1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16#include <linux/errno.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/sched/mm.h>
23#include <linux/sched/coredump.h>
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/xxhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
34#include <linux/memory.h>
35#include <linux/mmu_notifier.h>
36#include <linux/swap.h>
37#include <linux/ksm.h>
38#include <linux/hashtable.h>
39#include <linux/freezer.h>
40#include <linux/oom.h>
41#include <linux/numa.h>
42#include <linux/pagewalk.h>
43
44#include <asm/tlbflush.h>
45#include "internal.h"
46#include "mm_slot.h"
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/ksm.h>
50
51#ifdef CONFIG_NUMA
52#define NUMA(x) (x)
53#define DO_NUMA(x) do { (x); } while (0)
54#else
55#define NUMA(x) (0)
56#define DO_NUMA(x) do { } while (0)
57#endif
58
59/**
60 * DOC: Overview
61 *
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
64 *
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
67 *
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
71 *
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
76 *
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
79 *
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
82 *
83 * * the regular nodes that keep the reverse mapping structures in a
84 * linked list
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
88 *
89 * Internally, the regular nodes, "dups" and "chains" are represented
90 * using the same struct ksm_stable_node structure.
91 *
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
98 *
99 * KSM solves this problem by several techniques:
100 *
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
114 *
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
117 */
118
119/**
120 * struct ksm_mm_slot - ksm information per mm that is being scanned
121 * @slot: hash lookup from mm to mm_slot
122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123 */
124struct ksm_mm_slot {
125 struct mm_slot slot;
126 struct ksm_rmap_item *rmap_list;
127};
128
129/**
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
134 * @seqnr: count of completed full scans (needed when removing unstable node)
135 *
136 * There is only the one ksm_scan instance of this cursor structure.
137 */
138struct ksm_scan {
139 struct ksm_mm_slot *mm_slot;
140 unsigned long address;
141 struct ksm_rmap_item **rmap_list;
142 unsigned long seqnr;
143};
144
145/**
146 * struct ksm_stable_node - node of the stable rbtree
147 * @node: rb node of this ksm page in the stable tree
148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150 * @list: linked into migrate_nodes, pending placement in the proper node tree
151 * @hlist: hlist head of rmap_items using this ksm page
152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156 */
157struct ksm_stable_node {
158 union {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
162 struct {
163 struct hlist_node hlist_dup;
164 struct list_head list;
165 };
166 };
167 };
168 struct hlist_head hlist;
169 union {
170 unsigned long kpfn;
171 unsigned long chain_prune_time;
172 };
173 /*
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
177 */
178#define STABLE_NODE_CHAIN -1024
179 int rmap_hlist_len;
180#ifdef CONFIG_NUMA
181 int nid;
182#endif
183};
184
185/**
186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
196 */
197struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
199 union {
200 struct anon_vma *anon_vma; /* when stable */
201#ifdef CONFIG_NUMA
202 int nid; /* when node of unstable tree */
203#endif
204 };
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
207 unsigned int oldchecksum; /* when unstable */
208 union {
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
211 struct ksm_stable_node *head;
212 struct hlist_node hlist;
213 };
214 };
215};
216
217#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
218#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219#define STABLE_FLAG 0x200 /* is listed from the stable tree */
220
221/* The stable and unstable tree heads */
222static struct rb_root one_stable_tree[1] = { RB_ROOT };
223static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224static struct rb_root *root_stable_tree = one_stable_tree;
225static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227/* Recently migrated nodes of stable tree, pending proper placement */
228static LIST_HEAD(migrate_nodes);
229#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231#define MM_SLOTS_HASH_BITS 10
232static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234static struct ksm_mm_slot ksm_mm_head = {
235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236};
237static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
239};
240
241static struct kmem_cache *rmap_item_cache;
242static struct kmem_cache *stable_node_cache;
243static struct kmem_cache *mm_slot_cache;
244
245/* The number of nodes in the stable tree */
246static unsigned long ksm_pages_shared;
247
248/* The number of page slots additionally sharing those nodes */
249static unsigned long ksm_pages_sharing;
250
251/* The number of nodes in the unstable tree */
252static unsigned long ksm_pages_unshared;
253
254/* The number of rmap_items in use: to calculate pages_volatile */
255static unsigned long ksm_rmap_items;
256
257/* The number of stable_node chains */
258static unsigned long ksm_stable_node_chains;
259
260/* The number of stable_node dups linked to the stable_node chains */
261static unsigned long ksm_stable_node_dups;
262
263/* Delay in pruning stale stable_node_dups in the stable_node_chains */
264static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265
266/* Maximum number of page slots sharing a stable node */
267static int ksm_max_page_sharing = 256;
268
269/* Number of pages ksmd should scan in one batch */
270static unsigned int ksm_thread_pages_to_scan = 100;
271
272/* Milliseconds ksmd should sleep between batches */
273static unsigned int ksm_thread_sleep_millisecs = 20;
274
275/* Checksum of an empty (zeroed) page */
276static unsigned int zero_checksum __read_mostly;
277
278/* Whether to merge empty (zeroed) pages with actual zero pages */
279static bool ksm_use_zero_pages __read_mostly;
280
281#ifdef CONFIG_NUMA
282/* Zeroed when merging across nodes is not allowed */
283static unsigned int ksm_merge_across_nodes = 1;
284static int ksm_nr_node_ids = 1;
285#else
286#define ksm_merge_across_nodes 1U
287#define ksm_nr_node_ids 1
288#endif
289
290#define KSM_RUN_STOP 0
291#define KSM_RUN_MERGE 1
292#define KSM_RUN_UNMERGE 2
293#define KSM_RUN_OFFLINE 4
294static unsigned long ksm_run = KSM_RUN_STOP;
295static void wait_while_offlining(void);
296
297static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299static DEFINE_MUTEX(ksm_thread_mutex);
300static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
304 (__flags), NULL)
305
306static int __init ksm_slab_init(void)
307{
308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 if (!rmap_item_cache)
310 goto out;
311
312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 if (!stable_node_cache)
314 goto out_free1;
315
316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317 if (!mm_slot_cache)
318 goto out_free2;
319
320 return 0;
321
322out_free2:
323 kmem_cache_destroy(s: stable_node_cache);
324out_free1:
325 kmem_cache_destroy(s: rmap_item_cache);
326out:
327 return -ENOMEM;
328}
329
330static void __init ksm_slab_free(void)
331{
332 kmem_cache_destroy(s: mm_slot_cache);
333 kmem_cache_destroy(s: stable_node_cache);
334 kmem_cache_destroy(s: rmap_item_cache);
335 mm_slot_cache = NULL;
336}
337
338static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339{
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341}
342
343static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344{
345 return dup->head == STABLE_NODE_DUP_HEAD;
346}
347
348static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 struct ksm_stable_node *chain)
350{
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(n: &dup->hlist_dup, h: &chain->hlist);
355 ksm_stable_node_dups++;
356}
357
358static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359{
360 VM_BUG_ON(!is_stable_node_dup(dup));
361 hlist_del(n: &dup->hlist_dup);
362 ksm_stable_node_dups--;
363}
364
365static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366{
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
370 else
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372#ifdef CONFIG_DEBUG_VM
373 dup->head = NULL;
374#endif
375}
376
377static inline struct ksm_rmap_item *alloc_rmap_item(void)
378{
379 struct ksm_rmap_item *rmap_item;
380
381 rmap_item = kmem_cache_zalloc(k: rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
383 if (rmap_item)
384 ksm_rmap_items++;
385 return rmap_item;
386}
387
388static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389{
390 ksm_rmap_items--;
391 rmap_item->mm->ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(s: rmap_item_cache, objp: rmap_item);
394}
395
396static inline struct ksm_stable_node *alloc_stable_node(void)
397{
398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(cachep: stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404}
405
406static inline void free_stable_node(struct ksm_stable_node *stable_node)
407{
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(s: stable_node_cache, objp: stable_node);
411}
412
413/*
414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415 * page tables after it has passed through ksm_exit() - which, if necessary,
416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
417 * a special flag: they can just back out as soon as mm_users goes to zero.
418 * ksm_test_exit() is used throughout to make this test for exit: in some
419 * places for correctness, in some places just to avoid unnecessary work.
420 */
421static inline bool ksm_test_exit(struct mm_struct *mm)
422{
423 return atomic_read(v: &mm->mm_users) == 0;
424}
425
426static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 struct mm_walk *walk)
428{
429 struct page *page = NULL;
430 spinlock_t *ptl;
431 pte_t *pte;
432 int ret;
433
434 if (pmd_leaf(pte: *pmd) || !pmd_present(pmd: *pmd))
435 return 0;
436
437 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 if (pte_present(a: *pte)) {
439 page = vm_normal_page(vma: walk->vma, addr, pte: *pte);
440 } else if (!pte_none(pte: *pte)) {
441 swp_entry_t entry = pte_to_swp_entry(*pte);
442
443 /*
444 * As KSM pages remain KSM pages until freed, no need to wait
445 * here for migration to end.
446 */
447 if (is_migration_entry(entry))
448 page = pfn_swap_entry_to_page(entry);
449 }
450 ret = page && PageKsm(page);
451 pte_unmap_unlock(pte, ptl);
452 return ret;
453}
454
455static const struct mm_walk_ops break_ksm_ops = {
456 .pmd_entry = break_ksm_pmd_entry,
457};
458
459/*
460 * We use break_ksm to break COW on a ksm page by triggering unsharing,
461 * such that the ksm page will get replaced by an exclusive anonymous page.
462 *
463 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464 * in case the application has unmapped and remapped mm,addr meanwhile.
465 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
466 * mmap of /dev/mem, where we would not want to touch it.
467 *
468 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469 * of the process that owns 'vma'. We also do not want to enforce
470 * protection keys here anyway.
471 */
472static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473{
474 vm_fault_t ret = 0;
475
476 do {
477 int ksm_page;
478
479 cond_resched();
480 ksm_page = walk_page_range_vma(vma, start: addr, end: addr + 1,
481 ops: &break_ksm_ops, NULL);
482 if (WARN_ON_ONCE(ksm_page < 0))
483 return ksm_page;
484 if (!ksm_page)
485 return 0;
486 ret = handle_mm_fault(vma, address: addr,
487 flags: FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
488 NULL);
489 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490 /*
491 * We must loop until we no longer find a KSM page because
492 * handle_mm_fault() may back out if there's any difficulty e.g. if
493 * pte accessed bit gets updated concurrently.
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516}
517
518static bool vma_ksm_compatible(struct vm_area_struct *vma)
519{
520 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
521 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
522 VM_MIXEDMAP))
523 return false; /* just ignore the advice */
524
525 if (vma_is_dax(vma))
526 return false;
527
528#ifdef VM_SAO
529 if (vma->vm_flags & VM_SAO)
530 return false;
531#endif
532#ifdef VM_SPARC_ADI
533 if (vma->vm_flags & VM_SPARC_ADI)
534 return false;
535#endif
536
537 return true;
538}
539
540static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
541 unsigned long addr)
542{
543 struct vm_area_struct *vma;
544 if (ksm_test_exit(mm))
545 return NULL;
546 vma = vma_lookup(mm, addr);
547 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
548 return NULL;
549 return vma;
550}
551
552static void break_cow(struct ksm_rmap_item *rmap_item)
553{
554 struct mm_struct *mm = rmap_item->mm;
555 unsigned long addr = rmap_item->address;
556 struct vm_area_struct *vma;
557
558 /*
559 * It is not an accident that whenever we want to break COW
560 * to undo, we also need to drop a reference to the anon_vma.
561 */
562 put_anon_vma(rmap_item->anon_vma);
563
564 mmap_read_lock(mm);
565 vma = find_mergeable_vma(mm, addr);
566 if (vma)
567 break_ksm(vma, addr);
568 mmap_read_unlock(mm);
569}
570
571static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
572{
573 struct mm_struct *mm = rmap_item->mm;
574 unsigned long addr = rmap_item->address;
575 struct vm_area_struct *vma;
576 struct page *page;
577
578 mmap_read_lock(mm);
579 vma = find_mergeable_vma(mm, addr);
580 if (!vma)
581 goto out;
582
583 page = follow_page(vma, address: addr, foll_flags: FOLL_GET);
584 if (IS_ERR_OR_NULL(ptr: page))
585 goto out;
586 if (is_zone_device_page(page))
587 goto out_putpage;
588 if (PageAnon(page)) {
589 flush_anon_page(vma, page, vmaddr: addr);
590 flush_dcache_page(page);
591 } else {
592out_putpage:
593 put_page(page);
594out:
595 page = NULL;
596 }
597 mmap_read_unlock(mm);
598 return page;
599}
600
601/*
602 * This helper is used for getting right index into array of tree roots.
603 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
604 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
605 * every node has its own stable and unstable tree.
606 */
607static inline int get_kpfn_nid(unsigned long kpfn)
608{
609 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
610}
611
612static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
613 struct rb_root *root)
614{
615 struct ksm_stable_node *chain = alloc_stable_node();
616 VM_BUG_ON(is_stable_node_chain(dup));
617 if (likely(chain)) {
618 INIT_HLIST_HEAD(&chain->hlist);
619 chain->chain_prune_time = jiffies;
620 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
621#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
622 chain->nid = NUMA_NO_NODE; /* debug */
623#endif
624 ksm_stable_node_chains++;
625
626 /*
627 * Put the stable node chain in the first dimension of
628 * the stable tree and at the same time remove the old
629 * stable node.
630 */
631 rb_replace_node(victim: &dup->node, new: &chain->node, root);
632
633 /*
634 * Move the old stable node to the second dimension
635 * queued in the hlist_dup. The invariant is that all
636 * dup stable_nodes in the chain->hlist point to pages
637 * that are write protected and have the exact same
638 * content.
639 */
640 stable_node_chain_add_dup(dup, chain);
641 }
642 return chain;
643}
644
645static inline void free_stable_node_chain(struct ksm_stable_node *chain,
646 struct rb_root *root)
647{
648 rb_erase(&chain->node, root);
649 free_stable_node(stable_node: chain);
650 ksm_stable_node_chains--;
651}
652
653static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
654{
655 struct ksm_rmap_item *rmap_item;
656
657 /* check it's not STABLE_NODE_CHAIN or negative */
658 BUG_ON(stable_node->rmap_hlist_len < 0);
659
660 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
661 if (rmap_item->hlist.next) {
662 ksm_pages_sharing--;
663 trace_ksm_remove_rmap_item(pfn: stable_node->kpfn, rmap_item, mm: rmap_item->mm);
664 } else {
665 ksm_pages_shared--;
666 }
667
668 rmap_item->mm->ksm_merging_pages--;
669
670 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
671 stable_node->rmap_hlist_len--;
672 put_anon_vma(rmap_item->anon_vma);
673 rmap_item->address &= PAGE_MASK;
674 cond_resched();
675 }
676
677 /*
678 * We need the second aligned pointer of the migrate_nodes
679 * list_head to stay clear from the rb_parent_color union
680 * (aligned and different than any node) and also different
681 * from &migrate_nodes. This will verify that future list.h changes
682 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
683 */
684 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
686
687 trace_ksm_remove_ksm_page(pfn: stable_node->kpfn);
688 if (stable_node->head == &migrate_nodes)
689 list_del(entry: &stable_node->list);
690 else
691 stable_node_dup_del(dup: stable_node);
692 free_stable_node(stable_node);
693}
694
695enum get_ksm_page_flags {
696 GET_KSM_PAGE_NOLOCK,
697 GET_KSM_PAGE_LOCK,
698 GET_KSM_PAGE_TRYLOCK
699};
700
701/*
702 * get_ksm_page: checks if the page indicated by the stable node
703 * is still its ksm page, despite having held no reference to it.
704 * In which case we can trust the content of the page, and it
705 * returns the gotten page; but if the page has now been zapped,
706 * remove the stale node from the stable tree and return NULL.
707 * But beware, the stable node's page might be being migrated.
708 *
709 * You would expect the stable_node to hold a reference to the ksm page.
710 * But if it increments the page's count, swapping out has to wait for
711 * ksmd to come around again before it can free the page, which may take
712 * seconds or even minutes: much too unresponsive. So instead we use a
713 * "keyhole reference": access to the ksm page from the stable node peeps
714 * out through its keyhole to see if that page still holds the right key,
715 * pointing back to this stable node. This relies on freeing a PageAnon
716 * page to reset its page->mapping to NULL, and relies on no other use of
717 * a page to put something that might look like our key in page->mapping.
718 * is on its way to being freed; but it is an anomaly to bear in mind.
719 */
720static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
721 enum get_ksm_page_flags flags)
722{
723 struct page *page;
724 void *expected_mapping;
725 unsigned long kpfn;
726
727 expected_mapping = (void *)((unsigned long)stable_node |
728 PAGE_MAPPING_KSM);
729again:
730 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
731 page = pfn_to_page(kpfn);
732 if (READ_ONCE(page->mapping) != expected_mapping)
733 goto stale;
734
735 /*
736 * We cannot do anything with the page while its refcount is 0.
737 * Usually 0 means free, or tail of a higher-order page: in which
738 * case this node is no longer referenced, and should be freed;
739 * however, it might mean that the page is under page_ref_freeze().
740 * The __remove_mapping() case is easy, again the node is now stale;
741 * the same is in reuse_ksm_page() case; but if page is swapcache
742 * in folio_migrate_mapping(), it might still be our page,
743 * in which case it's essential to keep the node.
744 */
745 while (!get_page_unless_zero(page)) {
746 /*
747 * Another check for page->mapping != expected_mapping would
748 * work here too. We have chosen the !PageSwapCache test to
749 * optimize the common case, when the page is or is about to
750 * be freed: PageSwapCache is cleared (under spin_lock_irq)
751 * in the ref_freeze section of __remove_mapping(); but Anon
752 * page->mapping reset to NULL later, in free_pages_prepare().
753 */
754 if (!PageSwapCache(page))
755 goto stale;
756 cpu_relax();
757 }
758
759 if (READ_ONCE(page->mapping) != expected_mapping) {
760 put_page(page);
761 goto stale;
762 }
763
764 if (flags == GET_KSM_PAGE_TRYLOCK) {
765 if (!trylock_page(page)) {
766 put_page(page);
767 return ERR_PTR(-EBUSY);
768 }
769 } else if (flags == GET_KSM_PAGE_LOCK)
770 lock_page(page);
771
772 if (flags != GET_KSM_PAGE_NOLOCK) {
773 if (READ_ONCE(page->mapping) != expected_mapping) {
774 unlock_page(page);
775 put_page(page);
776 goto stale;
777 }
778 }
779 return page;
780
781stale:
782 /*
783 * We come here from above when page->mapping or !PageSwapCache
784 * suggests that the node is stale; but it might be under migration.
785 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
786 * before checking whether node->kpfn has been changed.
787 */
788 smp_rmb();
789 if (READ_ONCE(stable_node->kpfn) != kpfn)
790 goto again;
791 remove_node_from_stable_tree(stable_node);
792 return NULL;
793}
794
795/*
796 * Removing rmap_item from stable or unstable tree.
797 * This function will clean the information from the stable/unstable tree.
798 */
799static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
800{
801 if (rmap_item->address & STABLE_FLAG) {
802 struct ksm_stable_node *stable_node;
803 struct page *page;
804
805 stable_node = rmap_item->head;
806 page = get_ksm_page(stable_node, flags: GET_KSM_PAGE_LOCK);
807 if (!page)
808 goto out;
809
810 hlist_del(n: &rmap_item->hlist);
811 unlock_page(page);
812 put_page(page);
813
814 if (!hlist_empty(h: &stable_node->hlist))
815 ksm_pages_sharing--;
816 else
817 ksm_pages_shared--;
818
819 rmap_item->mm->ksm_merging_pages--;
820
821 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
822 stable_node->rmap_hlist_len--;
823
824 put_anon_vma(rmap_item->anon_vma);
825 rmap_item->head = NULL;
826 rmap_item->address &= PAGE_MASK;
827
828 } else if (rmap_item->address & UNSTABLE_FLAG) {
829 unsigned char age;
830 /*
831 * Usually ksmd can and must skip the rb_erase, because
832 * root_unstable_tree was already reset to RB_ROOT.
833 * But be careful when an mm is exiting: do the rb_erase
834 * if this rmap_item was inserted by this scan, rather
835 * than left over from before.
836 */
837 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
838 BUG_ON(age > 1);
839 if (!age)
840 rb_erase(&rmap_item->node,
841 root_unstable_tree + NUMA(rmap_item->nid));
842 ksm_pages_unshared--;
843 rmap_item->address &= PAGE_MASK;
844 }
845out:
846 cond_resched(); /* we're called from many long loops */
847}
848
849static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
850{
851 while (*rmap_list) {
852 struct ksm_rmap_item *rmap_item = *rmap_list;
853 *rmap_list = rmap_item->rmap_list;
854 remove_rmap_item_from_tree(rmap_item);
855 free_rmap_item(rmap_item);
856 }
857}
858
859/*
860 * Though it's very tempting to unmerge rmap_items from stable tree rather
861 * than check every pte of a given vma, the locking doesn't quite work for
862 * that - an rmap_item is assigned to the stable tree after inserting ksm
863 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
864 * rmap_items from parent to child at fork time (so as not to waste time
865 * if exit comes before the next scan reaches it).
866 *
867 * Similarly, although we'd like to remove rmap_items (so updating counts
868 * and freeing memory) when unmerging an area, it's easier to leave that
869 * to the next pass of ksmd - consider, for example, how ksmd might be
870 * in cmp_and_merge_page on one of the rmap_items we would be removing.
871 */
872static int unmerge_ksm_pages(struct vm_area_struct *vma,
873 unsigned long start, unsigned long end)
874{
875 unsigned long addr;
876 int err = 0;
877
878 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
879 if (ksm_test_exit(mm: vma->vm_mm))
880 break;
881 if (signal_pending(current))
882 err = -ERESTARTSYS;
883 else
884 err = break_ksm(vma, addr);
885 }
886 return err;
887}
888
889static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
890{
891 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
892}
893
894static inline struct ksm_stable_node *page_stable_node(struct page *page)
895{
896 return folio_stable_node(page_folio(page));
897}
898
899static inline void set_page_stable_node(struct page *page,
900 struct ksm_stable_node *stable_node)
901{
902 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
903 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
904}
905
906#ifdef CONFIG_SYSFS
907/*
908 * Only called through the sysfs control interface:
909 */
910static int remove_stable_node(struct ksm_stable_node *stable_node)
911{
912 struct page *page;
913 int err;
914
915 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
916 if (!page) {
917 /*
918 * get_ksm_page did remove_node_from_stable_tree itself.
919 */
920 return 0;
921 }
922
923 /*
924 * Page could be still mapped if this races with __mmput() running in
925 * between ksm_exit() and exit_mmap(). Just refuse to let
926 * merge_across_nodes/max_page_sharing be switched.
927 */
928 err = -EBUSY;
929 if (!page_mapped(page)) {
930 /*
931 * The stable node did not yet appear stale to get_ksm_page(),
932 * since that allows for an unmapped ksm page to be recognized
933 * right up until it is freed; but the node is safe to remove.
934 * This page might be in a pagevec waiting to be freed,
935 * or it might be PageSwapCache (perhaps under writeback),
936 * or it might have been removed from swapcache a moment ago.
937 */
938 set_page_stable_node(page, NULL);
939 remove_node_from_stable_tree(stable_node);
940 err = 0;
941 }
942
943 unlock_page(page);
944 put_page(page);
945 return err;
946}
947
948static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
949 struct rb_root *root)
950{
951 struct ksm_stable_node *dup;
952 struct hlist_node *hlist_safe;
953
954 if (!is_stable_node_chain(stable_node)) {
955 VM_BUG_ON(is_stable_node_dup(stable_node));
956 if (remove_stable_node(stable_node))
957 return true;
958 else
959 return false;
960 }
961
962 hlist_for_each_entry_safe(dup, hlist_safe,
963 &stable_node->hlist, hlist_dup) {
964 VM_BUG_ON(!is_stable_node_dup(dup));
965 if (remove_stable_node(dup))
966 return true;
967 }
968 BUG_ON(!hlist_empty(&stable_node->hlist));
969 free_stable_node_chain(stable_node, root);
970 return false;
971}
972
973static int remove_all_stable_nodes(void)
974{
975 struct ksm_stable_node *stable_node, *next;
976 int nid;
977 int err = 0;
978
979 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
980 while (root_stable_tree[nid].rb_node) {
981 stable_node = rb_entry(root_stable_tree[nid].rb_node,
982 struct ksm_stable_node, node);
983 if (remove_stable_node_chain(stable_node,
984 root_stable_tree + nid)) {
985 err = -EBUSY;
986 break; /* proceed to next nid */
987 }
988 cond_resched();
989 }
990 }
991 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
992 if (remove_stable_node(stable_node))
993 err = -EBUSY;
994 cond_resched();
995 }
996 return err;
997}
998
999static int unmerge_and_remove_all_rmap_items(void)
1000{
1001 struct ksm_mm_slot *mm_slot;
1002 struct mm_slot *slot;
1003 struct mm_struct *mm;
1004 struct vm_area_struct *vma;
1005 int err = 0;
1006
1007 spin_lock(&ksm_mmlist_lock);
1008 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1009 struct mm_slot, mm_node);
1010 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1011 spin_unlock(&ksm_mmlist_lock);
1012
1013 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1014 mm_slot = ksm_scan.mm_slot) {
1015 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1016
1017 mm = mm_slot->slot.mm;
1018 mmap_read_lock(mm);
1019
1020 /*
1021 * Exit right away if mm is exiting to avoid lockdep issue in
1022 * the maple tree
1023 */
1024 if (ksm_test_exit(mm))
1025 goto mm_exiting;
1026
1027 for_each_vma(vmi, vma) {
1028 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1029 continue;
1030 err = unmerge_ksm_pages(vma,
1031 vma->vm_start, vma->vm_end);
1032 if (err)
1033 goto error;
1034 }
1035
1036mm_exiting:
1037 remove_trailing_rmap_items(&mm_slot->rmap_list);
1038 mmap_read_unlock(mm);
1039
1040 spin_lock(&ksm_mmlist_lock);
1041 slot = list_entry(mm_slot->slot.mm_node.next,
1042 struct mm_slot, mm_node);
1043 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1044 if (ksm_test_exit(mm)) {
1045 hash_del(&mm_slot->slot.hash);
1046 list_del(&mm_slot->slot.mm_node);
1047 spin_unlock(&ksm_mmlist_lock);
1048
1049 mm_slot_free(mm_slot_cache, mm_slot);
1050 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1051 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1052 mmdrop(mm);
1053 } else
1054 spin_unlock(&ksm_mmlist_lock);
1055 }
1056
1057 /* Clean up stable nodes, but don't worry if some are still busy */
1058 remove_all_stable_nodes();
1059 ksm_scan.seqnr = 0;
1060 return 0;
1061
1062error:
1063 mmap_read_unlock(mm);
1064 spin_lock(&ksm_mmlist_lock);
1065 ksm_scan.mm_slot = &ksm_mm_head;
1066 spin_unlock(&ksm_mmlist_lock);
1067 return err;
1068}
1069#endif /* CONFIG_SYSFS */
1070
1071static u32 calc_checksum(struct page *page)
1072{
1073 u32 checksum;
1074 void *addr = kmap_atomic(page);
1075 checksum = xxhash(input: addr, PAGE_SIZE, seed: 0);
1076 kunmap_atomic(addr);
1077 return checksum;
1078}
1079
1080static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1081 pte_t *orig_pte)
1082{
1083 struct mm_struct *mm = vma->vm_mm;
1084 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1085 int swapped;
1086 int err = -EFAULT;
1087 struct mmu_notifier_range range;
1088 bool anon_exclusive;
1089
1090 pvmw.address = page_address_in_vma(page, vma);
1091 if (pvmw.address == -EFAULT)
1092 goto out;
1093
1094 BUG_ON(PageTransCompound(page));
1095
1096 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1097 pvmw.address + PAGE_SIZE);
1098 mmu_notifier_invalidate_range_start(range: &range);
1099
1100 if (!page_vma_mapped_walk(&pvmw))
1101 goto out_mn;
1102 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1103 goto out_unlock;
1104
1105 anon_exclusive = PageAnonExclusive(page);
1106 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1107 anon_exclusive || mm_tlb_flush_pending(mm)) {
1108 pte_t entry;
1109
1110 swapped = PageSwapCache(page);
1111 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1112 /*
1113 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1114 * take any lock, therefore the check that we are going to make
1115 * with the pagecount against the mapcount is racy and
1116 * O_DIRECT can happen right after the check.
1117 * So we clear the pte and flush the tlb before the check
1118 * this assure us that no O_DIRECT can happen after the check
1119 * or in the middle of the check.
1120 *
1121 * No need to notify as we are downgrading page table to read
1122 * only not changing it to point to a new page.
1123 *
1124 * See Documentation/mm/mmu_notifier.rst
1125 */
1126 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1127 /*
1128 * Check that no O_DIRECT or similar I/O is in progress on the
1129 * page
1130 */
1131 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1132 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1133 goto out_unlock;
1134 }
1135
1136 /* See page_try_share_anon_rmap(): clear PTE first. */
1137 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1138 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1139 goto out_unlock;
1140 }
1141
1142 if (pte_dirty(pte: entry))
1143 set_page_dirty(page);
1144 entry = pte_mkclean(pte: entry);
1145
1146 if (pte_write(pte: entry))
1147 entry = pte_wrprotect(pte: entry);
1148
1149 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1150 }
1151 *orig_pte = *pvmw.pte;
1152 err = 0;
1153
1154out_unlock:
1155 page_vma_mapped_walk_done(&pvmw);
1156out_mn:
1157 mmu_notifier_invalidate_range_end(range: &range);
1158out:
1159 return err;
1160}
1161
1162/**
1163 * replace_page - replace page in vma by new ksm page
1164 * @vma: vma that holds the pte pointing to page
1165 * @page: the page we are replacing by kpage
1166 * @kpage: the ksm page we replace page by
1167 * @orig_pte: the original value of the pte
1168 *
1169 * Returns 0 on success, -EFAULT on failure.
1170 */
1171static int replace_page(struct vm_area_struct *vma, struct page *page,
1172 struct page *kpage, pte_t orig_pte)
1173{
1174 struct mm_struct *mm = vma->vm_mm;
1175 struct folio *folio;
1176 pmd_t *pmd;
1177 pmd_t pmde;
1178 pte_t *ptep;
1179 pte_t newpte;
1180 spinlock_t *ptl;
1181 unsigned long addr;
1182 int err = -EFAULT;
1183 struct mmu_notifier_range range;
1184
1185 addr = page_address_in_vma(page, vma);
1186 if (addr == -EFAULT)
1187 goto out;
1188
1189 pmd = mm_find_pmd(mm, address: addr);
1190 if (!pmd)
1191 goto out;
1192 /*
1193 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1194 * without holding anon_vma lock for write. So when looking for a
1195 * genuine pmde (in which to find pte), test present and !THP together.
1196 */
1197 pmde = *pmd;
1198 barrier();
1199 if (!pmd_present(pmd: pmde) || pmd_trans_huge(pmde))
1200 goto out;
1201
1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1203 addr + PAGE_SIZE);
1204 mmu_notifier_invalidate_range_start(range: &range);
1205
1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207 if (!pte_same(a: *ptep, b: orig_pte)) {
1208 pte_unmap_unlock(ptep, ptl);
1209 goto out_mn;
1210 }
1211 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1212 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1213
1214 /*
1215 * No need to check ksm_use_zero_pages here: we can only have a
1216 * zero_page here if ksm_use_zero_pages was enabled already.
1217 */
1218 if (!is_zero_pfn(page_to_pfn(kpage))) {
1219 get_page(page: kpage);
1220 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1221 newpte = mk_pte(kpage, vma->vm_page_prot);
1222 } else {
1223 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1224 vma->vm_page_prot));
1225 /*
1226 * We're replacing an anonymous page with a zero page, which is
1227 * not anonymous. We need to do proper accounting otherwise we
1228 * will get wrong values in /proc, and a BUG message in dmesg
1229 * when tearing down the mm.
1230 */
1231 dec_mm_counter(mm, member: MM_ANONPAGES);
1232 }
1233
1234 flush_cache_page(vma, vmaddr: addr, pfn: pte_pfn(pte: *ptep));
1235 /*
1236 * No need to notify as we are replacing a read only page with another
1237 * read only page with the same content.
1238 *
1239 * See Documentation/mm/mmu_notifier.rst
1240 */
1241 ptep_clear_flush(vma, addr, ptep);
1242 set_pte_at_notify(mm, addr, ptep, pte: newpte);
1243
1244 folio = page_folio(page);
1245 page_remove_rmap(page, vma, false);
1246 if (!folio_mapped(folio))
1247 folio_free_swap(folio);
1248 folio_put(folio);
1249
1250 pte_unmap_unlock(ptep, ptl);
1251 err = 0;
1252out_mn:
1253 mmu_notifier_invalidate_range_end(range: &range);
1254out:
1255 return err;
1256}
1257
1258/*
1259 * try_to_merge_one_page - take two pages and merge them into one
1260 * @vma: the vma that holds the pte pointing to page
1261 * @page: the PageAnon page that we want to replace with kpage
1262 * @kpage: the PageKsm page that we want to map instead of page,
1263 * or NULL the first time when we want to use page as kpage.
1264 *
1265 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266 */
1267static int try_to_merge_one_page(struct vm_area_struct *vma,
1268 struct page *page, struct page *kpage)
1269{
1270 pte_t orig_pte = __pte(0);
1271 int err = -EFAULT;
1272
1273 if (page == kpage) /* ksm page forked */
1274 return 0;
1275
1276 if (!PageAnon(page))
1277 goto out;
1278
1279 /*
1280 * We need the page lock to read a stable PageSwapCache in
1281 * write_protect_page(). We use trylock_page() instead of
1282 * lock_page() because we don't want to wait here - we
1283 * prefer to continue scanning and merging different pages,
1284 * then come back to this page when it is unlocked.
1285 */
1286 if (!trylock_page(page))
1287 goto out;
1288
1289 if (PageTransCompound(page)) {
1290 if (split_huge_page(page))
1291 goto out_unlock;
1292 }
1293
1294 /*
1295 * If this anonymous page is mapped only here, its pte may need
1296 * to be write-protected. If it's mapped elsewhere, all of its
1297 * ptes are necessarily already write-protected. But in either
1298 * case, we need to lock and check page_count is not raised.
1299 */
1300 if (write_protect_page(vma, page, orig_pte: &orig_pte) == 0) {
1301 if (!kpage) {
1302 /*
1303 * While we hold page lock, upgrade page from
1304 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1305 * stable_tree_insert() will update stable_node.
1306 */
1307 set_page_stable_node(page, NULL);
1308 mark_page_accessed(page);
1309 /*
1310 * Page reclaim just frees a clean page with no dirty
1311 * ptes: make sure that the ksm page would be swapped.
1312 */
1313 if (!PageDirty(page))
1314 SetPageDirty(page);
1315 err = 0;
1316 } else if (pages_identical(page1: page, page2: kpage))
1317 err = replace_page(vma, page, kpage, orig_pte);
1318 }
1319
1320out_unlock:
1321 unlock_page(page);
1322out:
1323 return err;
1324}
1325
1326/*
1327 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1328 * but no new kernel page is allocated: kpage must already be a ksm page.
1329 *
1330 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1331 */
1332static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1333 struct page *page, struct page *kpage)
1334{
1335 struct mm_struct *mm = rmap_item->mm;
1336 struct vm_area_struct *vma;
1337 int err = -EFAULT;
1338
1339 mmap_read_lock(mm);
1340 vma = find_mergeable_vma(mm, addr: rmap_item->address);
1341 if (!vma)
1342 goto out;
1343
1344 err = try_to_merge_one_page(vma, page, kpage);
1345 if (err)
1346 goto out;
1347
1348 /* Unstable nid is in union with stable anon_vma: remove first */
1349 remove_rmap_item_from_tree(rmap_item);
1350
1351 /* Must get reference to anon_vma while still holding mmap_lock */
1352 rmap_item->anon_vma = vma->anon_vma;
1353 get_anon_vma(vma->anon_vma);
1354out:
1355 mmap_read_unlock(mm);
1356 trace_ksm_merge_with_ksm_page(ksm_page: kpage, page_to_pfn(kpage ? kpage : page),
1357 rmap_item, mm, err);
1358 return err;
1359}
1360
1361/*
1362 * try_to_merge_two_pages - take two identical pages and prepare them
1363 * to be merged into one page.
1364 *
1365 * This function returns the kpage if we successfully merged two identical
1366 * pages into one ksm page, NULL otherwise.
1367 *
1368 * Note that this function upgrades page to ksm page: if one of the pages
1369 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1370 */
1371static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1372 struct page *page,
1373 struct ksm_rmap_item *tree_rmap_item,
1374 struct page *tree_page)
1375{
1376 int err;
1377
1378 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1379 if (!err) {
1380 err = try_to_merge_with_ksm_page(rmap_item: tree_rmap_item,
1381 page: tree_page, kpage: page);
1382 /*
1383 * If that fails, we have a ksm page with only one pte
1384 * pointing to it: so break it.
1385 */
1386 if (err)
1387 break_cow(rmap_item);
1388 }
1389 return err ? NULL : page;
1390}
1391
1392static __always_inline
1393bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1394{
1395 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1396 /*
1397 * Check that at least one mapping still exists, otherwise
1398 * there's no much point to merge and share with this
1399 * stable_node, as the underlying tree_page of the other
1400 * sharer is going to be freed soon.
1401 */
1402 return stable_node->rmap_hlist_len &&
1403 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1404}
1405
1406static __always_inline
1407bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1408{
1409 return __is_page_sharing_candidate(stable_node, offset: 0);
1410}
1411
1412static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1413 struct ksm_stable_node **_stable_node,
1414 struct rb_root *root,
1415 bool prune_stale_stable_nodes)
1416{
1417 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1418 struct hlist_node *hlist_safe;
1419 struct page *_tree_page, *tree_page = NULL;
1420 int nr = 0;
1421 int found_rmap_hlist_len;
1422
1423 if (!prune_stale_stable_nodes ||
1424 time_before(jiffies, stable_node->chain_prune_time +
1425 msecs_to_jiffies(
1426 ksm_stable_node_chains_prune_millisecs)))
1427 prune_stale_stable_nodes = false;
1428 else
1429 stable_node->chain_prune_time = jiffies;
1430
1431 hlist_for_each_entry_safe(dup, hlist_safe,
1432 &stable_node->hlist, hlist_dup) {
1433 cond_resched();
1434 /*
1435 * We must walk all stable_node_dup to prune the stale
1436 * stable nodes during lookup.
1437 *
1438 * get_ksm_page can drop the nodes from the
1439 * stable_node->hlist if they point to freed pages
1440 * (that's why we do a _safe walk). The "dup"
1441 * stable_node parameter itself will be freed from
1442 * under us if it returns NULL.
1443 */
1444 _tree_page = get_ksm_page(stable_node: dup, flags: GET_KSM_PAGE_NOLOCK);
1445 if (!_tree_page)
1446 continue;
1447 nr += 1;
1448 if (is_page_sharing_candidate(stable_node: dup)) {
1449 if (!found ||
1450 dup->rmap_hlist_len > found_rmap_hlist_len) {
1451 if (found)
1452 put_page(page: tree_page);
1453 found = dup;
1454 found_rmap_hlist_len = found->rmap_hlist_len;
1455 tree_page = _tree_page;
1456
1457 /* skip put_page for found dup */
1458 if (!prune_stale_stable_nodes)
1459 break;
1460 continue;
1461 }
1462 }
1463 put_page(page: _tree_page);
1464 }
1465
1466 if (found) {
1467 /*
1468 * nr is counting all dups in the chain only if
1469 * prune_stale_stable_nodes is true, otherwise we may
1470 * break the loop at nr == 1 even if there are
1471 * multiple entries.
1472 */
1473 if (prune_stale_stable_nodes && nr == 1) {
1474 /*
1475 * If there's not just one entry it would
1476 * corrupt memory, better BUG_ON. In KSM
1477 * context with no lock held it's not even
1478 * fatal.
1479 */
1480 BUG_ON(stable_node->hlist.first->next);
1481
1482 /*
1483 * There's just one entry and it is below the
1484 * deduplication limit so drop the chain.
1485 */
1486 rb_replace_node(victim: &stable_node->node, new: &found->node,
1487 root);
1488 free_stable_node(stable_node);
1489 ksm_stable_node_chains--;
1490 ksm_stable_node_dups--;
1491 /*
1492 * NOTE: the caller depends on the stable_node
1493 * to be equal to stable_node_dup if the chain
1494 * was collapsed.
1495 */
1496 *_stable_node = found;
1497 /*
1498 * Just for robustness, as stable_node is
1499 * otherwise left as a stable pointer, the
1500 * compiler shall optimize it away at build
1501 * time.
1502 */
1503 stable_node = NULL;
1504 } else if (stable_node->hlist.first != &found->hlist_dup &&
1505 __is_page_sharing_candidate(stable_node: found, offset: 1)) {
1506 /*
1507 * If the found stable_node dup can accept one
1508 * more future merge (in addition to the one
1509 * that is underway) and is not at the head of
1510 * the chain, put it there so next search will
1511 * be quicker in the !prune_stale_stable_nodes
1512 * case.
1513 *
1514 * NOTE: it would be inaccurate to use nr > 1
1515 * instead of checking the hlist.first pointer
1516 * directly, because in the
1517 * prune_stale_stable_nodes case "nr" isn't
1518 * the position of the found dup in the chain,
1519 * but the total number of dups in the chain.
1520 */
1521 hlist_del(n: &found->hlist_dup);
1522 hlist_add_head(n: &found->hlist_dup,
1523 h: &stable_node->hlist);
1524 }
1525 }
1526
1527 *_stable_node_dup = found;
1528 return tree_page;
1529}
1530
1531static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1532 struct rb_root *root)
1533{
1534 if (!is_stable_node_chain(chain: stable_node))
1535 return stable_node;
1536 if (hlist_empty(h: &stable_node->hlist)) {
1537 free_stable_node_chain(chain: stable_node, root);
1538 return NULL;
1539 }
1540 return hlist_entry(stable_node->hlist.first,
1541 typeof(*stable_node), hlist_dup);
1542}
1543
1544/*
1545 * Like for get_ksm_page, this function can free the *_stable_node and
1546 * *_stable_node_dup if the returned tree_page is NULL.
1547 *
1548 * It can also free and overwrite *_stable_node with the found
1549 * stable_node_dup if the chain is collapsed (in which case
1550 * *_stable_node will be equal to *_stable_node_dup like if the chain
1551 * never existed). It's up to the caller to verify tree_page is not
1552 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1553 *
1554 * *_stable_node_dup is really a second output parameter of this
1555 * function and will be overwritten in all cases, the caller doesn't
1556 * need to initialize it.
1557 */
1558static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1559 struct ksm_stable_node **_stable_node,
1560 struct rb_root *root,
1561 bool prune_stale_stable_nodes)
1562{
1563 struct ksm_stable_node *stable_node = *_stable_node;
1564 if (!is_stable_node_chain(chain: stable_node)) {
1565 if (is_page_sharing_candidate(stable_node)) {
1566 *_stable_node_dup = stable_node;
1567 return get_ksm_page(stable_node, flags: GET_KSM_PAGE_NOLOCK);
1568 }
1569 /*
1570 * _stable_node_dup set to NULL means the stable_node
1571 * reached the ksm_max_page_sharing limit.
1572 */
1573 *_stable_node_dup = NULL;
1574 return NULL;
1575 }
1576 return stable_node_dup(_stable_node_dup, _stable_node, root,
1577 prune_stale_stable_nodes);
1578}
1579
1580static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1581 struct ksm_stable_node **s_n,
1582 struct rb_root *root)
1583{
1584 return __stable_node_chain(stable_node_dup: s_n_d, stable_node: s_n, root, prune_stale_stable_nodes: true);
1585}
1586
1587static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1588 struct ksm_stable_node *s_n,
1589 struct rb_root *root)
1590{
1591 struct ksm_stable_node *old_stable_node = s_n;
1592 struct page *tree_page;
1593
1594 tree_page = __stable_node_chain(stable_node_dup: s_n_d, stable_node: &s_n, root, prune_stale_stable_nodes: false);
1595 /* not pruning dups so s_n cannot have changed */
1596 VM_BUG_ON(s_n != old_stable_node);
1597 return tree_page;
1598}
1599
1600/*
1601 * stable_tree_search - search for page inside the stable tree
1602 *
1603 * This function checks if there is a page inside the stable tree
1604 * with identical content to the page that we are scanning right now.
1605 *
1606 * This function returns the stable tree node of identical content if found,
1607 * NULL otherwise.
1608 */
1609static struct page *stable_tree_search(struct page *page)
1610{
1611 int nid;
1612 struct rb_root *root;
1613 struct rb_node **new;
1614 struct rb_node *parent;
1615 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1616 struct ksm_stable_node *page_node;
1617
1618 page_node = page_stable_node(page);
1619 if (page_node && page_node->head != &migrate_nodes) {
1620 /* ksm page forked */
1621 get_page(page);
1622 return page;
1623 }
1624
1625 nid = get_kpfn_nid(page_to_pfn(page));
1626 root = root_stable_tree + nid;
1627again:
1628 new = &root->rb_node;
1629 parent = NULL;
1630
1631 while (*new) {
1632 struct page *tree_page;
1633 int ret;
1634
1635 cond_resched();
1636 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1637 stable_node_any = NULL;
1638 tree_page = chain_prune(s_n_d: &stable_node_dup, s_n: &stable_node, root);
1639 /*
1640 * NOTE: stable_node may have been freed by
1641 * chain_prune() if the returned stable_node_dup is
1642 * not NULL. stable_node_dup may have been inserted in
1643 * the rbtree instead as a regular stable_node (in
1644 * order to collapse the stable_node chain if a single
1645 * stable_node dup was found in it). In such case the
1646 * stable_node is overwritten by the callee to point
1647 * to the stable_node_dup that was collapsed in the
1648 * stable rbtree and stable_node will be equal to
1649 * stable_node_dup like if the chain never existed.
1650 */
1651 if (!stable_node_dup) {
1652 /*
1653 * Either all stable_node dups were full in
1654 * this stable_node chain, or this chain was
1655 * empty and should be rb_erased.
1656 */
1657 stable_node_any = stable_node_dup_any(stable_node,
1658 root);
1659 if (!stable_node_any) {
1660 /* rb_erase just run */
1661 goto again;
1662 }
1663 /*
1664 * Take any of the stable_node dups page of
1665 * this stable_node chain to let the tree walk
1666 * continue. All KSM pages belonging to the
1667 * stable_node dups in a stable_node chain
1668 * have the same content and they're
1669 * write protected at all times. Any will work
1670 * fine to continue the walk.
1671 */
1672 tree_page = get_ksm_page(stable_node: stable_node_any,
1673 flags: GET_KSM_PAGE_NOLOCK);
1674 }
1675 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1676 if (!tree_page) {
1677 /*
1678 * If we walked over a stale stable_node,
1679 * get_ksm_page() will call rb_erase() and it
1680 * may rebalance the tree from under us. So
1681 * restart the search from scratch. Returning
1682 * NULL would be safe too, but we'd generate
1683 * false negative insertions just because some
1684 * stable_node was stale.
1685 */
1686 goto again;
1687 }
1688
1689 ret = memcmp_pages(page1: page, page2: tree_page);
1690 put_page(page: tree_page);
1691
1692 parent = *new;
1693 if (ret < 0)
1694 new = &parent->rb_left;
1695 else if (ret > 0)
1696 new = &parent->rb_right;
1697 else {
1698 if (page_node) {
1699 VM_BUG_ON(page_node->head != &migrate_nodes);
1700 /*
1701 * Test if the migrated page should be merged
1702 * into a stable node dup. If the mapcount is
1703 * 1 we can migrate it with another KSM page
1704 * without adding it to the chain.
1705 */
1706 if (page_mapcount(page) > 1)
1707 goto chain_append;
1708 }
1709
1710 if (!stable_node_dup) {
1711 /*
1712 * If the stable_node is a chain and
1713 * we got a payload match in memcmp
1714 * but we cannot merge the scanned
1715 * page in any of the existing
1716 * stable_node dups because they're
1717 * all full, we need to wait the
1718 * scanned page to find itself a match
1719 * in the unstable tree to create a
1720 * brand new KSM page to add later to
1721 * the dups of this stable_node.
1722 */
1723 return NULL;
1724 }
1725
1726 /*
1727 * Lock and unlock the stable_node's page (which
1728 * might already have been migrated) so that page
1729 * migration is sure to notice its raised count.
1730 * It would be more elegant to return stable_node
1731 * than kpage, but that involves more changes.
1732 */
1733 tree_page = get_ksm_page(stable_node: stable_node_dup,
1734 flags: GET_KSM_PAGE_TRYLOCK);
1735
1736 if (PTR_ERR(tree_page) == -EBUSY)
1737 return ERR_PTR(-EBUSY);
1738
1739 if (unlikely(!tree_page))
1740 /*
1741 * The tree may have been rebalanced,
1742 * so re-evaluate parent and new.
1743 */
1744 goto again;
1745 unlock_page(page: tree_page);
1746
1747 if (get_kpfn_nid(kpfn: stable_node_dup->kpfn) !=
1748 NUMA(stable_node_dup->nid)) {
1749 put_page(page: tree_page);
1750 goto replace;
1751 }
1752 return tree_page;
1753 }
1754 }
1755
1756 if (!page_node)
1757 return NULL;
1758
1759 list_del(entry: &page_node->list);
1760 DO_NUMA(page_node->nid = nid);
1761 rb_link_node(node: &page_node->node, parent, rb_link: new);
1762 rb_insert_color(&page_node->node, root);
1763out:
1764 if (is_page_sharing_candidate(stable_node: page_node)) {
1765 get_page(page);
1766 return page;
1767 } else
1768 return NULL;
1769
1770replace:
1771 /*
1772 * If stable_node was a chain and chain_prune collapsed it,
1773 * stable_node has been updated to be the new regular
1774 * stable_node. A collapse of the chain is indistinguishable
1775 * from the case there was no chain in the stable
1776 * rbtree. Otherwise stable_node is the chain and
1777 * stable_node_dup is the dup to replace.
1778 */
1779 if (stable_node_dup == stable_node) {
1780 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1781 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1782 /* there is no chain */
1783 if (page_node) {
1784 VM_BUG_ON(page_node->head != &migrate_nodes);
1785 list_del(entry: &page_node->list);
1786 DO_NUMA(page_node->nid = nid);
1787 rb_replace_node(victim: &stable_node_dup->node,
1788 new: &page_node->node,
1789 root);
1790 if (is_page_sharing_candidate(stable_node: page_node))
1791 get_page(page);
1792 else
1793 page = NULL;
1794 } else {
1795 rb_erase(&stable_node_dup->node, root);
1796 page = NULL;
1797 }
1798 } else {
1799 VM_BUG_ON(!is_stable_node_chain(stable_node));
1800 __stable_node_dup_del(dup: stable_node_dup);
1801 if (page_node) {
1802 VM_BUG_ON(page_node->head != &migrate_nodes);
1803 list_del(entry: &page_node->list);
1804 DO_NUMA(page_node->nid = nid);
1805 stable_node_chain_add_dup(dup: page_node, chain: stable_node);
1806 if (is_page_sharing_candidate(stable_node: page_node))
1807 get_page(page);
1808 else
1809 page = NULL;
1810 } else {
1811 page = NULL;
1812 }
1813 }
1814 stable_node_dup->head = &migrate_nodes;
1815 list_add(new: &stable_node_dup->list, head: stable_node_dup->head);
1816 return page;
1817
1818chain_append:
1819 /* stable_node_dup could be null if it reached the limit */
1820 if (!stable_node_dup)
1821 stable_node_dup = stable_node_any;
1822 /*
1823 * If stable_node was a chain and chain_prune collapsed it,
1824 * stable_node has been updated to be the new regular
1825 * stable_node. A collapse of the chain is indistinguishable
1826 * from the case there was no chain in the stable
1827 * rbtree. Otherwise stable_node is the chain and
1828 * stable_node_dup is the dup to replace.
1829 */
1830 if (stable_node_dup == stable_node) {
1831 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1832 /* chain is missing so create it */
1833 stable_node = alloc_stable_node_chain(dup: stable_node_dup,
1834 root);
1835 if (!stable_node)
1836 return NULL;
1837 }
1838 /*
1839 * Add this stable_node dup that was
1840 * migrated to the stable_node chain
1841 * of the current nid for this page
1842 * content.
1843 */
1844 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1845 VM_BUG_ON(page_node->head != &migrate_nodes);
1846 list_del(entry: &page_node->list);
1847 DO_NUMA(page_node->nid = nid);
1848 stable_node_chain_add_dup(dup: page_node, chain: stable_node);
1849 goto out;
1850}
1851
1852/*
1853 * stable_tree_insert - insert stable tree node pointing to new ksm page
1854 * into the stable tree.
1855 *
1856 * This function returns the stable tree node just allocated on success,
1857 * NULL otherwise.
1858 */
1859static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1860{
1861 int nid;
1862 unsigned long kpfn;
1863 struct rb_root *root;
1864 struct rb_node **new;
1865 struct rb_node *parent;
1866 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1867 bool need_chain = false;
1868
1869 kpfn = page_to_pfn(kpage);
1870 nid = get_kpfn_nid(kpfn);
1871 root = root_stable_tree + nid;
1872again:
1873 parent = NULL;
1874 new = &root->rb_node;
1875
1876 while (*new) {
1877 struct page *tree_page;
1878 int ret;
1879
1880 cond_resched();
1881 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1882 stable_node_any = NULL;
1883 tree_page = chain(s_n_d: &stable_node_dup, s_n: stable_node, root);
1884 if (!stable_node_dup) {
1885 /*
1886 * Either all stable_node dups were full in
1887 * this stable_node chain, or this chain was
1888 * empty and should be rb_erased.
1889 */
1890 stable_node_any = stable_node_dup_any(stable_node,
1891 root);
1892 if (!stable_node_any) {
1893 /* rb_erase just run */
1894 goto again;
1895 }
1896 /*
1897 * Take any of the stable_node dups page of
1898 * this stable_node chain to let the tree walk
1899 * continue. All KSM pages belonging to the
1900 * stable_node dups in a stable_node chain
1901 * have the same content and they're
1902 * write protected at all times. Any will work
1903 * fine to continue the walk.
1904 */
1905 tree_page = get_ksm_page(stable_node: stable_node_any,
1906 flags: GET_KSM_PAGE_NOLOCK);
1907 }
1908 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1909 if (!tree_page) {
1910 /*
1911 * If we walked over a stale stable_node,
1912 * get_ksm_page() will call rb_erase() and it
1913 * may rebalance the tree from under us. So
1914 * restart the search from scratch. Returning
1915 * NULL would be safe too, but we'd generate
1916 * false negative insertions just because some
1917 * stable_node was stale.
1918 */
1919 goto again;
1920 }
1921
1922 ret = memcmp_pages(page1: kpage, page2: tree_page);
1923 put_page(page: tree_page);
1924
1925 parent = *new;
1926 if (ret < 0)
1927 new = &parent->rb_left;
1928 else if (ret > 0)
1929 new = &parent->rb_right;
1930 else {
1931 need_chain = true;
1932 break;
1933 }
1934 }
1935
1936 stable_node_dup = alloc_stable_node();
1937 if (!stable_node_dup)
1938 return NULL;
1939
1940 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1941 stable_node_dup->kpfn = kpfn;
1942 set_page_stable_node(page: kpage, stable_node: stable_node_dup);
1943 stable_node_dup->rmap_hlist_len = 0;
1944 DO_NUMA(stable_node_dup->nid = nid);
1945 if (!need_chain) {
1946 rb_link_node(node: &stable_node_dup->node, parent, rb_link: new);
1947 rb_insert_color(&stable_node_dup->node, root);
1948 } else {
1949 if (!is_stable_node_chain(chain: stable_node)) {
1950 struct ksm_stable_node *orig = stable_node;
1951 /* chain is missing so create it */
1952 stable_node = alloc_stable_node_chain(dup: orig, root);
1953 if (!stable_node) {
1954 free_stable_node(stable_node: stable_node_dup);
1955 return NULL;
1956 }
1957 }
1958 stable_node_chain_add_dup(dup: stable_node_dup, chain: stable_node);
1959 }
1960
1961 return stable_node_dup;
1962}
1963
1964/*
1965 * unstable_tree_search_insert - search for identical page,
1966 * else insert rmap_item into the unstable tree.
1967 *
1968 * This function searches for a page in the unstable tree identical to the
1969 * page currently being scanned; and if no identical page is found in the
1970 * tree, we insert rmap_item as a new object into the unstable tree.
1971 *
1972 * This function returns pointer to rmap_item found to be identical
1973 * to the currently scanned page, NULL otherwise.
1974 *
1975 * This function does both searching and inserting, because they share
1976 * the same walking algorithm in an rbtree.
1977 */
1978static
1979struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1980 struct page *page,
1981 struct page **tree_pagep)
1982{
1983 struct rb_node **new;
1984 struct rb_root *root;
1985 struct rb_node *parent = NULL;
1986 int nid;
1987
1988 nid = get_kpfn_nid(page_to_pfn(page));
1989 root = root_unstable_tree + nid;
1990 new = &root->rb_node;
1991
1992 while (*new) {
1993 struct ksm_rmap_item *tree_rmap_item;
1994 struct page *tree_page;
1995 int ret;
1996
1997 cond_resched();
1998 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1999 tree_page = get_mergeable_page(rmap_item: tree_rmap_item);
2000 if (!tree_page)
2001 return NULL;
2002
2003 /*
2004 * Don't substitute a ksm page for a forked page.
2005 */
2006 if (page == tree_page) {
2007 put_page(page: tree_page);
2008 return NULL;
2009 }
2010
2011 ret = memcmp_pages(page1: page, page2: tree_page);
2012
2013 parent = *new;
2014 if (ret < 0) {
2015 put_page(page: tree_page);
2016 new = &parent->rb_left;
2017 } else if (ret > 0) {
2018 put_page(page: tree_page);
2019 new = &parent->rb_right;
2020 } else if (!ksm_merge_across_nodes &&
2021 page_to_nid(page: tree_page) != nid) {
2022 /*
2023 * If tree_page has been migrated to another NUMA node,
2024 * it will be flushed out and put in the right unstable
2025 * tree next time: only merge with it when across_nodes.
2026 */
2027 put_page(page: tree_page);
2028 return NULL;
2029 } else {
2030 *tree_pagep = tree_page;
2031 return tree_rmap_item;
2032 }
2033 }
2034
2035 rmap_item->address |= UNSTABLE_FLAG;
2036 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2037 DO_NUMA(rmap_item->nid = nid);
2038 rb_link_node(node: &rmap_item->node, parent, rb_link: new);
2039 rb_insert_color(&rmap_item->node, root);
2040
2041 ksm_pages_unshared++;
2042 return NULL;
2043}
2044
2045/*
2046 * stable_tree_append - add another rmap_item to the linked list of
2047 * rmap_items hanging off a given node of the stable tree, all sharing
2048 * the same ksm page.
2049 */
2050static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2051 struct ksm_stable_node *stable_node,
2052 bool max_page_sharing_bypass)
2053{
2054 /*
2055 * rmap won't find this mapping if we don't insert the
2056 * rmap_item in the right stable_node
2057 * duplicate. page_migration could break later if rmap breaks,
2058 * so we can as well crash here. We really need to check for
2059 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2060 * for other negative values as an underflow if detected here
2061 * for the first time (and not when decreasing rmap_hlist_len)
2062 * would be sign of memory corruption in the stable_node.
2063 */
2064 BUG_ON(stable_node->rmap_hlist_len < 0);
2065
2066 stable_node->rmap_hlist_len++;
2067 if (!max_page_sharing_bypass)
2068 /* possibly non fatal but unexpected overflow, only warn */
2069 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2070 ksm_max_page_sharing);
2071
2072 rmap_item->head = stable_node;
2073 rmap_item->address |= STABLE_FLAG;
2074 hlist_add_head(n: &rmap_item->hlist, h: &stable_node->hlist);
2075
2076 if (rmap_item->hlist.next)
2077 ksm_pages_sharing++;
2078 else
2079 ksm_pages_shared++;
2080
2081 rmap_item->mm->ksm_merging_pages++;
2082}
2083
2084/*
2085 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2086 * if not, compare checksum to previous and if it's the same, see if page can
2087 * be inserted into the unstable tree, or merged with a page already there and
2088 * both transferred to the stable tree.
2089 *
2090 * @page: the page that we are searching identical page to.
2091 * @rmap_item: the reverse mapping into the virtual address of this page
2092 */
2093static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2094{
2095 struct mm_struct *mm = rmap_item->mm;
2096 struct ksm_rmap_item *tree_rmap_item;
2097 struct page *tree_page = NULL;
2098 struct ksm_stable_node *stable_node;
2099 struct page *kpage;
2100 unsigned int checksum;
2101 int err;
2102 bool max_page_sharing_bypass = false;
2103
2104 stable_node = page_stable_node(page);
2105 if (stable_node) {
2106 if (stable_node->head != &migrate_nodes &&
2107 get_kpfn_nid(kpfn: READ_ONCE(stable_node->kpfn)) !=
2108 NUMA(stable_node->nid)) {
2109 stable_node_dup_del(dup: stable_node);
2110 stable_node->head = &migrate_nodes;
2111 list_add(new: &stable_node->list, head: stable_node->head);
2112 }
2113 if (stable_node->head != &migrate_nodes &&
2114 rmap_item->head == stable_node)
2115 return;
2116 /*
2117 * If it's a KSM fork, allow it to go over the sharing limit
2118 * without warnings.
2119 */
2120 if (!is_page_sharing_candidate(stable_node))
2121 max_page_sharing_bypass = true;
2122 }
2123
2124 /* We first start with searching the page inside the stable tree */
2125 kpage = stable_tree_search(page);
2126 if (kpage == page && rmap_item->head == stable_node) {
2127 put_page(page: kpage);
2128 return;
2129 }
2130
2131 remove_rmap_item_from_tree(rmap_item);
2132
2133 if (kpage) {
2134 if (PTR_ERR(kpage) == -EBUSY)
2135 return;
2136
2137 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2138 if (!err) {
2139 /*
2140 * The page was successfully merged:
2141 * add its rmap_item to the stable tree.
2142 */
2143 lock_page(page: kpage);
2144 stable_tree_append(rmap_item, stable_node: page_stable_node(page: kpage),
2145 max_page_sharing_bypass);
2146 unlock_page(page: kpage);
2147 }
2148 put_page(page: kpage);
2149 return;
2150 }
2151
2152 /*
2153 * If the hash value of the page has changed from the last time
2154 * we calculated it, this page is changing frequently: therefore we
2155 * don't want to insert it in the unstable tree, and we don't want
2156 * to waste our time searching for something identical to it there.
2157 */
2158 checksum = calc_checksum(page);
2159 if (rmap_item->oldchecksum != checksum) {
2160 rmap_item->oldchecksum = checksum;
2161 return;
2162 }
2163
2164 /*
2165 * Same checksum as an empty page. We attempt to merge it with the
2166 * appropriate zero page if the user enabled this via sysfs.
2167 */
2168 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2169 struct vm_area_struct *vma;
2170
2171 mmap_read_lock(mm);
2172 vma = find_mergeable_vma(mm, addr: rmap_item->address);
2173 if (vma) {
2174 err = try_to_merge_one_page(vma, page,
2175 ZERO_PAGE(rmap_item->address));
2176 trace_ksm_merge_one_page(
2177 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2178 rmap_item, mm, err);
2179 } else {
2180 /*
2181 * If the vma is out of date, we do not need to
2182 * continue.
2183 */
2184 err = 0;
2185 }
2186 mmap_read_unlock(mm);
2187 /*
2188 * In case of failure, the page was not really empty, so we
2189 * need to continue. Otherwise we're done.
2190 */
2191 if (!err)
2192 return;
2193 }
2194 tree_rmap_item =
2195 unstable_tree_search_insert(rmap_item, page, tree_pagep: &tree_page);
2196 if (tree_rmap_item) {
2197 bool split;
2198
2199 kpage = try_to_merge_two_pages(rmap_item, page,
2200 tree_rmap_item, tree_page);
2201 /*
2202 * If both pages we tried to merge belong to the same compound
2203 * page, then we actually ended up increasing the reference
2204 * count of the same compound page twice, and split_huge_page
2205 * failed.
2206 * Here we set a flag if that happened, and we use it later to
2207 * try split_huge_page again. Since we call put_page right
2208 * afterwards, the reference count will be correct and
2209 * split_huge_page should succeed.
2210 */
2211 split = PageTransCompound(page)
2212 && compound_head(page) == compound_head(tree_page);
2213 put_page(page: tree_page);
2214 if (kpage) {
2215 /*
2216 * The pages were successfully merged: insert new
2217 * node in the stable tree and add both rmap_items.
2218 */
2219 lock_page(page: kpage);
2220 stable_node = stable_tree_insert(kpage);
2221 if (stable_node) {
2222 stable_tree_append(rmap_item: tree_rmap_item, stable_node,
2223 max_page_sharing_bypass: false);
2224 stable_tree_append(rmap_item, stable_node,
2225 max_page_sharing_bypass: false);
2226 }
2227 unlock_page(page: kpage);
2228
2229 /*
2230 * If we fail to insert the page into the stable tree,
2231 * we will have 2 virtual addresses that are pointing
2232 * to a ksm page left outside the stable tree,
2233 * in which case we need to break_cow on both.
2234 */
2235 if (!stable_node) {
2236 break_cow(rmap_item: tree_rmap_item);
2237 break_cow(rmap_item);
2238 }
2239 } else if (split) {
2240 /*
2241 * We are here if we tried to merge two pages and
2242 * failed because they both belonged to the same
2243 * compound page. We will split the page now, but no
2244 * merging will take place.
2245 * We do not want to add the cost of a full lock; if
2246 * the page is locked, it is better to skip it and
2247 * perhaps try again later.
2248 */
2249 if (!trylock_page(page))
2250 return;
2251 split_huge_page(page);
2252 unlock_page(page);
2253 }
2254 }
2255}
2256
2257static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2258 struct ksm_rmap_item **rmap_list,
2259 unsigned long addr)
2260{
2261 struct ksm_rmap_item *rmap_item;
2262
2263 while (*rmap_list) {
2264 rmap_item = *rmap_list;
2265 if ((rmap_item->address & PAGE_MASK) == addr)
2266 return rmap_item;
2267 if (rmap_item->address > addr)
2268 break;
2269 *rmap_list = rmap_item->rmap_list;
2270 remove_rmap_item_from_tree(rmap_item);
2271 free_rmap_item(rmap_item);
2272 }
2273
2274 rmap_item = alloc_rmap_item();
2275 if (rmap_item) {
2276 /* It has already been zeroed */
2277 rmap_item->mm = mm_slot->slot.mm;
2278 rmap_item->mm->ksm_rmap_items++;
2279 rmap_item->address = addr;
2280 rmap_item->rmap_list = *rmap_list;
2281 *rmap_list = rmap_item;
2282 }
2283 return rmap_item;
2284}
2285
2286static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2287{
2288 struct mm_struct *mm;
2289 struct ksm_mm_slot *mm_slot;
2290 struct mm_slot *slot;
2291 struct vm_area_struct *vma;
2292 struct ksm_rmap_item *rmap_item;
2293 struct vma_iterator vmi;
2294 int nid;
2295
2296 if (list_empty(head: &ksm_mm_head.slot.mm_node))
2297 return NULL;
2298
2299 mm_slot = ksm_scan.mm_slot;
2300 if (mm_slot == &ksm_mm_head) {
2301 trace_ksm_start_scan(seq: ksm_scan.seqnr, rmap_entries: ksm_rmap_items);
2302
2303 /*
2304 * A number of pages can hang around indefinitely on per-cpu
2305 * pagevecs, raised page count preventing write_protect_page
2306 * from merging them. Though it doesn't really matter much,
2307 * it is puzzling to see some stuck in pages_volatile until
2308 * other activity jostles them out, and they also prevented
2309 * LTP's KSM test from succeeding deterministically; so drain
2310 * them here (here rather than on entry to ksm_do_scan(),
2311 * so we don't IPI too often when pages_to_scan is set low).
2312 */
2313 lru_add_drain_all();
2314
2315 /*
2316 * Whereas stale stable_nodes on the stable_tree itself
2317 * get pruned in the regular course of stable_tree_search(),
2318 * those moved out to the migrate_nodes list can accumulate:
2319 * so prune them once before each full scan.
2320 */
2321 if (!ksm_merge_across_nodes) {
2322 struct ksm_stable_node *stable_node, *next;
2323 struct page *page;
2324
2325 list_for_each_entry_safe(stable_node, next,
2326 &migrate_nodes, list) {
2327 page = get_ksm_page(stable_node,
2328 flags: GET_KSM_PAGE_NOLOCK);
2329 if (page)
2330 put_page(page);
2331 cond_resched();
2332 }
2333 }
2334
2335 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2336 root_unstable_tree[nid] = RB_ROOT;
2337
2338 spin_lock(lock: &ksm_mmlist_lock);
2339 slot = list_entry(mm_slot->slot.mm_node.next,
2340 struct mm_slot, mm_node);
2341 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2342 ksm_scan.mm_slot = mm_slot;
2343 spin_unlock(lock: &ksm_mmlist_lock);
2344 /*
2345 * Although we tested list_empty() above, a racing __ksm_exit
2346 * of the last mm on the list may have removed it since then.
2347 */
2348 if (mm_slot == &ksm_mm_head)
2349 return NULL;
2350next_mm:
2351 ksm_scan.address = 0;
2352 ksm_scan.rmap_list = &mm_slot->rmap_list;
2353 }
2354
2355 slot = &mm_slot->slot;
2356 mm = slot->mm;
2357 vma_iter_init(vmi: &vmi, mm, addr: ksm_scan.address);
2358
2359 mmap_read_lock(mm);
2360 if (ksm_test_exit(mm))
2361 goto no_vmas;
2362
2363 for_each_vma(vmi, vma) {
2364 if (!(vma->vm_flags & VM_MERGEABLE))
2365 continue;
2366 if (ksm_scan.address < vma->vm_start)
2367 ksm_scan.address = vma->vm_start;
2368 if (!vma->anon_vma)
2369 ksm_scan.address = vma->vm_end;
2370
2371 while (ksm_scan.address < vma->vm_end) {
2372 if (ksm_test_exit(mm))
2373 break;
2374 *page = follow_page(vma, address: ksm_scan.address, foll_flags: FOLL_GET);
2375 if (IS_ERR_OR_NULL(ptr: *page)) {
2376 ksm_scan.address += PAGE_SIZE;
2377 cond_resched();
2378 continue;
2379 }
2380 if (is_zone_device_page(page: *page))
2381 goto next_page;
2382 if (PageAnon(page: *page)) {
2383 flush_anon_page(vma, page: *page, vmaddr: ksm_scan.address);
2384 flush_dcache_page(page: *page);
2385 rmap_item = get_next_rmap_item(mm_slot,
2386 rmap_list: ksm_scan.rmap_list, addr: ksm_scan.address);
2387 if (rmap_item) {
2388 ksm_scan.rmap_list =
2389 &rmap_item->rmap_list;
2390 ksm_scan.address += PAGE_SIZE;
2391 } else
2392 put_page(page: *page);
2393 mmap_read_unlock(mm);
2394 return rmap_item;
2395 }
2396next_page:
2397 put_page(page: *page);
2398 ksm_scan.address += PAGE_SIZE;
2399 cond_resched();
2400 }
2401 }
2402
2403 if (ksm_test_exit(mm)) {
2404no_vmas:
2405 ksm_scan.address = 0;
2406 ksm_scan.rmap_list = &mm_slot->rmap_list;
2407 }
2408 /*
2409 * Nuke all the rmap_items that are above this current rmap:
2410 * because there were no VM_MERGEABLE vmas with such addresses.
2411 */
2412 remove_trailing_rmap_items(rmap_list: ksm_scan.rmap_list);
2413
2414 spin_lock(lock: &ksm_mmlist_lock);
2415 slot = list_entry(mm_slot->slot.mm_node.next,
2416 struct mm_slot, mm_node);
2417 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2418 if (ksm_scan.address == 0) {
2419 /*
2420 * We've completed a full scan of all vmas, holding mmap_lock
2421 * throughout, and found no VM_MERGEABLE: so do the same as
2422 * __ksm_exit does to remove this mm from all our lists now.
2423 * This applies either when cleaning up after __ksm_exit
2424 * (but beware: we can reach here even before __ksm_exit),
2425 * or when all VM_MERGEABLE areas have been unmapped (and
2426 * mmap_lock then protects against race with MADV_MERGEABLE).
2427 */
2428 hash_del(node: &mm_slot->slot.hash);
2429 list_del(entry: &mm_slot->slot.mm_node);
2430 spin_unlock(lock: &ksm_mmlist_lock);
2431
2432 mm_slot_free(cache: mm_slot_cache, objp: mm_slot);
2433 clear_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
2434 clear_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2435 mmap_read_unlock(mm);
2436 mmdrop(mm);
2437 } else {
2438 mmap_read_unlock(mm);
2439 /*
2440 * mmap_read_unlock(mm) first because after
2441 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2442 * already have been freed under us by __ksm_exit()
2443 * because the "mm_slot" is still hashed and
2444 * ksm_scan.mm_slot doesn't point to it anymore.
2445 */
2446 spin_unlock(lock: &ksm_mmlist_lock);
2447 }
2448
2449 /* Repeat until we've completed scanning the whole list */
2450 mm_slot = ksm_scan.mm_slot;
2451 if (mm_slot != &ksm_mm_head)
2452 goto next_mm;
2453
2454 trace_ksm_stop_scan(seq: ksm_scan.seqnr, rmap_entries: ksm_rmap_items);
2455 ksm_scan.seqnr++;
2456 return NULL;
2457}
2458
2459/**
2460 * ksm_do_scan - the ksm scanner main worker function.
2461 * @scan_npages: number of pages we want to scan before we return.
2462 */
2463static void ksm_do_scan(unsigned int scan_npages)
2464{
2465 struct ksm_rmap_item *rmap_item;
2466 struct page *page;
2467
2468 while (scan_npages-- && likely(!freezing(current))) {
2469 cond_resched();
2470 rmap_item = scan_get_next_rmap_item(page: &page);
2471 if (!rmap_item)
2472 return;
2473 cmp_and_merge_page(page, rmap_item);
2474 put_page(page);
2475 }
2476}
2477
2478static int ksmd_should_run(void)
2479{
2480 return (ksm_run & KSM_RUN_MERGE) && !list_empty(head: &ksm_mm_head.slot.mm_node);
2481}
2482
2483static int ksm_scan_thread(void *nothing)
2484{
2485 unsigned int sleep_ms;
2486
2487 set_freezable();
2488 set_user_nice(current, nice: 5);
2489
2490 while (!kthread_should_stop()) {
2491 mutex_lock(lock: &ksm_thread_mutex);
2492 wait_while_offlining();
2493 if (ksmd_should_run())
2494 ksm_do_scan(scan_npages: ksm_thread_pages_to_scan);
2495 mutex_unlock(lock: &ksm_thread_mutex);
2496
2497 try_to_freeze();
2498
2499 if (ksmd_should_run()) {
2500 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2501 wait_event_interruptible_timeout(ksm_iter_wait,
2502 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2503 msecs_to_jiffies(sleep_ms));
2504 } else {
2505 wait_event_freezable(ksm_thread_wait,
2506 ksmd_should_run() || kthread_should_stop());
2507 }
2508 }
2509 return 0;
2510}
2511
2512static void __ksm_add_vma(struct vm_area_struct *vma)
2513{
2514 unsigned long vm_flags = vma->vm_flags;
2515
2516 if (vm_flags & VM_MERGEABLE)
2517 return;
2518
2519 if (vma_ksm_compatible(vma))
2520 vm_flags_set(vma, VM_MERGEABLE);
2521}
2522
2523/**
2524 * ksm_add_vma - Mark vma as mergeable if compatible
2525 *
2526 * @vma: Pointer to vma
2527 */
2528void ksm_add_vma(struct vm_area_struct *vma)
2529{
2530 struct mm_struct *mm = vma->vm_mm;
2531
2532 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2533 __ksm_add_vma(vma);
2534}
2535
2536static void ksm_add_vmas(struct mm_struct *mm)
2537{
2538 struct vm_area_struct *vma;
2539
2540 VMA_ITERATOR(vmi, mm, 0);
2541 for_each_vma(vmi, vma)
2542 __ksm_add_vma(vma);
2543}
2544
2545/**
2546 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2547 * compatible VMA's
2548 *
2549 * @mm: Pointer to mm
2550 *
2551 * Returns 0 on success, otherwise error code
2552 */
2553int ksm_enable_merge_any(struct mm_struct *mm)
2554{
2555 int err;
2556
2557 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2558 return 0;
2559
2560 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2561 err = __ksm_enter(mm);
2562 if (err)
2563 return err;
2564 }
2565
2566 set_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2567 ksm_add_vmas(mm);
2568
2569 return 0;
2570}
2571
2572int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2573 unsigned long end, int advice, unsigned long *vm_flags)
2574{
2575 struct mm_struct *mm = vma->vm_mm;
2576 int err;
2577
2578 switch (advice) {
2579 case MADV_MERGEABLE:
2580 if (vma->vm_flags & VM_MERGEABLE)
2581 return 0;
2582 if (!vma_ksm_compatible(vma))
2583 return 0;
2584
2585 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2586 err = __ksm_enter(mm);
2587 if (err)
2588 return err;
2589 }
2590
2591 *vm_flags |= VM_MERGEABLE;
2592 break;
2593
2594 case MADV_UNMERGEABLE:
2595 if (!(*vm_flags & VM_MERGEABLE))
2596 return 0; /* just ignore the advice */
2597
2598 if (vma->anon_vma) {
2599 err = unmerge_ksm_pages(vma, start, end);
2600 if (err)
2601 return err;
2602 }
2603
2604 *vm_flags &= ~VM_MERGEABLE;
2605 break;
2606 }
2607
2608 return 0;
2609}
2610EXPORT_SYMBOL_GPL(ksm_madvise);
2611
2612int __ksm_enter(struct mm_struct *mm)
2613{
2614 struct ksm_mm_slot *mm_slot;
2615 struct mm_slot *slot;
2616 int needs_wakeup;
2617
2618 mm_slot = mm_slot_alloc(cache: mm_slot_cache);
2619 if (!mm_slot)
2620 return -ENOMEM;
2621
2622 slot = &mm_slot->slot;
2623
2624 /* Check ksm_run too? Would need tighter locking */
2625 needs_wakeup = list_empty(head: &ksm_mm_head.slot.mm_node);
2626
2627 spin_lock(lock: &ksm_mmlist_lock);
2628 mm_slot_insert(mm_slots_hash, mm, slot);
2629 /*
2630 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2631 * insert just behind the scanning cursor, to let the area settle
2632 * down a little; when fork is followed by immediate exec, we don't
2633 * want ksmd to waste time setting up and tearing down an rmap_list.
2634 *
2635 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2636 * scanning cursor, otherwise KSM pages in newly forked mms will be
2637 * missed: then we might as well insert at the end of the list.
2638 */
2639 if (ksm_run & KSM_RUN_UNMERGE)
2640 list_add_tail(new: &slot->mm_node, head: &ksm_mm_head.slot.mm_node);
2641 else
2642 list_add_tail(new: &slot->mm_node, head: &ksm_scan.mm_slot->slot.mm_node);
2643 spin_unlock(lock: &ksm_mmlist_lock);
2644
2645 set_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
2646 mmgrab(mm);
2647
2648 if (needs_wakeup)
2649 wake_up_interruptible(&ksm_thread_wait);
2650
2651 trace_ksm_enter(mm);
2652 return 0;
2653}
2654
2655void __ksm_exit(struct mm_struct *mm)
2656{
2657 struct ksm_mm_slot *mm_slot;
2658 struct mm_slot *slot;
2659 int easy_to_free = 0;
2660
2661 /*
2662 * This process is exiting: if it's straightforward (as is the
2663 * case when ksmd was never running), free mm_slot immediately.
2664 * But if it's at the cursor or has rmap_items linked to it, use
2665 * mmap_lock to synchronize with any break_cows before pagetables
2666 * are freed, and leave the mm_slot on the list for ksmd to free.
2667 * Beware: ksm may already have noticed it exiting and freed the slot.
2668 */
2669
2670 spin_lock(lock: &ksm_mmlist_lock);
2671 slot = mm_slot_lookup(mm_slots_hash, mm);
2672 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2673 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2674 if (!mm_slot->rmap_list) {
2675 hash_del(node: &slot->hash);
2676 list_del(entry: &slot->mm_node);
2677 easy_to_free = 1;
2678 } else {
2679 list_move(list: &slot->mm_node,
2680 head: &ksm_scan.mm_slot->slot.mm_node);
2681 }
2682 }
2683 spin_unlock(lock: &ksm_mmlist_lock);
2684
2685 if (easy_to_free) {
2686 mm_slot_free(cache: mm_slot_cache, objp: mm_slot);
2687 clear_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2688 clear_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
2689 mmdrop(mm);
2690 } else if (mm_slot) {
2691 mmap_write_lock(mm);
2692 mmap_write_unlock(mm);
2693 }
2694
2695 trace_ksm_exit(mm);
2696}
2697
2698struct page *ksm_might_need_to_copy(struct page *page,
2699 struct vm_area_struct *vma, unsigned long address)
2700{
2701 struct folio *folio = page_folio(page);
2702 struct anon_vma *anon_vma = folio_anon_vma(folio);
2703 struct page *new_page;
2704
2705 if (PageKsm(page)) {
2706 if (page_stable_node(page) &&
2707 !(ksm_run & KSM_RUN_UNMERGE))
2708 return page; /* no need to copy it */
2709 } else if (!anon_vma) {
2710 return page; /* no need to copy it */
2711 } else if (page->index == linear_page_index(vma, address) &&
2712 anon_vma->root == vma->anon_vma->root) {
2713 return page; /* still no need to copy it */
2714 }
2715 if (!PageUptodate(page))
2716 return page; /* let do_swap_page report the error */
2717
2718 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr: address);
2719 if (new_page &&
2720 mem_cgroup_charge(page_folio(new_page), mm: vma->vm_mm, GFP_KERNEL)) {
2721 put_page(page: new_page);
2722 new_page = NULL;
2723 }
2724 if (new_page) {
2725 if (copy_mc_user_highpage(to: new_page, from: page, vaddr: address, vma)) {
2726 put_page(page: new_page);
2727 memory_failure_queue(page_to_pfn(page), flags: 0);
2728 return ERR_PTR(-EHWPOISON);
2729 }
2730 SetPageDirty(new_page);
2731 __SetPageUptodate(page: new_page);
2732 __SetPageLocked(page: new_page);
2733#ifdef CONFIG_SWAP
2734 count_vm_event(KSM_SWPIN_COPY);
2735#endif
2736 }
2737
2738 return new_page;
2739}
2740
2741void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2742{
2743 struct ksm_stable_node *stable_node;
2744 struct ksm_rmap_item *rmap_item;
2745 int search_new_forks = 0;
2746
2747 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2748
2749 /*
2750 * Rely on the page lock to protect against concurrent modifications
2751 * to that page's node of the stable tree.
2752 */
2753 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2754
2755 stable_node = folio_stable_node(folio);
2756 if (!stable_node)
2757 return;
2758again:
2759 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2760 struct anon_vma *anon_vma = rmap_item->anon_vma;
2761 struct anon_vma_chain *vmac;
2762 struct vm_area_struct *vma;
2763
2764 cond_resched();
2765 if (!anon_vma_trylock_read(anon_vma)) {
2766 if (rwc->try_lock) {
2767 rwc->contended = true;
2768 return;
2769 }
2770 anon_vma_lock_read(anon_vma);
2771 }
2772 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2773 0, ULONG_MAX) {
2774 unsigned long addr;
2775
2776 cond_resched();
2777 vma = vmac->vma;
2778
2779 /* Ignore the stable/unstable/sqnr flags */
2780 addr = rmap_item->address & PAGE_MASK;
2781
2782 if (addr < vma->vm_start || addr >= vma->vm_end)
2783 continue;
2784 /*
2785 * Initially we examine only the vma which covers this
2786 * rmap_item; but later, if there is still work to do,
2787 * we examine covering vmas in other mms: in case they
2788 * were forked from the original since ksmd passed.
2789 */
2790 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2791 continue;
2792
2793 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2794 continue;
2795
2796 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2797 anon_vma_unlock_read(anon_vma);
2798 return;
2799 }
2800 if (rwc->done && rwc->done(folio)) {
2801 anon_vma_unlock_read(anon_vma);
2802 return;
2803 }
2804 }
2805 anon_vma_unlock_read(anon_vma);
2806 }
2807 if (!search_new_forks++)
2808 goto again;
2809}
2810
2811#ifdef CONFIG_MEMORY_FAILURE
2812/*
2813 * Collect processes when the error hit an ksm page.
2814 */
2815void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2816 int force_early)
2817{
2818 struct ksm_stable_node *stable_node;
2819 struct ksm_rmap_item *rmap_item;
2820 struct folio *folio = page_folio(page);
2821 struct vm_area_struct *vma;
2822 struct task_struct *tsk;
2823
2824 stable_node = folio_stable_node(folio);
2825 if (!stable_node)
2826 return;
2827 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2828 struct anon_vma *av = rmap_item->anon_vma;
2829
2830 anon_vma_lock_read(av);
2831 read_lock(&tasklist_lock);
2832 for_each_process(tsk) {
2833 struct anon_vma_chain *vmac;
2834 unsigned long addr;
2835 struct task_struct *t =
2836 task_early_kill(tsk, force_early);
2837 if (!t)
2838 continue;
2839 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2840 ULONG_MAX)
2841 {
2842 vma = vmac->vma;
2843 if (vma->vm_mm == t->mm) {
2844 addr = rmap_item->address & PAGE_MASK;
2845 add_to_kill_ksm(t, page, vma, to_kill,
2846 addr);
2847 }
2848 }
2849 }
2850 read_unlock(&tasklist_lock);
2851 anon_vma_unlock_read(av);
2852 }
2853}
2854#endif
2855
2856#ifdef CONFIG_MIGRATION
2857void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2858{
2859 struct ksm_stable_node *stable_node;
2860
2861 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2862 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2863 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2864
2865 stable_node = folio_stable_node(folio);
2866 if (stable_node) {
2867 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2868 stable_node->kpfn = folio_pfn(newfolio);
2869 /*
2870 * newfolio->mapping was set in advance; now we need smp_wmb()
2871 * to make sure that the new stable_node->kpfn is visible
2872 * to get_ksm_page() before it can see that folio->mapping
2873 * has gone stale (or that folio_test_swapcache has been cleared).
2874 */
2875 smp_wmb();
2876 set_page_stable_node(&folio->page, NULL);
2877 }
2878}
2879#endif /* CONFIG_MIGRATION */
2880
2881#ifdef CONFIG_MEMORY_HOTREMOVE
2882static void wait_while_offlining(void)
2883{
2884 while (ksm_run & KSM_RUN_OFFLINE) {
2885 mutex_unlock(&ksm_thread_mutex);
2886 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2887 TASK_UNINTERRUPTIBLE);
2888 mutex_lock(&ksm_thread_mutex);
2889 }
2890}
2891
2892static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2893 unsigned long start_pfn,
2894 unsigned long end_pfn)
2895{
2896 if (stable_node->kpfn >= start_pfn &&
2897 stable_node->kpfn < end_pfn) {
2898 /*
2899 * Don't get_ksm_page, page has already gone:
2900 * which is why we keep kpfn instead of page*
2901 */
2902 remove_node_from_stable_tree(stable_node);
2903 return true;
2904 }
2905 return false;
2906}
2907
2908static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2909 unsigned long start_pfn,
2910 unsigned long end_pfn,
2911 struct rb_root *root)
2912{
2913 struct ksm_stable_node *dup;
2914 struct hlist_node *hlist_safe;
2915
2916 if (!is_stable_node_chain(stable_node)) {
2917 VM_BUG_ON(is_stable_node_dup(stable_node));
2918 return stable_node_dup_remove_range(stable_node, start_pfn,
2919 end_pfn);
2920 }
2921
2922 hlist_for_each_entry_safe(dup, hlist_safe,
2923 &stable_node->hlist, hlist_dup) {
2924 VM_BUG_ON(!is_stable_node_dup(dup));
2925 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2926 }
2927 if (hlist_empty(&stable_node->hlist)) {
2928 free_stable_node_chain(stable_node, root);
2929 return true; /* notify caller that tree was rebalanced */
2930 } else
2931 return false;
2932}
2933
2934static void ksm_check_stable_tree(unsigned long start_pfn,
2935 unsigned long end_pfn)
2936{
2937 struct ksm_stable_node *stable_node, *next;
2938 struct rb_node *node;
2939 int nid;
2940
2941 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2942 node = rb_first(root_stable_tree + nid);
2943 while (node) {
2944 stable_node = rb_entry(node, struct ksm_stable_node, node);
2945 if (stable_node_chain_remove_range(stable_node,
2946 start_pfn, end_pfn,
2947 root_stable_tree +
2948 nid))
2949 node = rb_first(root_stable_tree + nid);
2950 else
2951 node = rb_next(node);
2952 cond_resched();
2953 }
2954 }
2955 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2956 if (stable_node->kpfn >= start_pfn &&
2957 stable_node->kpfn < end_pfn)
2958 remove_node_from_stable_tree(stable_node);
2959 cond_resched();
2960 }
2961}
2962
2963static int ksm_memory_callback(struct notifier_block *self,
2964 unsigned long action, void *arg)
2965{
2966 struct memory_notify *mn = arg;
2967
2968 switch (action) {
2969 case MEM_GOING_OFFLINE:
2970 /*
2971 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2972 * and remove_all_stable_nodes() while memory is going offline:
2973 * it is unsafe for them to touch the stable tree at this time.
2974 * But unmerge_ksm_pages(), rmap lookups and other entry points
2975 * which do not need the ksm_thread_mutex are all safe.
2976 */
2977 mutex_lock(&ksm_thread_mutex);
2978 ksm_run |= KSM_RUN_OFFLINE;
2979 mutex_unlock(&ksm_thread_mutex);
2980 break;
2981
2982 case MEM_OFFLINE:
2983 /*
2984 * Most of the work is done by page migration; but there might
2985 * be a few stable_nodes left over, still pointing to struct
2986 * pages which have been offlined: prune those from the tree,
2987 * otherwise get_ksm_page() might later try to access a
2988 * non-existent struct page.
2989 */
2990 ksm_check_stable_tree(mn->start_pfn,
2991 mn->start_pfn + mn->nr_pages);
2992 fallthrough;
2993 case MEM_CANCEL_OFFLINE:
2994 mutex_lock(&ksm_thread_mutex);
2995 ksm_run &= ~KSM_RUN_OFFLINE;
2996 mutex_unlock(&ksm_thread_mutex);
2997
2998 smp_mb(); /* wake_up_bit advises this */
2999 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3000 break;
3001 }
3002 return NOTIFY_OK;
3003}
3004#else
3005static void wait_while_offlining(void)
3006{
3007}
3008#endif /* CONFIG_MEMORY_HOTREMOVE */
3009
3010#ifdef CONFIG_PROC_FS
3011long ksm_process_profit(struct mm_struct *mm)
3012{
3013 return mm->ksm_merging_pages * PAGE_SIZE -
3014 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3015}
3016#endif /* CONFIG_PROC_FS */
3017
3018#ifdef CONFIG_SYSFS
3019/*
3020 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3021 */
3022
3023#define KSM_ATTR_RO(_name) \
3024 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3025#define KSM_ATTR(_name) \
3026 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3027
3028static ssize_t sleep_millisecs_show(struct kobject *kobj,
3029 struct kobj_attribute *attr, char *buf)
3030{
3031 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3032}
3033
3034static ssize_t sleep_millisecs_store(struct kobject *kobj,
3035 struct kobj_attribute *attr,
3036 const char *buf, size_t count)
3037{
3038 unsigned int msecs;
3039 int err;
3040
3041 err = kstrtouint(buf, 10, &msecs);
3042 if (err)
3043 return -EINVAL;
3044
3045 ksm_thread_sleep_millisecs = msecs;
3046 wake_up_interruptible(&ksm_iter_wait);
3047
3048 return count;
3049}
3050KSM_ATTR(sleep_millisecs);
3051
3052static ssize_t pages_to_scan_show(struct kobject *kobj,
3053 struct kobj_attribute *attr, char *buf)
3054{
3055 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3056}
3057
3058static ssize_t pages_to_scan_store(struct kobject *kobj,
3059 struct kobj_attribute *attr,
3060 const char *buf, size_t count)
3061{
3062 unsigned int nr_pages;
3063 int err;
3064
3065 err = kstrtouint(buf, 10, &nr_pages);
3066 if (err)
3067 return -EINVAL;
3068
3069 ksm_thread_pages_to_scan = nr_pages;
3070
3071 return count;
3072}
3073KSM_ATTR(pages_to_scan);
3074
3075static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3076 char *buf)
3077{
3078 return sysfs_emit(buf, "%lu\n", ksm_run);
3079}
3080
3081static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3082 const char *buf, size_t count)
3083{
3084 unsigned int flags;
3085 int err;
3086
3087 err = kstrtouint(buf, 10, &flags);
3088 if (err)
3089 return -EINVAL;
3090 if (flags > KSM_RUN_UNMERGE)
3091 return -EINVAL;
3092
3093 /*
3094 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3095 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3096 * breaking COW to free the pages_shared (but leaves mm_slots
3097 * on the list for when ksmd may be set running again).
3098 */
3099
3100 mutex_lock(&ksm_thread_mutex);
3101 wait_while_offlining();
3102 if (ksm_run != flags) {
3103 ksm_run = flags;
3104 if (flags & KSM_RUN_UNMERGE) {
3105 set_current_oom_origin();
3106 err = unmerge_and_remove_all_rmap_items();
3107 clear_current_oom_origin();
3108 if (err) {
3109 ksm_run = KSM_RUN_STOP;
3110 count = err;
3111 }
3112 }
3113 }
3114 mutex_unlock(&ksm_thread_mutex);
3115
3116 if (flags & KSM_RUN_MERGE)
3117 wake_up_interruptible(&ksm_thread_wait);
3118
3119 return count;
3120}
3121KSM_ATTR(run);
3122
3123#ifdef CONFIG_NUMA
3124static ssize_t merge_across_nodes_show(struct kobject *kobj,
3125 struct kobj_attribute *attr, char *buf)
3126{
3127 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3128}
3129
3130static ssize_t merge_across_nodes_store(struct kobject *kobj,
3131 struct kobj_attribute *attr,
3132 const char *buf, size_t count)
3133{
3134 int err;
3135 unsigned long knob;
3136
3137 err = kstrtoul(buf, 10, &knob);
3138 if (err)
3139 return err;
3140 if (knob > 1)
3141 return -EINVAL;
3142
3143 mutex_lock(&ksm_thread_mutex);
3144 wait_while_offlining();
3145 if (ksm_merge_across_nodes != knob) {
3146 if (ksm_pages_shared || remove_all_stable_nodes())
3147 err = -EBUSY;
3148 else if (root_stable_tree == one_stable_tree) {
3149 struct rb_root *buf;
3150 /*
3151 * This is the first time that we switch away from the
3152 * default of merging across nodes: must now allocate
3153 * a buffer to hold as many roots as may be needed.
3154 * Allocate stable and unstable together:
3155 * MAXSMP NODES_SHIFT 10 will use 16kB.
3156 */
3157 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3158 GFP_KERNEL);
3159 /* Let us assume that RB_ROOT is NULL is zero */
3160 if (!buf)
3161 err = -ENOMEM;
3162 else {
3163 root_stable_tree = buf;
3164 root_unstable_tree = buf + nr_node_ids;
3165 /* Stable tree is empty but not the unstable */
3166 root_unstable_tree[0] = one_unstable_tree[0];
3167 }
3168 }
3169 if (!err) {
3170 ksm_merge_across_nodes = knob;
3171 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3172 }
3173 }
3174 mutex_unlock(&ksm_thread_mutex);
3175
3176 return err ? err : count;
3177}
3178KSM_ATTR(merge_across_nodes);
3179#endif
3180
3181static ssize_t use_zero_pages_show(struct kobject *kobj,
3182 struct kobj_attribute *attr, char *buf)
3183{
3184 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3185}
3186static ssize_t use_zero_pages_store(struct kobject *kobj,
3187 struct kobj_attribute *attr,
3188 const char *buf, size_t count)
3189{
3190 int err;
3191 bool value;
3192
3193 err = kstrtobool(buf, &value);
3194 if (err)
3195 return -EINVAL;
3196
3197 ksm_use_zero_pages = value;
3198
3199 return count;
3200}
3201KSM_ATTR(use_zero_pages);
3202
3203static ssize_t max_page_sharing_show(struct kobject *kobj,
3204 struct kobj_attribute *attr, char *buf)
3205{
3206 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3207}
3208
3209static ssize_t max_page_sharing_store(struct kobject *kobj,
3210 struct kobj_attribute *attr,
3211 const char *buf, size_t count)
3212{
3213 int err;
3214 int knob;
3215
3216 err = kstrtoint(buf, 10, &knob);
3217 if (err)
3218 return err;
3219 /*
3220 * When a KSM page is created it is shared by 2 mappings. This
3221 * being a signed comparison, it implicitly verifies it's not
3222 * negative.
3223 */
3224 if (knob < 2)
3225 return -EINVAL;
3226
3227 if (READ_ONCE(ksm_max_page_sharing) == knob)
3228 return count;
3229
3230 mutex_lock(&ksm_thread_mutex);
3231 wait_while_offlining();
3232 if (ksm_max_page_sharing != knob) {
3233 if (ksm_pages_shared || remove_all_stable_nodes())
3234 err = -EBUSY;
3235 else
3236 ksm_max_page_sharing = knob;
3237 }
3238 mutex_unlock(&ksm_thread_mutex);
3239
3240 return err ? err : count;
3241}
3242KSM_ATTR(max_page_sharing);
3243
3244static ssize_t pages_shared_show(struct kobject *kobj,
3245 struct kobj_attribute *attr, char *buf)
3246{
3247 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3248}
3249KSM_ATTR_RO(pages_shared);
3250
3251static ssize_t pages_sharing_show(struct kobject *kobj,
3252 struct kobj_attribute *attr, char *buf)
3253{
3254 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3255}
3256KSM_ATTR_RO(pages_sharing);
3257
3258static ssize_t pages_unshared_show(struct kobject *kobj,
3259 struct kobj_attribute *attr, char *buf)
3260{
3261 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3262}
3263KSM_ATTR_RO(pages_unshared);
3264
3265static ssize_t pages_volatile_show(struct kobject *kobj,
3266 struct kobj_attribute *attr, char *buf)
3267{
3268 long ksm_pages_volatile;
3269
3270 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3271 - ksm_pages_sharing - ksm_pages_unshared;
3272 /*
3273 * It was not worth any locking to calculate that statistic,
3274 * but it might therefore sometimes be negative: conceal that.
3275 */
3276 if (ksm_pages_volatile < 0)
3277 ksm_pages_volatile = 0;
3278 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3279}
3280KSM_ATTR_RO(pages_volatile);
3281
3282static ssize_t general_profit_show(struct kobject *kobj,
3283 struct kobj_attribute *attr, char *buf)
3284{
3285 long general_profit;
3286
3287 general_profit = ksm_pages_sharing * PAGE_SIZE -
3288 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3289
3290 return sysfs_emit(buf, "%ld\n", general_profit);
3291}
3292KSM_ATTR_RO(general_profit);
3293
3294static ssize_t stable_node_dups_show(struct kobject *kobj,
3295 struct kobj_attribute *attr, char *buf)
3296{
3297 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3298}
3299KSM_ATTR_RO(stable_node_dups);
3300
3301static ssize_t stable_node_chains_show(struct kobject *kobj,
3302 struct kobj_attribute *attr, char *buf)
3303{
3304 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3305}
3306KSM_ATTR_RO(stable_node_chains);
3307
3308static ssize_t
3309stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3310 struct kobj_attribute *attr,
3311 char *buf)
3312{
3313 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3314}
3315
3316static ssize_t
3317stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3318 struct kobj_attribute *attr,
3319 const char *buf, size_t count)
3320{
3321 unsigned int msecs;
3322 int err;
3323
3324 err = kstrtouint(buf, 10, &msecs);
3325 if (err)
3326 return -EINVAL;
3327
3328 ksm_stable_node_chains_prune_millisecs = msecs;
3329
3330 return count;
3331}
3332KSM_ATTR(stable_node_chains_prune_millisecs);
3333
3334static ssize_t full_scans_show(struct kobject *kobj,
3335 struct kobj_attribute *attr, char *buf)
3336{
3337 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3338}
3339KSM_ATTR_RO(full_scans);
3340
3341static struct attribute *ksm_attrs[] = {
3342 &sleep_millisecs_attr.attr,
3343 &pages_to_scan_attr.attr,
3344 &run_attr.attr,
3345 &pages_shared_attr.attr,
3346 &pages_sharing_attr.attr,
3347 &pages_unshared_attr.attr,
3348 &pages_volatile_attr.attr,
3349 &full_scans_attr.attr,
3350#ifdef CONFIG_NUMA
3351 &merge_across_nodes_attr.attr,
3352#endif
3353 &max_page_sharing_attr.attr,
3354 &stable_node_chains_attr.attr,
3355 &stable_node_dups_attr.attr,
3356 &stable_node_chains_prune_millisecs_attr.attr,
3357 &use_zero_pages_attr.attr,
3358 &general_profit_attr.attr,
3359 NULL,
3360};
3361
3362static const struct attribute_group ksm_attr_group = {
3363 .attrs = ksm_attrs,
3364 .name = "ksm",
3365};
3366#endif /* CONFIG_SYSFS */
3367
3368static int __init ksm_init(void)
3369{
3370 struct task_struct *ksm_thread;
3371 int err;
3372
3373 /* The correct value depends on page size and endianness */
3374 zero_checksum = calc_checksum(ZERO_PAGE(0));
3375 /* Default to false for backwards compatibility */
3376 ksm_use_zero_pages = false;
3377
3378 err = ksm_slab_init();
3379 if (err)
3380 goto out;
3381
3382 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3383 if (IS_ERR(ptr: ksm_thread)) {
3384 pr_err("ksm: creating kthread failed\n");
3385 err = PTR_ERR(ptr: ksm_thread);
3386 goto out_free;
3387 }
3388
3389#ifdef CONFIG_SYSFS
3390 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3391 if (err) {
3392 pr_err("ksm: register sysfs failed\n");
3393 kthread_stop(ksm_thread);
3394 goto out_free;
3395 }
3396#else
3397 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3398
3399#endif /* CONFIG_SYSFS */
3400
3401#ifdef CONFIG_MEMORY_HOTREMOVE
3402 /* There is no significance to this priority 100 */
3403 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3404#endif
3405 return 0;
3406
3407out_free:
3408 ksm_slab_free();
3409out:
3410 return err;
3411}
3412subsys_initcall(ksm_init);
3413

source code of linux/mm/ksm.c