1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object_tree_root (or
18 * object_phys_tree_root). The object_list is the main list holding the
19 * metadata (struct kmemleak_object) for the allocated memory blocks.
20 * The object_tree_root and object_phys_tree_root are red
21 * black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The object_phys_tree_root is for objects
23 * allocated with physical address. The kmemleak_object structures are
24 * added to the object_list and object_tree_root (or object_phys_tree_root)
25 * in the create_object() function called from the kmemleak_alloc() (or
26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
27 * the kmemleak_free() callback
28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29 * Accesses to the metadata (e.g. count) are protected by this lock. Note
30 * that some members of this structure may be protected by other means
31 * (atomic or kmemleak_lock). This lock is also held when scanning the
32 * corresponding memory block to avoid the kernel freeing it via the
33 * kmemleak_free() callback. This is less heavyweight than holding a global
34 * lock like kmemleak_lock during scanning.
35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36 * unreferenced objects at a time. The gray_list contains the objects which
37 * are already referenced or marked as false positives and need to be
38 * scanned. This list is only modified during a scanning episode when the
39 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
40 * Note that the kmemleak_object.use_count is incremented when an object is
41 * added to the gray_list and therefore cannot be freed. This mutex also
42 * prevents multiple users of the "kmemleak" debugfs file together with
43 * modifications to the memory scanning parameters including the scan_thread
44 * pointer
45 *
46 * Locks and mutexes are acquired/nested in the following order:
47 *
48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49 *
50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51 * regions.
52 *
53 * The kmemleak_object structures have a use_count incremented or decremented
54 * using the get_object()/put_object() functions. When the use_count becomes
55 * 0, this count can no longer be incremented and put_object() schedules the
56 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57 * function must be protected by rcu_read_lock() to avoid accessing a freed
58 * structure.
59 */
60
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63#include <linux/init.h>
64#include <linux/kernel.h>
65#include <linux/list.h>
66#include <linux/sched/signal.h>
67#include <linux/sched/task.h>
68#include <linux/sched/task_stack.h>
69#include <linux/jiffies.h>
70#include <linux/delay.h>
71#include <linux/export.h>
72#include <linux/kthread.h>
73#include <linux/rbtree.h>
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
79#include <linux/module.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/stackdepot.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/memblock.h>
87#include <linux/pfn.h>
88#include <linux/mmzone.h>
89#include <linux/slab.h>
90#include <linux/thread_info.h>
91#include <linux/err.h>
92#include <linux/uaccess.h>
93#include <linux/string.h>
94#include <linux/nodemask.h>
95#include <linux/mm.h>
96#include <linux/workqueue.h>
97#include <linux/crc32.h>
98
99#include <asm/sections.h>
100#include <asm/processor.h>
101#include <linux/atomic.h>
102
103#include <linux/kasan.h>
104#include <linux/kfence.h>
105#include <linux/kmemleak.h>
106#include <linux/memory_hotplug.h>
107
108/*
109 * Kmemleak configuration and common defines.
110 */
111#define MAX_TRACE 16 /* stack trace length */
112#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
113#define SECS_FIRST_SCAN 60 /* delay before the first scan */
114#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
115#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
116
117#define BYTES_PER_POINTER sizeof(void *)
118
119/* GFP bitmask for kmemleak internal allocations */
120#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 __GFP_NOLOCKDEP)) | \
122 __GFP_NORETRY | __GFP_NOMEMALLOC | \
123 __GFP_NOWARN)
124
125/* scanning area inside a memory block */
126struct kmemleak_scan_area {
127 struct hlist_node node;
128 unsigned long start;
129 size_t size;
130};
131
132#define KMEMLEAK_GREY 0
133#define KMEMLEAK_BLACK -1
134
135/*
136 * Structure holding the metadata for each allocated memory block.
137 * Modifications to such objects should be made while holding the
138 * object->lock. Insertions or deletions from object_list, gray_list or
139 * rb_node are already protected by the corresponding locks or mutex (see
140 * the notes on locking above). These objects are reference-counted
141 * (use_count) and freed using the RCU mechanism.
142 */
143struct kmemleak_object {
144 raw_spinlock_t lock;
145 unsigned int flags; /* object status flags */
146 struct list_head object_list;
147 struct list_head gray_list;
148 struct rb_node rb_node;
149 struct rcu_head rcu; /* object_list lockless traversal */
150 /* object usage count; object freed when use_count == 0 */
151 atomic_t use_count;
152 unsigned int del_state; /* deletion state */
153 unsigned long pointer;
154 size_t size;
155 /* pass surplus references to this pointer */
156 unsigned long excess_ref;
157 /* minimum number of a pointers found before it is considered leak */
158 int min_count;
159 /* the total number of pointers found pointing to this object */
160 int count;
161 /* checksum for detecting modified objects */
162 u32 checksum;
163 /* memory ranges to be scanned inside an object (empty for all) */
164 struct hlist_head area_list;
165 depot_stack_handle_t trace_handle;
166 unsigned long jiffies; /* creation timestamp */
167 pid_t pid; /* pid of the current task */
168 char comm[TASK_COMM_LEN]; /* executable name */
169};
170
171/* flag representing the memory block allocation status */
172#define OBJECT_ALLOCATED (1 << 0)
173/* flag set after the first reporting of an unreference object */
174#define OBJECT_REPORTED (1 << 1)
175/* flag set to not scan the object */
176#define OBJECT_NO_SCAN (1 << 2)
177/* flag set to fully scan the object when scan_area allocation failed */
178#define OBJECT_FULL_SCAN (1 << 3)
179/* flag set for object allocated with physical address */
180#define OBJECT_PHYS (1 << 4)
181
182/* set when __remove_object() called */
183#define DELSTATE_REMOVED (1 << 0)
184/* set to temporarily prevent deletion from object_list */
185#define DELSTATE_NO_DELETE (1 << 1)
186
187#define HEX_PREFIX " "
188/* number of bytes to print per line; must be 16 or 32 */
189#define HEX_ROW_SIZE 16
190/* number of bytes to print at a time (1, 2, 4, 8) */
191#define HEX_GROUP_SIZE 1
192/* include ASCII after the hex output */
193#define HEX_ASCII 1
194/* max number of lines to be printed */
195#define HEX_MAX_LINES 2
196
197/* the list of all allocated objects */
198static LIST_HEAD(object_list);
199/* the list of gray-colored objects (see color_gray comment below) */
200static LIST_HEAD(gray_list);
201/* memory pool allocation */
202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204static LIST_HEAD(mem_pool_free_list);
205/* search tree for object boundaries */
206static struct rb_root object_tree_root = RB_ROOT;
207/* search tree for object (with OBJECT_PHYS flag) boundaries */
208static struct rb_root object_phys_tree_root = RB_ROOT;
209/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211
212/* allocation caches for kmemleak internal data */
213static struct kmem_cache *object_cache;
214static struct kmem_cache *scan_area_cache;
215
216/* set if tracing memory operations is enabled */
217static int kmemleak_enabled = 1;
218/* same as above but only for the kmemleak_free() callback */
219static int kmemleak_free_enabled = 1;
220/* set in the late_initcall if there were no errors */
221static int kmemleak_late_initialized;
222/* set if a kmemleak warning was issued */
223static int kmemleak_warning;
224/* set if a fatal kmemleak error has occurred */
225static int kmemleak_error;
226
227/* minimum and maximum address that may be valid pointers */
228static unsigned long min_addr = ULONG_MAX;
229static unsigned long max_addr;
230
231static struct task_struct *scan_thread;
232/* used to avoid reporting of recently allocated objects */
233static unsigned long jiffies_min_age;
234static unsigned long jiffies_last_scan;
235/* delay between automatic memory scannings */
236static unsigned long jiffies_scan_wait;
237/* enables or disables the task stacks scanning */
238static int kmemleak_stack_scan = 1;
239/* protects the memory scanning, parameters and debug/kmemleak file access */
240static DEFINE_MUTEX(scan_mutex);
241/* setting kmemleak=on, will set this var, skipping the disable */
242static int kmemleak_skip_disable;
243/* If there are leaks that can be reported */
244static bool kmemleak_found_leaks;
245
246static bool kmemleak_verbose;
247module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249static void kmemleak_disable(void);
250
251/*
252 * Print a warning and dump the stack trace.
253 */
254#define kmemleak_warn(x...) do { \
255 pr_warn(x); \
256 dump_stack(); \
257 kmemleak_warning = 1; \
258} while (0)
259
260/*
261 * Macro invoked when a serious kmemleak condition occurred and cannot be
262 * recovered from. Kmemleak will be disabled and further allocation/freeing
263 * tracing no longer available.
264 */
265#define kmemleak_stop(x...) do { \
266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268} while (0)
269
270#define warn_or_seq_printf(seq, fmt, ...) do { \
271 if (seq) \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
273 else \
274 pr_warn(fmt, ##__VA_ARGS__); \
275} while (0)
276
277static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 int rowsize, int groupsize, const void *buf,
279 size_t len, bool ascii)
280{
281 if (seq)
282 seq_hex_dump(m: seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 buf, len, ascii);
284 else
285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 rowsize, groupsize, buf, len, ascii);
287}
288
289/*
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
294 */
295static void hex_dump_object(struct seq_file *seq,
296 struct kmemleak_object *object)
297{
298 const u8 *ptr = (const u8 *)object->pointer;
299 size_t len;
300
301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 return;
303
304 /* limit the number of lines to HEX_MAX_LINES */
305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
308 kasan_disable_current();
309 warn_or_seq_hex_dump(seq, prefix_type: DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310 HEX_GROUP_SIZE, buf: kasan_reset_tag(addr: (void *)ptr), len, HEX_ASCII);
311 kasan_enable_current();
312}
313
314/*
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
323 */
324static bool color_white(const struct kmemleak_object *object)
325{
326 return object->count != KMEMLEAK_BLACK &&
327 object->count < object->min_count;
328}
329
330static bool color_gray(const struct kmemleak_object *object)
331{
332 return object->min_count != KMEMLEAK_BLACK &&
333 object->count >= object->min_count;
334}
335
336/*
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
340 */
341static bool unreferenced_object(struct kmemleak_object *object)
342{
343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 time_before_eq(object->jiffies + jiffies_min_age,
345 jiffies_last_scan);
346}
347
348/*
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
351 */
352static void print_unreferenced(struct seq_file *seq,
353 struct kmemleak_object *object)
354{
355 int i;
356 unsigned long *entries;
357 unsigned int nr_entries;
358 unsigned int msecs_age = jiffies_to_msecs(j: jiffies - object->jiffies);
359
360 nr_entries = stack_depot_fetch(handle: object->trace_handle, entries: &entries);
361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362 object->pointer, object->size);
363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364 object->comm, object->pid, object->jiffies,
365 msecs_age / 1000, msecs_age % 1000);
366 hex_dump_object(seq, object);
367 warn_or_seq_printf(seq, " backtrace:\n");
368
369 for (i = 0; i < nr_entries; i++) {
370 void *ptr = (void *)entries[i];
371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
372 }
373}
374
375/*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
380static void dump_object_info(struct kmemleak_object *object)
381{
382 pr_notice("Object 0x%08lx (size %zu):\n",
383 object->pointer, object->size);
384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
385 object->comm, object->pid, object->jiffies);
386 pr_notice(" min_count = %d\n", object->min_count);
387 pr_notice(" count = %d\n", object->count);
388 pr_notice(" flags = 0x%x\n", object->flags);
389 pr_notice(" checksum = %u\n", object->checksum);
390 pr_notice(" backtrace:\n");
391 if (object->trace_handle)
392 stack_depot_print(stack: object->trace_handle);
393}
394
395/*
396 * Look-up a memory block metadata (kmemleak_object) in the object search
397 * tree based on a pointer value. If alias is 0, only values pointing to the
398 * beginning of the memory block are allowed. The kmemleak_lock must be held
399 * when calling this function.
400 */
401static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 bool is_phys)
403{
404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 object_tree_root.rb_node;
406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag(addr: (void *)ptr);
407
408 while (rb) {
409 struct kmemleak_object *object;
410 unsigned long untagged_objp;
411
412 object = rb_entry(rb, struct kmemleak_object, rb_node);
413 untagged_objp = (unsigned long)kasan_reset_tag(addr: (void *)object->pointer);
414
415 if (untagged_ptr < untagged_objp)
416 rb = object->rb_node.rb_left;
417 else if (untagged_objp + object->size <= untagged_ptr)
418 rb = object->rb_node.rb_right;
419 else if (untagged_objp == untagged_ptr || alias)
420 return object;
421 else {
422 kmemleak_warn("Found object by alias at 0x%08lx\n",
423 ptr);
424 dump_object_info(object);
425 break;
426 }
427 }
428 return NULL;
429}
430
431/* Look-up a kmemleak object which allocated with virtual address. */
432static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433{
434 return __lookup_object(ptr, alias, is_phys: false);
435}
436
437/*
438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439 * that once an object's use_count reached 0, the RCU freeing was already
440 * registered and the object should no longer be used. This function must be
441 * called under the protection of rcu_read_lock().
442 */
443static int get_object(struct kmemleak_object *object)
444{
445 return atomic_inc_not_zero(v: &object->use_count);
446}
447
448/*
449 * Memory pool allocation and freeing. kmemleak_lock must not be held.
450 */
451static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452{
453 unsigned long flags;
454 struct kmemleak_object *object;
455
456 /* try the slab allocator first */
457 if (object_cache) {
458 object = kmem_cache_alloc(cachep: object_cache, gfp_kmemleak_mask(gfp));
459 if (object)
460 return object;
461 }
462
463 /* slab allocation failed, try the memory pool */
464 raw_spin_lock_irqsave(&kmemleak_lock, flags);
465 object = list_first_entry_or_null(&mem_pool_free_list,
466 typeof(*object), object_list);
467 if (object)
468 list_del(entry: &object->object_list);
469 else if (mem_pool_free_count)
470 object = &mem_pool[--mem_pool_free_count];
471 else
472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474
475 return object;
476}
477
478/*
479 * Return the object to either the slab allocator or the memory pool.
480 */
481static void mem_pool_free(struct kmemleak_object *object)
482{
483 unsigned long flags;
484
485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 kmem_cache_free(s: object_cache, objp: object);
487 return;
488 }
489
490 /* add the object to the memory pool free list */
491 raw_spin_lock_irqsave(&kmemleak_lock, flags);
492 list_add(new: &object->object_list, head: &mem_pool_free_list);
493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494}
495
496/*
497 * RCU callback to free a kmemleak_object.
498 */
499static void free_object_rcu(struct rcu_head *rcu)
500{
501 struct hlist_node *tmp;
502 struct kmemleak_scan_area *area;
503 struct kmemleak_object *object =
504 container_of(rcu, struct kmemleak_object, rcu);
505
506 /*
507 * Once use_count is 0 (guaranteed by put_object), there is no other
508 * code accessing this object, hence no need for locking.
509 */
510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 hlist_del(n: &area->node);
512 kmem_cache_free(s: scan_area_cache, objp: area);
513 }
514 mem_pool_free(object);
515}
516
517/*
518 * Decrement the object use_count. Once the count is 0, free the object using
519 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520 * delete_object() path, the delayed RCU freeing ensures that there is no
521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522 * is also possible.
523 */
524static void put_object(struct kmemleak_object *object)
525{
526 if (!atomic_dec_and_test(v: &object->use_count))
527 return;
528
529 /* should only get here after delete_object was called */
530 WARN_ON(object->flags & OBJECT_ALLOCATED);
531
532 /*
533 * It may be too early for the RCU callbacks, however, there is no
534 * concurrent object_list traversal when !object_cache and all objects
535 * came from the memory pool. Free the object directly.
536 */
537 if (object_cache)
538 call_rcu(head: &object->rcu, func: free_object_rcu);
539 else
540 free_object_rcu(rcu: &object->rcu);
541}
542
543/*
544 * Look up an object in the object search tree and increase its use_count.
545 */
546static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 bool is_phys)
548{
549 unsigned long flags;
550 struct kmemleak_object *object;
551
552 rcu_read_lock();
553 raw_spin_lock_irqsave(&kmemleak_lock, flags);
554 object = __lookup_object(ptr, alias, is_phys);
555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556
557 /* check whether the object is still available */
558 if (object && !get_object(object))
559 object = NULL;
560 rcu_read_unlock();
561
562 return object;
563}
564
565/* Look up and get an object which allocated with virtual address. */
566static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567{
568 return __find_and_get_object(ptr, alias, is_phys: false);
569}
570
571/*
572 * Remove an object from the object_tree_root (or object_phys_tree_root)
573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574 * is still enabled.
575 */
576static void __remove_object(struct kmemleak_object *object)
577{
578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 &object_phys_tree_root :
580 &object_tree_root);
581 if (!(object->del_state & DELSTATE_NO_DELETE))
582 list_del_rcu(entry: &object->object_list);
583 object->del_state |= DELSTATE_REMOVED;
584}
585
586static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587 int alias,
588 bool is_phys)
589{
590 struct kmemleak_object *object;
591
592 object = __lookup_object(ptr, alias, is_phys);
593 if (object)
594 __remove_object(object);
595
596 return object;
597}
598
599/*
600 * Look up an object in the object search tree and remove it from both
601 * object_tree_root (or object_phys_tree_root) and object_list. The
602 * returned object's use_count should be at least 1, as initially set
603 * by create_object().
604 */
605static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606 bool is_phys)
607{
608 unsigned long flags;
609 struct kmemleak_object *object;
610
611 raw_spin_lock_irqsave(&kmemleak_lock, flags);
612 object = __find_and_remove_object(ptr, alias, is_phys);
613 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
614
615 return object;
616}
617
618static noinline depot_stack_handle_t set_track_prepare(void)
619{
620 depot_stack_handle_t trace_handle;
621 unsigned long entries[MAX_TRACE];
622 unsigned int nr_entries;
623
624 /*
625 * Use object_cache to determine whether kmemleak_init() has
626 * been invoked. stack_depot_early_init() is called before
627 * kmemleak_init() in mm_core_init().
628 */
629 if (!object_cache)
630 return 0;
631 nr_entries = stack_trace_save(store: entries, ARRAY_SIZE(entries), skipnr: 3);
632 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633
634 return trace_handle;
635}
636
637static struct kmemleak_object *__alloc_object(gfp_t gfp)
638{
639 struct kmemleak_object *object;
640
641 object = mem_pool_alloc(gfp);
642 if (!object) {
643 pr_warn("Cannot allocate a kmemleak_object structure\n");
644 kmemleak_disable();
645 }
646
647 return object;
648}
649
650static int __link_object(struct kmemleak_object *object, unsigned long ptr,
651 size_t size, int min_count, bool is_phys)
652{
653
654 struct kmemleak_object *parent;
655 struct rb_node **link, *rb_parent;
656 unsigned long untagged_ptr;
657 unsigned long untagged_objp;
658
659 INIT_LIST_HEAD(list: &object->object_list);
660 INIT_LIST_HEAD(list: &object->gray_list);
661 INIT_HLIST_HEAD(&object->area_list);
662 raw_spin_lock_init(&object->lock);
663 atomic_set(v: &object->use_count, i: 1);
664 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
665 object->pointer = ptr;
666 object->size = kfence_ksize(addr: (void *)ptr) ?: size;
667 object->excess_ref = 0;
668 object->min_count = min_count;
669 object->count = 0; /* white color initially */
670 object->jiffies = jiffies;
671 object->checksum = 0;
672 object->del_state = 0;
673
674 /* task information */
675 if (in_hardirq()) {
676 object->pid = 0;
677 strncpy(p: object->comm, q: "hardirq", size: sizeof(object->comm));
678 } else if (in_serving_softirq()) {
679 object->pid = 0;
680 strncpy(p: object->comm, q: "softirq", size: sizeof(object->comm));
681 } else {
682 object->pid = current->pid;
683 /*
684 * There is a small chance of a race with set_task_comm(),
685 * however using get_task_comm() here may cause locking
686 * dependency issues with current->alloc_lock. In the worst
687 * case, the command line is not correct.
688 */
689 strncpy(p: object->comm, current->comm, size: sizeof(object->comm));
690 }
691
692 /* kernel backtrace */
693 object->trace_handle = set_track_prepare();
694
695 untagged_ptr = (unsigned long)kasan_reset_tag(addr: (void *)ptr);
696 /*
697 * Only update min_addr and max_addr with object
698 * storing virtual address.
699 */
700 if (!is_phys) {
701 min_addr = min(min_addr, untagged_ptr);
702 max_addr = max(max_addr, untagged_ptr + size);
703 }
704 link = is_phys ? &object_phys_tree_root.rb_node :
705 &object_tree_root.rb_node;
706 rb_parent = NULL;
707 while (*link) {
708 rb_parent = *link;
709 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
710 untagged_objp = (unsigned long)kasan_reset_tag(addr: (void *)parent->pointer);
711 if (untagged_ptr + size <= untagged_objp)
712 link = &parent->rb_node.rb_left;
713 else if (untagged_objp + parent->size <= untagged_ptr)
714 link = &parent->rb_node.rb_right;
715 else {
716 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
717 ptr);
718 /*
719 * No need for parent->lock here since "parent" cannot
720 * be freed while the kmemleak_lock is held.
721 */
722 dump_object_info(object: parent);
723 return -EEXIST;
724 }
725 }
726 rb_link_node(node: &object->rb_node, parent: rb_parent, rb_link: link);
727 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
728 &object_tree_root);
729 list_add_tail_rcu(new: &object->object_list, head: &object_list);
730
731 return 0;
732}
733
734/*
735 * Create the metadata (struct kmemleak_object) corresponding to an allocated
736 * memory block and add it to the object_list and object_tree_root (or
737 * object_phys_tree_root).
738 */
739static void __create_object(unsigned long ptr, size_t size,
740 int min_count, gfp_t gfp, bool is_phys)
741{
742 struct kmemleak_object *object;
743 unsigned long flags;
744 int ret;
745
746 object = __alloc_object(gfp);
747 if (!object)
748 return;
749
750 raw_spin_lock_irqsave(&kmemleak_lock, flags);
751 ret = __link_object(object, ptr, size, min_count, is_phys);
752 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
753 if (ret)
754 mem_pool_free(object);
755}
756
757/* Create kmemleak object which allocated with virtual address. */
758static void create_object(unsigned long ptr, size_t size,
759 int min_count, gfp_t gfp)
760{
761 __create_object(ptr, size, min_count, gfp, is_phys: false);
762}
763
764/* Create kmemleak object which allocated with physical address. */
765static void create_object_phys(unsigned long ptr, size_t size,
766 int min_count, gfp_t gfp)
767{
768 __create_object(ptr, size, min_count, gfp, is_phys: true);
769}
770
771/*
772 * Mark the object as not allocated and schedule RCU freeing via put_object().
773 */
774static void __delete_object(struct kmemleak_object *object)
775{
776 unsigned long flags;
777
778 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
779 WARN_ON(atomic_read(&object->use_count) < 1);
780
781 /*
782 * Locking here also ensures that the corresponding memory block
783 * cannot be freed when it is being scanned.
784 */
785 raw_spin_lock_irqsave(&object->lock, flags);
786 object->flags &= ~OBJECT_ALLOCATED;
787 raw_spin_unlock_irqrestore(&object->lock, flags);
788 put_object(object);
789}
790
791/*
792 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
793 * delete it.
794 */
795static void delete_object_full(unsigned long ptr)
796{
797 struct kmemleak_object *object;
798
799 object = find_and_remove_object(ptr, alias: 0, is_phys: false);
800 if (!object) {
801#ifdef DEBUG
802 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
803 ptr);
804#endif
805 return;
806 }
807 __delete_object(object);
808}
809
810/*
811 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
812 * delete it. If the memory block is partially freed, the function may create
813 * additional metadata for the remaining parts of the block.
814 */
815static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
816{
817 struct kmemleak_object *object, *object_l, *object_r;
818 unsigned long start, end, flags;
819
820 object_l = __alloc_object(GFP_KERNEL);
821 if (!object_l)
822 return;
823
824 object_r = __alloc_object(GFP_KERNEL);
825 if (!object_r)
826 goto out;
827
828 raw_spin_lock_irqsave(&kmemleak_lock, flags);
829 object = __find_and_remove_object(ptr, alias: 1, is_phys);
830 if (!object) {
831#ifdef DEBUG
832 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
833 ptr, size);
834#endif
835 goto unlock;
836 }
837
838 /*
839 * Create one or two objects that may result from the memory block
840 * split. Note that partial freeing is only done by free_bootmem() and
841 * this happens before kmemleak_init() is called.
842 */
843 start = object->pointer;
844 end = object->pointer + object->size;
845 if ((ptr > start) &&
846 !__link_object(object: object_l, ptr: start, size: ptr - start,
847 min_count: object->min_count, is_phys))
848 object_l = NULL;
849 if ((ptr + size < end) &&
850 !__link_object(object: object_r, ptr: ptr + size, size: end - ptr - size,
851 min_count: object->min_count, is_phys))
852 object_r = NULL;
853
854unlock:
855 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
856 if (object)
857 __delete_object(object);
858
859out:
860 if (object_l)
861 mem_pool_free(object: object_l);
862 if (object_r)
863 mem_pool_free(object: object_r);
864}
865
866static void __paint_it(struct kmemleak_object *object, int color)
867{
868 object->min_count = color;
869 if (color == KMEMLEAK_BLACK)
870 object->flags |= OBJECT_NO_SCAN;
871}
872
873static void paint_it(struct kmemleak_object *object, int color)
874{
875 unsigned long flags;
876
877 raw_spin_lock_irqsave(&object->lock, flags);
878 __paint_it(object, color);
879 raw_spin_unlock_irqrestore(&object->lock, flags);
880}
881
882static void paint_ptr(unsigned long ptr, int color, bool is_phys)
883{
884 struct kmemleak_object *object;
885
886 object = __find_and_get_object(ptr, alias: 0, is_phys);
887 if (!object) {
888 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
889 ptr,
890 (color == KMEMLEAK_GREY) ? "Grey" :
891 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
892 return;
893 }
894 paint_it(object, color);
895 put_object(object);
896}
897
898/*
899 * Mark an object permanently as gray-colored so that it can no longer be
900 * reported as a leak. This is used in general to mark a false positive.
901 */
902static void make_gray_object(unsigned long ptr)
903{
904 paint_ptr(ptr, KMEMLEAK_GREY, is_phys: false);
905}
906
907/*
908 * Mark the object as black-colored so that it is ignored from scans and
909 * reporting.
910 */
911static void make_black_object(unsigned long ptr, bool is_phys)
912{
913 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
914}
915
916/*
917 * Add a scanning area to the object. If at least one such area is added,
918 * kmemleak will only scan these ranges rather than the whole memory block.
919 */
920static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
921{
922 unsigned long flags;
923 struct kmemleak_object *object;
924 struct kmemleak_scan_area *area = NULL;
925 unsigned long untagged_ptr;
926 unsigned long untagged_objp;
927
928 object = find_and_get_object(ptr, alias: 1);
929 if (!object) {
930 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
931 ptr);
932 return;
933 }
934
935 untagged_ptr = (unsigned long)kasan_reset_tag(addr: (void *)ptr);
936 untagged_objp = (unsigned long)kasan_reset_tag(addr: (void *)object->pointer);
937
938 if (scan_area_cache)
939 area = kmem_cache_alloc(cachep: scan_area_cache, gfp_kmemleak_mask(gfp));
940
941 raw_spin_lock_irqsave(&object->lock, flags);
942 if (!area) {
943 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
944 /* mark the object for full scan to avoid false positives */
945 object->flags |= OBJECT_FULL_SCAN;
946 goto out_unlock;
947 }
948 if (size == SIZE_MAX) {
949 size = untagged_objp + object->size - untagged_ptr;
950 } else if (untagged_ptr + size > untagged_objp + object->size) {
951 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
952 dump_object_info(object);
953 kmem_cache_free(s: scan_area_cache, objp: area);
954 goto out_unlock;
955 }
956
957 INIT_HLIST_NODE(h: &area->node);
958 area->start = ptr;
959 area->size = size;
960
961 hlist_add_head(n: &area->node, h: &object->area_list);
962out_unlock:
963 raw_spin_unlock_irqrestore(&object->lock, flags);
964 put_object(object);
965}
966
967/*
968 * Any surplus references (object already gray) to 'ptr' are passed to
969 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
970 * vm_struct may be used as an alternative reference to the vmalloc'ed object
971 * (see free_thread_stack()).
972 */
973static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
974{
975 unsigned long flags;
976 struct kmemleak_object *object;
977
978 object = find_and_get_object(ptr, alias: 0);
979 if (!object) {
980 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
981 ptr);
982 return;
983 }
984
985 raw_spin_lock_irqsave(&object->lock, flags);
986 object->excess_ref = excess_ref;
987 raw_spin_unlock_irqrestore(&object->lock, flags);
988 put_object(object);
989}
990
991/*
992 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
993 * pointer. Such object will not be scanned by kmemleak but references to it
994 * are searched.
995 */
996static void object_no_scan(unsigned long ptr)
997{
998 unsigned long flags;
999 struct kmemleak_object *object;
1000
1001 object = find_and_get_object(ptr, alias: 0);
1002 if (!object) {
1003 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1004 return;
1005 }
1006
1007 raw_spin_lock_irqsave(&object->lock, flags);
1008 object->flags |= OBJECT_NO_SCAN;
1009 raw_spin_unlock_irqrestore(&object->lock, flags);
1010 put_object(object);
1011}
1012
1013/**
1014 * kmemleak_alloc - register a newly allocated object
1015 * @ptr: pointer to beginning of the object
1016 * @size: size of the object
1017 * @min_count: minimum number of references to this object. If during memory
1018 * scanning a number of references less than @min_count is found,
1019 * the object is reported as a memory leak. If @min_count is 0,
1020 * the object is never reported as a leak. If @min_count is -1,
1021 * the object is ignored (not scanned and not reported as a leak)
1022 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1023 *
1024 * This function is called from the kernel allocators when a new object
1025 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1026 */
1027void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1028 gfp_t gfp)
1029{
1030 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1031
1032 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1033 create_object(ptr: (unsigned long)ptr, size, min_count, gfp);
1034}
1035EXPORT_SYMBOL_GPL(kmemleak_alloc);
1036
1037/**
1038 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1039 * @ptr: __percpu pointer to beginning of the object
1040 * @size: size of the object
1041 * @gfp: flags used for kmemleak internal memory allocations
1042 *
1043 * This function is called from the kernel percpu allocator when a new object
1044 * (memory block) is allocated (alloc_percpu).
1045 */
1046void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1047 gfp_t gfp)
1048{
1049 unsigned int cpu;
1050
1051 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1052
1053 /*
1054 * Percpu allocations are only scanned and not reported as leaks
1055 * (min_count is set to 0).
1056 */
1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 for_each_possible_cpu(cpu)
1059 create_object(ptr: (unsigned long)per_cpu_ptr(ptr, cpu),
1060 size, min_count: 0, gfp);
1061}
1062EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1063
1064/**
1065 * kmemleak_vmalloc - register a newly vmalloc'ed object
1066 * @area: pointer to vm_struct
1067 * @size: size of the object
1068 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1069 *
1070 * This function is called from the vmalloc() kernel allocator when a new
1071 * object (memory block) is allocated.
1072 */
1073void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1074{
1075 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1076
1077 /*
1078 * A min_count = 2 is needed because vm_struct contains a reference to
1079 * the virtual address of the vmalloc'ed block.
1080 */
1081 if (kmemleak_enabled) {
1082 create_object(ptr: (unsigned long)area->addr, size, min_count: 2, gfp);
1083 object_set_excess_ref(ptr: (unsigned long)area,
1084 excess_ref: (unsigned long)area->addr);
1085 }
1086}
1087EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1088
1089/**
1090 * kmemleak_free - unregister a previously registered object
1091 * @ptr: pointer to beginning of the object
1092 *
1093 * This function is called from the kernel allocators when an object (memory
1094 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1095 */
1096void __ref kmemleak_free(const void *ptr)
1097{
1098 pr_debug("%s(0x%px)\n", __func__, ptr);
1099
1100 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1101 delete_object_full(ptr: (unsigned long)ptr);
1102}
1103EXPORT_SYMBOL_GPL(kmemleak_free);
1104
1105/**
1106 * kmemleak_free_part - partially unregister a previously registered object
1107 * @ptr: pointer to the beginning or inside the object. This also
1108 * represents the start of the range to be freed
1109 * @size: size to be unregistered
1110 *
1111 * This function is called when only a part of a memory block is freed
1112 * (usually from the bootmem allocator).
1113 */
1114void __ref kmemleak_free_part(const void *ptr, size_t size)
1115{
1116 pr_debug("%s(0x%px)\n", __func__, ptr);
1117
1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 delete_object_part(ptr: (unsigned long)ptr, size, is_phys: false);
1120}
1121EXPORT_SYMBOL_GPL(kmemleak_free_part);
1122
1123/**
1124 * kmemleak_free_percpu - unregister a previously registered __percpu object
1125 * @ptr: __percpu pointer to beginning of the object
1126 *
1127 * This function is called from the kernel percpu allocator when an object
1128 * (memory block) is freed (free_percpu).
1129 */
1130void __ref kmemleak_free_percpu(const void __percpu *ptr)
1131{
1132 unsigned int cpu;
1133
1134 pr_debug("%s(0x%px)\n", __func__, ptr);
1135
1136 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137 for_each_possible_cpu(cpu)
1138 delete_object_full(ptr: (unsigned long)per_cpu_ptr(ptr,
1139 cpu));
1140}
1141EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1142
1143/**
1144 * kmemleak_update_trace - update object allocation stack trace
1145 * @ptr: pointer to beginning of the object
1146 *
1147 * Override the object allocation stack trace for cases where the actual
1148 * allocation place is not always useful.
1149 */
1150void __ref kmemleak_update_trace(const void *ptr)
1151{
1152 struct kmemleak_object *object;
1153 unsigned long flags;
1154
1155 pr_debug("%s(0x%px)\n", __func__, ptr);
1156
1157 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1158 return;
1159
1160 object = find_and_get_object(ptr: (unsigned long)ptr, alias: 1);
1161 if (!object) {
1162#ifdef DEBUG
1163 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1164 ptr);
1165#endif
1166 return;
1167 }
1168
1169 raw_spin_lock_irqsave(&object->lock, flags);
1170 object->trace_handle = set_track_prepare();
1171 raw_spin_unlock_irqrestore(&object->lock, flags);
1172
1173 put_object(object);
1174}
1175EXPORT_SYMBOL(kmemleak_update_trace);
1176
1177/**
1178 * kmemleak_not_leak - mark an allocated object as false positive
1179 * @ptr: pointer to beginning of the object
1180 *
1181 * Calling this function on an object will cause the memory block to no longer
1182 * be reported as leak and always be scanned.
1183 */
1184void __ref kmemleak_not_leak(const void *ptr)
1185{
1186 pr_debug("%s(0x%px)\n", __func__, ptr);
1187
1188 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1189 make_gray_object(ptr: (unsigned long)ptr);
1190}
1191EXPORT_SYMBOL(kmemleak_not_leak);
1192
1193/**
1194 * kmemleak_ignore - ignore an allocated object
1195 * @ptr: pointer to beginning of the object
1196 *
1197 * Calling this function on an object will cause the memory block to be
1198 * ignored (not scanned and not reported as a leak). This is usually done when
1199 * it is known that the corresponding block is not a leak and does not contain
1200 * any references to other allocated memory blocks.
1201 */
1202void __ref kmemleak_ignore(const void *ptr)
1203{
1204 pr_debug("%s(0x%px)\n", __func__, ptr);
1205
1206 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1207 make_black_object(ptr: (unsigned long)ptr, is_phys: false);
1208}
1209EXPORT_SYMBOL(kmemleak_ignore);
1210
1211/**
1212 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1213 * @ptr: pointer to beginning or inside the object. This also
1214 * represents the start of the scan area
1215 * @size: size of the scan area
1216 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1217 *
1218 * This function is used when it is known that only certain parts of an object
1219 * contain references to other objects. Kmemleak will only scan these areas
1220 * reducing the number false negatives.
1221 */
1222void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1223{
1224 pr_debug("%s(0x%px)\n", __func__, ptr);
1225
1226 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1227 add_scan_area(ptr: (unsigned long)ptr, size, gfp);
1228}
1229EXPORT_SYMBOL(kmemleak_scan_area);
1230
1231/**
1232 * kmemleak_no_scan - do not scan an allocated object
1233 * @ptr: pointer to beginning of the object
1234 *
1235 * This function notifies kmemleak not to scan the given memory block. Useful
1236 * in situations where it is known that the given object does not contain any
1237 * references to other objects. Kmemleak will not scan such objects reducing
1238 * the number of false negatives.
1239 */
1240void __ref kmemleak_no_scan(const void *ptr)
1241{
1242 pr_debug("%s(0x%px)\n", __func__, ptr);
1243
1244 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1245 object_no_scan(ptr: (unsigned long)ptr);
1246}
1247EXPORT_SYMBOL(kmemleak_no_scan);
1248
1249/**
1250 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1251 * address argument
1252 * @phys: physical address of the object
1253 * @size: size of the object
1254 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1255 */
1256void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1257{
1258 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1259
1260 if (kmemleak_enabled)
1261 /*
1262 * Create object with OBJECT_PHYS flag and
1263 * assume min_count 0.
1264 */
1265 create_object_phys(ptr: (unsigned long)phys, size, min_count: 0, gfp);
1266}
1267EXPORT_SYMBOL(kmemleak_alloc_phys);
1268
1269/**
1270 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1271 * physical address argument
1272 * @phys: physical address if the beginning or inside an object. This
1273 * also represents the start of the range to be freed
1274 * @size: size to be unregistered
1275 */
1276void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1277{
1278 pr_debug("%s(0x%px)\n", __func__, &phys);
1279
1280 if (kmemleak_enabled)
1281 delete_object_part(ptr: (unsigned long)phys, size, is_phys: true);
1282}
1283EXPORT_SYMBOL(kmemleak_free_part_phys);
1284
1285/**
1286 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1287 * address argument
1288 * @phys: physical address of the object
1289 */
1290void __ref kmemleak_ignore_phys(phys_addr_t phys)
1291{
1292 pr_debug("%s(0x%px)\n", __func__, &phys);
1293
1294 if (kmemleak_enabled)
1295 make_black_object(ptr: (unsigned long)phys, is_phys: true);
1296}
1297EXPORT_SYMBOL(kmemleak_ignore_phys);
1298
1299/*
1300 * Update an object's checksum and return true if it was modified.
1301 */
1302static bool update_checksum(struct kmemleak_object *object)
1303{
1304 u32 old_csum = object->checksum;
1305
1306 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1307 return false;
1308
1309 kasan_disable_current();
1310 kcsan_disable_current();
1311 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1312 kasan_enable_current();
1313 kcsan_enable_current();
1314
1315 return object->checksum != old_csum;
1316}
1317
1318/*
1319 * Update an object's references. object->lock must be held by the caller.
1320 */
1321static void update_refs(struct kmemleak_object *object)
1322{
1323 if (!color_white(object)) {
1324 /* non-orphan, ignored or new */
1325 return;
1326 }
1327
1328 /*
1329 * Increase the object's reference count (number of pointers to the
1330 * memory block). If this count reaches the required minimum, the
1331 * object's color will become gray and it will be added to the
1332 * gray_list.
1333 */
1334 object->count++;
1335 if (color_gray(object)) {
1336 /* put_object() called when removing from gray_list */
1337 WARN_ON(!get_object(object));
1338 list_add_tail(new: &object->gray_list, head: &gray_list);
1339 }
1340}
1341
1342/*
1343 * Memory scanning is a long process and it needs to be interruptible. This
1344 * function checks whether such interrupt condition occurred.
1345 */
1346static int scan_should_stop(void)
1347{
1348 if (!kmemleak_enabled)
1349 return 1;
1350
1351 /*
1352 * This function may be called from either process or kthread context,
1353 * hence the need to check for both stop conditions.
1354 */
1355 if (current->mm)
1356 return signal_pending(current);
1357 else
1358 return kthread_should_stop();
1359
1360 return 0;
1361}
1362
1363/*
1364 * Scan a memory block (exclusive range) for valid pointers and add those
1365 * found to the gray list.
1366 */
1367static void scan_block(void *_start, void *_end,
1368 struct kmemleak_object *scanned)
1369{
1370 unsigned long *ptr;
1371 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1372 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1373 unsigned long flags;
1374 unsigned long untagged_ptr;
1375
1376 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1377 for (ptr = start; ptr < end; ptr++) {
1378 struct kmemleak_object *object;
1379 unsigned long pointer;
1380 unsigned long excess_ref;
1381
1382 if (scan_should_stop())
1383 break;
1384
1385 kasan_disable_current();
1386 pointer = *(unsigned long *)kasan_reset_tag(addr: (void *)ptr);
1387 kasan_enable_current();
1388
1389 untagged_ptr = (unsigned long)kasan_reset_tag(addr: (void *)pointer);
1390 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1391 continue;
1392
1393 /*
1394 * No need for get_object() here since we hold kmemleak_lock.
1395 * object->use_count cannot be dropped to 0 while the object
1396 * is still present in object_tree_root and object_list
1397 * (with updates protected by kmemleak_lock).
1398 */
1399 object = lookup_object(ptr: pointer, alias: 1);
1400 if (!object)
1401 continue;
1402 if (object == scanned)
1403 /* self referenced, ignore */
1404 continue;
1405
1406 /*
1407 * Avoid the lockdep recursive warning on object->lock being
1408 * previously acquired in scan_object(). These locks are
1409 * enclosed by scan_mutex.
1410 */
1411 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1412 /* only pass surplus references (object already gray) */
1413 if (color_gray(object)) {
1414 excess_ref = object->excess_ref;
1415 /* no need for update_refs() if object already gray */
1416 } else {
1417 excess_ref = 0;
1418 update_refs(object);
1419 }
1420 raw_spin_unlock(&object->lock);
1421
1422 if (excess_ref) {
1423 object = lookup_object(ptr: excess_ref, alias: 0);
1424 if (!object)
1425 continue;
1426 if (object == scanned)
1427 /* circular reference, ignore */
1428 continue;
1429 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1430 update_refs(object);
1431 raw_spin_unlock(&object->lock);
1432 }
1433 }
1434 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1435}
1436
1437/*
1438 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1439 */
1440#ifdef CONFIG_SMP
1441static void scan_large_block(void *start, void *end)
1442{
1443 void *next;
1444
1445 while (start < end) {
1446 next = min(start + MAX_SCAN_SIZE, end);
1447 scan_block(start: start, end: next, NULL);
1448 start = next;
1449 cond_resched();
1450 }
1451}
1452#endif
1453
1454/*
1455 * Scan a memory block corresponding to a kmemleak_object. A condition is
1456 * that object->use_count >= 1.
1457 */
1458static void scan_object(struct kmemleak_object *object)
1459{
1460 struct kmemleak_scan_area *area;
1461 unsigned long flags;
1462 void *obj_ptr;
1463
1464 /*
1465 * Once the object->lock is acquired, the corresponding memory block
1466 * cannot be freed (the same lock is acquired in delete_object).
1467 */
1468 raw_spin_lock_irqsave(&object->lock, flags);
1469 if (object->flags & OBJECT_NO_SCAN)
1470 goto out;
1471 if (!(object->flags & OBJECT_ALLOCATED))
1472 /* already freed object */
1473 goto out;
1474
1475 obj_ptr = object->flags & OBJECT_PHYS ?
1476 __va((phys_addr_t)object->pointer) :
1477 (void *)object->pointer;
1478
1479 if (hlist_empty(h: &object->area_list) ||
1480 object->flags & OBJECT_FULL_SCAN) {
1481 void *start = obj_ptr;
1482 void *end = obj_ptr + object->size;
1483 void *next;
1484
1485 do {
1486 next = min(start + MAX_SCAN_SIZE, end);
1487 scan_block(start: start, end: next, scanned: object);
1488
1489 start = next;
1490 if (start >= end)
1491 break;
1492
1493 raw_spin_unlock_irqrestore(&object->lock, flags);
1494 cond_resched();
1495 raw_spin_lock_irqsave(&object->lock, flags);
1496 } while (object->flags & OBJECT_ALLOCATED);
1497 } else
1498 hlist_for_each_entry(area, &object->area_list, node)
1499 scan_block(start: (void *)area->start,
1500 end: (void *)(area->start + area->size),
1501 scanned: object);
1502out:
1503 raw_spin_unlock_irqrestore(&object->lock, flags);
1504}
1505
1506/*
1507 * Scan the objects already referenced (gray objects). More objects will be
1508 * referenced and, if there are no memory leaks, all the objects are scanned.
1509 */
1510static void scan_gray_list(void)
1511{
1512 struct kmemleak_object *object, *tmp;
1513
1514 /*
1515 * The list traversal is safe for both tail additions and removals
1516 * from inside the loop. The kmemleak objects cannot be freed from
1517 * outside the loop because their use_count was incremented.
1518 */
1519 object = list_entry(gray_list.next, typeof(*object), gray_list);
1520 while (&object->gray_list != &gray_list) {
1521 cond_resched();
1522
1523 /* may add new objects to the list */
1524 if (!scan_should_stop())
1525 scan_object(object);
1526
1527 tmp = list_entry(object->gray_list.next, typeof(*object),
1528 gray_list);
1529
1530 /* remove the object from the list and release it */
1531 list_del(entry: &object->gray_list);
1532 put_object(object);
1533
1534 object = tmp;
1535 }
1536 WARN_ON(!list_empty(&gray_list));
1537}
1538
1539/*
1540 * Conditionally call resched() in an object iteration loop while making sure
1541 * that the given object won't go away without RCU read lock by performing a
1542 * get_object() if necessaary.
1543 */
1544static void kmemleak_cond_resched(struct kmemleak_object *object)
1545{
1546 if (!get_object(object))
1547 return; /* Try next object */
1548
1549 raw_spin_lock_irq(&kmemleak_lock);
1550 if (object->del_state & DELSTATE_REMOVED)
1551 goto unlock_put; /* Object removed */
1552 object->del_state |= DELSTATE_NO_DELETE;
1553 raw_spin_unlock_irq(&kmemleak_lock);
1554
1555 rcu_read_unlock();
1556 cond_resched();
1557 rcu_read_lock();
1558
1559 raw_spin_lock_irq(&kmemleak_lock);
1560 if (object->del_state & DELSTATE_REMOVED)
1561 list_del_rcu(entry: &object->object_list);
1562 object->del_state &= ~DELSTATE_NO_DELETE;
1563unlock_put:
1564 raw_spin_unlock_irq(&kmemleak_lock);
1565 put_object(object);
1566}
1567
1568/*
1569 * Scan data sections and all the referenced memory blocks allocated via the
1570 * kernel's standard allocators. This function must be called with the
1571 * scan_mutex held.
1572 */
1573static void kmemleak_scan(void)
1574{
1575 struct kmemleak_object *object;
1576 struct zone *zone;
1577 int __maybe_unused i;
1578 int new_leaks = 0;
1579
1580 jiffies_last_scan = jiffies;
1581
1582 /* prepare the kmemleak_object's */
1583 rcu_read_lock();
1584 list_for_each_entry_rcu(object, &object_list, object_list) {
1585 raw_spin_lock_irq(&object->lock);
1586#ifdef DEBUG
1587 /*
1588 * With a few exceptions there should be a maximum of
1589 * 1 reference to any object at this point.
1590 */
1591 if (atomic_read(&object->use_count) > 1) {
1592 pr_debug("object->use_count = %d\n",
1593 atomic_read(&object->use_count));
1594 dump_object_info(object);
1595 }
1596#endif
1597
1598 /* ignore objects outside lowmem (paint them black) */
1599 if ((object->flags & OBJECT_PHYS) &&
1600 !(object->flags & OBJECT_NO_SCAN)) {
1601 unsigned long phys = object->pointer;
1602
1603 if (PHYS_PFN(phys) < min_low_pfn ||
1604 PHYS_PFN(phys + object->size) >= max_low_pfn)
1605 __paint_it(object, KMEMLEAK_BLACK);
1606 }
1607
1608 /* reset the reference count (whiten the object) */
1609 object->count = 0;
1610 if (color_gray(object) && get_object(object))
1611 list_add_tail(new: &object->gray_list, head: &gray_list);
1612
1613 raw_spin_unlock_irq(&object->lock);
1614
1615 if (need_resched())
1616 kmemleak_cond_resched(object);
1617 }
1618 rcu_read_unlock();
1619
1620#ifdef CONFIG_SMP
1621 /* per-cpu sections scanning */
1622 for_each_possible_cpu(i)
1623 scan_large_block(start: __per_cpu_start + per_cpu_offset(i),
1624 end: __per_cpu_end + per_cpu_offset(i));
1625#endif
1626
1627 /*
1628 * Struct page scanning for each node.
1629 */
1630 get_online_mems();
1631 for_each_populated_zone(zone) {
1632 unsigned long start_pfn = zone->zone_start_pfn;
1633 unsigned long end_pfn = zone_end_pfn(zone);
1634 unsigned long pfn;
1635
1636 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1637 struct page *page = pfn_to_online_page(pfn);
1638
1639 if (!(pfn & 63))
1640 cond_resched();
1641
1642 if (!page)
1643 continue;
1644
1645 /* only scan pages belonging to this zone */
1646 if (page_zone(page) != zone)
1647 continue;
1648 /* only scan if page is in use */
1649 if (page_count(page) == 0)
1650 continue;
1651 scan_block(start: page, end: page + 1, NULL);
1652 }
1653 }
1654 put_online_mems();
1655
1656 /*
1657 * Scanning the task stacks (may introduce false negatives).
1658 */
1659 if (kmemleak_stack_scan) {
1660 struct task_struct *p, *g;
1661
1662 rcu_read_lock();
1663 for_each_process_thread(g, p) {
1664 void *stack = try_get_task_stack(tsk: p);
1665 if (stack) {
1666 scan_block(start: stack, end: stack + THREAD_SIZE, NULL);
1667 put_task_stack(tsk: p);
1668 }
1669 }
1670 rcu_read_unlock();
1671 }
1672
1673 /*
1674 * Scan the objects already referenced from the sections scanned
1675 * above.
1676 */
1677 scan_gray_list();
1678
1679 /*
1680 * Check for new or unreferenced objects modified since the previous
1681 * scan and color them gray until the next scan.
1682 */
1683 rcu_read_lock();
1684 list_for_each_entry_rcu(object, &object_list, object_list) {
1685 if (need_resched())
1686 kmemleak_cond_resched(object);
1687
1688 /*
1689 * This is racy but we can save the overhead of lock/unlock
1690 * calls. The missed objects, if any, should be caught in
1691 * the next scan.
1692 */
1693 if (!color_white(object))
1694 continue;
1695 raw_spin_lock_irq(&object->lock);
1696 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1697 && update_checksum(object) && get_object(object)) {
1698 /* color it gray temporarily */
1699 object->count = object->min_count;
1700 list_add_tail(new: &object->gray_list, head: &gray_list);
1701 }
1702 raw_spin_unlock_irq(&object->lock);
1703 }
1704 rcu_read_unlock();
1705
1706 /*
1707 * Re-scan the gray list for modified unreferenced objects.
1708 */
1709 scan_gray_list();
1710
1711 /*
1712 * If scanning was stopped do not report any new unreferenced objects.
1713 */
1714 if (scan_should_stop())
1715 return;
1716
1717 /*
1718 * Scanning result reporting.
1719 */
1720 rcu_read_lock();
1721 list_for_each_entry_rcu(object, &object_list, object_list) {
1722 if (need_resched())
1723 kmemleak_cond_resched(object);
1724
1725 /*
1726 * This is racy but we can save the overhead of lock/unlock
1727 * calls. The missed objects, if any, should be caught in
1728 * the next scan.
1729 */
1730 if (!color_white(object))
1731 continue;
1732 raw_spin_lock_irq(&object->lock);
1733 if (unreferenced_object(object) &&
1734 !(object->flags & OBJECT_REPORTED)) {
1735 object->flags |= OBJECT_REPORTED;
1736
1737 if (kmemleak_verbose)
1738 print_unreferenced(NULL, object);
1739
1740 new_leaks++;
1741 }
1742 raw_spin_unlock_irq(&object->lock);
1743 }
1744 rcu_read_unlock();
1745
1746 if (new_leaks) {
1747 kmemleak_found_leaks = true;
1748
1749 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1750 new_leaks);
1751 }
1752
1753}
1754
1755/*
1756 * Thread function performing automatic memory scanning. Unreferenced objects
1757 * at the end of a memory scan are reported but only the first time.
1758 */
1759static int kmemleak_scan_thread(void *arg)
1760{
1761 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1762
1763 pr_info("Automatic memory scanning thread started\n");
1764 set_user_nice(current, nice: 10);
1765
1766 /*
1767 * Wait before the first scan to allow the system to fully initialize.
1768 */
1769 if (first_run) {
1770 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1771 first_run = 0;
1772 while (timeout && !kthread_should_stop())
1773 timeout = schedule_timeout_interruptible(timeout);
1774 }
1775
1776 while (!kthread_should_stop()) {
1777 signed long timeout = READ_ONCE(jiffies_scan_wait);
1778
1779 mutex_lock(&scan_mutex);
1780 kmemleak_scan();
1781 mutex_unlock(lock: &scan_mutex);
1782
1783 /* wait before the next scan */
1784 while (timeout && !kthread_should_stop())
1785 timeout = schedule_timeout_interruptible(timeout);
1786 }
1787
1788 pr_info("Automatic memory scanning thread ended\n");
1789
1790 return 0;
1791}
1792
1793/*
1794 * Start the automatic memory scanning thread. This function must be called
1795 * with the scan_mutex held.
1796 */
1797static void start_scan_thread(void)
1798{
1799 if (scan_thread)
1800 return;
1801 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1802 if (IS_ERR(ptr: scan_thread)) {
1803 pr_warn("Failed to create the scan thread\n");
1804 scan_thread = NULL;
1805 }
1806}
1807
1808/*
1809 * Stop the automatic memory scanning thread.
1810 */
1811static void stop_scan_thread(void)
1812{
1813 if (scan_thread) {
1814 kthread_stop(k: scan_thread);
1815 scan_thread = NULL;
1816 }
1817}
1818
1819/*
1820 * Iterate over the object_list and return the first valid object at or after
1821 * the required position with its use_count incremented. The function triggers
1822 * a memory scanning when the pos argument points to the first position.
1823 */
1824static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1825{
1826 struct kmemleak_object *object;
1827 loff_t n = *pos;
1828 int err;
1829
1830 err = mutex_lock_interruptible(&scan_mutex);
1831 if (err < 0)
1832 return ERR_PTR(error: err);
1833
1834 rcu_read_lock();
1835 list_for_each_entry_rcu(object, &object_list, object_list) {
1836 if (n-- > 0)
1837 continue;
1838 if (get_object(object))
1839 goto out;
1840 }
1841 object = NULL;
1842out:
1843 return object;
1844}
1845
1846/*
1847 * Return the next object in the object_list. The function decrements the
1848 * use_count of the previous object and increases that of the next one.
1849 */
1850static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1851{
1852 struct kmemleak_object *prev_obj = v;
1853 struct kmemleak_object *next_obj = NULL;
1854 struct kmemleak_object *obj = prev_obj;
1855
1856 ++(*pos);
1857
1858 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1859 if (get_object(object: obj)) {
1860 next_obj = obj;
1861 break;
1862 }
1863 }
1864
1865 put_object(object: prev_obj);
1866 return next_obj;
1867}
1868
1869/*
1870 * Decrement the use_count of the last object required, if any.
1871 */
1872static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1873{
1874 if (!IS_ERR(ptr: v)) {
1875 /*
1876 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1877 * waiting was interrupted, so only release it if !IS_ERR.
1878 */
1879 rcu_read_unlock();
1880 mutex_unlock(lock: &scan_mutex);
1881 if (v)
1882 put_object(object: v);
1883 }
1884}
1885
1886/*
1887 * Print the information for an unreferenced object to the seq file.
1888 */
1889static int kmemleak_seq_show(struct seq_file *seq, void *v)
1890{
1891 struct kmemleak_object *object = v;
1892 unsigned long flags;
1893
1894 raw_spin_lock_irqsave(&object->lock, flags);
1895 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1896 print_unreferenced(seq, object);
1897 raw_spin_unlock_irqrestore(&object->lock, flags);
1898 return 0;
1899}
1900
1901static const struct seq_operations kmemleak_seq_ops = {
1902 .start = kmemleak_seq_start,
1903 .next = kmemleak_seq_next,
1904 .stop = kmemleak_seq_stop,
1905 .show = kmemleak_seq_show,
1906};
1907
1908static int kmemleak_open(struct inode *inode, struct file *file)
1909{
1910 return seq_open(file, &kmemleak_seq_ops);
1911}
1912
1913static int dump_str_object_info(const char *str)
1914{
1915 unsigned long flags;
1916 struct kmemleak_object *object;
1917 unsigned long addr;
1918
1919 if (kstrtoul(s: str, base: 0, res: &addr))
1920 return -EINVAL;
1921 object = find_and_get_object(ptr: addr, alias: 0);
1922 if (!object) {
1923 pr_info("Unknown object at 0x%08lx\n", addr);
1924 return -EINVAL;
1925 }
1926
1927 raw_spin_lock_irqsave(&object->lock, flags);
1928 dump_object_info(object);
1929 raw_spin_unlock_irqrestore(&object->lock, flags);
1930
1931 put_object(object);
1932 return 0;
1933}
1934
1935/*
1936 * We use grey instead of black to ensure we can do future scans on the same
1937 * objects. If we did not do future scans these black objects could
1938 * potentially contain references to newly allocated objects in the future and
1939 * we'd end up with false positives.
1940 */
1941static void kmemleak_clear(void)
1942{
1943 struct kmemleak_object *object;
1944
1945 rcu_read_lock();
1946 list_for_each_entry_rcu(object, &object_list, object_list) {
1947 raw_spin_lock_irq(&object->lock);
1948 if ((object->flags & OBJECT_REPORTED) &&
1949 unreferenced_object(object))
1950 __paint_it(object, KMEMLEAK_GREY);
1951 raw_spin_unlock_irq(&object->lock);
1952 }
1953 rcu_read_unlock();
1954
1955 kmemleak_found_leaks = false;
1956}
1957
1958static void __kmemleak_do_cleanup(void);
1959
1960/*
1961 * File write operation to configure kmemleak at run-time. The following
1962 * commands can be written to the /sys/kernel/debug/kmemleak file:
1963 * off - disable kmemleak (irreversible)
1964 * stack=on - enable the task stacks scanning
1965 * stack=off - disable the tasks stacks scanning
1966 * scan=on - start the automatic memory scanning thread
1967 * scan=off - stop the automatic memory scanning thread
1968 * scan=... - set the automatic memory scanning period in seconds (0 to
1969 * disable it)
1970 * scan - trigger a memory scan
1971 * clear - mark all current reported unreferenced kmemleak objects as
1972 * grey to ignore printing them, or free all kmemleak objects
1973 * if kmemleak has been disabled.
1974 * dump=... - dump information about the object found at the given address
1975 */
1976static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1977 size_t size, loff_t *ppos)
1978{
1979 char buf[64];
1980 int buf_size;
1981 int ret;
1982
1983 buf_size = min(size, (sizeof(buf) - 1));
1984 if (strncpy_from_user(dst: buf, src: user_buf, count: buf_size) < 0)
1985 return -EFAULT;
1986 buf[buf_size] = 0;
1987
1988 ret = mutex_lock_interruptible(&scan_mutex);
1989 if (ret < 0)
1990 return ret;
1991
1992 if (strncmp(buf, "clear", 5) == 0) {
1993 if (kmemleak_enabled)
1994 kmemleak_clear();
1995 else
1996 __kmemleak_do_cleanup();
1997 goto out;
1998 }
1999
2000 if (!kmemleak_enabled) {
2001 ret = -EPERM;
2002 goto out;
2003 }
2004
2005 if (strncmp(buf, "off", 3) == 0)
2006 kmemleak_disable();
2007 else if (strncmp(buf, "stack=on", 8) == 0)
2008 kmemleak_stack_scan = 1;
2009 else if (strncmp(buf, "stack=off", 9) == 0)
2010 kmemleak_stack_scan = 0;
2011 else if (strncmp(buf, "scan=on", 7) == 0)
2012 start_scan_thread();
2013 else if (strncmp(buf, "scan=off", 8) == 0)
2014 stop_scan_thread();
2015 else if (strncmp(buf, "scan=", 5) == 0) {
2016 unsigned secs;
2017 unsigned long msecs;
2018
2019 ret = kstrtouint(s: buf + 5, base: 0, res: &secs);
2020 if (ret < 0)
2021 goto out;
2022
2023 msecs = secs * MSEC_PER_SEC;
2024 if (msecs > UINT_MAX)
2025 msecs = UINT_MAX;
2026
2027 stop_scan_thread();
2028 if (msecs) {
2029 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2030 start_scan_thread();
2031 }
2032 } else if (strncmp(buf, "scan", 4) == 0)
2033 kmemleak_scan();
2034 else if (strncmp(buf, "dump=", 5) == 0)
2035 ret = dump_str_object_info(str: buf + 5);
2036 else
2037 ret = -EINVAL;
2038
2039out:
2040 mutex_unlock(lock: &scan_mutex);
2041 if (ret < 0)
2042 return ret;
2043
2044 /* ignore the rest of the buffer, only one command at a time */
2045 *ppos += size;
2046 return size;
2047}
2048
2049static const struct file_operations kmemleak_fops = {
2050 .owner = THIS_MODULE,
2051 .open = kmemleak_open,
2052 .read = seq_read,
2053 .write = kmemleak_write,
2054 .llseek = seq_lseek,
2055 .release = seq_release,
2056};
2057
2058static void __kmemleak_do_cleanup(void)
2059{
2060 struct kmemleak_object *object, *tmp;
2061
2062 /*
2063 * Kmemleak has already been disabled, no need for RCU list traversal
2064 * or kmemleak_lock held.
2065 */
2066 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2067 __remove_object(object);
2068 __delete_object(object);
2069 }
2070}
2071
2072/*
2073 * Stop the memory scanning thread and free the kmemleak internal objects if
2074 * no previous scan thread (otherwise, kmemleak may still have some useful
2075 * information on memory leaks).
2076 */
2077static void kmemleak_do_cleanup(struct work_struct *work)
2078{
2079 stop_scan_thread();
2080
2081 mutex_lock(&scan_mutex);
2082 /*
2083 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2084 * longer track object freeing. Ordering of the scan thread stopping and
2085 * the memory accesses below is guaranteed by the kthread_stop()
2086 * function.
2087 */
2088 kmemleak_free_enabled = 0;
2089 mutex_unlock(lock: &scan_mutex);
2090
2091 if (!kmemleak_found_leaks)
2092 __kmemleak_do_cleanup();
2093 else
2094 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2095}
2096
2097static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2098
2099/*
2100 * Disable kmemleak. No memory allocation/freeing will be traced once this
2101 * function is called. Disabling kmemleak is an irreversible operation.
2102 */
2103static void kmemleak_disable(void)
2104{
2105 /* atomically check whether it was already invoked */
2106 if (cmpxchg(&kmemleak_error, 0, 1))
2107 return;
2108
2109 /* stop any memory operation tracing */
2110 kmemleak_enabled = 0;
2111
2112 /* check whether it is too early for a kernel thread */
2113 if (kmemleak_late_initialized)
2114 schedule_work(work: &cleanup_work);
2115 else
2116 kmemleak_free_enabled = 0;
2117
2118 pr_info("Kernel memory leak detector disabled\n");
2119}
2120
2121/*
2122 * Allow boot-time kmemleak disabling (enabled by default).
2123 */
2124static int __init kmemleak_boot_config(char *str)
2125{
2126 if (!str)
2127 return -EINVAL;
2128 if (strcmp(str, "off") == 0)
2129 kmemleak_disable();
2130 else if (strcmp(str, "on") == 0) {
2131 kmemleak_skip_disable = 1;
2132 stack_depot_request_early_init();
2133 }
2134 else
2135 return -EINVAL;
2136 return 0;
2137}
2138early_param("kmemleak", kmemleak_boot_config);
2139
2140/*
2141 * Kmemleak initialization.
2142 */
2143void __init kmemleak_init(void)
2144{
2145#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2146 if (!kmemleak_skip_disable) {
2147 kmemleak_disable();
2148 return;
2149 }
2150#endif
2151
2152 if (kmemleak_error)
2153 return;
2154
2155 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2156 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2157
2158 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2159 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2160
2161 /* register the data/bss sections */
2162 create_object(ptr: (unsigned long)_sdata, size: _edata - _sdata,
2163 KMEMLEAK_GREY, GFP_ATOMIC);
2164 create_object(ptr: (unsigned long)__bss_start, size: __bss_stop - __bss_start,
2165 KMEMLEAK_GREY, GFP_ATOMIC);
2166 /* only register .data..ro_after_init if not within .data */
2167 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2168 create_object(ptr: (unsigned long)__start_ro_after_init,
2169 size: __end_ro_after_init - __start_ro_after_init,
2170 KMEMLEAK_GREY, GFP_ATOMIC);
2171}
2172
2173/*
2174 * Late initialization function.
2175 */
2176static int __init kmemleak_late_init(void)
2177{
2178 kmemleak_late_initialized = 1;
2179
2180 debugfs_create_file(name: "kmemleak", mode: 0644, NULL, NULL, fops: &kmemleak_fops);
2181
2182 if (kmemleak_error) {
2183 /*
2184 * Some error occurred and kmemleak was disabled. There is a
2185 * small chance that kmemleak_disable() was called immediately
2186 * after setting kmemleak_late_initialized and we may end up with
2187 * two clean-up threads but serialized by scan_mutex.
2188 */
2189 schedule_work(work: &cleanup_work);
2190 return -ENOMEM;
2191 }
2192
2193 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2194 mutex_lock(&scan_mutex);
2195 start_scan_thread();
2196 mutex_unlock(lock: &scan_mutex);
2197 }
2198
2199 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2200 mem_pool_free_count);
2201
2202 return 0;
2203}
2204late_initcall(kmemleak_late_init);
2205

source code of linux/mm/kmemleak.c