IORING_REGISTER_EVENTFD:
4495 ret = -EINVAL;
4496 if (nr_args != 1)
4497 break;
4498 ret = io_eventfd_register(ctx, arg, eventfd_async: 0);
4499 break;
4500 case IORING_REGISTER_EVENTFD_ASYNC:
4501 ret = -EINVAL;
4502 if (nr_args != 1)
4503 break;
4504 ret = io_eventfd_register(ctx, arg, eventfd_async: 1);
4505 break;
4506 case IORING_UNREGISTER_EVENTFD:
4507 ret = -EINVAL;
4508 if (arg || nr_args)
4509 break;
4510 ret = io_eventfd_unregister(ctx);
4511 break;
4512 case IORING_REGISTER_PROBE:
4513 ret = -EINVAL;
4514 if (!arg || nr_args > 256)
4515 break;
4516 ret = io_probe(ctx, arg, nr_args);
4517 break;
4518 case IORING_REGISTER_PERSONALITY:
4519 ret = -EINVAL;
4520 if (arg || nr_args)
4521 break;
4522 ret = io_register_personality(ctx);
4523 break;
4524 case IORING_UNREGISTER_PERSONALITY:
4525 ret = -EINVAL;
4526 if (arg)
4527 break;
4528 ret = io_unregister_personality(ctx, id: nr_args);
4529 break;
4530 case IORING_REGISTER_ENABLE_RINGS:
4531 ret = -EINVAL;
4532 if (arg || nr_args)
4533 break;
4534 ret = io_register_enable_rings(ctx);
4535 break;
4536 case IORING_REGISTER_RESTRICTIONS:
4537 ret = io_register_restrictions(ctx, arg, nr_args);
4538 break;
4539 case IORING_REGISTER_FILES2:
4540 ret = io_register_rsrc(ctx, arg, size: nr_args, type: IORING_RSRC_FILE);
4541 break;
4542 case IORING_REGISTER_FILES_UPDATE2:
4543 ret = io_register_rsrc_update(ctx, arg, size: nr_args,
4544 type: IORING_RSRC_FILE);
4545 break;
4546 case IORING_REGISTER_BUFFERS2:
4547 ret = io_register_rsrc(ctx, arg, size: nr_args, type: IORING_RSRC_BUFFER);
4548 break;
4549 case IORING_REGISTER_BUFFERS_UPDATE:
4550 ret = io_register_rsrc_update(ctx, arg, size: nr_args,
4551 type: IORING_RSRC_BUFFER);
4552 break;
4553 case IORING_REGISTER_IOWQ_AFF:
4554 ret = -EINVAL;
4555 if (!arg || !nr_args)
4556 break;
4557 ret = io_register_iowq_aff(ctx, arg, len: nr_args);
4558 break;
4559 case IORING_UNREGISTER_IOWQ_AFF:
4560 ret = -EINVAL;
4561 if (arg || nr_args)
4562 break;
4563 ret = io_unregister_iowq_aff(ctx);
4564 break;
4565 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4566 ret = -EINVAL;
4567 if (!arg || nr_args != 2)
4568 break;
4569 ret = io_register_iowq_max_workers(ctx, arg);
4570 break;
4571 case IORING_REGISTER_RING_FDS:
4572 ret = io_ringfd_register(ctx, arg: arg, nr_args);
4573 break;
4574 case IORING_UNREGISTER_RING_FDS:
4575 ret = io_ringfd_unregister(ctx, arg: arg, nr_args);
4576 break;
4577 case IORING_REGISTER_PBUF_RING:
4578 ret = -EINVAL;
4579 if (!arg || nr_args != 1)
4580 break;
4581 ret = io_register_pbuf_ring(ctx, arg);
4582 break;
4583 case IORING_UNREGISTER_PBUF_RING:
4584 ret = -EINVAL;
4585 if (!arg || nr_args != 1)
4586 break;
4587 ret = io_unregister_pbuf_ring(ctx, arg);
4588 break;
4589 case IORING_REGISTER_SYNC_CANCEL:
4590 ret = -EINVAL;
4591 if (!arg || nr_args != 1)
4592 break;
4593 ret = io_sync_cancel(ctx, arg);
4594 break;
4595 case IORING_REGISTER_FILE_ALLOC_RANGE:
4596 ret = -EINVAL;
4597 if (!arg || nr_args)
4598 break;
4599 ret = io_register_file_alloc_range(ctx, arg);
4600 break;
4601 default:
4602 ret = -EINVAL;
4603 break;
4604 }
4605
4606 return ret;
4607}
4608
4609SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4610 void __user *, arg, unsigned int, nr_args)
4611{
4612 struct io_ring_ctx *ctx;
4613 long ret = -EBADF;
4614 struct fd f;
4615 bool use_registered_ring;
4616
4617 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4618 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4619
4620 if (opcode >= IORING_REGISTER_LAST)
4621 return -EINVAL;
4622
4623 if (use_registered_ring) {
4624 /*
4625 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4626 * need only dereference our task private array to find it.
4627 */
4628 struct io_uring_task *tctx = current->io_uring;
4629
4630 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4631 return -EINVAL;
4632 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4633 f.file = tctx->registered_rings[fd];
4634 f.flags = 0;
4635 if (unlikely(!f.file))
4636 return -EBADF;
4637 } else {
4638 f = fdget(fd);
4639 if (unlikely(!f.file))
4640 return -EBADF;
4641 ret = -EOPNOTSUPP;
4642 if (!io_is_uring_fops(file: f.file))
4643 goto out_fput;
4644 }
4645
4646 ctx = f.file->private_data;
4647
4648 mutex_lock(&ctx->uring_lock);
4649 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4650 mutex_unlock(lock: &ctx->uring_lock);
4651 trace_io_uring_register(ctx, opcode, nr_files: ctx->nr_user_files, nr_bufs: ctx->nr_user_bufs, ret);
4652out_fput:
4653 fdput(fd: f);
4654 return ret;
4655}
4656
4657static int __init io_uring_init(void)
4658{
4659#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4660 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4661 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4662} while (0)
4663
4664#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4665 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4666#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4667 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4668 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4669 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4670 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4671 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4672 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4673 BUILD_BUG_SQE_ELEM(8, __u64, off);
4674 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4675 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4676 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4677 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4678 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4679 BUILD_BUG_SQE_ELEM(24, __u32, len);
4680 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4681 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4682 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4683 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4684 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4685 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4686 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4687 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4688 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4689 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4690 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4691 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4692 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4693 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4694 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4695 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4696 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4697 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4698 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4699 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4700 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4701 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4702 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4703 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4704 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4705 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4706 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4707 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4708 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4709 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4710 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4711
4712 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4713 sizeof(struct io_uring_rsrc_update));
4714 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4715 sizeof(struct io_uring_rsrc_update2));
4716
4717 /* ->buf_index is u16 */
4718 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4719 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4720 offsetof(struct io_uring_buf_ring, tail));
4721
4722 /* should fit into one byte */
4723 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4724 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4725 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4726
4727 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4728
4729 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4730
4731 /* top 8bits are for internal use */
4732 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4733
4734 io_uring_optable_init();
4735
4736 /*
4737 * Allow user copy in the per-command field, which starts after the
4738 * file in io_kiocb and until the opcode field. The openat2 handling
4739 * requires copying in user memory into the io_kiocb object in that
4740 * range, and HARDENED_USERCOPY will complain if we haven't
4741 * correctly annotated this range.
4742 */
4743 req_cachep = kmem_cache_create_usercopy(name: "io_kiocb",
4744 size: sizeof(struct io_kiocb), align: 0,
4745 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4746 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4747 offsetof(struct io_kiocb, cmd.data),
4748 sizeof_field(struct io_kiocb, cmd.data), NULL);
4749 io_buf_cachep = kmem_cache_create(name: "io_buffer", size: sizeof(struct io_buffer), align: 0,
4750 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
4751 NULL);
4752
4753#ifdef CONFIG_SYSCTL
4754 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4755#endif
4756
4757 return 0;
4758};
4759__initcall(io_uring_init);
4760

source code of linux/io_uring/io_uring.c