1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/backing-dev.h>
22#include <linux/dax.h>
23#include <linux/khugepaged.h>
24#include <linux/freezer.h>
25#include <linux/pfn_t.h>
26#include <linux/mman.h>
27#include <linux/memremap.h>
28#include <linux/pagemap.h>
29#include <linux/debugfs.h>
30#include <linux/migrate.h>
31#include <linux/hashtable.h>
32#include <linux/userfaultfd_k.h>
33#include <linux/page_idle.h>
34#include <linux/shmem_fs.h>
35#include <linux/oom.h>
36#include <linux/numa.h>
37#include <linux/page_owner.h>
38#include <linux/sched/sysctl.h>
39#include <linux/memory-tiers.h>
40
41#include <asm/tlb.h>
42#include <asm/pgalloc.h>
43#include "internal.h"
44#include "swap.h"
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/thp.h>
48
49/*
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
56 */
57unsigned long transparent_hugepage_flags __read_mostly =
58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60#endif
61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63#endif
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68static struct shrinker *deferred_split_shrinker;
69static unsigned long deferred_split_count(struct shrinker *shrink,
70 struct shrink_control *sc);
71static unsigned long deferred_split_scan(struct shrinker *shrink,
72 struct shrink_control *sc);
73
74static atomic_t huge_zero_refcount;
75struct page *huge_zero_page __read_mostly;
76unsigned long huge_zero_pfn __read_mostly = ~0UL;
77
78bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
79 bool smaps, bool in_pf, bool enforce_sysfs)
80{
81 if (!vma->vm_mm) /* vdso */
82 return false;
83
84 /*
85 * Explicitly disabled through madvise or prctl, or some
86 * architectures may disable THP for some mappings, for
87 * example, s390 kvm.
88 * */
89 if ((vm_flags & VM_NOHUGEPAGE) ||
90 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
91 return false;
92 /*
93 * If the hardware/firmware marked hugepage support disabled.
94 */
95 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
96 return false;
97
98 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
99 if (vma_is_dax(vma))
100 return in_pf;
101
102 /*
103 * khugepaged special VMA and hugetlb VMA.
104 * Must be checked after dax since some dax mappings may have
105 * VM_MIXEDMAP set.
106 */
107 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
108 return false;
109
110 /*
111 * Check alignment for file vma and size for both file and anon vma.
112 *
113 * Skip the check for page fault. Huge fault does the check in fault
114 * handlers. And this check is not suitable for huge PUD fault.
115 */
116 if (!in_pf &&
117 !transhuge_vma_suitable(vma, addr: (vma->vm_end - HPAGE_PMD_SIZE)))
118 return false;
119
120 /*
121 * Enabled via shmem mount options or sysfs settings.
122 * Must be done before hugepage flags check since shmem has its
123 * own flags.
124 */
125 if (!in_pf && shmem_file(file: vma->vm_file))
126 return shmem_is_huge(inode: file_inode(f: vma->vm_file), index: vma->vm_pgoff,
127 shmem_huge_force: !enforce_sysfs, mm: vma->vm_mm, vm_flags);
128
129 /* Enforce sysfs THP requirements as necessary */
130 if (enforce_sysfs &&
131 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
132 !hugepage_flags_always())))
133 return false;
134
135 if (!vma_is_anonymous(vma)) {
136 /*
137 * Trust that ->huge_fault() handlers know what they are doing
138 * in fault path.
139 */
140 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
141 return true;
142 /* Only regular file is valid in collapse path */
143 if (((!in_pf || smaps)) && file_thp_enabled(vma))
144 return true;
145 return false;
146 }
147
148 if (vma_is_temporary_stack(vma))
149 return false;
150
151 /*
152 * THPeligible bit of smaps should show 1 for proper VMAs even
153 * though anon_vma is not initialized yet.
154 *
155 * Allow page fault since anon_vma may be not initialized until
156 * the first page fault.
157 */
158 if (!vma->anon_vma)
159 return (smaps || in_pf);
160
161 return true;
162}
163
164static bool get_huge_zero_page(void)
165{
166 struct page *zero_page;
167retry:
168 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
169 return true;
170
171 zero_page = alloc_pages(gfp: (GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
172 HPAGE_PMD_ORDER);
173 if (!zero_page) {
174 count_vm_event(item: THP_ZERO_PAGE_ALLOC_FAILED);
175 return false;
176 }
177 preempt_disable();
178 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
179 preempt_enable();
180 __free_pages(page: zero_page, order: compound_order(page: zero_page));
181 goto retry;
182 }
183 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
184
185 /* We take additional reference here. It will be put back by shrinker */
186 atomic_set(v: &huge_zero_refcount, i: 2);
187 preempt_enable();
188 count_vm_event(item: THP_ZERO_PAGE_ALLOC);
189 return true;
190}
191
192static void put_huge_zero_page(void)
193{
194 /*
195 * Counter should never go to zero here. Only shrinker can put
196 * last reference.
197 */
198 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
199}
200
201struct page *mm_get_huge_zero_page(struct mm_struct *mm)
202{
203 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
204 return READ_ONCE(huge_zero_page);
205
206 if (!get_huge_zero_page())
207 return NULL;
208
209 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, addr: &mm->flags))
210 put_huge_zero_page();
211
212 return READ_ONCE(huge_zero_page);
213}
214
215void mm_put_huge_zero_page(struct mm_struct *mm)
216{
217 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
218 put_huge_zero_page();
219}
220
221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 struct shrink_control *sc)
223{
224 /* we can free zero page only if last reference remains */
225 return atomic_read(v: &huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226}
227
228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 struct shrink_control *sc)
230{
231 if (atomic_cmpxchg(v: &huge_zero_refcount, old: 1, new: 0) == 1) {
232 struct page *zero_page = xchg(&huge_zero_page, NULL);
233 BUG_ON(zero_page == NULL);
234 WRITE_ONCE(huge_zero_pfn, ~0UL);
235 __free_pages(page: zero_page, order: compound_order(page: zero_page));
236 return HPAGE_PMD_NR;
237 }
238
239 return 0;
240}
241
242static struct shrinker *huge_zero_page_shrinker;
243
244#ifdef CONFIG_SYSFS
245static ssize_t enabled_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf)
247{
248 const char *output;
249
250 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
251 output = "[always] madvise never";
252 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
253 &transparent_hugepage_flags))
254 output = "always [madvise] never";
255 else
256 output = "always madvise [never]";
257
258 return sysfs_emit(buf, fmt: "%s\n", output);
259}
260
261static ssize_t enabled_store(struct kobject *kobj,
262 struct kobj_attribute *attr,
263 const char *buf, size_t count)
264{
265 ssize_t ret = count;
266
267 if (sysfs_streq(s1: buf, s2: "always")) {
268 clear_bit(nr: TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
269 set_bit(nr: TRANSPARENT_HUGEPAGE_FLAG, addr: &transparent_hugepage_flags);
270 } else if (sysfs_streq(s1: buf, s2: "madvise")) {
271 clear_bit(nr: TRANSPARENT_HUGEPAGE_FLAG, addr: &transparent_hugepage_flags);
272 set_bit(nr: TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
273 } else if (sysfs_streq(s1: buf, s2: "never")) {
274 clear_bit(nr: TRANSPARENT_HUGEPAGE_FLAG, addr: &transparent_hugepage_flags);
275 clear_bit(nr: TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
276 } else
277 ret = -EINVAL;
278
279 if (ret > 0) {
280 int err = start_stop_khugepaged();
281 if (err)
282 ret = err;
283 }
284 return ret;
285}
286
287static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
288
289ssize_t single_hugepage_flag_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf,
291 enum transparent_hugepage_flag flag)
292{
293 return sysfs_emit(buf, fmt: "%d\n",
294 !!test_bit(flag, &transparent_hugepage_flags));
295}
296
297ssize_t single_hugepage_flag_store(struct kobject *kobj,
298 struct kobj_attribute *attr,
299 const char *buf, size_t count,
300 enum transparent_hugepage_flag flag)
301{
302 unsigned long value;
303 int ret;
304
305 ret = kstrtoul(s: buf, base: 10, res: &value);
306 if (ret < 0)
307 return ret;
308 if (value > 1)
309 return -EINVAL;
310
311 if (value)
312 set_bit(nr: flag, addr: &transparent_hugepage_flags);
313 else
314 clear_bit(nr: flag, addr: &transparent_hugepage_flags);
315
316 return count;
317}
318
319static ssize_t defrag_show(struct kobject *kobj,
320 struct kobj_attribute *attr, char *buf)
321{
322 const char *output;
323
324 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
325 &transparent_hugepage_flags))
326 output = "[always] defer defer+madvise madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
328 &transparent_hugepage_flags))
329 output = "always [defer] defer+madvise madvise never";
330 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
331 &transparent_hugepage_flags))
332 output = "always defer [defer+madvise] madvise never";
333 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
334 &transparent_hugepage_flags))
335 output = "always defer defer+madvise [madvise] never";
336 else
337 output = "always defer defer+madvise madvise [never]";
338
339 return sysfs_emit(buf, fmt: "%s\n", output);
340}
341
342static ssize_t defrag_store(struct kobject *kobj,
343 struct kobj_attribute *attr,
344 const char *buf, size_t count)
345{
346 if (sysfs_streq(s1: buf, s2: "always")) {
347 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, addr: &transparent_hugepage_flags);
348 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, addr: &transparent_hugepage_flags);
349 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
350 set_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, addr: &transparent_hugepage_flags);
351 } else if (sysfs_streq(s1: buf, s2: "defer+madvise")) {
352 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, addr: &transparent_hugepage_flags);
353 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, addr: &transparent_hugepage_flags);
354 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
355 set_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, addr: &transparent_hugepage_flags);
356 } else if (sysfs_streq(s1: buf, s2: "defer")) {
357 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, addr: &transparent_hugepage_flags);
358 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, addr: &transparent_hugepage_flags);
359 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
360 set_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, addr: &transparent_hugepage_flags);
361 } else if (sysfs_streq(s1: buf, s2: "madvise")) {
362 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, addr: &transparent_hugepage_flags);
363 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, addr: &transparent_hugepage_flags);
364 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, addr: &transparent_hugepage_flags);
365 set_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
366 } else if (sysfs_streq(s1: buf, s2: "never")) {
367 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, addr: &transparent_hugepage_flags);
368 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, addr: &transparent_hugepage_flags);
369 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, addr: &transparent_hugepage_flags);
370 clear_bit(nr: TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, addr: &transparent_hugepage_flags);
371 } else
372 return -EINVAL;
373
374 return count;
375}
376static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
377
378static ssize_t use_zero_page_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380{
381 return single_hugepage_flag_show(kobj, attr, buf,
382 flag: TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383}
384static ssize_t use_zero_page_store(struct kobject *kobj,
385 struct kobj_attribute *attr, const char *buf, size_t count)
386{
387 return single_hugepage_flag_store(kobj, attr, buf, count,
388 flag: TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
389}
390static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
391
392static ssize_t hpage_pmd_size_show(struct kobject *kobj,
393 struct kobj_attribute *attr, char *buf)
394{
395 return sysfs_emit(buf, fmt: "%lu\n", HPAGE_PMD_SIZE);
396}
397static struct kobj_attribute hpage_pmd_size_attr =
398 __ATTR_RO(hpage_pmd_size);
399
400static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
403 &use_zero_page_attr.attr,
404 &hpage_pmd_size_attr.attr,
405#ifdef CONFIG_SHMEM
406 &shmem_enabled_attr.attr,
407#endif
408 NULL,
409};
410
411static const struct attribute_group hugepage_attr_group = {
412 .attrs = hugepage_attr,
413};
414
415static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
416{
417 int err;
418
419 *hugepage_kobj = kobject_create_and_add(name: "transparent_hugepage", parent: mm_kobj);
420 if (unlikely(!*hugepage_kobj)) {
421 pr_err("failed to create transparent hugepage kobject\n");
422 return -ENOMEM;
423 }
424
425 err = sysfs_create_group(kobj: *hugepage_kobj, grp: &hugepage_attr_group);
426 if (err) {
427 pr_err("failed to register transparent hugepage group\n");
428 goto delete_obj;
429 }
430
431 err = sysfs_create_group(kobj: *hugepage_kobj, grp: &khugepaged_attr_group);
432 if (err) {
433 pr_err("failed to register transparent hugepage group\n");
434 goto remove_hp_group;
435 }
436
437 return 0;
438
439remove_hp_group:
440 sysfs_remove_group(kobj: *hugepage_kobj, grp: &hugepage_attr_group);
441delete_obj:
442 kobject_put(kobj: *hugepage_kobj);
443 return err;
444}
445
446static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
447{
448 sysfs_remove_group(kobj: hugepage_kobj, grp: &khugepaged_attr_group);
449 sysfs_remove_group(kobj: hugepage_kobj, grp: &hugepage_attr_group);
450 kobject_put(kobj: hugepage_kobj);
451}
452#else
453static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
454{
455 return 0;
456}
457
458static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
459{
460}
461#endif /* CONFIG_SYSFS */
462
463static int __init thp_shrinker_init(void)
464{
465 huge_zero_page_shrinker = shrinker_alloc(flags: 0, fmt: "thp-zero");
466 if (!huge_zero_page_shrinker)
467 return -ENOMEM;
468
469 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
470 SHRINKER_MEMCG_AWARE |
471 SHRINKER_NONSLAB,
472 fmt: "thp-deferred_split");
473 if (!deferred_split_shrinker) {
474 shrinker_free(shrinker: huge_zero_page_shrinker);
475 return -ENOMEM;
476 }
477
478 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
479 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
480 shrinker_register(shrinker: huge_zero_page_shrinker);
481
482 deferred_split_shrinker->count_objects = deferred_split_count;
483 deferred_split_shrinker->scan_objects = deferred_split_scan;
484 shrinker_register(shrinker: deferred_split_shrinker);
485
486 return 0;
487}
488
489static void __init thp_shrinker_exit(void)
490{
491 shrinker_free(shrinker: huge_zero_page_shrinker);
492 shrinker_free(shrinker: deferred_split_shrinker);
493}
494
495static int __init hugepage_init(void)
496{
497 int err;
498 struct kobject *hugepage_kobj;
499
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
502 return -EINVAL;
503 }
504
505 /*
506 * hugepages can't be allocated by the buddy allocator
507 */
508 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
509 /*
510 * we use page->mapping and page->index in second tail page
511 * as list_head: assuming THP order >= 2
512 */
513 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
514
515 err = hugepage_init_sysfs(hugepage_kobj: &hugepage_kobj);
516 if (err)
517 goto err_sysfs;
518
519 err = khugepaged_init();
520 if (err)
521 goto err_slab;
522
523 err = thp_shrinker_init();
524 if (err)
525 goto err_shrinker;
526
527 /*
528 * By default disable transparent hugepages on smaller systems,
529 * where the extra memory used could hurt more than TLB overhead
530 * is likely to save. The admin can still enable it through /sys.
531 */
532 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
533 transparent_hugepage_flags = 0;
534 return 0;
535 }
536
537 err = start_stop_khugepaged();
538 if (err)
539 goto err_khugepaged;
540
541 return 0;
542err_khugepaged:
543 thp_shrinker_exit();
544err_shrinker:
545 khugepaged_destroy();
546err_slab:
547 hugepage_exit_sysfs(hugepage_kobj);
548err_sysfs:
549 return err;
550}
551subsys_initcall(hugepage_init);
552
553static int __init setup_transparent_hugepage(char *str)
554{
555 int ret = 0;
556 if (!str)
557 goto out;
558 if (!strcmp(str, "always")) {
559 set_bit(nr: TRANSPARENT_HUGEPAGE_FLAG,
560 addr: &transparent_hugepage_flags);
561 clear_bit(nr: TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 addr: &transparent_hugepage_flags);
563 ret = 1;
564 } else if (!strcmp(str, "madvise")) {
565 clear_bit(nr: TRANSPARENT_HUGEPAGE_FLAG,
566 addr: &transparent_hugepage_flags);
567 set_bit(nr: TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 addr: &transparent_hugepage_flags);
569 ret = 1;
570 } else if (!strcmp(str, "never")) {
571 clear_bit(nr: TRANSPARENT_HUGEPAGE_FLAG,
572 addr: &transparent_hugepage_flags);
573 clear_bit(nr: TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 addr: &transparent_hugepage_flags);
575 ret = 1;
576 }
577out:
578 if (!ret)
579 pr_warn("transparent_hugepage= cannot parse, ignored\n");
580 return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
585{
586 if (likely(vma->vm_flags & VM_WRITE))
587 pmd = pmd_mkwrite(pmd, vma);
588 return pmd;
589}
590
591#ifdef CONFIG_MEMCG
592static inline
593struct deferred_split *get_deferred_split_queue(struct folio *folio)
594{
595 struct mem_cgroup *memcg = folio_memcg(folio);
596 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
597
598 if (memcg)
599 return &memcg->deferred_split_queue;
600 else
601 return &pgdat->deferred_split_queue;
602}
603#else
604static inline
605struct deferred_split *get_deferred_split_queue(struct folio *folio)
606{
607 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
608
609 return &pgdat->deferred_split_queue;
610}
611#endif
612
613void folio_prep_large_rmappable(struct folio *folio)
614{
615 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
616 INIT_LIST_HEAD(list: &folio->_deferred_list);
617 folio_set_large_rmappable(folio);
618}
619
620static inline bool is_transparent_hugepage(struct folio *folio)
621{
622 if (!folio_test_large(folio))
623 return false;
624
625 return is_huge_zero_page(page: &folio->page) ||
626 folio_test_large_rmappable(folio);
627}
628
629static unsigned long __thp_get_unmapped_area(struct file *filp,
630 unsigned long addr, unsigned long len,
631 loff_t off, unsigned long flags, unsigned long size)
632{
633 loff_t off_end = off + len;
634 loff_t off_align = round_up(off, size);
635 unsigned long len_pad, ret;
636
637 if (off_end <= off_align || (off_end - off_align) < size)
638 return 0;
639
640 len_pad = len + size;
641 if (len_pad < len || (off + len_pad) < off)
642 return 0;
643
644 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
645 off >> PAGE_SHIFT, flags);
646
647 /*
648 * The failure might be due to length padding. The caller will retry
649 * without the padding.
650 */
651 if (IS_ERR_VALUE(ret))
652 return 0;
653
654 /*
655 * Do not try to align to THP boundary if allocation at the address
656 * hint succeeds.
657 */
658 if (ret == addr)
659 return addr;
660
661 ret += (off - ret) & (size - 1);
662 return ret;
663}
664
665unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
666 unsigned long len, unsigned long pgoff, unsigned long flags)
667{
668 unsigned long ret;
669 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
670
671 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
672 if (ret)
673 return ret;
674
675 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
676}
677EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
678
679static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
680 struct page *page, gfp_t gfp)
681{
682 struct vm_area_struct *vma = vmf->vma;
683 struct folio *folio = page_folio(page);
684 pgtable_t pgtable;
685 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
686 vm_fault_t ret = 0;
687
688 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
689
690 if (mem_cgroup_charge(folio, mm: vma->vm_mm, gfp)) {
691 folio_put(folio);
692 count_vm_event(item: THP_FAULT_FALLBACK);
693 count_vm_event(item: THP_FAULT_FALLBACK_CHARGE);
694 return VM_FAULT_FALLBACK;
695 }
696 folio_throttle_swaprate(folio, gfp);
697
698 pgtable = pte_alloc_one(vma->vm_mm);
699 if (unlikely(!pgtable)) {
700 ret = VM_FAULT_OOM;
701 goto release;
702 }
703
704 clear_huge_page(page, addr_hint: vmf->address, HPAGE_PMD_NR);
705 /*
706 * The memory barrier inside __folio_mark_uptodate makes sure that
707 * clear_huge_page writes become visible before the set_pmd_at()
708 * write.
709 */
710 __folio_mark_uptodate(folio);
711
712 vmf->ptl = pmd_lock(mm: vma->vm_mm, pmd: vmf->pmd);
713 if (unlikely(!pmd_none(*vmf->pmd))) {
714 goto unlock_release;
715 } else {
716 pmd_t entry;
717
718 ret = check_stable_address_space(mm: vma->vm_mm);
719 if (ret)
720 goto unlock_release;
721
722 /* Deliver the page fault to userland */
723 if (userfaultfd_missing(vma)) {
724 spin_unlock(lock: vmf->ptl);
725 folio_put(folio);
726 pte_free(mm: vma->vm_mm, pte_page: pgtable);
727 ret = handle_userfault(vmf, VM_UFFD_MISSING);
728 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
729 return ret;
730 }
731
732 entry = mk_huge_pmd(page, vma->vm_page_prot);
733 entry = maybe_pmd_mkwrite(pmd: pmd_mkdirty(pmd: entry), vma);
734 folio_add_new_anon_rmap(folio, vma, address: haddr);
735 folio_add_lru_vma(folio, vma);
736 pgtable_trans_huge_deposit(mm: vma->vm_mm, pmdp: vmf->pmd, pgtable);
737 set_pmd_at(mm: vma->vm_mm, addr: haddr, pmdp: vmf->pmd, pmd: entry);
738 update_mmu_cache_pmd(vma, addr: vmf->address, pmd: vmf->pmd);
739 add_mm_counter(mm: vma->vm_mm, member: MM_ANONPAGES, HPAGE_PMD_NR);
740 mm_inc_nr_ptes(mm: vma->vm_mm);
741 spin_unlock(lock: vmf->ptl);
742 count_vm_event(item: THP_FAULT_ALLOC);
743 count_memcg_event_mm(mm: vma->vm_mm, idx: THP_FAULT_ALLOC);
744 }
745
746 return 0;
747unlock_release:
748 spin_unlock(lock: vmf->ptl);
749release:
750 if (pgtable)
751 pte_free(mm: vma->vm_mm, pte_page: pgtable);
752 folio_put(folio);
753 return ret;
754
755}
756
757/*
758 * always: directly stall for all thp allocations
759 * defer: wake kswapd and fail if not immediately available
760 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
761 * fail if not immediately available
762 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
763 * available
764 * never: never stall for any thp allocation
765 */
766gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
767{
768 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
769
770 /* Always do synchronous compaction */
771 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
772 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
773
774 /* Kick kcompactd and fail quickly */
775 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
776 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
777
778 /* Synchronous compaction if madvised, otherwise kick kcompactd */
779 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
780 return GFP_TRANSHUGE_LIGHT |
781 (vma_madvised ? __GFP_DIRECT_RECLAIM :
782 __GFP_KSWAPD_RECLAIM);
783
784 /* Only do synchronous compaction if madvised */
785 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
786 return GFP_TRANSHUGE_LIGHT |
787 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
788
789 return GFP_TRANSHUGE_LIGHT;
790}
791
792/* Caller must hold page table lock. */
793static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
794 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
795 struct page *zero_page)
796{
797 pmd_t entry;
798 if (!pmd_none(pmd: *pmd))
799 return;
800 entry = mk_pmd(zero_page, vma->vm_page_prot);
801 entry = pmd_mkhuge(pmd: entry);
802 pgtable_trans_huge_deposit(mm, pmdp: pmd, pgtable);
803 set_pmd_at(mm, addr: haddr, pmdp: pmd, pmd: entry);
804 mm_inc_nr_ptes(mm);
805}
806
807vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
808{
809 struct vm_area_struct *vma = vmf->vma;
810 gfp_t gfp;
811 struct folio *folio;
812 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
813
814 if (!transhuge_vma_suitable(vma, addr: haddr))
815 return VM_FAULT_FALLBACK;
816 if (unlikely(anon_vma_prepare(vma)))
817 return VM_FAULT_OOM;
818 khugepaged_enter_vma(vma, vm_flags: vma->vm_flags);
819
820 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
821 !mm_forbids_zeropage(vma->vm_mm) &&
822 transparent_hugepage_use_zero_page()) {
823 pgtable_t pgtable;
824 struct page *zero_page;
825 vm_fault_t ret;
826 pgtable = pte_alloc_one(vma->vm_mm);
827 if (unlikely(!pgtable))
828 return VM_FAULT_OOM;
829 zero_page = mm_get_huge_zero_page(mm: vma->vm_mm);
830 if (unlikely(!zero_page)) {
831 pte_free(mm: vma->vm_mm, pte_page: pgtable);
832 count_vm_event(item: THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
834 }
835 vmf->ptl = pmd_lock(mm: vma->vm_mm, pmd: vmf->pmd);
836 ret = 0;
837 if (pmd_none(pmd: *vmf->pmd)) {
838 ret = check_stable_address_space(mm: vma->vm_mm);
839 if (ret) {
840 spin_unlock(lock: vmf->ptl);
841 pte_free(mm: vma->vm_mm, pte_page: pgtable);
842 } else if (userfaultfd_missing(vma)) {
843 spin_unlock(lock: vmf->ptl);
844 pte_free(mm: vma->vm_mm, pte_page: pgtable);
845 ret = handle_userfault(vmf, VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 } else {
848 set_huge_zero_page(pgtable, mm: vma->vm_mm, vma,
849 haddr, pmd: vmf->pmd, zero_page);
850 update_mmu_cache_pmd(vma, addr: vmf->address, pmd: vmf->pmd);
851 spin_unlock(lock: vmf->ptl);
852 }
853 } else {
854 spin_unlock(lock: vmf->ptl);
855 pte_free(mm: vma->vm_mm, pte_page: pgtable);
856 }
857 return ret;
858 }
859 gfp = vma_thp_gfp_mask(vma);
860 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, addr: haddr, hugepage: true);
861 if (unlikely(!folio)) {
862 count_vm_event(item: THP_FAULT_FALLBACK);
863 return VM_FAULT_FALLBACK;
864 }
865 return __do_huge_pmd_anonymous_page(vmf, page: &folio->page, gfp);
866}
867
868static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
869 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
870 pgtable_t pgtable)
871{
872 struct mm_struct *mm = vma->vm_mm;
873 pmd_t entry;
874 spinlock_t *ptl;
875
876 ptl = pmd_lock(mm, pmd);
877 if (!pmd_none(pmd: *pmd)) {
878 if (write) {
879 if (pmd_pfn(pmd: *pmd) != pfn_t_to_pfn(pfn)) {
880 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
881 goto out_unlock;
882 }
883 entry = pmd_mkyoung(pmd: *pmd);
884 entry = maybe_pmd_mkwrite(pmd: pmd_mkdirty(pmd: entry), vma);
885 if (pmdp_set_access_flags(vma, address: addr, pmdp: pmd, entry, dirty: 1))
886 update_mmu_cache_pmd(vma, addr, pmd);
887 }
888
889 goto out_unlock;
890 }
891
892 entry = pmd_mkhuge(pmd: pfn_t_pmd(pfn, pgprot: prot));
893 if (pfn_t_devmap(pfn))
894 entry = pmd_mkdevmap(pmd: entry);
895 if (write) {
896 entry = pmd_mkyoung(pmd: pmd_mkdirty(pmd: entry));
897 entry = maybe_pmd_mkwrite(pmd: entry, vma);
898 }
899
900 if (pgtable) {
901 pgtable_trans_huge_deposit(mm, pmdp: pmd, pgtable);
902 mm_inc_nr_ptes(mm);
903 pgtable = NULL;
904 }
905
906 set_pmd_at(mm, addr, pmdp: pmd, pmd: entry);
907 update_mmu_cache_pmd(vma, addr, pmd);
908
909out_unlock:
910 spin_unlock(lock: ptl);
911 if (pgtable)
912 pte_free(mm, pte_page: pgtable);
913}
914
915/**
916 * vmf_insert_pfn_pmd - insert a pmd size pfn
917 * @vmf: Structure describing the fault
918 * @pfn: pfn to insert
919 * @write: whether it's a write fault
920 *
921 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
922 *
923 * Return: vm_fault_t value.
924 */
925vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
926{
927 unsigned long addr = vmf->address & PMD_MASK;
928 struct vm_area_struct *vma = vmf->vma;
929 pgprot_t pgprot = vma->vm_page_prot;
930 pgtable_t pgtable = NULL;
931
932 /*
933 * If we had pmd_special, we could avoid all these restrictions,
934 * but we need to be consistent with PTEs and architectures that
935 * can't support a 'special' bit.
936 */
937 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 !pfn_t_devmap(pfn));
939 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 (VM_PFNMAP|VM_MIXEDMAP));
941 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
942
943 if (addr < vma->vm_start || addr >= vma->vm_end)
944 return VM_FAULT_SIGBUS;
945
946 if (arch_needs_pgtable_deposit()) {
947 pgtable = pte_alloc_one(vma->vm_mm);
948 if (!pgtable)
949 return VM_FAULT_OOM;
950 }
951
952 track_pfn_insert(vma, prot: &pgprot, pfn);
953
954 insert_pfn_pmd(vma, addr, pmd: vmf->pmd, pfn, prot: pgprot, write, pgtable);
955 return VM_FAULT_NOPAGE;
956}
957EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
958
959#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
960static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
961{
962 if (likely(vma->vm_flags & VM_WRITE))
963 pud = pud_mkwrite(pud);
964 return pud;
965}
966
967static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
968 pud_t *pud, pfn_t pfn, bool write)
969{
970 struct mm_struct *mm = vma->vm_mm;
971 pgprot_t prot = vma->vm_page_prot;
972 pud_t entry;
973 spinlock_t *ptl;
974
975 ptl = pud_lock(mm, pud);
976 if (!pud_none(pud: *pud)) {
977 if (write) {
978 if (pud_pfn(pud: *pud) != pfn_t_to_pfn(pfn)) {
979 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
980 goto out_unlock;
981 }
982 entry = pud_mkyoung(pud: *pud);
983 entry = maybe_pud_mkwrite(pud: pud_mkdirty(pud: entry), vma);
984 if (pudp_set_access_flags(vma, address: addr, pudp: pud, entry, dirty: 1))
985 update_mmu_cache_pud(vma, addr, pud);
986 }
987 goto out_unlock;
988 }
989
990 entry = pud_mkhuge(pud: pfn_t_pud(pfn, pgprot: prot));
991 if (pfn_t_devmap(pfn))
992 entry = pud_mkdevmap(pud: entry);
993 if (write) {
994 entry = pud_mkyoung(pud: pud_mkdirty(pud: entry));
995 entry = maybe_pud_mkwrite(pud: entry, vma);
996 }
997 set_pud_at(mm, addr, pudp: pud, pud: entry);
998 update_mmu_cache_pud(vma, addr, pud);
999
1000out_unlock:
1001 spin_unlock(lock: ptl);
1002}
1003
1004/**
1005 * vmf_insert_pfn_pud - insert a pud size pfn
1006 * @vmf: Structure describing the fault
1007 * @pfn: pfn to insert
1008 * @write: whether it's a write fault
1009 *
1010 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1011 *
1012 * Return: vm_fault_t value.
1013 */
1014vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1015{
1016 unsigned long addr = vmf->address & PUD_MASK;
1017 struct vm_area_struct *vma = vmf->vma;
1018 pgprot_t pgprot = vma->vm_page_prot;
1019
1020 /*
1021 * If we had pud_special, we could avoid all these restrictions,
1022 * but we need to be consistent with PTEs and architectures that
1023 * can't support a 'special' bit.
1024 */
1025 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1026 !pfn_t_devmap(pfn));
1027 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1028 (VM_PFNMAP|VM_MIXEDMAP));
1029 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1030
1031 if (addr < vma->vm_start || addr >= vma->vm_end)
1032 return VM_FAULT_SIGBUS;
1033
1034 track_pfn_insert(vma, prot: &pgprot, pfn);
1035
1036 insert_pfn_pud(vma, addr, pud: vmf->pud, pfn, write);
1037 return VM_FAULT_NOPAGE;
1038}
1039EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1040#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1041
1042static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1043 pmd_t *pmd, bool write)
1044{
1045 pmd_t _pmd;
1046
1047 _pmd = pmd_mkyoung(pmd: *pmd);
1048 if (write)
1049 _pmd = pmd_mkdirty(pmd: _pmd);
1050 if (pmdp_set_access_flags(vma, address: addr & HPAGE_PMD_MASK,
1051 pmdp: pmd, entry: _pmd, dirty: write))
1052 update_mmu_cache_pmd(vma, addr, pmd);
1053}
1054
1055struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1056 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1057{
1058 unsigned long pfn = pmd_pfn(pmd: *pmd);
1059 struct mm_struct *mm = vma->vm_mm;
1060 struct page *page;
1061 int ret;
1062
1063 assert_spin_locked(pmd_lockptr(mm, pmd));
1064
1065 if (flags & FOLL_WRITE && !pmd_write(pmd: *pmd))
1066 return NULL;
1067
1068 if (pmd_present(pmd: *pmd) && pmd_devmap(pmd: *pmd))
1069 /* pass */;
1070 else
1071 return NULL;
1072
1073 if (flags & FOLL_TOUCH)
1074 touch_pmd(vma, addr, pmd, write: flags & FOLL_WRITE);
1075
1076 /*
1077 * device mapped pages can only be returned if the
1078 * caller will manage the page reference count.
1079 */
1080 if (!(flags & (FOLL_GET | FOLL_PIN)))
1081 return ERR_PTR(error: -EEXIST);
1082
1083 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1084 *pgmap = get_dev_pagemap(pfn, pgmap: *pgmap);
1085 if (!*pgmap)
1086 return ERR_PTR(error: -EFAULT);
1087 page = pfn_to_page(pfn);
1088 ret = try_grab_page(page, flags);
1089 if (ret)
1090 page = ERR_PTR(error: ret);
1091
1092 return page;
1093}
1094
1095int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1096 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1097 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1098{
1099 spinlock_t *dst_ptl, *src_ptl;
1100 struct page *src_page;
1101 pmd_t pmd;
1102 pgtable_t pgtable = NULL;
1103 int ret = -ENOMEM;
1104
1105 /* Skip if can be re-fill on fault */
1106 if (!vma_is_anonymous(vma: dst_vma))
1107 return 0;
1108
1109 pgtable = pte_alloc_one(dst_mm);
1110 if (unlikely(!pgtable))
1111 goto out;
1112
1113 dst_ptl = pmd_lock(mm: dst_mm, pmd: dst_pmd);
1114 src_ptl = pmd_lockptr(mm: src_mm, pmd: src_pmd);
1115 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1116
1117 ret = -EAGAIN;
1118 pmd = *src_pmd;
1119
1120#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1121 if (unlikely(is_swap_pmd(pmd))) {
1122 swp_entry_t entry = pmd_to_swp_entry(pmd);
1123
1124 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1125 if (!is_readable_migration_entry(entry)) {
1126 entry = make_readable_migration_entry(
1127 offset: swp_offset(entry));
1128 pmd = swp_entry_to_pmd(entry);
1129 if (pmd_swp_soft_dirty(pmd: *src_pmd))
1130 pmd = pmd_swp_mksoft_dirty(pmd);
1131 if (pmd_swp_uffd_wp(pmd: *src_pmd))
1132 pmd = pmd_swp_mkuffd_wp(pmd);
1133 set_pmd_at(mm: src_mm, addr, pmdp: src_pmd, pmd);
1134 }
1135 add_mm_counter(mm: dst_mm, member: MM_ANONPAGES, HPAGE_PMD_NR);
1136 mm_inc_nr_ptes(mm: dst_mm);
1137 pgtable_trans_huge_deposit(mm: dst_mm, pmdp: dst_pmd, pgtable);
1138 if (!userfaultfd_wp(vma: dst_vma))
1139 pmd = pmd_swp_clear_uffd_wp(pmd);
1140 set_pmd_at(mm: dst_mm, addr, pmdp: dst_pmd, pmd);
1141 ret = 0;
1142 goto out_unlock;
1143 }
1144#endif
1145
1146 if (unlikely(!pmd_trans_huge(pmd))) {
1147 pte_free(mm: dst_mm, pte_page: pgtable);
1148 goto out_unlock;
1149 }
1150 /*
1151 * When page table lock is held, the huge zero pmd should not be
1152 * under splitting since we don't split the page itself, only pmd to
1153 * a page table.
1154 */
1155 if (is_huge_zero_pmd(pmd)) {
1156 /*
1157 * get_huge_zero_page() will never allocate a new page here,
1158 * since we already have a zero page to copy. It just takes a
1159 * reference.
1160 */
1161 mm_get_huge_zero_page(mm: dst_mm);
1162 goto out_zero_page;
1163 }
1164
1165 src_page = pmd_page(pmd);
1166 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1167
1168 get_page(page: src_page);
1169 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1170 /* Page maybe pinned: split and retry the fault on PTEs. */
1171 put_page(page: src_page);
1172 pte_free(mm: dst_mm, pte_page: pgtable);
1173 spin_unlock(lock: src_ptl);
1174 spin_unlock(lock: dst_ptl);
1175 __split_huge_pmd(vma: src_vma, pmd: src_pmd, address: addr, freeze: false, NULL);
1176 return -EAGAIN;
1177 }
1178 add_mm_counter(mm: dst_mm, member: MM_ANONPAGES, HPAGE_PMD_NR);
1179out_zero_page:
1180 mm_inc_nr_ptes(mm: dst_mm);
1181 pgtable_trans_huge_deposit(mm: dst_mm, pmdp: dst_pmd, pgtable);
1182 pmdp_set_wrprotect(mm: src_mm, addr, pmdp: src_pmd);
1183 if (!userfaultfd_wp(vma: dst_vma))
1184 pmd = pmd_clear_uffd_wp(pmd);
1185 pmd = pmd_mkold(pmd: pmd_wrprotect(pmd));
1186 set_pmd_at(mm: dst_mm, addr, pmdp: dst_pmd, pmd);
1187
1188 ret = 0;
1189out_unlock:
1190 spin_unlock(lock: src_ptl);
1191 spin_unlock(lock: dst_ptl);
1192out:
1193 return ret;
1194}
1195
1196#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1197static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1198 pud_t *pud, bool write)
1199{
1200 pud_t _pud;
1201
1202 _pud = pud_mkyoung(pud: *pud);
1203 if (write)
1204 _pud = pud_mkdirty(pud: _pud);
1205 if (pudp_set_access_flags(vma, address: addr & HPAGE_PUD_MASK,
1206 pudp: pud, entry: _pud, dirty: write))
1207 update_mmu_cache_pud(vma, addr, pud);
1208}
1209
1210struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1211 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1212{
1213 unsigned long pfn = pud_pfn(pud: *pud);
1214 struct mm_struct *mm = vma->vm_mm;
1215 struct page *page;
1216 int ret;
1217
1218 assert_spin_locked(pud_lockptr(mm, pud));
1219
1220 if (flags & FOLL_WRITE && !pud_write(pud: *pud))
1221 return NULL;
1222
1223 if (pud_present(pud: *pud) && pud_devmap(pud: *pud))
1224 /* pass */;
1225 else
1226 return NULL;
1227
1228 if (flags & FOLL_TOUCH)
1229 touch_pud(vma, addr, pud, write: flags & FOLL_WRITE);
1230
1231 /*
1232 * device mapped pages can only be returned if the
1233 * caller will manage the page reference count.
1234 *
1235 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1236 */
1237 if (!(flags & (FOLL_GET | FOLL_PIN)))
1238 return ERR_PTR(error: -EEXIST);
1239
1240 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1241 *pgmap = get_dev_pagemap(pfn, pgmap: *pgmap);
1242 if (!*pgmap)
1243 return ERR_PTR(error: -EFAULT);
1244 page = pfn_to_page(pfn);
1245
1246 ret = try_grab_page(page, flags);
1247 if (ret)
1248 page = ERR_PTR(error: ret);
1249
1250 return page;
1251}
1252
1253int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1254 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1255 struct vm_area_struct *vma)
1256{
1257 spinlock_t *dst_ptl, *src_ptl;
1258 pud_t pud;
1259 int ret;
1260
1261 dst_ptl = pud_lock(mm: dst_mm, pud: dst_pud);
1262 src_ptl = pud_lockptr(mm: src_mm, pud: src_pud);
1263 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1264
1265 ret = -EAGAIN;
1266 pud = *src_pud;
1267 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1268 goto out_unlock;
1269
1270 /*
1271 * When page table lock is held, the huge zero pud should not be
1272 * under splitting since we don't split the page itself, only pud to
1273 * a page table.
1274 */
1275 if (is_huge_zero_pud(pud)) {
1276 /* No huge zero pud yet */
1277 }
1278
1279 /*
1280 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1281 * and split if duplicating fails.
1282 */
1283 pudp_set_wrprotect(mm: src_mm, address: addr, pudp: src_pud);
1284 pud = pud_mkold(pud: pud_wrprotect(pud));
1285 set_pud_at(mm: dst_mm, addr, pudp: dst_pud, pud);
1286
1287 ret = 0;
1288out_unlock:
1289 spin_unlock(lock: src_ptl);
1290 spin_unlock(lock: dst_ptl);
1291 return ret;
1292}
1293
1294void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1295{
1296 bool write = vmf->flags & FAULT_FLAG_WRITE;
1297
1298 vmf->ptl = pud_lock(mm: vmf->vma->vm_mm, pud: vmf->pud);
1299 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1300 goto unlock;
1301
1302 touch_pud(vma: vmf->vma, addr: vmf->address, pud: vmf->pud, write);
1303unlock:
1304 spin_unlock(lock: vmf->ptl);
1305}
1306#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1307
1308void huge_pmd_set_accessed(struct vm_fault *vmf)
1309{
1310 bool write = vmf->flags & FAULT_FLAG_WRITE;
1311
1312 vmf->ptl = pmd_lock(mm: vmf->vma->vm_mm, pmd: vmf->pmd);
1313 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1314 goto unlock;
1315
1316 touch_pmd(vma: vmf->vma, addr: vmf->address, pmd: vmf->pmd, write);
1317
1318unlock:
1319 spin_unlock(lock: vmf->ptl);
1320}
1321
1322vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1323{
1324 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1325 struct vm_area_struct *vma = vmf->vma;
1326 struct folio *folio;
1327 struct page *page;
1328 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1329 pmd_t orig_pmd = vmf->orig_pmd;
1330
1331 vmf->ptl = pmd_lockptr(mm: vma->vm_mm, pmd: vmf->pmd);
1332 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1333
1334 if (is_huge_zero_pmd(pmd: orig_pmd))
1335 goto fallback;
1336
1337 spin_lock(lock: vmf->ptl);
1338
1339 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 spin_unlock(lock: vmf->ptl);
1341 return 0;
1342 }
1343
1344 page = pmd_page(orig_pmd);
1345 folio = page_folio(page);
1346 VM_BUG_ON_PAGE(!PageHead(page), page);
1347
1348 /* Early check when only holding the PT lock. */
1349 if (PageAnonExclusive(page))
1350 goto reuse;
1351
1352 if (!folio_trylock(folio)) {
1353 folio_get(folio);
1354 spin_unlock(lock: vmf->ptl);
1355 folio_lock(folio);
1356 spin_lock(lock: vmf->ptl);
1357 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1358 spin_unlock(lock: vmf->ptl);
1359 folio_unlock(folio);
1360 folio_put(folio);
1361 return 0;
1362 }
1363 folio_put(folio);
1364 }
1365
1366 /* Recheck after temporarily dropping the PT lock. */
1367 if (PageAnonExclusive(page)) {
1368 folio_unlock(folio);
1369 goto reuse;
1370 }
1371
1372 /*
1373 * See do_wp_page(): we can only reuse the folio exclusively if
1374 * there are no additional references. Note that we always drain
1375 * the LRU cache immediately after adding a THP.
1376 */
1377 if (folio_ref_count(folio) >
1378 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1379 goto unlock_fallback;
1380 if (folio_test_swapcache(folio))
1381 folio_free_swap(folio);
1382 if (folio_ref_count(folio) == 1) {
1383 pmd_t entry;
1384
1385 folio_move_anon_rmap(folio, vma);
1386 SetPageAnonExclusive(page);
1387 folio_unlock(folio);
1388reuse:
1389 if (unlikely(unshare)) {
1390 spin_unlock(lock: vmf->ptl);
1391 return 0;
1392 }
1393 entry = pmd_mkyoung(pmd: orig_pmd);
1394 entry = maybe_pmd_mkwrite(pmd: pmd_mkdirty(pmd: entry), vma);
1395 if (pmdp_set_access_flags(vma, address: haddr, pmdp: vmf->pmd, entry, dirty: 1))
1396 update_mmu_cache_pmd(vma, addr: vmf->address, pmd: vmf->pmd);
1397 spin_unlock(lock: vmf->ptl);
1398 return 0;
1399 }
1400
1401unlock_fallback:
1402 folio_unlock(folio);
1403 spin_unlock(lock: vmf->ptl);
1404fallback:
1405 __split_huge_pmd(vma, pmd: vmf->pmd, address: vmf->address, freeze: false, NULL);
1406 return VM_FAULT_FALLBACK;
1407}
1408
1409static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1410 unsigned long addr, pmd_t pmd)
1411{
1412 struct page *page;
1413
1414 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1415 return false;
1416
1417 /* Don't touch entries that are not even readable (NUMA hinting). */
1418 if (pmd_protnone(pmd))
1419 return false;
1420
1421 /* Do we need write faults for softdirty tracking? */
1422 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1423 return false;
1424
1425 /* Do we need write faults for uffd-wp tracking? */
1426 if (userfaultfd_huge_pmd_wp(vma, pmd))
1427 return false;
1428
1429 if (!(vma->vm_flags & VM_SHARED)) {
1430 /* See can_change_pte_writable(). */
1431 page = vm_normal_page_pmd(vma, addr, pmd);
1432 return page && PageAnon(page) && PageAnonExclusive(page);
1433 }
1434
1435 /* See can_change_pte_writable(). */
1436 return pmd_dirty(pmd);
1437}
1438
1439/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1440static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1441 struct vm_area_struct *vma,
1442 unsigned int flags)
1443{
1444 /* If the pmd is writable, we can write to the page. */
1445 if (pmd_write(pmd))
1446 return true;
1447
1448 /* Maybe FOLL_FORCE is set to override it? */
1449 if (!(flags & FOLL_FORCE))
1450 return false;
1451
1452 /* But FOLL_FORCE has no effect on shared mappings */
1453 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1454 return false;
1455
1456 /* ... or read-only private ones */
1457 if (!(vma->vm_flags & VM_MAYWRITE))
1458 return false;
1459
1460 /* ... or already writable ones that just need to take a write fault */
1461 if (vma->vm_flags & VM_WRITE)
1462 return false;
1463
1464 /*
1465 * See can_change_pte_writable(): we broke COW and could map the page
1466 * writable if we have an exclusive anonymous page ...
1467 */
1468 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1469 return false;
1470
1471 /* ... and a write-fault isn't required for other reasons. */
1472 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1473 return false;
1474 return !userfaultfd_huge_pmd_wp(vma, pmd);
1475}
1476
1477struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1478 unsigned long addr,
1479 pmd_t *pmd,
1480 unsigned int flags)
1481{
1482 struct mm_struct *mm = vma->vm_mm;
1483 struct page *page;
1484 int ret;
1485
1486 assert_spin_locked(pmd_lockptr(mm, pmd));
1487
1488 page = pmd_page(*pmd);
1489 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1490
1491 if ((flags & FOLL_WRITE) &&
1492 !can_follow_write_pmd(pmd: *pmd, page, vma, flags))
1493 return NULL;
1494
1495 /* Avoid dumping huge zero page */
1496 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmd: *pmd))
1497 return ERR_PTR(error: -EFAULT);
1498
1499 if (pmd_protnone(pmd: *pmd) && !gup_can_follow_protnone(vma, flags))
1500 return NULL;
1501
1502 if (!pmd_write(pmd: *pmd) && gup_must_unshare(vma, flags, page))
1503 return ERR_PTR(error: -EMLINK);
1504
1505 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1506 !PageAnonExclusive(page), page);
1507
1508 ret = try_grab_page(page, flags);
1509 if (ret)
1510 return ERR_PTR(error: ret);
1511
1512 if (flags & FOLL_TOUCH)
1513 touch_pmd(vma, addr, pmd, write: flags & FOLL_WRITE);
1514
1515 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1516 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1517
1518 return page;
1519}
1520
1521/* NUMA hinting page fault entry point for trans huge pmds */
1522vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1523{
1524 struct vm_area_struct *vma = vmf->vma;
1525 pmd_t oldpmd = vmf->orig_pmd;
1526 pmd_t pmd;
1527 struct folio *folio;
1528 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1529 int nid = NUMA_NO_NODE;
1530 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1531 bool migrated = false, writable = false;
1532 int flags = 0;
1533
1534 vmf->ptl = pmd_lock(mm: vma->vm_mm, pmd: vmf->pmd);
1535 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1536 spin_unlock(lock: vmf->ptl);
1537 goto out;
1538 }
1539
1540 pmd = pmd_modify(pmd: oldpmd, newprot: vma->vm_page_prot);
1541
1542 /*
1543 * Detect now whether the PMD could be writable; this information
1544 * is only valid while holding the PT lock.
1545 */
1546 writable = pmd_write(pmd);
1547 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1548 can_change_pmd_writable(vma, addr: vmf->address, pmd))
1549 writable = true;
1550
1551 folio = vm_normal_folio_pmd(vma, addr: haddr, pmd);
1552 if (!folio)
1553 goto out_map;
1554
1555 /* See similar comment in do_numa_page for explanation */
1556 if (!writable)
1557 flags |= TNF_NO_GROUP;
1558
1559 nid = folio_nid(folio);
1560 /*
1561 * For memory tiering mode, cpupid of slow memory page is used
1562 * to record page access time. So use default value.
1563 */
1564 if (node_is_toptier(node: nid))
1565 last_cpupid = folio_last_cpupid(folio);
1566 target_nid = numa_migrate_prep(folio, vma, addr: haddr, page_nid: nid, flags: &flags);
1567 if (target_nid == NUMA_NO_NODE) {
1568 folio_put(folio);
1569 goto out_map;
1570 }
1571
1572 spin_unlock(lock: vmf->ptl);
1573 writable = false;
1574
1575 migrated = migrate_misplaced_folio(folio, vma, node: target_nid);
1576 if (migrated) {
1577 flags |= TNF_MIGRATED;
1578 nid = target_nid;
1579 } else {
1580 flags |= TNF_MIGRATE_FAIL;
1581 vmf->ptl = pmd_lock(mm: vma->vm_mm, pmd: vmf->pmd);
1582 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1583 spin_unlock(lock: vmf->ptl);
1584 goto out;
1585 }
1586 goto out_map;
1587 }
1588
1589out:
1590 if (nid != NUMA_NO_NODE)
1591 task_numa_fault(last_node: last_cpupid, node: nid, HPAGE_PMD_NR, flags);
1592
1593 return 0;
1594
1595out_map:
1596 /* Restore the PMD */
1597 pmd = pmd_modify(pmd: oldpmd, newprot: vma->vm_page_prot);
1598 pmd = pmd_mkyoung(pmd);
1599 if (writable)
1600 pmd = pmd_mkwrite(pmd, vma);
1601 set_pmd_at(mm: vma->vm_mm, addr: haddr, pmdp: vmf->pmd, pmd);
1602 update_mmu_cache_pmd(vma, addr: vmf->address, pmd: vmf->pmd);
1603 spin_unlock(lock: vmf->ptl);
1604 goto out;
1605}
1606
1607/*
1608 * Return true if we do MADV_FREE successfully on entire pmd page.
1609 * Otherwise, return false.
1610 */
1611bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1612 pmd_t *pmd, unsigned long addr, unsigned long next)
1613{
1614 spinlock_t *ptl;
1615 pmd_t orig_pmd;
1616 struct folio *folio;
1617 struct mm_struct *mm = tlb->mm;
1618 bool ret = false;
1619
1620 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1621
1622 ptl = pmd_trans_huge_lock(pmd, vma);
1623 if (!ptl)
1624 goto out_unlocked;
1625
1626 orig_pmd = *pmd;
1627 if (is_huge_zero_pmd(pmd: orig_pmd))
1628 goto out;
1629
1630 if (unlikely(!pmd_present(orig_pmd))) {
1631 VM_BUG_ON(thp_migration_supported() &&
1632 !is_pmd_migration_entry(orig_pmd));
1633 goto out;
1634 }
1635
1636 folio = pfn_folio(pfn: pmd_pfn(pmd: orig_pmd));
1637 /*
1638 * If other processes are mapping this folio, we couldn't discard
1639 * the folio unless they all do MADV_FREE so let's skip the folio.
1640 */
1641 if (folio_estimated_sharers(folio) != 1)
1642 goto out;
1643
1644 if (!folio_trylock(folio))
1645 goto out;
1646
1647 /*
1648 * If user want to discard part-pages of THP, split it so MADV_FREE
1649 * will deactivate only them.
1650 */
1651 if (next - addr != HPAGE_PMD_SIZE) {
1652 folio_get(folio);
1653 spin_unlock(lock: ptl);
1654 split_folio(folio);
1655 folio_unlock(folio);
1656 folio_put(folio);
1657 goto out_unlocked;
1658 }
1659
1660 if (folio_test_dirty(folio))
1661 folio_clear_dirty(folio);
1662 folio_unlock(folio);
1663
1664 if (pmd_young(pmd: orig_pmd) || pmd_dirty(pmd: orig_pmd)) {
1665 pmdp_invalidate(vma, address: addr, pmdp: pmd);
1666 orig_pmd = pmd_mkold(pmd: orig_pmd);
1667 orig_pmd = pmd_mkclean(pmd: orig_pmd);
1668
1669 set_pmd_at(mm, addr, pmdp: pmd, pmd: orig_pmd);
1670 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1671 }
1672
1673 folio_mark_lazyfree(folio);
1674 ret = true;
1675out:
1676 spin_unlock(lock: ptl);
1677out_unlocked:
1678 return ret;
1679}
1680
1681static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1682{
1683 pgtable_t pgtable;
1684
1685 pgtable = pgtable_trans_huge_withdraw(mm, pmdp: pmd);
1686 pte_free(mm, pte_page: pgtable);
1687 mm_dec_nr_ptes(mm);
1688}
1689
1690int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691 pmd_t *pmd, unsigned long addr)
1692{
1693 pmd_t orig_pmd;
1694 spinlock_t *ptl;
1695
1696 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1697
1698 ptl = __pmd_trans_huge_lock(pmd, vma);
1699 if (!ptl)
1700 return 0;
1701 /*
1702 * For architectures like ppc64 we look at deposited pgtable
1703 * when calling pmdp_huge_get_and_clear. So do the
1704 * pgtable_trans_huge_withdraw after finishing pmdp related
1705 * operations.
1706 */
1707 orig_pmd = pmdp_huge_get_and_clear_full(vma, address: addr, pmdp: pmd,
1708 full: tlb->fullmm);
1709 arch_check_zapped_pmd(vma, pmd: orig_pmd);
1710 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711 if (vma_is_special_huge(vma)) {
1712 if (arch_needs_pgtable_deposit())
1713 zap_deposited_table(mm: tlb->mm, pmd);
1714 spin_unlock(lock: ptl);
1715 } else if (is_huge_zero_pmd(pmd: orig_pmd)) {
1716 zap_deposited_table(mm: tlb->mm, pmd);
1717 spin_unlock(lock: ptl);
1718 } else {
1719 struct page *page = NULL;
1720 int flush_needed = 1;
1721
1722 if (pmd_present(pmd: orig_pmd)) {
1723 page = pmd_page(orig_pmd);
1724 page_remove_rmap(page, vma, compound: true);
1725 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1726 VM_BUG_ON_PAGE(!PageHead(page), page);
1727 } else if (thp_migration_supported()) {
1728 swp_entry_t entry;
1729
1730 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1731 entry = pmd_to_swp_entry(pmd: orig_pmd);
1732 page = pfn_swap_entry_to_page(entry);
1733 flush_needed = 0;
1734 } else
1735 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1736
1737 if (PageAnon(page)) {
1738 zap_deposited_table(mm: tlb->mm, pmd);
1739 add_mm_counter(mm: tlb->mm, member: MM_ANONPAGES, value: -HPAGE_PMD_NR);
1740 } else {
1741 if (arch_needs_pgtable_deposit())
1742 zap_deposited_table(mm: tlb->mm, pmd);
1743 add_mm_counter(mm: tlb->mm, member: mm_counter_file(page), value: -HPAGE_PMD_NR);
1744 }
1745
1746 spin_unlock(lock: ptl);
1747 if (flush_needed)
1748 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1749 }
1750 return 1;
1751}
1752
1753#ifndef pmd_move_must_withdraw
1754static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1755 spinlock_t *old_pmd_ptl,
1756 struct vm_area_struct *vma)
1757{
1758 /*
1759 * With split pmd lock we also need to move preallocated
1760 * PTE page table if new_pmd is on different PMD page table.
1761 *
1762 * We also don't deposit and withdraw tables for file pages.
1763 */
1764 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1765}
1766#endif
1767
1768static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1769{
1770#ifdef CONFIG_MEM_SOFT_DIRTY
1771 if (unlikely(is_pmd_migration_entry(pmd)))
1772 pmd = pmd_swp_mksoft_dirty(pmd);
1773 else if (pmd_present(pmd))
1774 pmd = pmd_mksoft_dirty(pmd);
1775#endif
1776 return pmd;
1777}
1778
1779bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1780 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1781{
1782 spinlock_t *old_ptl, *new_ptl;
1783 pmd_t pmd;
1784 struct mm_struct *mm = vma->vm_mm;
1785 bool force_flush = false;
1786
1787 /*
1788 * The destination pmd shouldn't be established, free_pgtables()
1789 * should have released it; but move_page_tables() might have already
1790 * inserted a page table, if racing against shmem/file collapse.
1791 */
1792 if (!pmd_none(pmd: *new_pmd)) {
1793 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1794 return false;
1795 }
1796
1797 /*
1798 * We don't have to worry about the ordering of src and dst
1799 * ptlocks because exclusive mmap_lock prevents deadlock.
1800 */
1801 old_ptl = __pmd_trans_huge_lock(pmd: old_pmd, vma);
1802 if (old_ptl) {
1803 new_ptl = pmd_lockptr(mm, pmd: new_pmd);
1804 if (new_ptl != old_ptl)
1805 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1806 pmd = pmdp_huge_get_and_clear(mm, addr: old_addr, pmdp: old_pmd);
1807 if (pmd_present(pmd))
1808 force_flush = true;
1809 VM_BUG_ON(!pmd_none(*new_pmd));
1810
1811 if (pmd_move_must_withdraw(new_pmd_ptl: new_ptl, old_pmd_ptl: old_ptl, vma)) {
1812 pgtable_t pgtable;
1813 pgtable = pgtable_trans_huge_withdraw(mm, pmdp: old_pmd);
1814 pgtable_trans_huge_deposit(mm, pmdp: new_pmd, pgtable);
1815 }
1816 pmd = move_soft_dirty_pmd(pmd);
1817 set_pmd_at(mm, addr: new_addr, pmdp: new_pmd, pmd);
1818 if (force_flush)
1819 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1820 if (new_ptl != old_ptl)
1821 spin_unlock(lock: new_ptl);
1822 spin_unlock(lock: old_ptl);
1823 return true;
1824 }
1825 return false;
1826}
1827
1828/*
1829 * Returns
1830 * - 0 if PMD could not be locked
1831 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1832 * or if prot_numa but THP migration is not supported
1833 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1834 */
1835int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1836 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1837 unsigned long cp_flags)
1838{
1839 struct mm_struct *mm = vma->vm_mm;
1840 spinlock_t *ptl;
1841 pmd_t oldpmd, entry;
1842 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1843 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1844 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1845 int ret = 1;
1846
1847 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1848
1849 if (prot_numa && !thp_migration_supported())
1850 return 1;
1851
1852 ptl = __pmd_trans_huge_lock(pmd, vma);
1853 if (!ptl)
1854 return 0;
1855
1856#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1857 if (is_swap_pmd(pmd: *pmd)) {
1858 swp_entry_t entry = pmd_to_swp_entry(pmd: *pmd);
1859 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1860 pmd_t newpmd;
1861
1862 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1863 if (is_writable_migration_entry(entry)) {
1864 /*
1865 * A protection check is difficult so
1866 * just be safe and disable write
1867 */
1868 if (folio_test_anon(folio))
1869 entry = make_readable_exclusive_migration_entry(offset: swp_offset(entry));
1870 else
1871 entry = make_readable_migration_entry(offset: swp_offset(entry));
1872 newpmd = swp_entry_to_pmd(entry);
1873 if (pmd_swp_soft_dirty(pmd: *pmd))
1874 newpmd = pmd_swp_mksoft_dirty(pmd: newpmd);
1875 } else {
1876 newpmd = *pmd;
1877 }
1878
1879 if (uffd_wp)
1880 newpmd = pmd_swp_mkuffd_wp(pmd: newpmd);
1881 else if (uffd_wp_resolve)
1882 newpmd = pmd_swp_clear_uffd_wp(pmd: newpmd);
1883 if (!pmd_same(pmd_a: *pmd, pmd_b: newpmd))
1884 set_pmd_at(mm, addr, pmdp: pmd, pmd: newpmd);
1885 goto unlock;
1886 }
1887#endif
1888
1889 if (prot_numa) {
1890 struct folio *folio;
1891 bool toptier;
1892 /*
1893 * Avoid trapping faults against the zero page. The read-only
1894 * data is likely to be read-cached on the local CPU and
1895 * local/remote hits to the zero page are not interesting.
1896 */
1897 if (is_huge_zero_pmd(pmd: *pmd))
1898 goto unlock;
1899
1900 if (pmd_protnone(pmd: *pmd))
1901 goto unlock;
1902
1903 folio = page_folio(pmd_page(*pmd));
1904 toptier = node_is_toptier(node: folio_nid(folio));
1905 /*
1906 * Skip scanning top tier node if normal numa
1907 * balancing is disabled
1908 */
1909 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1910 toptier)
1911 goto unlock;
1912
1913 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1914 !toptier)
1915 folio_xchg_access_time(folio,
1916 time: jiffies_to_msecs(j: jiffies));
1917 }
1918 /*
1919 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1920 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1921 * which is also under mmap_read_lock(mm):
1922 *
1923 * CPU0: CPU1:
1924 * change_huge_pmd(prot_numa=1)
1925 * pmdp_huge_get_and_clear_notify()
1926 * madvise_dontneed()
1927 * zap_pmd_range()
1928 * pmd_trans_huge(*pmd) == 0 (without ptl)
1929 * // skip the pmd
1930 * set_pmd_at();
1931 * // pmd is re-established
1932 *
1933 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1934 * which may break userspace.
1935 *
1936 * pmdp_invalidate_ad() is required to make sure we don't miss
1937 * dirty/young flags set by hardware.
1938 */
1939 oldpmd = pmdp_invalidate_ad(vma, address: addr, pmdp: pmd);
1940
1941 entry = pmd_modify(pmd: oldpmd, newprot);
1942 if (uffd_wp)
1943 entry = pmd_mkuffd_wp(pmd: entry);
1944 else if (uffd_wp_resolve)
1945 /*
1946 * Leave the write bit to be handled by PF interrupt
1947 * handler, then things like COW could be properly
1948 * handled.
1949 */
1950 entry = pmd_clear_uffd_wp(pmd: entry);
1951
1952 /* See change_pte_range(). */
1953 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(pmd: entry) &&
1954 can_change_pmd_writable(vma, addr, pmd: entry))
1955 entry = pmd_mkwrite(pmd: entry, vma);
1956
1957 ret = HPAGE_PMD_NR;
1958 set_pmd_at(mm, addr, pmdp: pmd, pmd: entry);
1959
1960 if (huge_pmd_needs_flush(oldpmd, newpmd: entry))
1961 tlb_flush_pmd_range(tlb, address: addr, HPAGE_PMD_SIZE);
1962unlock:
1963 spin_unlock(lock: ptl);
1964 return ret;
1965}
1966
1967/*
1968 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1969 *
1970 * Note that if it returns page table lock pointer, this routine returns without
1971 * unlocking page table lock. So callers must unlock it.
1972 */
1973spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1974{
1975 spinlock_t *ptl;
1976 ptl = pmd_lock(mm: vma->vm_mm, pmd);
1977 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1978 pmd_devmap(*pmd)))
1979 return ptl;
1980 spin_unlock(lock: ptl);
1981 return NULL;
1982}
1983
1984/*
1985 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1986 *
1987 * Note that if it returns page table lock pointer, this routine returns without
1988 * unlocking page table lock. So callers must unlock it.
1989 */
1990spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1991{
1992 spinlock_t *ptl;
1993
1994 ptl = pud_lock(mm: vma->vm_mm, pud);
1995 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1996 return ptl;
1997 spin_unlock(lock: ptl);
1998 return NULL;
1999}
2000
2001#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2002int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2003 pud_t *pud, unsigned long addr)
2004{
2005 spinlock_t *ptl;
2006
2007 ptl = __pud_trans_huge_lock(pud, vma);
2008 if (!ptl)
2009 return 0;
2010
2011 pudp_huge_get_and_clear_full(vma, address: addr, pudp: pud, full: tlb->fullmm);
2012 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2013 if (vma_is_special_huge(vma)) {
2014 spin_unlock(lock: ptl);
2015 /* No zero page support yet */
2016 } else {
2017 /* No support for anonymous PUD pages yet */
2018 BUG();
2019 }
2020 return 1;
2021}
2022
2023static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2024 unsigned long haddr)
2025{
2026 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2027 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2028 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2029 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2030
2031 count_vm_event(item: THP_SPLIT_PUD);
2032
2033 pudp_huge_clear_flush(vma, address: haddr, pudp: pud);
2034}
2035
2036void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2037 unsigned long address)
2038{
2039 spinlock_t *ptl;
2040 struct mmu_notifier_range range;
2041
2042 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm: vma->vm_mm,
2043 start: address & HPAGE_PUD_MASK,
2044 end: (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2045 mmu_notifier_invalidate_range_start(range: &range);
2046 ptl = pud_lock(mm: vma->vm_mm, pud);
2047 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2048 goto out;
2049 __split_huge_pud_locked(vma, pud, haddr: range.start);
2050
2051out:
2052 spin_unlock(lock: ptl);
2053 mmu_notifier_invalidate_range_end(range: &range);
2054}
2055#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2056
2057static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2058 unsigned long haddr, pmd_t *pmd)
2059{
2060 struct mm_struct *mm = vma->vm_mm;
2061 pgtable_t pgtable;
2062 pmd_t _pmd, old_pmd;
2063 unsigned long addr;
2064 pte_t *pte;
2065 int i;
2066
2067 /*
2068 * Leave pmd empty until pte is filled note that it is fine to delay
2069 * notification until mmu_notifier_invalidate_range_end() as we are
2070 * replacing a zero pmd write protected page with a zero pte write
2071 * protected page.
2072 *
2073 * See Documentation/mm/mmu_notifier.rst
2074 */
2075 old_pmd = pmdp_huge_clear_flush(vma, address: haddr, pmdp: pmd);
2076
2077 pgtable = pgtable_trans_huge_withdraw(mm, pmdp: pmd);
2078 pmd_populate(mm, pmd: &_pmd, pte: pgtable);
2079
2080 pte = pte_offset_map(pmd: &_pmd, addr: haddr);
2081 VM_BUG_ON(!pte);
2082 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2083 pte_t entry;
2084
2085 entry = pfn_pte(page_nr: my_zero_pfn(addr), pgprot: vma->vm_page_prot);
2086 entry = pte_mkspecial(pte: entry);
2087 if (pmd_uffd_wp(pmd: old_pmd))
2088 entry = pte_mkuffd_wp(pte: entry);
2089 VM_BUG_ON(!pte_none(ptep_get(pte)));
2090 set_pte_at(mm, addr, pte, entry);
2091 pte++;
2092 }
2093 pte_unmap(pte: pte - 1);
2094 smp_wmb(); /* make pte visible before pmd */
2095 pmd_populate(mm, pmd, pte: pgtable);
2096}
2097
2098static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2099 unsigned long haddr, bool freeze)
2100{
2101 struct mm_struct *mm = vma->vm_mm;
2102 struct page *page;
2103 pgtable_t pgtable;
2104 pmd_t old_pmd, _pmd;
2105 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2106 bool anon_exclusive = false, dirty = false;
2107 unsigned long addr;
2108 pte_t *pte;
2109 int i;
2110
2111 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2112 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2113 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2114 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2115 && !pmd_devmap(*pmd));
2116
2117 count_vm_event(item: THP_SPLIT_PMD);
2118
2119 if (!vma_is_anonymous(vma)) {
2120 old_pmd = pmdp_huge_clear_flush(vma, address: haddr, pmdp: pmd);
2121 /*
2122 * We are going to unmap this huge page. So
2123 * just go ahead and zap it
2124 */
2125 if (arch_needs_pgtable_deposit())
2126 zap_deposited_table(mm, pmd);
2127 if (vma_is_special_huge(vma))
2128 return;
2129 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2130 swp_entry_t entry;
2131
2132 entry = pmd_to_swp_entry(pmd: old_pmd);
2133 page = pfn_swap_entry_to_page(entry);
2134 } else {
2135 page = pmd_page(old_pmd);
2136 if (!PageDirty(page) && pmd_dirty(pmd: old_pmd))
2137 set_page_dirty(page);
2138 if (!PageReferenced(page) && pmd_young(pmd: old_pmd))
2139 SetPageReferenced(page);
2140 page_remove_rmap(page, vma, compound: true);
2141 put_page(page);
2142 }
2143 add_mm_counter(mm, member: mm_counter_file(page), value: -HPAGE_PMD_NR);
2144 return;
2145 }
2146
2147 if (is_huge_zero_pmd(pmd: *pmd)) {
2148 /*
2149 * FIXME: Do we want to invalidate secondary mmu by calling
2150 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2151 * inside __split_huge_pmd() ?
2152 *
2153 * We are going from a zero huge page write protected to zero
2154 * small page also write protected so it does not seems useful
2155 * to invalidate secondary mmu at this time.
2156 */
2157 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2158 }
2159
2160 /*
2161 * Up to this point the pmd is present and huge and userland has the
2162 * whole access to the hugepage during the split (which happens in
2163 * place). If we overwrite the pmd with the not-huge version pointing
2164 * to the pte here (which of course we could if all CPUs were bug
2165 * free), userland could trigger a small page size TLB miss on the
2166 * small sized TLB while the hugepage TLB entry is still established in
2167 * the huge TLB. Some CPU doesn't like that.
2168 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2169 * 383 on page 105. Intel should be safe but is also warns that it's
2170 * only safe if the permission and cache attributes of the two entries
2171 * loaded in the two TLB is identical (which should be the case here).
2172 * But it is generally safer to never allow small and huge TLB entries
2173 * for the same virtual address to be loaded simultaneously. So instead
2174 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2175 * current pmd notpresent (atomically because here the pmd_trans_huge
2176 * must remain set at all times on the pmd until the split is complete
2177 * for this pmd), then we flush the SMP TLB and finally we write the
2178 * non-huge version of the pmd entry with pmd_populate.
2179 */
2180 old_pmd = pmdp_invalidate(vma, address: haddr, pmdp: pmd);
2181
2182 pmd_migration = is_pmd_migration_entry(pmd: old_pmd);
2183 if (unlikely(pmd_migration)) {
2184 swp_entry_t entry;
2185
2186 entry = pmd_to_swp_entry(pmd: old_pmd);
2187 page = pfn_swap_entry_to_page(entry);
2188 write = is_writable_migration_entry(entry);
2189 if (PageAnon(page))
2190 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2191 young = is_migration_entry_young(entry);
2192 dirty = is_migration_entry_dirty(entry);
2193 soft_dirty = pmd_swp_soft_dirty(pmd: old_pmd);
2194 uffd_wp = pmd_swp_uffd_wp(pmd: old_pmd);
2195 } else {
2196 page = pmd_page(old_pmd);
2197 if (pmd_dirty(pmd: old_pmd)) {
2198 dirty = true;
2199 SetPageDirty(page);
2200 }
2201 write = pmd_write(pmd: old_pmd);
2202 young = pmd_young(pmd: old_pmd);
2203 soft_dirty = pmd_soft_dirty(pmd: old_pmd);
2204 uffd_wp = pmd_uffd_wp(pmd: old_pmd);
2205
2206 VM_BUG_ON_PAGE(!page_count(page), page);
2207
2208 /*
2209 * Without "freeze", we'll simply split the PMD, propagating the
2210 * PageAnonExclusive() flag for each PTE by setting it for
2211 * each subpage -- no need to (temporarily) clear.
2212 *
2213 * With "freeze" we want to replace mapped pages by
2214 * migration entries right away. This is only possible if we
2215 * managed to clear PageAnonExclusive() -- see
2216 * set_pmd_migration_entry().
2217 *
2218 * In case we cannot clear PageAnonExclusive(), split the PMD
2219 * only and let try_to_migrate_one() fail later.
2220 *
2221 * See page_try_share_anon_rmap(): invalidate PMD first.
2222 */
2223 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2224 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2225 freeze = false;
2226 if (!freeze)
2227 page_ref_add(page, HPAGE_PMD_NR - 1);
2228 }
2229
2230 /*
2231 * Withdraw the table only after we mark the pmd entry invalid.
2232 * This's critical for some architectures (Power).
2233 */
2234 pgtable = pgtable_trans_huge_withdraw(mm, pmdp: pmd);
2235 pmd_populate(mm, pmd: &_pmd, pte: pgtable);
2236
2237 pte = pte_offset_map(pmd: &_pmd, addr: haddr);
2238 VM_BUG_ON(!pte);
2239 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2240 pte_t entry;
2241 /*
2242 * Note that NUMA hinting access restrictions are not
2243 * transferred to avoid any possibility of altering
2244 * permissions across VMAs.
2245 */
2246 if (freeze || pmd_migration) {
2247 swp_entry_t swp_entry;
2248 if (write)
2249 swp_entry = make_writable_migration_entry(
2250 page_to_pfn(page + i));
2251 else if (anon_exclusive)
2252 swp_entry = make_readable_exclusive_migration_entry(
2253 page_to_pfn(page + i));
2254 else
2255 swp_entry = make_readable_migration_entry(
2256 page_to_pfn(page + i));
2257 if (young)
2258 swp_entry = make_migration_entry_young(entry: swp_entry);
2259 if (dirty)
2260 swp_entry = make_migration_entry_dirty(entry: swp_entry);
2261 entry = swp_entry_to_pte(entry: swp_entry);
2262 if (soft_dirty)
2263 entry = pte_swp_mksoft_dirty(pte: entry);
2264 if (uffd_wp)
2265 entry = pte_swp_mkuffd_wp(pte: entry);
2266 } else {
2267 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2268 if (write)
2269 entry = pte_mkwrite(pte: entry, vma);
2270 if (anon_exclusive)
2271 SetPageAnonExclusive(page + i);
2272 if (!young)
2273 entry = pte_mkold(pte: entry);
2274 /* NOTE: this may set soft-dirty too on some archs */
2275 if (dirty)
2276 entry = pte_mkdirty(pte: entry);
2277 if (soft_dirty)
2278 entry = pte_mksoft_dirty(pte: entry);
2279 if (uffd_wp)
2280 entry = pte_mkuffd_wp(pte: entry);
2281 page_add_anon_rmap(page + i, vma, address: addr, RMAP_NONE);
2282 }
2283 VM_BUG_ON(!pte_none(ptep_get(pte)));
2284 set_pte_at(mm, addr, pte, entry);
2285 pte++;
2286 }
2287 pte_unmap(pte: pte - 1);
2288
2289 if (!pmd_migration)
2290 page_remove_rmap(page, vma, compound: true);
2291 if (freeze)
2292 put_page(page);
2293
2294 smp_wmb(); /* make pte visible before pmd */
2295 pmd_populate(mm, pmd, pte: pgtable);
2296}
2297
2298void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2299 unsigned long address, bool freeze, struct folio *folio)
2300{
2301 spinlock_t *ptl;
2302 struct mmu_notifier_range range;
2303
2304 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm: vma->vm_mm,
2305 start: address & HPAGE_PMD_MASK,
2306 end: (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2307 mmu_notifier_invalidate_range_start(range: &range);
2308 ptl = pmd_lock(mm: vma->vm_mm, pmd);
2309
2310 /*
2311 * If caller asks to setup a migration entry, we need a folio to check
2312 * pmd against. Otherwise we can end up replacing wrong folio.
2313 */
2314 VM_BUG_ON(freeze && !folio);
2315 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2316
2317 if (pmd_trans_huge(pmd: *pmd) || pmd_devmap(pmd: *pmd) ||
2318 is_pmd_migration_entry(pmd: *pmd)) {
2319 /*
2320 * It's safe to call pmd_page when folio is set because it's
2321 * guaranteed that pmd is present.
2322 */
2323 if (folio && folio != page_folio(pmd_page(*pmd)))
2324 goto out;
2325 __split_huge_pmd_locked(vma, pmd, haddr: range.start, freeze);
2326 }
2327
2328out:
2329 spin_unlock(lock: ptl);
2330 mmu_notifier_invalidate_range_end(range: &range);
2331}
2332
2333void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2334 bool freeze, struct folio *folio)
2335{
2336 pmd_t *pmd = mm_find_pmd(mm: vma->vm_mm, address);
2337
2338 if (!pmd)
2339 return;
2340
2341 __split_huge_pmd(vma, pmd, address, freeze, folio);
2342}
2343
2344static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2345{
2346 /*
2347 * If the new address isn't hpage aligned and it could previously
2348 * contain an hugepage: check if we need to split an huge pmd.
2349 */
2350 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2351 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2352 ALIGN(address, HPAGE_PMD_SIZE)))
2353 split_huge_pmd_address(vma, address, freeze: false, NULL);
2354}
2355
2356void vma_adjust_trans_huge(struct vm_area_struct *vma,
2357 unsigned long start,
2358 unsigned long end,
2359 long adjust_next)
2360{
2361 /* Check if we need to split start first. */
2362 split_huge_pmd_if_needed(vma, address: start);
2363
2364 /* Check if we need to split end next. */
2365 split_huge_pmd_if_needed(vma, address: end);
2366
2367 /*
2368 * If we're also updating the next vma vm_start,
2369 * check if we need to split it.
2370 */
2371 if (adjust_next > 0) {
2372 struct vm_area_struct *next = find_vma(mm: vma->vm_mm, addr: vma->vm_end);
2373 unsigned long nstart = next->vm_start;
2374 nstart += adjust_next;
2375 split_huge_pmd_if_needed(vma: next, address: nstart);
2376 }
2377}
2378
2379static void unmap_folio(struct folio *folio)
2380{
2381 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2382 TTU_SYNC;
2383
2384 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2385
2386 /*
2387 * Anon pages need migration entries to preserve them, but file
2388 * pages can simply be left unmapped, then faulted back on demand.
2389 * If that is ever changed (perhaps for mlock), update remap_page().
2390 */
2391 if (folio_test_anon(folio))
2392 try_to_migrate(folio, flags: ttu_flags);
2393 else
2394 try_to_unmap(folio, flags: ttu_flags | TTU_IGNORE_MLOCK);
2395}
2396
2397static void remap_page(struct folio *folio, unsigned long nr)
2398{
2399 int i = 0;
2400
2401 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2402 if (!folio_test_anon(folio))
2403 return;
2404 for (;;) {
2405 remove_migration_ptes(src: folio, dst: folio, locked: true);
2406 i += folio_nr_pages(folio);
2407 if (i >= nr)
2408 break;
2409 folio = folio_next(folio);
2410 }
2411}
2412
2413static void lru_add_page_tail(struct page *head, struct page *tail,
2414 struct lruvec *lruvec, struct list_head *list)
2415{
2416 VM_BUG_ON_PAGE(!PageHead(head), head);
2417 VM_BUG_ON_PAGE(PageCompound(tail), head);
2418 VM_BUG_ON_PAGE(PageLRU(tail), head);
2419 lockdep_assert_held(&lruvec->lru_lock);
2420
2421 if (list) {
2422 /* page reclaim is reclaiming a huge page */
2423 VM_WARN_ON(PageLRU(head));
2424 get_page(page: tail);
2425 list_add_tail(new: &tail->lru, head: list);
2426 } else {
2427 /* head is still on lru (and we have it frozen) */
2428 VM_WARN_ON(!PageLRU(head));
2429 if (PageUnevictable(page: tail))
2430 tail->mlock_count = 0;
2431 else
2432 list_add_tail(new: &tail->lru, head: &head->lru);
2433 SetPageLRU(tail);
2434 }
2435}
2436
2437static void __split_huge_page_tail(struct folio *folio, int tail,
2438 struct lruvec *lruvec, struct list_head *list)
2439{
2440 struct page *head = &folio->page;
2441 struct page *page_tail = head + tail;
2442 /*
2443 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2444 * Don't pass it around before clear_compound_head().
2445 */
2446 struct folio *new_folio = (struct folio *)page_tail;
2447
2448 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2449
2450 /*
2451 * Clone page flags before unfreezing refcount.
2452 *
2453 * After successful get_page_unless_zero() might follow flags change,
2454 * for example lock_page() which set PG_waiters.
2455 *
2456 * Note that for mapped sub-pages of an anonymous THP,
2457 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2458 * the migration entry instead from where remap_page() will restore it.
2459 * We can still have PG_anon_exclusive set on effectively unmapped and
2460 * unreferenced sub-pages of an anonymous THP: we can simply drop
2461 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2462 */
2463 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2464 page_tail->flags |= (head->flags &
2465 ((1L << PG_referenced) |
2466 (1L << PG_swapbacked) |
2467 (1L << PG_swapcache) |
2468 (1L << PG_mlocked) |
2469 (1L << PG_uptodate) |
2470 (1L << PG_active) |
2471 (1L << PG_workingset) |
2472 (1L << PG_locked) |
2473 (1L << PG_unevictable) |
2474#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2475 (1L << PG_arch_2) |
2476 (1L << PG_arch_3) |
2477#endif
2478 (1L << PG_dirty) |
2479 LRU_GEN_MASK | LRU_REFS_MASK));
2480
2481 /* ->mapping in first and second tail page is replaced by other uses */
2482 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2483 page_tail);
2484 page_tail->mapping = head->mapping;
2485 page_tail->index = head->index + tail;
2486
2487 /*
2488 * page->private should not be set in tail pages. Fix up and warn once
2489 * if private is unexpectedly set.
2490 */
2491 if (unlikely(page_tail->private)) {
2492 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2493 page_tail->private = 0;
2494 }
2495 if (folio_test_swapcache(folio))
2496 new_folio->swap.val = folio->swap.val + tail;
2497
2498 /* Page flags must be visible before we make the page non-compound. */
2499 smp_wmb();
2500
2501 /*
2502 * Clear PageTail before unfreezing page refcount.
2503 *
2504 * After successful get_page_unless_zero() might follow put_page()
2505 * which needs correct compound_head().
2506 */
2507 clear_compound_head(page: page_tail);
2508
2509 /* Finally unfreeze refcount. Additional reference from page cache. */
2510 page_ref_unfreeze(page: page_tail, count: 1 + (!PageAnon(page: head) ||
2511 PageSwapCache(page: head)));
2512
2513 if (page_is_young(page: head))
2514 set_page_young(page_tail);
2515 if (page_is_idle(page: head))
2516 set_page_idle(page_tail);
2517
2518 folio_xchg_last_cpupid(folio: new_folio, cpupid: folio_last_cpupid(folio));
2519
2520 /*
2521 * always add to the tail because some iterators expect new
2522 * pages to show after the currently processed elements - e.g.
2523 * migrate_pages
2524 */
2525 lru_add_page_tail(head, tail: page_tail, lruvec, list);
2526}
2527
2528static void __split_huge_page(struct page *page, struct list_head *list,
2529 pgoff_t end)
2530{
2531 struct folio *folio = page_folio(page);
2532 struct page *head = &folio->page;
2533 struct lruvec *lruvec;
2534 struct address_space *swap_cache = NULL;
2535 unsigned long offset = 0;
2536 unsigned int nr = thp_nr_pages(page: head);
2537 int i, nr_dropped = 0;
2538
2539 /* complete memcg works before add pages to LRU */
2540 split_page_memcg(head, nr);
2541
2542 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2543 offset = swp_offset(entry: folio->swap);
2544 swap_cache = swap_address_space(folio->swap);
2545 xa_lock(&swap_cache->i_pages);
2546 }
2547
2548 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2549 lruvec = folio_lruvec_lock(folio);
2550
2551 ClearPageHasHWPoisoned(page: head);
2552
2553 for (i = nr - 1; i >= 1; i--) {
2554 __split_huge_page_tail(folio, tail: i, lruvec, list);
2555 /* Some pages can be beyond EOF: drop them from page cache */
2556 if (head[i].index >= end) {
2557 struct folio *tail = page_folio(head + i);
2558
2559 if (shmem_mapping(mapping: head->mapping))
2560 nr_dropped++;
2561 else if (folio_test_clear_dirty(folio: tail))
2562 folio_account_cleaned(folio: tail,
2563 wb: inode_to_wb(inode: folio->mapping->host));
2564 __filemap_remove_folio(folio: tail, NULL);
2565 folio_put(folio: tail);
2566 } else if (!PageAnon(page)) {
2567 __xa_store(&head->mapping->i_pages, index: head[i].index,
2568 entry: head + i, 0);
2569 } else if (swap_cache) {
2570 __xa_store(&swap_cache->i_pages, index: offset + i,
2571 entry: head + i, 0);
2572 }
2573 }
2574
2575 ClearPageCompound(page: head);
2576 unlock_page_lruvec(lruvec);
2577 /* Caller disabled irqs, so they are still disabled here */
2578
2579 split_page_owner(page: head, nr);
2580
2581 /* See comment in __split_huge_page_tail() */
2582 if (PageAnon(page: head)) {
2583 /* Additional pin to swap cache */
2584 if (PageSwapCache(page: head)) {
2585 page_ref_add(page: head, nr: 2);
2586 xa_unlock(&swap_cache->i_pages);
2587 } else {
2588 page_ref_inc(page: head);
2589 }
2590 } else {
2591 /* Additional pin to page cache */
2592 page_ref_add(page: head, nr: 2);
2593 xa_unlock(&head->mapping->i_pages);
2594 }
2595 local_irq_enable();
2596
2597 if (nr_dropped)
2598 shmem_uncharge(inode: head->mapping->host, pages: nr_dropped);
2599 remap_page(folio, nr);
2600
2601 if (folio_test_swapcache(folio))
2602 split_swap_cluster(entry: folio->swap);
2603
2604 for (i = 0; i < nr; i++) {
2605 struct page *subpage = head + i;
2606 if (subpage == page)
2607 continue;
2608 unlock_page(page: subpage);
2609
2610 /*
2611 * Subpages may be freed if there wasn't any mapping
2612 * like if add_to_swap() is running on a lru page that
2613 * had its mapping zapped. And freeing these pages
2614 * requires taking the lru_lock so we do the put_page
2615 * of the tail pages after the split is complete.
2616 */
2617 free_page_and_swap_cache(subpage);
2618 }
2619}
2620
2621/* Racy check whether the huge page can be split */
2622bool can_split_folio(struct folio *folio, int *pextra_pins)
2623{
2624 int extra_pins;
2625
2626 /* Additional pins from page cache */
2627 if (folio_test_anon(folio))
2628 extra_pins = folio_test_swapcache(folio) ?
2629 folio_nr_pages(folio) : 0;
2630 else
2631 extra_pins = folio_nr_pages(folio);
2632 if (pextra_pins)
2633 *pextra_pins = extra_pins;
2634 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2635}
2636
2637/*
2638 * This function splits huge page into normal pages. @page can point to any
2639 * subpage of huge page to split. Split doesn't change the position of @page.
2640 *
2641 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2642 * The huge page must be locked.
2643 *
2644 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2645 *
2646 * Both head page and tail pages will inherit mapping, flags, and so on from
2647 * the hugepage.
2648 *
2649 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2650 * they are not mapped.
2651 *
2652 * Returns 0 if the hugepage is split successfully.
2653 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2654 * us.
2655 */
2656int split_huge_page_to_list(struct page *page, struct list_head *list)
2657{
2658 struct folio *folio = page_folio(page);
2659 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2660 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2661 struct anon_vma *anon_vma = NULL;
2662 struct address_space *mapping = NULL;
2663 int extra_pins, ret;
2664 pgoff_t end;
2665 bool is_hzp;
2666
2667 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2668 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2669
2670 is_hzp = is_huge_zero_page(page: &folio->page);
2671 if (is_hzp) {
2672 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2673 return -EBUSY;
2674 }
2675
2676 if (folio_test_writeback(folio))
2677 return -EBUSY;
2678
2679 if (folio_test_anon(folio)) {
2680 /*
2681 * The caller does not necessarily hold an mmap_lock that would
2682 * prevent the anon_vma disappearing so we first we take a
2683 * reference to it and then lock the anon_vma for write. This
2684 * is similar to folio_lock_anon_vma_read except the write lock
2685 * is taken to serialise against parallel split or collapse
2686 * operations.
2687 */
2688 anon_vma = folio_get_anon_vma(folio);
2689 if (!anon_vma) {
2690 ret = -EBUSY;
2691 goto out;
2692 }
2693 end = -1;
2694 mapping = NULL;
2695 anon_vma_lock_write(anon_vma);
2696 } else {
2697 gfp_t gfp;
2698
2699 mapping = folio->mapping;
2700
2701 /* Truncated ? */
2702 if (!mapping) {
2703 ret = -EBUSY;
2704 goto out;
2705 }
2706
2707 gfp = current_gfp_context(flags: mapping_gfp_mask(mapping) &
2708 GFP_RECLAIM_MASK);
2709
2710 if (!filemap_release_folio(folio, gfp)) {
2711 ret = -EBUSY;
2712 goto out;
2713 }
2714
2715 xas_split_alloc(&xas, entry: folio, order: folio_order(folio), gfp);
2716 if (xas_error(xas: &xas)) {
2717 ret = xas_error(xas: &xas);
2718 goto out;
2719 }
2720
2721 anon_vma = NULL;
2722 i_mmap_lock_read(mapping);
2723
2724 /*
2725 *__split_huge_page() may need to trim off pages beyond EOF:
2726 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2727 * which cannot be nested inside the page tree lock. So note
2728 * end now: i_size itself may be changed at any moment, but
2729 * folio lock is good enough to serialize the trimming.
2730 */
2731 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2732 if (shmem_mapping(mapping))
2733 end = shmem_fallocend(inode: mapping->host, eof: end);
2734 }
2735
2736 /*
2737 * Racy check if we can split the page, before unmap_folio() will
2738 * split PMDs
2739 */
2740 if (!can_split_folio(folio, pextra_pins: &extra_pins)) {
2741 ret = -EAGAIN;
2742 goto out_unlock;
2743 }
2744
2745 unmap_folio(folio);
2746
2747 /* block interrupt reentry in xa_lock and spinlock */
2748 local_irq_disable();
2749 if (mapping) {
2750 /*
2751 * Check if the folio is present in page cache.
2752 * We assume all tail are present too, if folio is there.
2753 */
2754 xas_lock(&xas);
2755 xas_reset(xas: &xas);
2756 if (xas_load(&xas) != folio)
2757 goto fail;
2758 }
2759
2760 /* Prevent deferred_split_scan() touching ->_refcount */
2761 spin_lock(lock: &ds_queue->split_queue_lock);
2762 if (folio_ref_freeze(folio, count: 1 + extra_pins)) {
2763 if (!list_empty(head: &folio->_deferred_list)) {
2764 ds_queue->split_queue_len--;
2765 list_del(entry: &folio->_deferred_list);
2766 }
2767 spin_unlock(lock: &ds_queue->split_queue_lock);
2768 if (mapping) {
2769 int nr = folio_nr_pages(folio);
2770
2771 xas_split(&xas, entry: folio, order: folio_order(folio));
2772 if (folio_test_swapbacked(folio)) {
2773 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM_THPS,
2774 val: -nr);
2775 } else {
2776 __lruvec_stat_mod_folio(folio, idx: NR_FILE_THPS,
2777 val: -nr);
2778 filemap_nr_thps_dec(mapping);
2779 }
2780 }
2781
2782 __split_huge_page(page, list, end);
2783 ret = 0;
2784 } else {
2785 spin_unlock(lock: &ds_queue->split_queue_lock);
2786fail:
2787 if (mapping)
2788 xas_unlock(&xas);
2789 local_irq_enable();
2790 remap_page(folio, nr: folio_nr_pages(folio));
2791 ret = -EAGAIN;
2792 }
2793
2794out_unlock:
2795 if (anon_vma) {
2796 anon_vma_unlock_write(anon_vma);
2797 put_anon_vma(anon_vma);
2798 }
2799 if (mapping)
2800 i_mmap_unlock_read(mapping);
2801out:
2802 xas_destroy(&xas);
2803 count_vm_event(item: !ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2804 return ret;
2805}
2806
2807void folio_undo_large_rmappable(struct folio *folio)
2808{
2809 struct deferred_split *ds_queue;
2810 unsigned long flags;
2811
2812 /*
2813 * At this point, there is no one trying to add the folio to
2814 * deferred_list. If folio is not in deferred_list, it's safe
2815 * to check without acquiring the split_queue_lock.
2816 */
2817 if (data_race(list_empty(&folio->_deferred_list)))
2818 return;
2819
2820 ds_queue = get_deferred_split_queue(folio);
2821 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2822 if (!list_empty(head: &folio->_deferred_list)) {
2823 ds_queue->split_queue_len--;
2824 list_del(entry: &folio->_deferred_list);
2825 }
2826 spin_unlock_irqrestore(lock: &ds_queue->split_queue_lock, flags);
2827}
2828
2829void deferred_split_folio(struct folio *folio)
2830{
2831 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2832#ifdef CONFIG_MEMCG
2833 struct mem_cgroup *memcg = folio_memcg(folio);
2834#endif
2835 unsigned long flags;
2836
2837 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2838
2839 /*
2840 * The try_to_unmap() in page reclaim path might reach here too,
2841 * this may cause a race condition to corrupt deferred split queue.
2842 * And, if page reclaim is already handling the same folio, it is
2843 * unnecessary to handle it again in shrinker.
2844 *
2845 * Check the swapcache flag to determine if the folio is being
2846 * handled by page reclaim since THP swap would add the folio into
2847 * swap cache before calling try_to_unmap().
2848 */
2849 if (folio_test_swapcache(folio))
2850 return;
2851
2852 if (!list_empty(head: &folio->_deferred_list))
2853 return;
2854
2855 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2856 if (list_empty(head: &folio->_deferred_list)) {
2857 count_vm_event(item: THP_DEFERRED_SPLIT_PAGE);
2858 list_add_tail(new: &folio->_deferred_list, head: &ds_queue->split_queue);
2859 ds_queue->split_queue_len++;
2860#ifdef CONFIG_MEMCG
2861 if (memcg)
2862 set_shrinker_bit(memcg, nid: folio_nid(folio),
2863 shrinker_id: deferred_split_shrinker->id);
2864#endif
2865 }
2866 spin_unlock_irqrestore(lock: &ds_queue->split_queue_lock, flags);
2867}
2868
2869static unsigned long deferred_split_count(struct shrinker *shrink,
2870 struct shrink_control *sc)
2871{
2872 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2873 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2874
2875#ifdef CONFIG_MEMCG
2876 if (sc->memcg)
2877 ds_queue = &sc->memcg->deferred_split_queue;
2878#endif
2879 return READ_ONCE(ds_queue->split_queue_len);
2880}
2881
2882static unsigned long deferred_split_scan(struct shrinker *shrink,
2883 struct shrink_control *sc)
2884{
2885 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2886 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2887 unsigned long flags;
2888 LIST_HEAD(list);
2889 struct folio *folio, *next;
2890 int split = 0;
2891
2892#ifdef CONFIG_MEMCG
2893 if (sc->memcg)
2894 ds_queue = &sc->memcg->deferred_split_queue;
2895#endif
2896
2897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 /* Take pin on all head pages to avoid freeing them under us */
2899 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2900 _deferred_list) {
2901 if (folio_try_get(folio)) {
2902 list_move(list: &folio->_deferred_list, head: &list);
2903 } else {
2904 /* We lost race with folio_put() */
2905 list_del_init(entry: &folio->_deferred_list);
2906 ds_queue->split_queue_len--;
2907 }
2908 if (!--sc->nr_to_scan)
2909 break;
2910 }
2911 spin_unlock_irqrestore(lock: &ds_queue->split_queue_lock, flags);
2912
2913 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2914 if (!folio_trylock(folio))
2915 goto next;
2916 /* split_huge_page() removes page from list on success */
2917 if (!split_folio(folio))
2918 split++;
2919 folio_unlock(folio);
2920next:
2921 folio_put(folio);
2922 }
2923
2924 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2925 list_splice_tail(list: &list, head: &ds_queue->split_queue);
2926 spin_unlock_irqrestore(lock: &ds_queue->split_queue_lock, flags);
2927
2928 /*
2929 * Stop shrinker if we didn't split any page, but the queue is empty.
2930 * This can happen if pages were freed under us.
2931 */
2932 if (!split && list_empty(head: &ds_queue->split_queue))
2933 return SHRINK_STOP;
2934 return split;
2935}
2936
2937#ifdef CONFIG_DEBUG_FS
2938static void split_huge_pages_all(void)
2939{
2940 struct zone *zone;
2941 struct page *page;
2942 struct folio *folio;
2943 unsigned long pfn, max_zone_pfn;
2944 unsigned long total = 0, split = 0;
2945
2946 pr_debug("Split all THPs\n");
2947 for_each_zone(zone) {
2948 if (!managed_zone(zone))
2949 continue;
2950 max_zone_pfn = zone_end_pfn(zone);
2951 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2952 int nr_pages;
2953
2954 page = pfn_to_online_page(pfn);
2955 if (!page || PageTail(page))
2956 continue;
2957 folio = page_folio(page);
2958 if (!folio_try_get(folio))
2959 continue;
2960
2961 if (unlikely(page_folio(page) != folio))
2962 goto next;
2963
2964 if (zone != folio_zone(folio))
2965 goto next;
2966
2967 if (!folio_test_large(folio)
2968 || folio_test_hugetlb(folio)
2969 || !folio_test_lru(folio))
2970 goto next;
2971
2972 total++;
2973 folio_lock(folio);
2974 nr_pages = folio_nr_pages(folio);
2975 if (!split_folio(folio))
2976 split++;
2977 pfn += nr_pages - 1;
2978 folio_unlock(folio);
2979next:
2980 folio_put(folio);
2981 cond_resched();
2982 }
2983 }
2984
2985 pr_debug("%lu of %lu THP split\n", split, total);
2986}
2987
2988static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2989{
2990 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2991 is_vm_hugetlb_page(vma);
2992}
2993
2994static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2995 unsigned long vaddr_end)
2996{
2997 int ret = 0;
2998 struct task_struct *task;
2999 struct mm_struct *mm;
3000 unsigned long total = 0, split = 0;
3001 unsigned long addr;
3002
3003 vaddr_start &= PAGE_MASK;
3004 vaddr_end &= PAGE_MASK;
3005
3006 /* Find the task_struct from pid */
3007 rcu_read_lock();
3008 task = find_task_by_vpid(nr: pid);
3009 if (!task) {
3010 rcu_read_unlock();
3011 ret = -ESRCH;
3012 goto out;
3013 }
3014 get_task_struct(t: task);
3015 rcu_read_unlock();
3016
3017 /* Find the mm_struct */
3018 mm = get_task_mm(task);
3019 put_task_struct(t: task);
3020
3021 if (!mm) {
3022 ret = -EINVAL;
3023 goto out;
3024 }
3025
3026 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3027 pid, vaddr_start, vaddr_end);
3028
3029 mmap_read_lock(mm);
3030 /*
3031 * always increase addr by PAGE_SIZE, since we could have a PTE page
3032 * table filled with PTE-mapped THPs, each of which is distinct.
3033 */
3034 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3035 struct vm_area_struct *vma = vma_lookup(mm, addr);
3036 struct page *page;
3037 struct folio *folio;
3038
3039 if (!vma)
3040 break;
3041
3042 /* skip special VMA and hugetlb VMA */
3043 if (vma_not_suitable_for_thp_split(vma)) {
3044 addr = vma->vm_end;
3045 continue;
3046 }
3047
3048 /* FOLL_DUMP to ignore special (like zero) pages */
3049 page = follow_page(vma, address: addr, foll_flags: FOLL_GET | FOLL_DUMP);
3050
3051 if (IS_ERR_OR_NULL(ptr: page))
3052 continue;
3053
3054 folio = page_folio(page);
3055 if (!is_transparent_hugepage(folio))
3056 goto next;
3057
3058 total++;
3059 if (!can_split_folio(folio, NULL))
3060 goto next;
3061
3062 if (!folio_trylock(folio))
3063 goto next;
3064
3065 if (!split_folio(folio))
3066 split++;
3067
3068 folio_unlock(folio);
3069next:
3070 folio_put(folio);
3071 cond_resched();
3072 }
3073 mmap_read_unlock(mm);
3074 mmput(mm);
3075
3076 pr_debug("%lu of %lu THP split\n", split, total);
3077
3078out:
3079 return ret;
3080}
3081
3082static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3083 pgoff_t off_end)
3084{
3085 struct filename *file;
3086 struct file *candidate;
3087 struct address_space *mapping;
3088 int ret = -EINVAL;
3089 pgoff_t index;
3090 int nr_pages = 1;
3091 unsigned long total = 0, split = 0;
3092
3093 file = getname_kernel(file_path);
3094 if (IS_ERR(ptr: file))
3095 return ret;
3096
3097 candidate = file_open_name(file, O_RDONLY, 0);
3098 if (IS_ERR(ptr: candidate))
3099 goto out;
3100
3101 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3102 file_path, off_start, off_end);
3103
3104 mapping = candidate->f_mapping;
3105
3106 for (index = off_start; index < off_end; index += nr_pages) {
3107 struct folio *folio = filemap_get_folio(mapping, index);
3108
3109 nr_pages = 1;
3110 if (IS_ERR(ptr: folio))
3111 continue;
3112
3113 if (!folio_test_large(folio))
3114 goto next;
3115
3116 total++;
3117 nr_pages = folio_nr_pages(folio);
3118
3119 if (!folio_trylock(folio))
3120 goto next;
3121
3122 if (!split_folio(folio))
3123 split++;
3124
3125 folio_unlock(folio);
3126next:
3127 folio_put(folio);
3128 cond_resched();
3129 }
3130
3131 filp_close(candidate, NULL);
3132 ret = 0;
3133
3134 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3135out:
3136 putname(name: file);
3137 return ret;
3138}
3139
3140#define MAX_INPUT_BUF_SZ 255
3141
3142static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3143 size_t count, loff_t *ppops)
3144{
3145 static DEFINE_MUTEX(split_debug_mutex);
3146 ssize_t ret;
3147 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3148 char input_buf[MAX_INPUT_BUF_SZ];
3149 int pid;
3150 unsigned long vaddr_start, vaddr_end;
3151
3152 ret = mutex_lock_interruptible(&split_debug_mutex);
3153 if (ret)
3154 return ret;
3155
3156 ret = -EFAULT;
3157
3158 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3159 if (copy_from_user(to: input_buf, from: buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3160 goto out;
3161
3162 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3163
3164 if (input_buf[0] == '/') {
3165 char *tok;
3166 char *buf = input_buf;
3167 char file_path[MAX_INPUT_BUF_SZ];
3168 pgoff_t off_start = 0, off_end = 0;
3169 size_t input_len = strlen(input_buf);
3170
3171 tok = strsep(&buf, ",");
3172 if (tok) {
3173 strcpy(p: file_path, q: tok);
3174 } else {
3175 ret = -EINVAL;
3176 goto out;
3177 }
3178
3179 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3180 if (ret != 2) {
3181 ret = -EINVAL;
3182 goto out;
3183 }
3184 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3185 if (!ret)
3186 ret = input_len;
3187
3188 goto out;
3189 }
3190
3191 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3192 if (ret == 1 && pid == 1) {
3193 split_huge_pages_all();
3194 ret = strlen(input_buf);
3195 goto out;
3196 } else if (ret != 3) {
3197 ret = -EINVAL;
3198 goto out;
3199 }
3200
3201 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3202 if (!ret)
3203 ret = strlen(input_buf);
3204out:
3205 mutex_unlock(lock: &split_debug_mutex);
3206 return ret;
3207
3208}
3209
3210static const struct file_operations split_huge_pages_fops = {
3211 .owner = THIS_MODULE,
3212 .write = split_huge_pages_write,
3213 .llseek = no_llseek,
3214};
3215
3216static int __init split_huge_pages_debugfs(void)
3217{
3218 debugfs_create_file(name: "split_huge_pages", mode: 0200, NULL, NULL,
3219 fops: &split_huge_pages_fops);
3220 return 0;
3221}
3222late_initcall(split_huge_pages_debugfs);
3223#endif
3224
3225#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3226int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3227 struct page *page)
3228{
3229 struct vm_area_struct *vma = pvmw->vma;
3230 struct mm_struct *mm = vma->vm_mm;
3231 unsigned long address = pvmw->address;
3232 bool anon_exclusive;
3233 pmd_t pmdval;
3234 swp_entry_t entry;
3235 pmd_t pmdswp;
3236
3237 if (!(pvmw->pmd && !pvmw->pte))
3238 return 0;
3239
3240 flush_cache_range(vma, start: address, end: address + HPAGE_PMD_SIZE);
3241 pmdval = pmdp_invalidate(vma, address, pmdp: pvmw->pmd);
3242
3243 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3244 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3245 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3246 set_pmd_at(mm, addr: address, pmdp: pvmw->pmd, pmd: pmdval);
3247 return -EBUSY;
3248 }
3249
3250 if (pmd_dirty(pmd: pmdval))
3251 set_page_dirty(page);
3252 if (pmd_write(pmd: pmdval))
3253 entry = make_writable_migration_entry(page_to_pfn(page));
3254 else if (anon_exclusive)
3255 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3256 else
3257 entry = make_readable_migration_entry(page_to_pfn(page));
3258 if (pmd_young(pmd: pmdval))
3259 entry = make_migration_entry_young(entry);
3260 if (pmd_dirty(pmd: pmdval))
3261 entry = make_migration_entry_dirty(entry);
3262 pmdswp = swp_entry_to_pmd(entry);
3263 if (pmd_soft_dirty(pmd: pmdval))
3264 pmdswp = pmd_swp_mksoft_dirty(pmd: pmdswp);
3265 if (pmd_uffd_wp(pmd: pmdval))
3266 pmdswp = pmd_swp_mkuffd_wp(pmd: pmdswp);
3267 set_pmd_at(mm, addr: address, pmdp: pvmw->pmd, pmd: pmdswp);
3268 page_remove_rmap(page, vma, compound: true);
3269 put_page(page);
3270 trace_set_migration_pmd(addr: address, pmd: pmd_val(pmd: pmdswp));
3271
3272 return 0;
3273}
3274
3275void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3276{
3277 struct vm_area_struct *vma = pvmw->vma;
3278 struct mm_struct *mm = vma->vm_mm;
3279 unsigned long address = pvmw->address;
3280 unsigned long haddr = address & HPAGE_PMD_MASK;
3281 pmd_t pmde;
3282 swp_entry_t entry;
3283
3284 if (!(pvmw->pmd && !pvmw->pte))
3285 return;
3286
3287 entry = pmd_to_swp_entry(pmd: *pvmw->pmd);
3288 get_page(page: new);
3289 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3290 if (pmd_swp_soft_dirty(pmd: *pvmw->pmd))
3291 pmde = pmd_mksoft_dirty(pmd: pmde);
3292 if (is_writable_migration_entry(entry))
3293 pmde = pmd_mkwrite(pmd: pmde, vma);
3294 if (pmd_swp_uffd_wp(pmd: *pvmw->pmd))
3295 pmde = pmd_mkuffd_wp(pmd: pmde);
3296 if (!is_migration_entry_young(entry))
3297 pmde = pmd_mkold(pmd: pmde);
3298 /* NOTE: this may contain setting soft-dirty on some archs */
3299 if (PageDirty(page: new) && is_migration_entry_dirty(entry))
3300 pmde = pmd_mkdirty(pmd: pmde);
3301
3302 if (PageAnon(page: new)) {
3303 rmap_t rmap_flags = RMAP_COMPOUND;
3304
3305 if (!is_readable_migration_entry(entry))
3306 rmap_flags |= RMAP_EXCLUSIVE;
3307
3308 page_add_anon_rmap(new, vma, address: haddr, flags: rmap_flags);
3309 } else {
3310 page_add_file_rmap(new, vma, compound: true);
3311 }
3312 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3313 set_pmd_at(mm, addr: haddr, pmdp: pvmw->pmd, pmd: pmde);
3314
3315 /* No need to invalidate - it was non-present before */
3316 update_mmu_cache_pmd(vma, addr: address, pmd: pvmw->pmd);
3317 trace_remove_migration_pmd(addr: address, pmd: pmd_val(pmd: pmde));
3318}
3319#endif
3320

source code of linux/mm/huge_memory.c