1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16#include <linux/errno.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/sched/mm.h>
23#include <linux/sched/coredump.h>
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/xxhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
34#include <linux/memory.h>
35#include <linux/mmu_notifier.h>
36#include <linux/swap.h>
37#include <linux/ksm.h>
38#include <linux/hashtable.h>
39#include <linux/freezer.h>
40#include <linux/oom.h>
41#include <linux/numa.h>
42#include <linux/pagewalk.h>
43
44#include <asm/tlbflush.h>
45#include "internal.h"
46#include "mm_slot.h"
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/ksm.h>
50
51#ifdef CONFIG_NUMA
52#define NUMA(x) (x)
53#define DO_NUMA(x) do { (x); } while (0)
54#else
55#define NUMA(x) (0)
56#define DO_NUMA(x) do { } while (0)
57#endif
58
59typedef u8 rmap_age_t;
60
61/**
62 * DOC: Overview
63 *
64 * A few notes about the KSM scanning process,
65 * to make it easier to understand the data structures below:
66 *
67 * In order to reduce excessive scanning, KSM sorts the memory pages by their
68 * contents into a data structure that holds pointers to the pages' locations.
69 *
70 * Since the contents of the pages may change at any moment, KSM cannot just
71 * insert the pages into a normal sorted tree and expect it to find anything.
72 * Therefore KSM uses two data structures - the stable and the unstable tree.
73 *
74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75 * by their contents. Because each such page is write-protected, searching on
76 * this tree is fully assured to be working (except when pages are unmapped),
77 * and therefore this tree is called the stable tree.
78 *
79 * The stable tree node includes information required for reverse
80 * mapping from a KSM page to virtual addresses that map this page.
81 *
82 * In order to avoid large latencies of the rmap walks on KSM pages,
83 * KSM maintains two types of nodes in the stable tree:
84 *
85 * * the regular nodes that keep the reverse mapping structures in a
86 * linked list
87 * * the "chains" that link nodes ("dups") that represent the same
88 * write protected memory content, but each "dup" corresponds to a
89 * different KSM page copy of that content
90 *
91 * Internally, the regular nodes, "dups" and "chains" are represented
92 * using the same struct ksm_stable_node structure.
93 *
94 * In addition to the stable tree, KSM uses a second data structure called the
95 * unstable tree: this tree holds pointers to pages which have been found to
96 * be "unchanged for a period of time". The unstable tree sorts these pages
97 * by their contents, but since they are not write-protected, KSM cannot rely
98 * upon the unstable tree to work correctly - the unstable tree is liable to
99 * be corrupted as its contents are modified, and so it is called unstable.
100 *
101 * KSM solves this problem by several techniques:
102 *
103 * 1) The unstable tree is flushed every time KSM completes scanning all
104 * memory areas, and then the tree is rebuilt again from the beginning.
105 * 2) KSM will only insert into the unstable tree, pages whose hash value
106 * has not changed since the previous scan of all memory areas.
107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108 * colors of the nodes and not on their contents, assuring that even when
109 * the tree gets "corrupted" it won't get out of balance, so scanning time
110 * remains the same (also, searching and inserting nodes in an rbtree uses
111 * the same algorithm, so we have no overhead when we flush and rebuild).
112 * 4) KSM never flushes the stable tree, which means that even if it were to
113 * take 10 attempts to find a page in the unstable tree, once it is found,
114 * it is secured in the stable tree. (When we scan a new page, we first
115 * compare it against the stable tree, and then against the unstable tree.)
116 *
117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118 * stable trees and multiple unstable trees: one of each for each NUMA node.
119 */
120
121/**
122 * struct ksm_mm_slot - ksm information per mm that is being scanned
123 * @slot: hash lookup from mm to mm_slot
124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125 */
126struct ksm_mm_slot {
127 struct mm_slot slot;
128 struct ksm_rmap_item *rmap_list;
129};
130
131/**
132 * struct ksm_scan - cursor for scanning
133 * @mm_slot: the current mm_slot we are scanning
134 * @address: the next address inside that to be scanned
135 * @rmap_list: link to the next rmap to be scanned in the rmap_list
136 * @seqnr: count of completed full scans (needed when removing unstable node)
137 *
138 * There is only the one ksm_scan instance of this cursor structure.
139 */
140struct ksm_scan {
141 struct ksm_mm_slot *mm_slot;
142 unsigned long address;
143 struct ksm_rmap_item **rmap_list;
144 unsigned long seqnr;
145};
146
147/**
148 * struct ksm_stable_node - node of the stable rbtree
149 * @node: rb node of this ksm page in the stable tree
150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152 * @list: linked into migrate_nodes, pending placement in the proper node tree
153 * @hlist: hlist head of rmap_items using this ksm page
154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155 * @chain_prune_time: time of the last full garbage collection
156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158 */
159struct ksm_stable_node {
160 union {
161 struct rb_node node; /* when node of stable tree */
162 struct { /* when listed for migration */
163 struct list_head *head;
164 struct {
165 struct hlist_node hlist_dup;
166 struct list_head list;
167 };
168 };
169 };
170 struct hlist_head hlist;
171 union {
172 unsigned long kpfn;
173 unsigned long chain_prune_time;
174 };
175 /*
176 * STABLE_NODE_CHAIN can be any negative number in
177 * rmap_hlist_len negative range, but better not -1 to be able
178 * to reliably detect underflows.
179 */
180#define STABLE_NODE_CHAIN -1024
181 int rmap_hlist_len;
182#ifdef CONFIG_NUMA
183 int nid;
184#endif
185};
186
187/**
188 * struct ksm_rmap_item - reverse mapping item for virtual addresses
189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191 * @nid: NUMA node id of unstable tree in which linked (may not match page)
192 * @mm: the memory structure this rmap_item is pointing into
193 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194 * @oldchecksum: previous checksum of the page at that virtual address
195 * @node: rb node of this rmap_item in the unstable tree
196 * @head: pointer to stable_node heading this list in the stable tree
197 * @hlist: link into hlist of rmap_items hanging off that stable_node
198 * @age: number of scan iterations since creation
199 * @remaining_skips: how many scans to skip
200 */
201struct ksm_rmap_item {
202 struct ksm_rmap_item *rmap_list;
203 union {
204 struct anon_vma *anon_vma; /* when stable */
205#ifdef CONFIG_NUMA
206 int nid; /* when node of unstable tree */
207#endif
208 };
209 struct mm_struct *mm;
210 unsigned long address; /* + low bits used for flags below */
211 unsigned int oldchecksum; /* when unstable */
212 rmap_age_t age;
213 rmap_age_t remaining_skips;
214 union {
215 struct rb_node node; /* when node of unstable tree */
216 struct { /* when listed from stable tree */
217 struct ksm_stable_node *head;
218 struct hlist_node hlist;
219 };
220 };
221};
222
223#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
224#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
225#define STABLE_FLAG 0x200 /* is listed from the stable tree */
226
227/* The stable and unstable tree heads */
228static struct rb_root one_stable_tree[1] = { RB_ROOT };
229static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230static struct rb_root *root_stable_tree = one_stable_tree;
231static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233/* Recently migrated nodes of stable tree, pending proper placement */
234static LIST_HEAD(migrate_nodes);
235#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237#define MM_SLOTS_HASH_BITS 10
238static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240static struct ksm_mm_slot ksm_mm_head = {
241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242};
243static struct ksm_scan ksm_scan = {
244 .mm_slot = &ksm_mm_head,
245};
246
247static struct kmem_cache *rmap_item_cache;
248static struct kmem_cache *stable_node_cache;
249static struct kmem_cache *mm_slot_cache;
250
251/* The number of pages scanned */
252static unsigned long ksm_pages_scanned;
253
254/* The number of nodes in the stable tree */
255static unsigned long ksm_pages_shared;
256
257/* The number of page slots additionally sharing those nodes */
258static unsigned long ksm_pages_sharing;
259
260/* The number of nodes in the unstable tree */
261static unsigned long ksm_pages_unshared;
262
263/* The number of rmap_items in use: to calculate pages_volatile */
264static unsigned long ksm_rmap_items;
265
266/* The number of stable_node chains */
267static unsigned long ksm_stable_node_chains;
268
269/* The number of stable_node dups linked to the stable_node chains */
270static unsigned long ksm_stable_node_dups;
271
272/* Delay in pruning stale stable_node_dups in the stable_node_chains */
273static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
274
275/* Maximum number of page slots sharing a stable node */
276static int ksm_max_page_sharing = 256;
277
278/* Number of pages ksmd should scan in one batch */
279static unsigned int ksm_thread_pages_to_scan = 100;
280
281/* Milliseconds ksmd should sleep between batches */
282static unsigned int ksm_thread_sleep_millisecs = 20;
283
284/* Checksum of an empty (zeroed) page */
285static unsigned int zero_checksum __read_mostly;
286
287/* Whether to merge empty (zeroed) pages with actual zero pages */
288static bool ksm_use_zero_pages __read_mostly;
289
290/* Skip pages that couldn't be de-duplicated previously */
291/* Default to true at least temporarily, for testing */
292static bool ksm_smart_scan = true;
293
294/* The number of zero pages which is placed by KSM */
295unsigned long ksm_zero_pages;
296
297/* The number of pages that have been skipped due to "smart scanning" */
298static unsigned long ksm_pages_skipped;
299
300#ifdef CONFIG_NUMA
301/* Zeroed when merging across nodes is not allowed */
302static unsigned int ksm_merge_across_nodes = 1;
303static int ksm_nr_node_ids = 1;
304#else
305#define ksm_merge_across_nodes 1U
306#define ksm_nr_node_ids 1
307#endif
308
309#define KSM_RUN_STOP 0
310#define KSM_RUN_MERGE 1
311#define KSM_RUN_UNMERGE 2
312#define KSM_RUN_OFFLINE 4
313static unsigned long ksm_run = KSM_RUN_STOP;
314static void wait_while_offlining(void);
315
316static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
317static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
318static DEFINE_MUTEX(ksm_thread_mutex);
319static DEFINE_SPINLOCK(ksm_mmlist_lock);
320
321#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
322 sizeof(struct __struct), __alignof__(struct __struct),\
323 (__flags), NULL)
324
325static int __init ksm_slab_init(void)
326{
327 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
328 if (!rmap_item_cache)
329 goto out;
330
331 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
332 if (!stable_node_cache)
333 goto out_free1;
334
335 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
336 if (!mm_slot_cache)
337 goto out_free2;
338
339 return 0;
340
341out_free2:
342 kmem_cache_destroy(s: stable_node_cache);
343out_free1:
344 kmem_cache_destroy(s: rmap_item_cache);
345out:
346 return -ENOMEM;
347}
348
349static void __init ksm_slab_free(void)
350{
351 kmem_cache_destroy(s: mm_slot_cache);
352 kmem_cache_destroy(s: stable_node_cache);
353 kmem_cache_destroy(s: rmap_item_cache);
354 mm_slot_cache = NULL;
355}
356
357static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
358{
359 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
360}
361
362static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
363{
364 return dup->head == STABLE_NODE_DUP_HEAD;
365}
366
367static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
368 struct ksm_stable_node *chain)
369{
370 VM_BUG_ON(is_stable_node_dup(dup));
371 dup->head = STABLE_NODE_DUP_HEAD;
372 VM_BUG_ON(!is_stable_node_chain(chain));
373 hlist_add_head(n: &dup->hlist_dup, h: &chain->hlist);
374 ksm_stable_node_dups++;
375}
376
377static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
378{
379 VM_BUG_ON(!is_stable_node_dup(dup));
380 hlist_del(n: &dup->hlist_dup);
381 ksm_stable_node_dups--;
382}
383
384static inline void stable_node_dup_del(struct ksm_stable_node *dup)
385{
386 VM_BUG_ON(is_stable_node_chain(dup));
387 if (is_stable_node_dup(dup))
388 __stable_node_dup_del(dup);
389 else
390 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
391#ifdef CONFIG_DEBUG_VM
392 dup->head = NULL;
393#endif
394}
395
396static inline struct ksm_rmap_item *alloc_rmap_item(void)
397{
398 struct ksm_rmap_item *rmap_item;
399
400 rmap_item = kmem_cache_zalloc(k: rmap_item_cache, GFP_KERNEL |
401 __GFP_NORETRY | __GFP_NOWARN);
402 if (rmap_item)
403 ksm_rmap_items++;
404 return rmap_item;
405}
406
407static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
408{
409 ksm_rmap_items--;
410 rmap_item->mm->ksm_rmap_items--;
411 rmap_item->mm = NULL; /* debug safety */
412 kmem_cache_free(s: rmap_item_cache, objp: rmap_item);
413}
414
415static inline struct ksm_stable_node *alloc_stable_node(void)
416{
417 /*
418 * The allocation can take too long with GFP_KERNEL when memory is under
419 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
420 * grants access to memory reserves, helping to avoid this problem.
421 */
422 return kmem_cache_alloc(cachep: stable_node_cache, GFP_KERNEL | __GFP_HIGH);
423}
424
425static inline void free_stable_node(struct ksm_stable_node *stable_node)
426{
427 VM_BUG_ON(stable_node->rmap_hlist_len &&
428 !is_stable_node_chain(stable_node));
429 kmem_cache_free(s: stable_node_cache, objp: stable_node);
430}
431
432/*
433 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
434 * page tables after it has passed through ksm_exit() - which, if necessary,
435 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
436 * a special flag: they can just back out as soon as mm_users goes to zero.
437 * ksm_test_exit() is used throughout to make this test for exit: in some
438 * places for correctness, in some places just to avoid unnecessary work.
439 */
440static inline bool ksm_test_exit(struct mm_struct *mm)
441{
442 return atomic_read(v: &mm->mm_users) == 0;
443}
444
445static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
446 struct mm_walk *walk)
447{
448 struct page *page = NULL;
449 spinlock_t *ptl;
450 pte_t *pte;
451 pte_t ptent;
452 int ret;
453
454 pte = pte_offset_map_lock(mm: walk->mm, pmd, addr, ptlp: &ptl);
455 if (!pte)
456 return 0;
457 ptent = ptep_get(ptep: pte);
458 if (pte_present(a: ptent)) {
459 page = vm_normal_page(vma: walk->vma, addr, pte: ptent);
460 } else if (!pte_none(pte: ptent)) {
461 swp_entry_t entry = pte_to_swp_entry(pte: ptent);
462
463 /*
464 * As KSM pages remain KSM pages until freed, no need to wait
465 * here for migration to end.
466 */
467 if (is_migration_entry(entry))
468 page = pfn_swap_entry_to_page(entry);
469 }
470 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
471 ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
472 pte_unmap_unlock(pte, ptl);
473 return ret;
474}
475
476static const struct mm_walk_ops break_ksm_ops = {
477 .pmd_entry = break_ksm_pmd_entry,
478 .walk_lock = PGWALK_RDLOCK,
479};
480
481static const struct mm_walk_ops break_ksm_lock_vma_ops = {
482 .pmd_entry = break_ksm_pmd_entry,
483 .walk_lock = PGWALK_WRLOCK,
484};
485
486/*
487 * We use break_ksm to break COW on a ksm page by triggering unsharing,
488 * such that the ksm page will get replaced by an exclusive anonymous page.
489 *
490 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
491 * in case the application has unmapped and remapped mm,addr meanwhile.
492 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
493 * mmap of /dev/mem, where we would not want to touch it.
494 *
495 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
496 * of the process that owns 'vma'. We also do not want to enforce
497 * protection keys here anyway.
498 */
499static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
500{
501 vm_fault_t ret = 0;
502 const struct mm_walk_ops *ops = lock_vma ?
503 &break_ksm_lock_vma_ops : &break_ksm_ops;
504
505 do {
506 int ksm_page;
507
508 cond_resched();
509 ksm_page = walk_page_range_vma(vma, start: addr, end: addr + 1, ops, NULL);
510 if (WARN_ON_ONCE(ksm_page < 0))
511 return ksm_page;
512 if (!ksm_page)
513 return 0;
514 ret = handle_mm_fault(vma, address: addr,
515 flags: FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
516 NULL);
517 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
518 /*
519 * We must loop until we no longer find a KSM page because
520 * handle_mm_fault() may back out if there's any difficulty e.g. if
521 * pte accessed bit gets updated concurrently.
522 *
523 * VM_FAULT_SIGBUS could occur if we race with truncation of the
524 * backing file, which also invalidates anonymous pages: that's
525 * okay, that truncation will have unmapped the PageKsm for us.
526 *
527 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
528 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
529 * current task has TIF_MEMDIE set, and will be OOM killed on return
530 * to user; and ksmd, having no mm, would never be chosen for that.
531 *
532 * But if the mm is in a limited mem_cgroup, then the fault may fail
533 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
534 * even ksmd can fail in this way - though it's usually breaking ksm
535 * just to undo a merge it made a moment before, so unlikely to oom.
536 *
537 * That's a pity: we might therefore have more kernel pages allocated
538 * than we're counting as nodes in the stable tree; but ksm_do_scan
539 * will retry to break_cow on each pass, so should recover the page
540 * in due course. The important thing is to not let VM_MERGEABLE
541 * be cleared while any such pages might remain in the area.
542 */
543 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
544}
545
546static bool vma_ksm_compatible(struct vm_area_struct *vma)
547{
548 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
549 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
550 VM_MIXEDMAP))
551 return false; /* just ignore the advice */
552
553 if (vma_is_dax(vma))
554 return false;
555
556#ifdef VM_SAO
557 if (vma->vm_flags & VM_SAO)
558 return false;
559#endif
560#ifdef VM_SPARC_ADI
561 if (vma->vm_flags & VM_SPARC_ADI)
562 return false;
563#endif
564
565 return true;
566}
567
568static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
569 unsigned long addr)
570{
571 struct vm_area_struct *vma;
572 if (ksm_test_exit(mm))
573 return NULL;
574 vma = vma_lookup(mm, addr);
575 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
576 return NULL;
577 return vma;
578}
579
580static void break_cow(struct ksm_rmap_item *rmap_item)
581{
582 struct mm_struct *mm = rmap_item->mm;
583 unsigned long addr = rmap_item->address;
584 struct vm_area_struct *vma;
585
586 /*
587 * It is not an accident that whenever we want to break COW
588 * to undo, we also need to drop a reference to the anon_vma.
589 */
590 put_anon_vma(anon_vma: rmap_item->anon_vma);
591
592 mmap_read_lock(mm);
593 vma = find_mergeable_vma(mm, addr);
594 if (vma)
595 break_ksm(vma, addr, lock_vma: false);
596 mmap_read_unlock(mm);
597}
598
599static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
600{
601 struct mm_struct *mm = rmap_item->mm;
602 unsigned long addr = rmap_item->address;
603 struct vm_area_struct *vma;
604 struct page *page;
605
606 mmap_read_lock(mm);
607 vma = find_mergeable_vma(mm, addr);
608 if (!vma)
609 goto out;
610
611 page = follow_page(vma, address: addr, foll_flags: FOLL_GET);
612 if (IS_ERR_OR_NULL(ptr: page))
613 goto out;
614 if (is_zone_device_page(page))
615 goto out_putpage;
616 if (PageAnon(page)) {
617 flush_anon_page(vma, page, vmaddr: addr);
618 flush_dcache_page(page);
619 } else {
620out_putpage:
621 put_page(page);
622out:
623 page = NULL;
624 }
625 mmap_read_unlock(mm);
626 return page;
627}
628
629/*
630 * This helper is used for getting right index into array of tree roots.
631 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
632 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
633 * every node has its own stable and unstable tree.
634 */
635static inline int get_kpfn_nid(unsigned long kpfn)
636{
637 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
638}
639
640static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
641 struct rb_root *root)
642{
643 struct ksm_stable_node *chain = alloc_stable_node();
644 VM_BUG_ON(is_stable_node_chain(dup));
645 if (likely(chain)) {
646 INIT_HLIST_HEAD(&chain->hlist);
647 chain->chain_prune_time = jiffies;
648 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
649#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
650 chain->nid = NUMA_NO_NODE; /* debug */
651#endif
652 ksm_stable_node_chains++;
653
654 /*
655 * Put the stable node chain in the first dimension of
656 * the stable tree and at the same time remove the old
657 * stable node.
658 */
659 rb_replace_node(victim: &dup->node, new: &chain->node, root);
660
661 /*
662 * Move the old stable node to the second dimension
663 * queued in the hlist_dup. The invariant is that all
664 * dup stable_nodes in the chain->hlist point to pages
665 * that are write protected and have the exact same
666 * content.
667 */
668 stable_node_chain_add_dup(dup, chain);
669 }
670 return chain;
671}
672
673static inline void free_stable_node_chain(struct ksm_stable_node *chain,
674 struct rb_root *root)
675{
676 rb_erase(&chain->node, root);
677 free_stable_node(stable_node: chain);
678 ksm_stable_node_chains--;
679}
680
681static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
682{
683 struct ksm_rmap_item *rmap_item;
684
685 /* check it's not STABLE_NODE_CHAIN or negative */
686 BUG_ON(stable_node->rmap_hlist_len < 0);
687
688 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
689 if (rmap_item->hlist.next) {
690 ksm_pages_sharing--;
691 trace_ksm_remove_rmap_item(pfn: stable_node->kpfn, rmap_item, mm: rmap_item->mm);
692 } else {
693 ksm_pages_shared--;
694 }
695
696 rmap_item->mm->ksm_merging_pages--;
697
698 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
699 stable_node->rmap_hlist_len--;
700 put_anon_vma(anon_vma: rmap_item->anon_vma);
701 rmap_item->address &= PAGE_MASK;
702 cond_resched();
703 }
704
705 /*
706 * We need the second aligned pointer of the migrate_nodes
707 * list_head to stay clear from the rb_parent_color union
708 * (aligned and different than any node) and also different
709 * from &migrate_nodes. This will verify that future list.h changes
710 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
711 */
712 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
713 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
714
715 trace_ksm_remove_ksm_page(pfn: stable_node->kpfn);
716 if (stable_node->head == &migrate_nodes)
717 list_del(entry: &stable_node->list);
718 else
719 stable_node_dup_del(dup: stable_node);
720 free_stable_node(stable_node);
721}
722
723enum get_ksm_page_flags {
724 GET_KSM_PAGE_NOLOCK,
725 GET_KSM_PAGE_LOCK,
726 GET_KSM_PAGE_TRYLOCK
727};
728
729/*
730 * get_ksm_page: checks if the page indicated by the stable node
731 * is still its ksm page, despite having held no reference to it.
732 * In which case we can trust the content of the page, and it
733 * returns the gotten page; but if the page has now been zapped,
734 * remove the stale node from the stable tree and return NULL.
735 * But beware, the stable node's page might be being migrated.
736 *
737 * You would expect the stable_node to hold a reference to the ksm page.
738 * But if it increments the page's count, swapping out has to wait for
739 * ksmd to come around again before it can free the page, which may take
740 * seconds or even minutes: much too unresponsive. So instead we use a
741 * "keyhole reference": access to the ksm page from the stable node peeps
742 * out through its keyhole to see if that page still holds the right key,
743 * pointing back to this stable node. This relies on freeing a PageAnon
744 * page to reset its page->mapping to NULL, and relies on no other use of
745 * a page to put something that might look like our key in page->mapping.
746 * is on its way to being freed; but it is an anomaly to bear in mind.
747 */
748static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
749 enum get_ksm_page_flags flags)
750{
751 struct page *page;
752 void *expected_mapping;
753 unsigned long kpfn;
754
755 expected_mapping = (void *)((unsigned long)stable_node |
756 PAGE_MAPPING_KSM);
757again:
758 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
759 page = pfn_to_page(kpfn);
760 if (READ_ONCE(page->mapping) != expected_mapping)
761 goto stale;
762
763 /*
764 * We cannot do anything with the page while its refcount is 0.
765 * Usually 0 means free, or tail of a higher-order page: in which
766 * case this node is no longer referenced, and should be freed;
767 * however, it might mean that the page is under page_ref_freeze().
768 * The __remove_mapping() case is easy, again the node is now stale;
769 * the same is in reuse_ksm_page() case; but if page is swapcache
770 * in folio_migrate_mapping(), it might still be our page,
771 * in which case it's essential to keep the node.
772 */
773 while (!get_page_unless_zero(page)) {
774 /*
775 * Another check for page->mapping != expected_mapping would
776 * work here too. We have chosen the !PageSwapCache test to
777 * optimize the common case, when the page is or is about to
778 * be freed: PageSwapCache is cleared (under spin_lock_irq)
779 * in the ref_freeze section of __remove_mapping(); but Anon
780 * page->mapping reset to NULL later, in free_pages_prepare().
781 */
782 if (!PageSwapCache(page))
783 goto stale;
784 cpu_relax();
785 }
786
787 if (READ_ONCE(page->mapping) != expected_mapping) {
788 put_page(page);
789 goto stale;
790 }
791
792 if (flags == GET_KSM_PAGE_TRYLOCK) {
793 if (!trylock_page(page)) {
794 put_page(page);
795 return ERR_PTR(error: -EBUSY);
796 }
797 } else if (flags == GET_KSM_PAGE_LOCK)
798 lock_page(page);
799
800 if (flags != GET_KSM_PAGE_NOLOCK) {
801 if (READ_ONCE(page->mapping) != expected_mapping) {
802 unlock_page(page);
803 put_page(page);
804 goto stale;
805 }
806 }
807 return page;
808
809stale:
810 /*
811 * We come here from above when page->mapping or !PageSwapCache
812 * suggests that the node is stale; but it might be under migration.
813 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
814 * before checking whether node->kpfn has been changed.
815 */
816 smp_rmb();
817 if (READ_ONCE(stable_node->kpfn) != kpfn)
818 goto again;
819 remove_node_from_stable_tree(stable_node);
820 return NULL;
821}
822
823/*
824 * Removing rmap_item from stable or unstable tree.
825 * This function will clean the information from the stable/unstable tree.
826 */
827static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
828{
829 if (rmap_item->address & STABLE_FLAG) {
830 struct ksm_stable_node *stable_node;
831 struct page *page;
832
833 stable_node = rmap_item->head;
834 page = get_ksm_page(stable_node, flags: GET_KSM_PAGE_LOCK);
835 if (!page)
836 goto out;
837
838 hlist_del(n: &rmap_item->hlist);
839 unlock_page(page);
840 put_page(page);
841
842 if (!hlist_empty(h: &stable_node->hlist))
843 ksm_pages_sharing--;
844 else
845 ksm_pages_shared--;
846
847 rmap_item->mm->ksm_merging_pages--;
848
849 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
850 stable_node->rmap_hlist_len--;
851
852 put_anon_vma(anon_vma: rmap_item->anon_vma);
853 rmap_item->head = NULL;
854 rmap_item->address &= PAGE_MASK;
855
856 } else if (rmap_item->address & UNSTABLE_FLAG) {
857 unsigned char age;
858 /*
859 * Usually ksmd can and must skip the rb_erase, because
860 * root_unstable_tree was already reset to RB_ROOT.
861 * But be careful when an mm is exiting: do the rb_erase
862 * if this rmap_item was inserted by this scan, rather
863 * than left over from before.
864 */
865 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
866 BUG_ON(age > 1);
867 if (!age)
868 rb_erase(&rmap_item->node,
869 root_unstable_tree + NUMA(rmap_item->nid));
870 ksm_pages_unshared--;
871 rmap_item->address &= PAGE_MASK;
872 }
873out:
874 cond_resched(); /* we're called from many long loops */
875}
876
877static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
878{
879 while (*rmap_list) {
880 struct ksm_rmap_item *rmap_item = *rmap_list;
881 *rmap_list = rmap_item->rmap_list;
882 remove_rmap_item_from_tree(rmap_item);
883 free_rmap_item(rmap_item);
884 }
885}
886
887/*
888 * Though it's very tempting to unmerge rmap_items from stable tree rather
889 * than check every pte of a given vma, the locking doesn't quite work for
890 * that - an rmap_item is assigned to the stable tree after inserting ksm
891 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
892 * rmap_items from parent to child at fork time (so as not to waste time
893 * if exit comes before the next scan reaches it).
894 *
895 * Similarly, although we'd like to remove rmap_items (so updating counts
896 * and freeing memory) when unmerging an area, it's easier to leave that
897 * to the next pass of ksmd - consider, for example, how ksmd might be
898 * in cmp_and_merge_page on one of the rmap_items we would be removing.
899 */
900static int unmerge_ksm_pages(struct vm_area_struct *vma,
901 unsigned long start, unsigned long end, bool lock_vma)
902{
903 unsigned long addr;
904 int err = 0;
905
906 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
907 if (ksm_test_exit(mm: vma->vm_mm))
908 break;
909 if (signal_pending(current))
910 err = -ERESTARTSYS;
911 else
912 err = break_ksm(vma, addr, lock_vma);
913 }
914 return err;
915}
916
917static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
918{
919 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
920}
921
922static inline struct ksm_stable_node *page_stable_node(struct page *page)
923{
924 return folio_stable_node(page_folio(page));
925}
926
927static inline void set_page_stable_node(struct page *page,
928 struct ksm_stable_node *stable_node)
929{
930 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
931 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
932}
933
934#ifdef CONFIG_SYSFS
935/*
936 * Only called through the sysfs control interface:
937 */
938static int remove_stable_node(struct ksm_stable_node *stable_node)
939{
940 struct page *page;
941 int err;
942
943 page = get_ksm_page(stable_node, flags: GET_KSM_PAGE_LOCK);
944 if (!page) {
945 /*
946 * get_ksm_page did remove_node_from_stable_tree itself.
947 */
948 return 0;
949 }
950
951 /*
952 * Page could be still mapped if this races with __mmput() running in
953 * between ksm_exit() and exit_mmap(). Just refuse to let
954 * merge_across_nodes/max_page_sharing be switched.
955 */
956 err = -EBUSY;
957 if (!page_mapped(page)) {
958 /*
959 * The stable node did not yet appear stale to get_ksm_page(),
960 * since that allows for an unmapped ksm page to be recognized
961 * right up until it is freed; but the node is safe to remove.
962 * This page might be in an LRU cache waiting to be freed,
963 * or it might be PageSwapCache (perhaps under writeback),
964 * or it might have been removed from swapcache a moment ago.
965 */
966 set_page_stable_node(page, NULL);
967 remove_node_from_stable_tree(stable_node);
968 err = 0;
969 }
970
971 unlock_page(page);
972 put_page(page);
973 return err;
974}
975
976static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
977 struct rb_root *root)
978{
979 struct ksm_stable_node *dup;
980 struct hlist_node *hlist_safe;
981
982 if (!is_stable_node_chain(chain: stable_node)) {
983 VM_BUG_ON(is_stable_node_dup(stable_node));
984 if (remove_stable_node(stable_node))
985 return true;
986 else
987 return false;
988 }
989
990 hlist_for_each_entry_safe(dup, hlist_safe,
991 &stable_node->hlist, hlist_dup) {
992 VM_BUG_ON(!is_stable_node_dup(dup));
993 if (remove_stable_node(stable_node: dup))
994 return true;
995 }
996 BUG_ON(!hlist_empty(&stable_node->hlist));
997 free_stable_node_chain(chain: stable_node, root);
998 return false;
999}
1000
1001static int remove_all_stable_nodes(void)
1002{
1003 struct ksm_stable_node *stable_node, *next;
1004 int nid;
1005 int err = 0;
1006
1007 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1008 while (root_stable_tree[nid].rb_node) {
1009 stable_node = rb_entry(root_stable_tree[nid].rb_node,
1010 struct ksm_stable_node, node);
1011 if (remove_stable_node_chain(stable_node,
1012 root: root_stable_tree + nid)) {
1013 err = -EBUSY;
1014 break; /* proceed to next nid */
1015 }
1016 cond_resched();
1017 }
1018 }
1019 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1020 if (remove_stable_node(stable_node))
1021 err = -EBUSY;
1022 cond_resched();
1023 }
1024 return err;
1025}
1026
1027static int unmerge_and_remove_all_rmap_items(void)
1028{
1029 struct ksm_mm_slot *mm_slot;
1030 struct mm_slot *slot;
1031 struct mm_struct *mm;
1032 struct vm_area_struct *vma;
1033 int err = 0;
1034
1035 spin_lock(lock: &ksm_mmlist_lock);
1036 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1037 struct mm_slot, mm_node);
1038 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1039 spin_unlock(lock: &ksm_mmlist_lock);
1040
1041 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1042 mm_slot = ksm_scan.mm_slot) {
1043 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1044
1045 mm = mm_slot->slot.mm;
1046 mmap_read_lock(mm);
1047
1048 /*
1049 * Exit right away if mm is exiting to avoid lockdep issue in
1050 * the maple tree
1051 */
1052 if (ksm_test_exit(mm))
1053 goto mm_exiting;
1054
1055 for_each_vma(vmi, vma) {
1056 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1057 continue;
1058 err = unmerge_ksm_pages(vma,
1059 start: vma->vm_start, end: vma->vm_end, lock_vma: false);
1060 if (err)
1061 goto error;
1062 }
1063
1064mm_exiting:
1065 remove_trailing_rmap_items(rmap_list: &mm_slot->rmap_list);
1066 mmap_read_unlock(mm);
1067
1068 spin_lock(lock: &ksm_mmlist_lock);
1069 slot = list_entry(mm_slot->slot.mm_node.next,
1070 struct mm_slot, mm_node);
1071 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1072 if (ksm_test_exit(mm)) {
1073 hash_del(node: &mm_slot->slot.hash);
1074 list_del(entry: &mm_slot->slot.mm_node);
1075 spin_unlock(lock: &ksm_mmlist_lock);
1076
1077 mm_slot_free(cache: mm_slot_cache, objp: mm_slot);
1078 clear_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
1079 clear_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
1080 mmdrop(mm);
1081 } else
1082 spin_unlock(lock: &ksm_mmlist_lock);
1083 }
1084
1085 /* Clean up stable nodes, but don't worry if some are still busy */
1086 remove_all_stable_nodes();
1087 ksm_scan.seqnr = 0;
1088 return 0;
1089
1090error:
1091 mmap_read_unlock(mm);
1092 spin_lock(lock: &ksm_mmlist_lock);
1093 ksm_scan.mm_slot = &ksm_mm_head;
1094 spin_unlock(lock: &ksm_mmlist_lock);
1095 return err;
1096}
1097#endif /* CONFIG_SYSFS */
1098
1099static u32 calc_checksum(struct page *page)
1100{
1101 u32 checksum;
1102 void *addr = kmap_atomic(page);
1103 checksum = xxhash(input: addr, PAGE_SIZE, seed: 0);
1104 kunmap_atomic(addr);
1105 return checksum;
1106}
1107
1108static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1109 pte_t *orig_pte)
1110{
1111 struct mm_struct *mm = vma->vm_mm;
1112 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1113 int swapped;
1114 int err = -EFAULT;
1115 struct mmu_notifier_range range;
1116 bool anon_exclusive;
1117 pte_t entry;
1118
1119 pvmw.address = page_address_in_vma(page, vma);
1120 if (pvmw.address == -EFAULT)
1121 goto out;
1122
1123 BUG_ON(PageTransCompound(page));
1124
1125 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm, start: pvmw.address,
1126 end: pvmw.address + PAGE_SIZE);
1127 mmu_notifier_invalidate_range_start(range: &range);
1128
1129 if (!page_vma_mapped_walk(pvmw: &pvmw))
1130 goto out_mn;
1131 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1132 goto out_unlock;
1133
1134 anon_exclusive = PageAnonExclusive(page);
1135 entry = ptep_get(ptep: pvmw.pte);
1136 if (pte_write(pte: entry) || pte_dirty(pte: entry) ||
1137 anon_exclusive || mm_tlb_flush_pending(mm)) {
1138 swapped = PageSwapCache(page);
1139 flush_cache_page(vma, vmaddr: pvmw.address, page_to_pfn(page));
1140 /*
1141 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1142 * take any lock, therefore the check that we are going to make
1143 * with the pagecount against the mapcount is racy and
1144 * O_DIRECT can happen right after the check.
1145 * So we clear the pte and flush the tlb before the check
1146 * this assure us that no O_DIRECT can happen after the check
1147 * or in the middle of the check.
1148 *
1149 * No need to notify as we are downgrading page table to read
1150 * only not changing it to point to a new page.
1151 *
1152 * See Documentation/mm/mmu_notifier.rst
1153 */
1154 entry = ptep_clear_flush(vma, address: pvmw.address, ptep: pvmw.pte);
1155 /*
1156 * Check that no O_DIRECT or similar I/O is in progress on the
1157 * page
1158 */
1159 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1160 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1161 goto out_unlock;
1162 }
1163
1164 /* See page_try_share_anon_rmap(): clear PTE first. */
1165 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1166 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1167 goto out_unlock;
1168 }
1169
1170 if (pte_dirty(pte: entry))
1171 set_page_dirty(page);
1172 entry = pte_mkclean(pte: entry);
1173
1174 if (pte_write(pte: entry))
1175 entry = pte_wrprotect(pte: entry);
1176
1177 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1178 }
1179 *orig_pte = entry;
1180 err = 0;
1181
1182out_unlock:
1183 page_vma_mapped_walk_done(pvmw: &pvmw);
1184out_mn:
1185 mmu_notifier_invalidate_range_end(range: &range);
1186out:
1187 return err;
1188}
1189
1190/**
1191 * replace_page - replace page in vma by new ksm page
1192 * @vma: vma that holds the pte pointing to page
1193 * @page: the page we are replacing by kpage
1194 * @kpage: the ksm page we replace page by
1195 * @orig_pte: the original value of the pte
1196 *
1197 * Returns 0 on success, -EFAULT on failure.
1198 */
1199static int replace_page(struct vm_area_struct *vma, struct page *page,
1200 struct page *kpage, pte_t orig_pte)
1201{
1202 struct mm_struct *mm = vma->vm_mm;
1203 struct folio *folio;
1204 pmd_t *pmd;
1205 pmd_t pmde;
1206 pte_t *ptep;
1207 pte_t newpte;
1208 spinlock_t *ptl;
1209 unsigned long addr;
1210 int err = -EFAULT;
1211 struct mmu_notifier_range range;
1212
1213 addr = page_address_in_vma(page, vma);
1214 if (addr == -EFAULT)
1215 goto out;
1216
1217 pmd = mm_find_pmd(mm, address: addr);
1218 if (!pmd)
1219 goto out;
1220 /*
1221 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1222 * without holding anon_vma lock for write. So when looking for a
1223 * genuine pmde (in which to find pte), test present and !THP together.
1224 */
1225 pmde = pmdp_get_lockless(pmdp: pmd);
1226 if (!pmd_present(pmd: pmde) || pmd_trans_huge(pmd: pmde))
1227 goto out;
1228
1229 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm, start: addr,
1230 end: addr + PAGE_SIZE);
1231 mmu_notifier_invalidate_range_start(range: &range);
1232
1233 ptep = pte_offset_map_lock(mm, pmd, addr, ptlp: &ptl);
1234 if (!ptep)
1235 goto out_mn;
1236 if (!pte_same(a: ptep_get(ptep), b: orig_pte)) {
1237 pte_unmap_unlock(ptep, ptl);
1238 goto out_mn;
1239 }
1240 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1241 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1242
1243 /*
1244 * No need to check ksm_use_zero_pages here: we can only have a
1245 * zero_page here if ksm_use_zero_pages was enabled already.
1246 */
1247 if (!is_zero_pfn(page_to_pfn(kpage))) {
1248 get_page(page: kpage);
1249 page_add_anon_rmap(kpage, vma, address: addr, RMAP_NONE);
1250 newpte = mk_pte(kpage, vma->vm_page_prot);
1251 } else {
1252 /*
1253 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1254 * we can easily track all KSM-placed zero pages by checking if
1255 * the dirty bit in zero page's PTE is set.
1256 */
1257 newpte = pte_mkdirty(pte: pte_mkspecial(pte: pfn_pte(page_to_pfn(kpage), pgprot: vma->vm_page_prot)));
1258 ksm_zero_pages++;
1259 mm->ksm_zero_pages++;
1260 /*
1261 * We're replacing an anonymous page with a zero page, which is
1262 * not anonymous. We need to do proper accounting otherwise we
1263 * will get wrong values in /proc, and a BUG message in dmesg
1264 * when tearing down the mm.
1265 */
1266 dec_mm_counter(mm, member: MM_ANONPAGES);
1267 }
1268
1269 flush_cache_page(vma, vmaddr: addr, pfn: pte_pfn(pte: ptep_get(ptep)));
1270 /*
1271 * No need to notify as we are replacing a read only page with another
1272 * read only page with the same content.
1273 *
1274 * See Documentation/mm/mmu_notifier.rst
1275 */
1276 ptep_clear_flush(vma, address: addr, ptep);
1277 set_pte_at_notify(mm, addr, ptep, newpte);
1278
1279 folio = page_folio(page);
1280 page_remove_rmap(page, vma, compound: false);
1281 if (!folio_mapped(folio))
1282 folio_free_swap(folio);
1283 folio_put(folio);
1284
1285 pte_unmap_unlock(ptep, ptl);
1286 err = 0;
1287out_mn:
1288 mmu_notifier_invalidate_range_end(range: &range);
1289out:
1290 return err;
1291}
1292
1293/*
1294 * try_to_merge_one_page - take two pages and merge them into one
1295 * @vma: the vma that holds the pte pointing to page
1296 * @page: the PageAnon page that we want to replace with kpage
1297 * @kpage: the PageKsm page that we want to map instead of page,
1298 * or NULL the first time when we want to use page as kpage.
1299 *
1300 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1301 */
1302static int try_to_merge_one_page(struct vm_area_struct *vma,
1303 struct page *page, struct page *kpage)
1304{
1305 pte_t orig_pte = __pte(val: 0);
1306 int err = -EFAULT;
1307
1308 if (page == kpage) /* ksm page forked */
1309 return 0;
1310
1311 if (!PageAnon(page))
1312 goto out;
1313
1314 /*
1315 * We need the page lock to read a stable PageSwapCache in
1316 * write_protect_page(). We use trylock_page() instead of
1317 * lock_page() because we don't want to wait here - we
1318 * prefer to continue scanning and merging different pages,
1319 * then come back to this page when it is unlocked.
1320 */
1321 if (!trylock_page(page))
1322 goto out;
1323
1324 if (PageTransCompound(page)) {
1325 if (split_huge_page(page))
1326 goto out_unlock;
1327 }
1328
1329 /*
1330 * If this anonymous page is mapped only here, its pte may need
1331 * to be write-protected. If it's mapped elsewhere, all of its
1332 * ptes are necessarily already write-protected. But in either
1333 * case, we need to lock and check page_count is not raised.
1334 */
1335 if (write_protect_page(vma, page, orig_pte: &orig_pte) == 0) {
1336 if (!kpage) {
1337 /*
1338 * While we hold page lock, upgrade page from
1339 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1340 * stable_tree_insert() will update stable_node.
1341 */
1342 set_page_stable_node(page, NULL);
1343 mark_page_accessed(page);
1344 /*
1345 * Page reclaim just frees a clean page with no dirty
1346 * ptes: make sure that the ksm page would be swapped.
1347 */
1348 if (!PageDirty(page))
1349 SetPageDirty(page);
1350 err = 0;
1351 } else if (pages_identical(page1: page, page2: kpage))
1352 err = replace_page(vma, page, kpage, orig_pte);
1353 }
1354
1355out_unlock:
1356 unlock_page(page);
1357out:
1358 return err;
1359}
1360
1361/*
1362 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1363 * but no new kernel page is allocated: kpage must already be a ksm page.
1364 *
1365 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1366 */
1367static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1368 struct page *page, struct page *kpage)
1369{
1370 struct mm_struct *mm = rmap_item->mm;
1371 struct vm_area_struct *vma;
1372 int err = -EFAULT;
1373
1374 mmap_read_lock(mm);
1375 vma = find_mergeable_vma(mm, addr: rmap_item->address);
1376 if (!vma)
1377 goto out;
1378
1379 err = try_to_merge_one_page(vma, page, kpage);
1380 if (err)
1381 goto out;
1382
1383 /* Unstable nid is in union with stable anon_vma: remove first */
1384 remove_rmap_item_from_tree(rmap_item);
1385
1386 /* Must get reference to anon_vma while still holding mmap_lock */
1387 rmap_item->anon_vma = vma->anon_vma;
1388 get_anon_vma(anon_vma: vma->anon_vma);
1389out:
1390 mmap_read_unlock(mm);
1391 trace_ksm_merge_with_ksm_page(ksm_page: kpage, page_to_pfn(kpage ? kpage : page),
1392 rmap_item, mm, err);
1393 return err;
1394}
1395
1396/*
1397 * try_to_merge_two_pages - take two identical pages and prepare them
1398 * to be merged into one page.
1399 *
1400 * This function returns the kpage if we successfully merged two identical
1401 * pages into one ksm page, NULL otherwise.
1402 *
1403 * Note that this function upgrades page to ksm page: if one of the pages
1404 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1405 */
1406static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1407 struct page *page,
1408 struct ksm_rmap_item *tree_rmap_item,
1409 struct page *tree_page)
1410{
1411 int err;
1412
1413 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1414 if (!err) {
1415 err = try_to_merge_with_ksm_page(rmap_item: tree_rmap_item,
1416 page: tree_page, kpage: page);
1417 /*
1418 * If that fails, we have a ksm page with only one pte
1419 * pointing to it: so break it.
1420 */
1421 if (err)
1422 break_cow(rmap_item);
1423 }
1424 return err ? NULL : page;
1425}
1426
1427static __always_inline
1428bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1429{
1430 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1431 /*
1432 * Check that at least one mapping still exists, otherwise
1433 * there's no much point to merge and share with this
1434 * stable_node, as the underlying tree_page of the other
1435 * sharer is going to be freed soon.
1436 */
1437 return stable_node->rmap_hlist_len &&
1438 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1439}
1440
1441static __always_inline
1442bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1443{
1444 return __is_page_sharing_candidate(stable_node, offset: 0);
1445}
1446
1447static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1448 struct ksm_stable_node **_stable_node,
1449 struct rb_root *root,
1450 bool prune_stale_stable_nodes)
1451{
1452 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1453 struct hlist_node *hlist_safe;
1454 struct page *_tree_page, *tree_page = NULL;
1455 int nr = 0;
1456 int found_rmap_hlist_len;
1457
1458 if (!prune_stale_stable_nodes ||
1459 time_before(jiffies, stable_node->chain_prune_time +
1460 msecs_to_jiffies(
1461 ksm_stable_node_chains_prune_millisecs)))
1462 prune_stale_stable_nodes = false;
1463 else
1464 stable_node->chain_prune_time = jiffies;
1465
1466 hlist_for_each_entry_safe(dup, hlist_safe,
1467 &stable_node->hlist, hlist_dup) {
1468 cond_resched();
1469 /*
1470 * We must walk all stable_node_dup to prune the stale
1471 * stable nodes during lookup.
1472 *
1473 * get_ksm_page can drop the nodes from the
1474 * stable_node->hlist if they point to freed pages
1475 * (that's why we do a _safe walk). The "dup"
1476 * stable_node parameter itself will be freed from
1477 * under us if it returns NULL.
1478 */
1479 _tree_page = get_ksm_page(stable_node: dup, flags: GET_KSM_PAGE_NOLOCK);
1480 if (!_tree_page)
1481 continue;
1482 nr += 1;
1483 if (is_page_sharing_candidate(stable_node: dup)) {
1484 if (!found ||
1485 dup->rmap_hlist_len > found_rmap_hlist_len) {
1486 if (found)
1487 put_page(page: tree_page);
1488 found = dup;
1489 found_rmap_hlist_len = found->rmap_hlist_len;
1490 tree_page = _tree_page;
1491
1492 /* skip put_page for found dup */
1493 if (!prune_stale_stable_nodes)
1494 break;
1495 continue;
1496 }
1497 }
1498 put_page(page: _tree_page);
1499 }
1500
1501 if (found) {
1502 /*
1503 * nr is counting all dups in the chain only if
1504 * prune_stale_stable_nodes is true, otherwise we may
1505 * break the loop at nr == 1 even if there are
1506 * multiple entries.
1507 */
1508 if (prune_stale_stable_nodes && nr == 1) {
1509 /*
1510 * If there's not just one entry it would
1511 * corrupt memory, better BUG_ON. In KSM
1512 * context with no lock held it's not even
1513 * fatal.
1514 */
1515 BUG_ON(stable_node->hlist.first->next);
1516
1517 /*
1518 * There's just one entry and it is below the
1519 * deduplication limit so drop the chain.
1520 */
1521 rb_replace_node(victim: &stable_node->node, new: &found->node,
1522 root);
1523 free_stable_node(stable_node);
1524 ksm_stable_node_chains--;
1525 ksm_stable_node_dups--;
1526 /*
1527 * NOTE: the caller depends on the stable_node
1528 * to be equal to stable_node_dup if the chain
1529 * was collapsed.
1530 */
1531 *_stable_node = found;
1532 /*
1533 * Just for robustness, as stable_node is
1534 * otherwise left as a stable pointer, the
1535 * compiler shall optimize it away at build
1536 * time.
1537 */
1538 stable_node = NULL;
1539 } else if (stable_node->hlist.first != &found->hlist_dup &&
1540 __is_page_sharing_candidate(stable_node: found, offset: 1)) {
1541 /*
1542 * If the found stable_node dup can accept one
1543 * more future merge (in addition to the one
1544 * that is underway) and is not at the head of
1545 * the chain, put it there so next search will
1546 * be quicker in the !prune_stale_stable_nodes
1547 * case.
1548 *
1549 * NOTE: it would be inaccurate to use nr > 1
1550 * instead of checking the hlist.first pointer
1551 * directly, because in the
1552 * prune_stale_stable_nodes case "nr" isn't
1553 * the position of the found dup in the chain,
1554 * but the total number of dups in the chain.
1555 */
1556 hlist_del(n: &found->hlist_dup);
1557 hlist_add_head(n: &found->hlist_dup,
1558 h: &stable_node->hlist);
1559 }
1560 }
1561
1562 *_stable_node_dup = found;
1563 return tree_page;
1564}
1565
1566static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1567 struct rb_root *root)
1568{
1569 if (!is_stable_node_chain(chain: stable_node))
1570 return stable_node;
1571 if (hlist_empty(h: &stable_node->hlist)) {
1572 free_stable_node_chain(chain: stable_node, root);
1573 return NULL;
1574 }
1575 return hlist_entry(stable_node->hlist.first,
1576 typeof(*stable_node), hlist_dup);
1577}
1578
1579/*
1580 * Like for get_ksm_page, this function can free the *_stable_node and
1581 * *_stable_node_dup if the returned tree_page is NULL.
1582 *
1583 * It can also free and overwrite *_stable_node with the found
1584 * stable_node_dup if the chain is collapsed (in which case
1585 * *_stable_node will be equal to *_stable_node_dup like if the chain
1586 * never existed). It's up to the caller to verify tree_page is not
1587 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1588 *
1589 * *_stable_node_dup is really a second output parameter of this
1590 * function and will be overwritten in all cases, the caller doesn't
1591 * need to initialize it.
1592 */
1593static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1594 struct ksm_stable_node **_stable_node,
1595 struct rb_root *root,
1596 bool prune_stale_stable_nodes)
1597{
1598 struct ksm_stable_node *stable_node = *_stable_node;
1599 if (!is_stable_node_chain(chain: stable_node)) {
1600 if (is_page_sharing_candidate(stable_node)) {
1601 *_stable_node_dup = stable_node;
1602 return get_ksm_page(stable_node, flags: GET_KSM_PAGE_NOLOCK);
1603 }
1604 /*
1605 * _stable_node_dup set to NULL means the stable_node
1606 * reached the ksm_max_page_sharing limit.
1607 */
1608 *_stable_node_dup = NULL;
1609 return NULL;
1610 }
1611 return stable_node_dup(_stable_node_dup, _stable_node, root,
1612 prune_stale_stable_nodes);
1613}
1614
1615static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1616 struct ksm_stable_node **s_n,
1617 struct rb_root *root)
1618{
1619 return __stable_node_chain(stable_node_dup: s_n_d, stable_node: s_n, root, prune_stale_stable_nodes: true);
1620}
1621
1622static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1623 struct ksm_stable_node *s_n,
1624 struct rb_root *root)
1625{
1626 struct ksm_stable_node *old_stable_node = s_n;
1627 struct page *tree_page;
1628
1629 tree_page = __stable_node_chain(stable_node_dup: s_n_d, stable_node: &s_n, root, prune_stale_stable_nodes: false);
1630 /* not pruning dups so s_n cannot have changed */
1631 VM_BUG_ON(s_n != old_stable_node);
1632 return tree_page;
1633}
1634
1635/*
1636 * stable_tree_search - search for page inside the stable tree
1637 *
1638 * This function checks if there is a page inside the stable tree
1639 * with identical content to the page that we are scanning right now.
1640 *
1641 * This function returns the stable tree node of identical content if found,
1642 * NULL otherwise.
1643 */
1644static struct page *stable_tree_search(struct page *page)
1645{
1646 int nid;
1647 struct rb_root *root;
1648 struct rb_node **new;
1649 struct rb_node *parent;
1650 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1651 struct ksm_stable_node *page_node;
1652
1653 page_node = page_stable_node(page);
1654 if (page_node && page_node->head != &migrate_nodes) {
1655 /* ksm page forked */
1656 get_page(page);
1657 return page;
1658 }
1659
1660 nid = get_kpfn_nid(page_to_pfn(page));
1661 root = root_stable_tree + nid;
1662again:
1663 new = &root->rb_node;
1664 parent = NULL;
1665
1666 while (*new) {
1667 struct page *tree_page;
1668 int ret;
1669
1670 cond_resched();
1671 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1672 stable_node_any = NULL;
1673 tree_page = chain_prune(s_n_d: &stable_node_dup, s_n: &stable_node, root);
1674 /*
1675 * NOTE: stable_node may have been freed by
1676 * chain_prune() if the returned stable_node_dup is
1677 * not NULL. stable_node_dup may have been inserted in
1678 * the rbtree instead as a regular stable_node (in
1679 * order to collapse the stable_node chain if a single
1680 * stable_node dup was found in it). In such case the
1681 * stable_node is overwritten by the callee to point
1682 * to the stable_node_dup that was collapsed in the
1683 * stable rbtree and stable_node will be equal to
1684 * stable_node_dup like if the chain never existed.
1685 */
1686 if (!stable_node_dup) {
1687 /*
1688 * Either all stable_node dups were full in
1689 * this stable_node chain, or this chain was
1690 * empty and should be rb_erased.
1691 */
1692 stable_node_any = stable_node_dup_any(stable_node,
1693 root);
1694 if (!stable_node_any) {
1695 /* rb_erase just run */
1696 goto again;
1697 }
1698 /*
1699 * Take any of the stable_node dups page of
1700 * this stable_node chain to let the tree walk
1701 * continue. All KSM pages belonging to the
1702 * stable_node dups in a stable_node chain
1703 * have the same content and they're
1704 * write protected at all times. Any will work
1705 * fine to continue the walk.
1706 */
1707 tree_page = get_ksm_page(stable_node: stable_node_any,
1708 flags: GET_KSM_PAGE_NOLOCK);
1709 }
1710 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1711 if (!tree_page) {
1712 /*
1713 * If we walked over a stale stable_node,
1714 * get_ksm_page() will call rb_erase() and it
1715 * may rebalance the tree from under us. So
1716 * restart the search from scratch. Returning
1717 * NULL would be safe too, but we'd generate
1718 * false negative insertions just because some
1719 * stable_node was stale.
1720 */
1721 goto again;
1722 }
1723
1724 ret = memcmp_pages(page1: page, page2: tree_page);
1725 put_page(page: tree_page);
1726
1727 parent = *new;
1728 if (ret < 0)
1729 new = &parent->rb_left;
1730 else if (ret > 0)
1731 new = &parent->rb_right;
1732 else {
1733 if (page_node) {
1734 VM_BUG_ON(page_node->head != &migrate_nodes);
1735 /*
1736 * Test if the migrated page should be merged
1737 * into a stable node dup. If the mapcount is
1738 * 1 we can migrate it with another KSM page
1739 * without adding it to the chain.
1740 */
1741 if (page_mapcount(page) > 1)
1742 goto chain_append;
1743 }
1744
1745 if (!stable_node_dup) {
1746 /*
1747 * If the stable_node is a chain and
1748 * we got a payload match in memcmp
1749 * but we cannot merge the scanned
1750 * page in any of the existing
1751 * stable_node dups because they're
1752 * all full, we need to wait the
1753 * scanned page to find itself a match
1754 * in the unstable tree to create a
1755 * brand new KSM page to add later to
1756 * the dups of this stable_node.
1757 */
1758 return NULL;
1759 }
1760
1761 /*
1762 * Lock and unlock the stable_node's page (which
1763 * might already have been migrated) so that page
1764 * migration is sure to notice its raised count.
1765 * It would be more elegant to return stable_node
1766 * than kpage, but that involves more changes.
1767 */
1768 tree_page = get_ksm_page(stable_node: stable_node_dup,
1769 flags: GET_KSM_PAGE_TRYLOCK);
1770
1771 if (PTR_ERR(ptr: tree_page) == -EBUSY)
1772 return ERR_PTR(error: -EBUSY);
1773
1774 if (unlikely(!tree_page))
1775 /*
1776 * The tree may have been rebalanced,
1777 * so re-evaluate parent and new.
1778 */
1779 goto again;
1780 unlock_page(page: tree_page);
1781
1782 if (get_kpfn_nid(kpfn: stable_node_dup->kpfn) !=
1783 NUMA(stable_node_dup->nid)) {
1784 put_page(page: tree_page);
1785 goto replace;
1786 }
1787 return tree_page;
1788 }
1789 }
1790
1791 if (!page_node)
1792 return NULL;
1793
1794 list_del(entry: &page_node->list);
1795 DO_NUMA(page_node->nid = nid);
1796 rb_link_node(node: &page_node->node, parent, rb_link: new);
1797 rb_insert_color(&page_node->node, root);
1798out:
1799 if (is_page_sharing_candidate(stable_node: page_node)) {
1800 get_page(page);
1801 return page;
1802 } else
1803 return NULL;
1804
1805replace:
1806 /*
1807 * If stable_node was a chain and chain_prune collapsed it,
1808 * stable_node has been updated to be the new regular
1809 * stable_node. A collapse of the chain is indistinguishable
1810 * from the case there was no chain in the stable
1811 * rbtree. Otherwise stable_node is the chain and
1812 * stable_node_dup is the dup to replace.
1813 */
1814 if (stable_node_dup == stable_node) {
1815 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1816 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1817 /* there is no chain */
1818 if (page_node) {
1819 VM_BUG_ON(page_node->head != &migrate_nodes);
1820 list_del(entry: &page_node->list);
1821 DO_NUMA(page_node->nid = nid);
1822 rb_replace_node(victim: &stable_node_dup->node,
1823 new: &page_node->node,
1824 root);
1825 if (is_page_sharing_candidate(stable_node: page_node))
1826 get_page(page);
1827 else
1828 page = NULL;
1829 } else {
1830 rb_erase(&stable_node_dup->node, root);
1831 page = NULL;
1832 }
1833 } else {
1834 VM_BUG_ON(!is_stable_node_chain(stable_node));
1835 __stable_node_dup_del(dup: stable_node_dup);
1836 if (page_node) {
1837 VM_BUG_ON(page_node->head != &migrate_nodes);
1838 list_del(entry: &page_node->list);
1839 DO_NUMA(page_node->nid = nid);
1840 stable_node_chain_add_dup(dup: page_node, chain: stable_node);
1841 if (is_page_sharing_candidate(stable_node: page_node))
1842 get_page(page);
1843 else
1844 page = NULL;
1845 } else {
1846 page = NULL;
1847 }
1848 }
1849 stable_node_dup->head = &migrate_nodes;
1850 list_add(new: &stable_node_dup->list, head: stable_node_dup->head);
1851 return page;
1852
1853chain_append:
1854 /* stable_node_dup could be null if it reached the limit */
1855 if (!stable_node_dup)
1856 stable_node_dup = stable_node_any;
1857 /*
1858 * If stable_node was a chain and chain_prune collapsed it,
1859 * stable_node has been updated to be the new regular
1860 * stable_node. A collapse of the chain is indistinguishable
1861 * from the case there was no chain in the stable
1862 * rbtree. Otherwise stable_node is the chain and
1863 * stable_node_dup is the dup to replace.
1864 */
1865 if (stable_node_dup == stable_node) {
1866 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1867 /* chain is missing so create it */
1868 stable_node = alloc_stable_node_chain(dup: stable_node_dup,
1869 root);
1870 if (!stable_node)
1871 return NULL;
1872 }
1873 /*
1874 * Add this stable_node dup that was
1875 * migrated to the stable_node chain
1876 * of the current nid for this page
1877 * content.
1878 */
1879 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1880 VM_BUG_ON(page_node->head != &migrate_nodes);
1881 list_del(entry: &page_node->list);
1882 DO_NUMA(page_node->nid = nid);
1883 stable_node_chain_add_dup(dup: page_node, chain: stable_node);
1884 goto out;
1885}
1886
1887/*
1888 * stable_tree_insert - insert stable tree node pointing to new ksm page
1889 * into the stable tree.
1890 *
1891 * This function returns the stable tree node just allocated on success,
1892 * NULL otherwise.
1893 */
1894static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1895{
1896 int nid;
1897 unsigned long kpfn;
1898 struct rb_root *root;
1899 struct rb_node **new;
1900 struct rb_node *parent;
1901 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1902 bool need_chain = false;
1903
1904 kpfn = page_to_pfn(kpage);
1905 nid = get_kpfn_nid(kpfn);
1906 root = root_stable_tree + nid;
1907again:
1908 parent = NULL;
1909 new = &root->rb_node;
1910
1911 while (*new) {
1912 struct page *tree_page;
1913 int ret;
1914
1915 cond_resched();
1916 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1917 stable_node_any = NULL;
1918 tree_page = chain(s_n_d: &stable_node_dup, s_n: stable_node, root);
1919 if (!stable_node_dup) {
1920 /*
1921 * Either all stable_node dups were full in
1922 * this stable_node chain, or this chain was
1923 * empty and should be rb_erased.
1924 */
1925 stable_node_any = stable_node_dup_any(stable_node,
1926 root);
1927 if (!stable_node_any) {
1928 /* rb_erase just run */
1929 goto again;
1930 }
1931 /*
1932 * Take any of the stable_node dups page of
1933 * this stable_node chain to let the tree walk
1934 * continue. All KSM pages belonging to the
1935 * stable_node dups in a stable_node chain
1936 * have the same content and they're
1937 * write protected at all times. Any will work
1938 * fine to continue the walk.
1939 */
1940 tree_page = get_ksm_page(stable_node: stable_node_any,
1941 flags: GET_KSM_PAGE_NOLOCK);
1942 }
1943 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1944 if (!tree_page) {
1945 /*
1946 * If we walked over a stale stable_node,
1947 * get_ksm_page() will call rb_erase() and it
1948 * may rebalance the tree from under us. So
1949 * restart the search from scratch. Returning
1950 * NULL would be safe too, but we'd generate
1951 * false negative insertions just because some
1952 * stable_node was stale.
1953 */
1954 goto again;
1955 }
1956
1957 ret = memcmp_pages(page1: kpage, page2: tree_page);
1958 put_page(page: tree_page);
1959
1960 parent = *new;
1961 if (ret < 0)
1962 new = &parent->rb_left;
1963 else if (ret > 0)
1964 new = &parent->rb_right;
1965 else {
1966 need_chain = true;
1967 break;
1968 }
1969 }
1970
1971 stable_node_dup = alloc_stable_node();
1972 if (!stable_node_dup)
1973 return NULL;
1974
1975 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1976 stable_node_dup->kpfn = kpfn;
1977 set_page_stable_node(page: kpage, stable_node: stable_node_dup);
1978 stable_node_dup->rmap_hlist_len = 0;
1979 DO_NUMA(stable_node_dup->nid = nid);
1980 if (!need_chain) {
1981 rb_link_node(node: &stable_node_dup->node, parent, rb_link: new);
1982 rb_insert_color(&stable_node_dup->node, root);
1983 } else {
1984 if (!is_stable_node_chain(chain: stable_node)) {
1985 struct ksm_stable_node *orig = stable_node;
1986 /* chain is missing so create it */
1987 stable_node = alloc_stable_node_chain(dup: orig, root);
1988 if (!stable_node) {
1989 free_stable_node(stable_node: stable_node_dup);
1990 return NULL;
1991 }
1992 }
1993 stable_node_chain_add_dup(dup: stable_node_dup, chain: stable_node);
1994 }
1995
1996 return stable_node_dup;
1997}
1998
1999/*
2000 * unstable_tree_search_insert - search for identical page,
2001 * else insert rmap_item into the unstable tree.
2002 *
2003 * This function searches for a page in the unstable tree identical to the
2004 * page currently being scanned; and if no identical page is found in the
2005 * tree, we insert rmap_item as a new object into the unstable tree.
2006 *
2007 * This function returns pointer to rmap_item found to be identical
2008 * to the currently scanned page, NULL otherwise.
2009 *
2010 * This function does both searching and inserting, because they share
2011 * the same walking algorithm in an rbtree.
2012 */
2013static
2014struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2015 struct page *page,
2016 struct page **tree_pagep)
2017{
2018 struct rb_node **new;
2019 struct rb_root *root;
2020 struct rb_node *parent = NULL;
2021 int nid;
2022
2023 nid = get_kpfn_nid(page_to_pfn(page));
2024 root = root_unstable_tree + nid;
2025 new = &root->rb_node;
2026
2027 while (*new) {
2028 struct ksm_rmap_item *tree_rmap_item;
2029 struct page *tree_page;
2030 int ret;
2031
2032 cond_resched();
2033 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2034 tree_page = get_mergeable_page(rmap_item: tree_rmap_item);
2035 if (!tree_page)
2036 return NULL;
2037
2038 /*
2039 * Don't substitute a ksm page for a forked page.
2040 */
2041 if (page == tree_page) {
2042 put_page(page: tree_page);
2043 return NULL;
2044 }
2045
2046 ret = memcmp_pages(page1: page, page2: tree_page);
2047
2048 parent = *new;
2049 if (ret < 0) {
2050 put_page(page: tree_page);
2051 new = &parent->rb_left;
2052 } else if (ret > 0) {
2053 put_page(page: tree_page);
2054 new = &parent->rb_right;
2055 } else if (!ksm_merge_across_nodes &&
2056 page_to_nid(page: tree_page) != nid) {
2057 /*
2058 * If tree_page has been migrated to another NUMA node,
2059 * it will be flushed out and put in the right unstable
2060 * tree next time: only merge with it when across_nodes.
2061 */
2062 put_page(page: tree_page);
2063 return NULL;
2064 } else {
2065 *tree_pagep = tree_page;
2066 return tree_rmap_item;
2067 }
2068 }
2069
2070 rmap_item->address |= UNSTABLE_FLAG;
2071 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2072 DO_NUMA(rmap_item->nid = nid);
2073 rb_link_node(node: &rmap_item->node, parent, rb_link: new);
2074 rb_insert_color(&rmap_item->node, root);
2075
2076 ksm_pages_unshared++;
2077 return NULL;
2078}
2079
2080/*
2081 * stable_tree_append - add another rmap_item to the linked list of
2082 * rmap_items hanging off a given node of the stable tree, all sharing
2083 * the same ksm page.
2084 */
2085static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2086 struct ksm_stable_node *stable_node,
2087 bool max_page_sharing_bypass)
2088{
2089 /*
2090 * rmap won't find this mapping if we don't insert the
2091 * rmap_item in the right stable_node
2092 * duplicate. page_migration could break later if rmap breaks,
2093 * so we can as well crash here. We really need to check for
2094 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2095 * for other negative values as an underflow if detected here
2096 * for the first time (and not when decreasing rmap_hlist_len)
2097 * would be sign of memory corruption in the stable_node.
2098 */
2099 BUG_ON(stable_node->rmap_hlist_len < 0);
2100
2101 stable_node->rmap_hlist_len++;
2102 if (!max_page_sharing_bypass)
2103 /* possibly non fatal but unexpected overflow, only warn */
2104 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2105 ksm_max_page_sharing);
2106
2107 rmap_item->head = stable_node;
2108 rmap_item->address |= STABLE_FLAG;
2109 hlist_add_head(n: &rmap_item->hlist, h: &stable_node->hlist);
2110
2111 if (rmap_item->hlist.next)
2112 ksm_pages_sharing++;
2113 else
2114 ksm_pages_shared++;
2115
2116 rmap_item->mm->ksm_merging_pages++;
2117}
2118
2119/*
2120 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2121 * if not, compare checksum to previous and if it's the same, see if page can
2122 * be inserted into the unstable tree, or merged with a page already there and
2123 * both transferred to the stable tree.
2124 *
2125 * @page: the page that we are searching identical page to.
2126 * @rmap_item: the reverse mapping into the virtual address of this page
2127 */
2128static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2129{
2130 struct mm_struct *mm = rmap_item->mm;
2131 struct ksm_rmap_item *tree_rmap_item;
2132 struct page *tree_page = NULL;
2133 struct ksm_stable_node *stable_node;
2134 struct page *kpage;
2135 unsigned int checksum;
2136 int err;
2137 bool max_page_sharing_bypass = false;
2138
2139 stable_node = page_stable_node(page);
2140 if (stable_node) {
2141 if (stable_node->head != &migrate_nodes &&
2142 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2143 NUMA(stable_node->nid)) {
2144 stable_node_dup_del(dup: stable_node);
2145 stable_node->head = &migrate_nodes;
2146 list_add(new: &stable_node->list, head: stable_node->head);
2147 }
2148 if (stable_node->head != &migrate_nodes &&
2149 rmap_item->head == stable_node)
2150 return;
2151 /*
2152 * If it's a KSM fork, allow it to go over the sharing limit
2153 * without warnings.
2154 */
2155 if (!is_page_sharing_candidate(stable_node))
2156 max_page_sharing_bypass = true;
2157 }
2158
2159 /* We first start with searching the page inside the stable tree */
2160 kpage = stable_tree_search(page);
2161 if (kpage == page && rmap_item->head == stable_node) {
2162 put_page(page: kpage);
2163 return;
2164 }
2165
2166 remove_rmap_item_from_tree(rmap_item);
2167
2168 if (kpage) {
2169 if (PTR_ERR(ptr: kpage) == -EBUSY)
2170 return;
2171
2172 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2173 if (!err) {
2174 /*
2175 * The page was successfully merged:
2176 * add its rmap_item to the stable tree.
2177 */
2178 lock_page(page: kpage);
2179 stable_tree_append(rmap_item, stable_node: page_stable_node(page: kpage),
2180 max_page_sharing_bypass);
2181 unlock_page(page: kpage);
2182 }
2183 put_page(page: kpage);
2184 return;
2185 }
2186
2187 /*
2188 * If the hash value of the page has changed from the last time
2189 * we calculated it, this page is changing frequently: therefore we
2190 * don't want to insert it in the unstable tree, and we don't want
2191 * to waste our time searching for something identical to it there.
2192 */
2193 checksum = calc_checksum(page);
2194 if (rmap_item->oldchecksum != checksum) {
2195 rmap_item->oldchecksum = checksum;
2196 return;
2197 }
2198
2199 /*
2200 * Same checksum as an empty page. We attempt to merge it with the
2201 * appropriate zero page if the user enabled this via sysfs.
2202 */
2203 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2204 struct vm_area_struct *vma;
2205
2206 mmap_read_lock(mm);
2207 vma = find_mergeable_vma(mm, addr: rmap_item->address);
2208 if (vma) {
2209 err = try_to_merge_one_page(vma, page,
2210 ZERO_PAGE(rmap_item->address));
2211 trace_ksm_merge_one_page(
2212 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2213 rmap_item, mm, err);
2214 } else {
2215 /*
2216 * If the vma is out of date, we do not need to
2217 * continue.
2218 */
2219 err = 0;
2220 }
2221 mmap_read_unlock(mm);
2222 /*
2223 * In case of failure, the page was not really empty, so we
2224 * need to continue. Otherwise we're done.
2225 */
2226 if (!err)
2227 return;
2228 }
2229 tree_rmap_item =
2230 unstable_tree_search_insert(rmap_item, page, tree_pagep: &tree_page);
2231 if (tree_rmap_item) {
2232 bool split;
2233
2234 kpage = try_to_merge_two_pages(rmap_item, page,
2235 tree_rmap_item, tree_page);
2236 /*
2237 * If both pages we tried to merge belong to the same compound
2238 * page, then we actually ended up increasing the reference
2239 * count of the same compound page twice, and split_huge_page
2240 * failed.
2241 * Here we set a flag if that happened, and we use it later to
2242 * try split_huge_page again. Since we call put_page right
2243 * afterwards, the reference count will be correct and
2244 * split_huge_page should succeed.
2245 */
2246 split = PageTransCompound(page)
2247 && compound_head(page) == compound_head(tree_page);
2248 put_page(page: tree_page);
2249 if (kpage) {
2250 /*
2251 * The pages were successfully merged: insert new
2252 * node in the stable tree and add both rmap_items.
2253 */
2254 lock_page(page: kpage);
2255 stable_node = stable_tree_insert(kpage);
2256 if (stable_node) {
2257 stable_tree_append(rmap_item: tree_rmap_item, stable_node,
2258 max_page_sharing_bypass: false);
2259 stable_tree_append(rmap_item, stable_node,
2260 max_page_sharing_bypass: false);
2261 }
2262 unlock_page(page: kpage);
2263
2264 /*
2265 * If we fail to insert the page into the stable tree,
2266 * we will have 2 virtual addresses that are pointing
2267 * to a ksm page left outside the stable tree,
2268 * in which case we need to break_cow on both.
2269 */
2270 if (!stable_node) {
2271 break_cow(rmap_item: tree_rmap_item);
2272 break_cow(rmap_item);
2273 }
2274 } else if (split) {
2275 /*
2276 * We are here if we tried to merge two pages and
2277 * failed because they both belonged to the same
2278 * compound page. We will split the page now, but no
2279 * merging will take place.
2280 * We do not want to add the cost of a full lock; if
2281 * the page is locked, it is better to skip it and
2282 * perhaps try again later.
2283 */
2284 if (!trylock_page(page))
2285 return;
2286 split_huge_page(page);
2287 unlock_page(page);
2288 }
2289 }
2290}
2291
2292static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2293 struct ksm_rmap_item **rmap_list,
2294 unsigned long addr)
2295{
2296 struct ksm_rmap_item *rmap_item;
2297
2298 while (*rmap_list) {
2299 rmap_item = *rmap_list;
2300 if ((rmap_item->address & PAGE_MASK) == addr)
2301 return rmap_item;
2302 if (rmap_item->address > addr)
2303 break;
2304 *rmap_list = rmap_item->rmap_list;
2305 remove_rmap_item_from_tree(rmap_item);
2306 free_rmap_item(rmap_item);
2307 }
2308
2309 rmap_item = alloc_rmap_item();
2310 if (rmap_item) {
2311 /* It has already been zeroed */
2312 rmap_item->mm = mm_slot->slot.mm;
2313 rmap_item->mm->ksm_rmap_items++;
2314 rmap_item->address = addr;
2315 rmap_item->rmap_list = *rmap_list;
2316 *rmap_list = rmap_item;
2317 }
2318 return rmap_item;
2319}
2320
2321/*
2322 * Calculate skip age for the ksm page age. The age determines how often
2323 * de-duplicating has already been tried unsuccessfully. If the age is
2324 * smaller, the scanning of this page is skipped for less scans.
2325 *
2326 * @age: rmap_item age of page
2327 */
2328static unsigned int skip_age(rmap_age_t age)
2329{
2330 if (age <= 3)
2331 return 1;
2332 if (age <= 5)
2333 return 2;
2334 if (age <= 8)
2335 return 4;
2336
2337 return 8;
2338}
2339
2340/*
2341 * Determines if a page should be skipped for the current scan.
2342 *
2343 * @page: page to check
2344 * @rmap_item: associated rmap_item of page
2345 */
2346static bool should_skip_rmap_item(struct page *page,
2347 struct ksm_rmap_item *rmap_item)
2348{
2349 rmap_age_t age;
2350
2351 if (!ksm_smart_scan)
2352 return false;
2353
2354 /*
2355 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2356 * will essentially ignore them, but we still have to process them
2357 * properly.
2358 */
2359 if (PageKsm(page))
2360 return false;
2361
2362 age = rmap_item->age;
2363 if (age != U8_MAX)
2364 rmap_item->age++;
2365
2366 /*
2367 * Smaller ages are not skipped, they need to get a chance to go
2368 * through the different phases of the KSM merging.
2369 */
2370 if (age < 3)
2371 return false;
2372
2373 /*
2374 * Are we still allowed to skip? If not, then don't skip it
2375 * and determine how much more often we are allowed to skip next.
2376 */
2377 if (!rmap_item->remaining_skips) {
2378 rmap_item->remaining_skips = skip_age(age);
2379 return false;
2380 }
2381
2382 /* Skip this page */
2383 ksm_pages_skipped++;
2384 rmap_item->remaining_skips--;
2385 remove_rmap_item_from_tree(rmap_item);
2386 return true;
2387}
2388
2389static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2390{
2391 struct mm_struct *mm;
2392 struct ksm_mm_slot *mm_slot;
2393 struct mm_slot *slot;
2394 struct vm_area_struct *vma;
2395 struct ksm_rmap_item *rmap_item;
2396 struct vma_iterator vmi;
2397 int nid;
2398
2399 if (list_empty(head: &ksm_mm_head.slot.mm_node))
2400 return NULL;
2401
2402 mm_slot = ksm_scan.mm_slot;
2403 if (mm_slot == &ksm_mm_head) {
2404 trace_ksm_start_scan(seq: ksm_scan.seqnr, rmap_entries: ksm_rmap_items);
2405
2406 /*
2407 * A number of pages can hang around indefinitely in per-cpu
2408 * LRU cache, raised page count preventing write_protect_page
2409 * from merging them. Though it doesn't really matter much,
2410 * it is puzzling to see some stuck in pages_volatile until
2411 * other activity jostles them out, and they also prevented
2412 * LTP's KSM test from succeeding deterministically; so drain
2413 * them here (here rather than on entry to ksm_do_scan(),
2414 * so we don't IPI too often when pages_to_scan is set low).
2415 */
2416 lru_add_drain_all();
2417
2418 /*
2419 * Whereas stale stable_nodes on the stable_tree itself
2420 * get pruned in the regular course of stable_tree_search(),
2421 * those moved out to the migrate_nodes list can accumulate:
2422 * so prune them once before each full scan.
2423 */
2424 if (!ksm_merge_across_nodes) {
2425 struct ksm_stable_node *stable_node, *next;
2426 struct page *page;
2427
2428 list_for_each_entry_safe(stable_node, next,
2429 &migrate_nodes, list) {
2430 page = get_ksm_page(stable_node,
2431 flags: GET_KSM_PAGE_NOLOCK);
2432 if (page)
2433 put_page(page);
2434 cond_resched();
2435 }
2436 }
2437
2438 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2439 root_unstable_tree[nid] = RB_ROOT;
2440
2441 spin_lock(lock: &ksm_mmlist_lock);
2442 slot = list_entry(mm_slot->slot.mm_node.next,
2443 struct mm_slot, mm_node);
2444 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2445 ksm_scan.mm_slot = mm_slot;
2446 spin_unlock(lock: &ksm_mmlist_lock);
2447 /*
2448 * Although we tested list_empty() above, a racing __ksm_exit
2449 * of the last mm on the list may have removed it since then.
2450 */
2451 if (mm_slot == &ksm_mm_head)
2452 return NULL;
2453next_mm:
2454 ksm_scan.address = 0;
2455 ksm_scan.rmap_list = &mm_slot->rmap_list;
2456 }
2457
2458 slot = &mm_slot->slot;
2459 mm = slot->mm;
2460 vma_iter_init(vmi: &vmi, mm, addr: ksm_scan.address);
2461
2462 mmap_read_lock(mm);
2463 if (ksm_test_exit(mm))
2464 goto no_vmas;
2465
2466 for_each_vma(vmi, vma) {
2467 if (!(vma->vm_flags & VM_MERGEABLE))
2468 continue;
2469 if (ksm_scan.address < vma->vm_start)
2470 ksm_scan.address = vma->vm_start;
2471 if (!vma->anon_vma)
2472 ksm_scan.address = vma->vm_end;
2473
2474 while (ksm_scan.address < vma->vm_end) {
2475 if (ksm_test_exit(mm))
2476 break;
2477 *page = follow_page(vma, address: ksm_scan.address, foll_flags: FOLL_GET);
2478 if (IS_ERR_OR_NULL(ptr: *page)) {
2479 ksm_scan.address += PAGE_SIZE;
2480 cond_resched();
2481 continue;
2482 }
2483 if (is_zone_device_page(page: *page))
2484 goto next_page;
2485 if (PageAnon(page: *page)) {
2486 flush_anon_page(vma, page: *page, vmaddr: ksm_scan.address);
2487 flush_dcache_page(page: *page);
2488 rmap_item = get_next_rmap_item(mm_slot,
2489 rmap_list: ksm_scan.rmap_list, addr: ksm_scan.address);
2490 if (rmap_item) {
2491 ksm_scan.rmap_list =
2492 &rmap_item->rmap_list;
2493
2494 if (should_skip_rmap_item(page: *page, rmap_item))
2495 goto next_page;
2496
2497 ksm_scan.address += PAGE_SIZE;
2498 } else
2499 put_page(page: *page);
2500 mmap_read_unlock(mm);
2501 return rmap_item;
2502 }
2503next_page:
2504 put_page(page: *page);
2505 ksm_scan.address += PAGE_SIZE;
2506 cond_resched();
2507 }
2508 }
2509
2510 if (ksm_test_exit(mm)) {
2511no_vmas:
2512 ksm_scan.address = 0;
2513 ksm_scan.rmap_list = &mm_slot->rmap_list;
2514 }
2515 /*
2516 * Nuke all the rmap_items that are above this current rmap:
2517 * because there were no VM_MERGEABLE vmas with such addresses.
2518 */
2519 remove_trailing_rmap_items(rmap_list: ksm_scan.rmap_list);
2520
2521 spin_lock(lock: &ksm_mmlist_lock);
2522 slot = list_entry(mm_slot->slot.mm_node.next,
2523 struct mm_slot, mm_node);
2524 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2525 if (ksm_scan.address == 0) {
2526 /*
2527 * We've completed a full scan of all vmas, holding mmap_lock
2528 * throughout, and found no VM_MERGEABLE: so do the same as
2529 * __ksm_exit does to remove this mm from all our lists now.
2530 * This applies either when cleaning up after __ksm_exit
2531 * (but beware: we can reach here even before __ksm_exit),
2532 * or when all VM_MERGEABLE areas have been unmapped (and
2533 * mmap_lock then protects against race with MADV_MERGEABLE).
2534 */
2535 hash_del(node: &mm_slot->slot.hash);
2536 list_del(entry: &mm_slot->slot.mm_node);
2537 spin_unlock(lock: &ksm_mmlist_lock);
2538
2539 mm_slot_free(cache: mm_slot_cache, objp: mm_slot);
2540 clear_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
2541 clear_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2542 mmap_read_unlock(mm);
2543 mmdrop(mm);
2544 } else {
2545 mmap_read_unlock(mm);
2546 /*
2547 * mmap_read_unlock(mm) first because after
2548 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2549 * already have been freed under us by __ksm_exit()
2550 * because the "mm_slot" is still hashed and
2551 * ksm_scan.mm_slot doesn't point to it anymore.
2552 */
2553 spin_unlock(lock: &ksm_mmlist_lock);
2554 }
2555
2556 /* Repeat until we've completed scanning the whole list */
2557 mm_slot = ksm_scan.mm_slot;
2558 if (mm_slot != &ksm_mm_head)
2559 goto next_mm;
2560
2561 trace_ksm_stop_scan(seq: ksm_scan.seqnr, rmap_entries: ksm_rmap_items);
2562 ksm_scan.seqnr++;
2563 return NULL;
2564}
2565
2566/**
2567 * ksm_do_scan - the ksm scanner main worker function.
2568 * @scan_npages: number of pages we want to scan before we return.
2569 */
2570static void ksm_do_scan(unsigned int scan_npages)
2571{
2572 struct ksm_rmap_item *rmap_item;
2573 struct page *page;
2574 unsigned int npages = scan_npages;
2575
2576 while (npages-- && likely(!freezing(current))) {
2577 cond_resched();
2578 rmap_item = scan_get_next_rmap_item(page: &page);
2579 if (!rmap_item)
2580 return;
2581 cmp_and_merge_page(page, rmap_item);
2582 put_page(page);
2583 }
2584
2585 ksm_pages_scanned += scan_npages - npages;
2586}
2587
2588static int ksmd_should_run(void)
2589{
2590 return (ksm_run & KSM_RUN_MERGE) && !list_empty(head: &ksm_mm_head.slot.mm_node);
2591}
2592
2593static int ksm_scan_thread(void *nothing)
2594{
2595 unsigned int sleep_ms;
2596
2597 set_freezable();
2598 set_user_nice(current, nice: 5);
2599
2600 while (!kthread_should_stop()) {
2601 mutex_lock(&ksm_thread_mutex);
2602 wait_while_offlining();
2603 if (ksmd_should_run())
2604 ksm_do_scan(scan_npages: ksm_thread_pages_to_scan);
2605 mutex_unlock(lock: &ksm_thread_mutex);
2606
2607 try_to_freeze();
2608
2609 if (ksmd_should_run()) {
2610 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2611 wait_event_interruptible_timeout(ksm_iter_wait,
2612 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2613 msecs_to_jiffies(sleep_ms));
2614 } else {
2615 wait_event_freezable(ksm_thread_wait,
2616 ksmd_should_run() || kthread_should_stop());
2617 }
2618 }
2619 return 0;
2620}
2621
2622static void __ksm_add_vma(struct vm_area_struct *vma)
2623{
2624 unsigned long vm_flags = vma->vm_flags;
2625
2626 if (vm_flags & VM_MERGEABLE)
2627 return;
2628
2629 if (vma_ksm_compatible(vma))
2630 vm_flags_set(vma, VM_MERGEABLE);
2631}
2632
2633static int __ksm_del_vma(struct vm_area_struct *vma)
2634{
2635 int err;
2636
2637 if (!(vma->vm_flags & VM_MERGEABLE))
2638 return 0;
2639
2640 if (vma->anon_vma) {
2641 err = unmerge_ksm_pages(vma, start: vma->vm_start, end: vma->vm_end, lock_vma: true);
2642 if (err)
2643 return err;
2644 }
2645
2646 vm_flags_clear(vma, VM_MERGEABLE);
2647 return 0;
2648}
2649/**
2650 * ksm_add_vma - Mark vma as mergeable if compatible
2651 *
2652 * @vma: Pointer to vma
2653 */
2654void ksm_add_vma(struct vm_area_struct *vma)
2655{
2656 struct mm_struct *mm = vma->vm_mm;
2657
2658 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2659 __ksm_add_vma(vma);
2660}
2661
2662static void ksm_add_vmas(struct mm_struct *mm)
2663{
2664 struct vm_area_struct *vma;
2665
2666 VMA_ITERATOR(vmi, mm, 0);
2667 for_each_vma(vmi, vma)
2668 __ksm_add_vma(vma);
2669}
2670
2671static int ksm_del_vmas(struct mm_struct *mm)
2672{
2673 struct vm_area_struct *vma;
2674 int err;
2675
2676 VMA_ITERATOR(vmi, mm, 0);
2677 for_each_vma(vmi, vma) {
2678 err = __ksm_del_vma(vma);
2679 if (err)
2680 return err;
2681 }
2682 return 0;
2683}
2684
2685/**
2686 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2687 * compatible VMA's
2688 *
2689 * @mm: Pointer to mm
2690 *
2691 * Returns 0 on success, otherwise error code
2692 */
2693int ksm_enable_merge_any(struct mm_struct *mm)
2694{
2695 int err;
2696
2697 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2698 return 0;
2699
2700 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2701 err = __ksm_enter(mm);
2702 if (err)
2703 return err;
2704 }
2705
2706 set_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2707 ksm_add_vmas(mm);
2708
2709 return 0;
2710}
2711
2712/**
2713 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2714 * previously enabled via ksm_enable_merge_any().
2715 *
2716 * Disabling merging implies unmerging any merged pages, like setting
2717 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2718 * merging on all compatible VMA's remains enabled.
2719 *
2720 * @mm: Pointer to mm
2721 *
2722 * Returns 0 on success, otherwise error code
2723 */
2724int ksm_disable_merge_any(struct mm_struct *mm)
2725{
2726 int err;
2727
2728 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2729 return 0;
2730
2731 err = ksm_del_vmas(mm);
2732 if (err) {
2733 ksm_add_vmas(mm);
2734 return err;
2735 }
2736
2737 clear_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2738 return 0;
2739}
2740
2741int ksm_disable(struct mm_struct *mm)
2742{
2743 mmap_assert_write_locked(mm);
2744
2745 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2746 return 0;
2747 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2748 return ksm_disable_merge_any(mm);
2749 return ksm_del_vmas(mm);
2750}
2751
2752int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2753 unsigned long end, int advice, unsigned long *vm_flags)
2754{
2755 struct mm_struct *mm = vma->vm_mm;
2756 int err;
2757
2758 switch (advice) {
2759 case MADV_MERGEABLE:
2760 if (vma->vm_flags & VM_MERGEABLE)
2761 return 0;
2762 if (!vma_ksm_compatible(vma))
2763 return 0;
2764
2765 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2766 err = __ksm_enter(mm);
2767 if (err)
2768 return err;
2769 }
2770
2771 *vm_flags |= VM_MERGEABLE;
2772 break;
2773
2774 case MADV_UNMERGEABLE:
2775 if (!(*vm_flags & VM_MERGEABLE))
2776 return 0; /* just ignore the advice */
2777
2778 if (vma->anon_vma) {
2779 err = unmerge_ksm_pages(vma, start, end, lock_vma: true);
2780 if (err)
2781 return err;
2782 }
2783
2784 *vm_flags &= ~VM_MERGEABLE;
2785 break;
2786 }
2787
2788 return 0;
2789}
2790EXPORT_SYMBOL_GPL(ksm_madvise);
2791
2792int __ksm_enter(struct mm_struct *mm)
2793{
2794 struct ksm_mm_slot *mm_slot;
2795 struct mm_slot *slot;
2796 int needs_wakeup;
2797
2798 mm_slot = mm_slot_alloc(cache: mm_slot_cache);
2799 if (!mm_slot)
2800 return -ENOMEM;
2801
2802 slot = &mm_slot->slot;
2803
2804 /* Check ksm_run too? Would need tighter locking */
2805 needs_wakeup = list_empty(head: &ksm_mm_head.slot.mm_node);
2806
2807 spin_lock(lock: &ksm_mmlist_lock);
2808 mm_slot_insert(mm_slots_hash, mm, slot);
2809 /*
2810 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2811 * insert just behind the scanning cursor, to let the area settle
2812 * down a little; when fork is followed by immediate exec, we don't
2813 * want ksmd to waste time setting up and tearing down an rmap_list.
2814 *
2815 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2816 * scanning cursor, otherwise KSM pages in newly forked mms will be
2817 * missed: then we might as well insert at the end of the list.
2818 */
2819 if (ksm_run & KSM_RUN_UNMERGE)
2820 list_add_tail(new: &slot->mm_node, head: &ksm_mm_head.slot.mm_node);
2821 else
2822 list_add_tail(new: &slot->mm_node, head: &ksm_scan.mm_slot->slot.mm_node);
2823 spin_unlock(lock: &ksm_mmlist_lock);
2824
2825 set_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
2826 mmgrab(mm);
2827
2828 if (needs_wakeup)
2829 wake_up_interruptible(&ksm_thread_wait);
2830
2831 trace_ksm_enter(mm);
2832 return 0;
2833}
2834
2835void __ksm_exit(struct mm_struct *mm)
2836{
2837 struct ksm_mm_slot *mm_slot;
2838 struct mm_slot *slot;
2839 int easy_to_free = 0;
2840
2841 /*
2842 * This process is exiting: if it's straightforward (as is the
2843 * case when ksmd was never running), free mm_slot immediately.
2844 * But if it's at the cursor or has rmap_items linked to it, use
2845 * mmap_lock to synchronize with any break_cows before pagetables
2846 * are freed, and leave the mm_slot on the list for ksmd to free.
2847 * Beware: ksm may already have noticed it exiting and freed the slot.
2848 */
2849
2850 spin_lock(lock: &ksm_mmlist_lock);
2851 slot = mm_slot_lookup(mm_slots_hash, mm);
2852 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2853 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2854 if (!mm_slot->rmap_list) {
2855 hash_del(node: &slot->hash);
2856 list_del(entry: &slot->mm_node);
2857 easy_to_free = 1;
2858 } else {
2859 list_move(list: &slot->mm_node,
2860 head: &ksm_scan.mm_slot->slot.mm_node);
2861 }
2862 }
2863 spin_unlock(lock: &ksm_mmlist_lock);
2864
2865 if (easy_to_free) {
2866 mm_slot_free(cache: mm_slot_cache, objp: mm_slot);
2867 clear_bit(MMF_VM_MERGE_ANY, addr: &mm->flags);
2868 clear_bit(MMF_VM_MERGEABLE, addr: &mm->flags);
2869 mmdrop(mm);
2870 } else if (mm_slot) {
2871 mmap_write_lock(mm);
2872 mmap_write_unlock(mm);
2873 }
2874
2875 trace_ksm_exit(mm);
2876}
2877
2878struct page *ksm_might_need_to_copy(struct page *page,
2879 struct vm_area_struct *vma, unsigned long address)
2880{
2881 struct folio *folio = page_folio(page);
2882 struct anon_vma *anon_vma = folio_anon_vma(folio);
2883 struct page *new_page;
2884
2885 if (PageKsm(page)) {
2886 if (page_stable_node(page) &&
2887 !(ksm_run & KSM_RUN_UNMERGE))
2888 return page; /* no need to copy it */
2889 } else if (!anon_vma) {
2890 return page; /* no need to copy it */
2891 } else if (page->index == linear_page_index(vma, address) &&
2892 anon_vma->root == vma->anon_vma->root) {
2893 return page; /* still no need to copy it */
2894 }
2895 if (PageHWPoison(page))
2896 return ERR_PTR(error: -EHWPOISON);
2897 if (!PageUptodate(page))
2898 return page; /* let do_swap_page report the error */
2899
2900 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr: address);
2901 if (new_page &&
2902 mem_cgroup_charge(page_folio(new_page), mm: vma->vm_mm, GFP_KERNEL)) {
2903 put_page(page: new_page);
2904 new_page = NULL;
2905 }
2906 if (new_page) {
2907 if (copy_mc_user_highpage(to: new_page, from: page, vaddr: address, vma)) {
2908 put_page(page: new_page);
2909 memory_failure_queue(page_to_pfn(page), flags: 0);
2910 return ERR_PTR(error: -EHWPOISON);
2911 }
2912 SetPageDirty(new_page);
2913 __SetPageUptodate(page: new_page);
2914 __SetPageLocked(page: new_page);
2915#ifdef CONFIG_SWAP
2916 count_vm_event(item: KSM_SWPIN_COPY);
2917#endif
2918 }
2919
2920 return new_page;
2921}
2922
2923void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2924{
2925 struct ksm_stable_node *stable_node;
2926 struct ksm_rmap_item *rmap_item;
2927 int search_new_forks = 0;
2928
2929 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2930
2931 /*
2932 * Rely on the page lock to protect against concurrent modifications
2933 * to that page's node of the stable tree.
2934 */
2935 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2936
2937 stable_node = folio_stable_node(folio);
2938 if (!stable_node)
2939 return;
2940again:
2941 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2942 struct anon_vma *anon_vma = rmap_item->anon_vma;
2943 struct anon_vma_chain *vmac;
2944 struct vm_area_struct *vma;
2945
2946 cond_resched();
2947 if (!anon_vma_trylock_read(anon_vma)) {
2948 if (rwc->try_lock) {
2949 rwc->contended = true;
2950 return;
2951 }
2952 anon_vma_lock_read(anon_vma);
2953 }
2954 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2955 0, ULONG_MAX) {
2956 unsigned long addr;
2957
2958 cond_resched();
2959 vma = vmac->vma;
2960
2961 /* Ignore the stable/unstable/sqnr flags */
2962 addr = rmap_item->address & PAGE_MASK;
2963
2964 if (addr < vma->vm_start || addr >= vma->vm_end)
2965 continue;
2966 /*
2967 * Initially we examine only the vma which covers this
2968 * rmap_item; but later, if there is still work to do,
2969 * we examine covering vmas in other mms: in case they
2970 * were forked from the original since ksmd passed.
2971 */
2972 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2973 continue;
2974
2975 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2976 continue;
2977
2978 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2979 anon_vma_unlock_read(anon_vma);
2980 return;
2981 }
2982 if (rwc->done && rwc->done(folio)) {
2983 anon_vma_unlock_read(anon_vma);
2984 return;
2985 }
2986 }
2987 anon_vma_unlock_read(anon_vma);
2988 }
2989 if (!search_new_forks++)
2990 goto again;
2991}
2992
2993#ifdef CONFIG_MEMORY_FAILURE
2994/*
2995 * Collect processes when the error hit an ksm page.
2996 */
2997void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2998 int force_early)
2999{
3000 struct ksm_stable_node *stable_node;
3001 struct ksm_rmap_item *rmap_item;
3002 struct folio *folio = page_folio(page);
3003 struct vm_area_struct *vma;
3004 struct task_struct *tsk;
3005
3006 stable_node = folio_stable_node(folio);
3007 if (!stable_node)
3008 return;
3009 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3010 struct anon_vma *av = rmap_item->anon_vma;
3011
3012 anon_vma_lock_read(anon_vma: av);
3013 rcu_read_lock();
3014 for_each_process(tsk) {
3015 struct anon_vma_chain *vmac;
3016 unsigned long addr;
3017 struct task_struct *t =
3018 task_early_kill(tsk, force_early);
3019 if (!t)
3020 continue;
3021 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3022 ULONG_MAX)
3023 {
3024 vma = vmac->vma;
3025 if (vma->vm_mm == t->mm) {
3026 addr = rmap_item->address & PAGE_MASK;
3027 add_to_kill_ksm(tsk: t, p: page, vma, to_kill,
3028 ksm_addr: addr);
3029 }
3030 }
3031 }
3032 rcu_read_unlock();
3033 anon_vma_unlock_read(anon_vma: av);
3034 }
3035}
3036#endif
3037
3038#ifdef CONFIG_MIGRATION
3039void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3040{
3041 struct ksm_stable_node *stable_node;
3042
3043 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3044 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3045 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3046
3047 stable_node = folio_stable_node(folio);
3048 if (stable_node) {
3049 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3050 stable_node->kpfn = folio_pfn(folio: newfolio);
3051 /*
3052 * newfolio->mapping was set in advance; now we need smp_wmb()
3053 * to make sure that the new stable_node->kpfn is visible
3054 * to get_ksm_page() before it can see that folio->mapping
3055 * has gone stale (or that folio_test_swapcache has been cleared).
3056 */
3057 smp_wmb();
3058 set_page_stable_node(page: &folio->page, NULL);
3059 }
3060}
3061#endif /* CONFIG_MIGRATION */
3062
3063#ifdef CONFIG_MEMORY_HOTREMOVE
3064static void wait_while_offlining(void)
3065{
3066 while (ksm_run & KSM_RUN_OFFLINE) {
3067 mutex_unlock(lock: &ksm_thread_mutex);
3068 wait_on_bit(word: &ksm_run, ilog2(KSM_RUN_OFFLINE),
3069 TASK_UNINTERRUPTIBLE);
3070 mutex_lock(&ksm_thread_mutex);
3071 }
3072}
3073
3074static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3075 unsigned long start_pfn,
3076 unsigned long end_pfn)
3077{
3078 if (stable_node->kpfn >= start_pfn &&
3079 stable_node->kpfn < end_pfn) {
3080 /*
3081 * Don't get_ksm_page, page has already gone:
3082 * which is why we keep kpfn instead of page*
3083 */
3084 remove_node_from_stable_tree(stable_node);
3085 return true;
3086 }
3087 return false;
3088}
3089
3090static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3091 unsigned long start_pfn,
3092 unsigned long end_pfn,
3093 struct rb_root *root)
3094{
3095 struct ksm_stable_node *dup;
3096 struct hlist_node *hlist_safe;
3097
3098 if (!is_stable_node_chain(chain: stable_node)) {
3099 VM_BUG_ON(is_stable_node_dup(stable_node));
3100 return stable_node_dup_remove_range(stable_node, start_pfn,
3101 end_pfn);
3102 }
3103
3104 hlist_for_each_entry_safe(dup, hlist_safe,
3105 &stable_node->hlist, hlist_dup) {
3106 VM_BUG_ON(!is_stable_node_dup(dup));
3107 stable_node_dup_remove_range(stable_node: dup, start_pfn, end_pfn);
3108 }
3109 if (hlist_empty(h: &stable_node->hlist)) {
3110 free_stable_node_chain(chain: stable_node, root);
3111 return true; /* notify caller that tree was rebalanced */
3112 } else
3113 return false;
3114}
3115
3116static void ksm_check_stable_tree(unsigned long start_pfn,
3117 unsigned long end_pfn)
3118{
3119 struct ksm_stable_node *stable_node, *next;
3120 struct rb_node *node;
3121 int nid;
3122
3123 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3124 node = rb_first(root_stable_tree + nid);
3125 while (node) {
3126 stable_node = rb_entry(node, struct ksm_stable_node, node);
3127 if (stable_node_chain_remove_range(stable_node,
3128 start_pfn, end_pfn,
3129 root: root_stable_tree +
3130 nid))
3131 node = rb_first(root_stable_tree + nid);
3132 else
3133 node = rb_next(node);
3134 cond_resched();
3135 }
3136 }
3137 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3138 if (stable_node->kpfn >= start_pfn &&
3139 stable_node->kpfn < end_pfn)
3140 remove_node_from_stable_tree(stable_node);
3141 cond_resched();
3142 }
3143}
3144
3145static int ksm_memory_callback(struct notifier_block *self,
3146 unsigned long action, void *arg)
3147{
3148 struct memory_notify *mn = arg;
3149
3150 switch (action) {
3151 case MEM_GOING_OFFLINE:
3152 /*
3153 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3154 * and remove_all_stable_nodes() while memory is going offline:
3155 * it is unsafe for them to touch the stable tree at this time.
3156 * But unmerge_ksm_pages(), rmap lookups and other entry points
3157 * which do not need the ksm_thread_mutex are all safe.
3158 */
3159 mutex_lock(&ksm_thread_mutex);
3160 ksm_run |= KSM_RUN_OFFLINE;
3161 mutex_unlock(lock: &ksm_thread_mutex);
3162 break;
3163
3164 case MEM_OFFLINE:
3165 /*
3166 * Most of the work is done by page migration; but there might
3167 * be a few stable_nodes left over, still pointing to struct
3168 * pages which have been offlined: prune those from the tree,
3169 * otherwise get_ksm_page() might later try to access a
3170 * non-existent struct page.
3171 */
3172 ksm_check_stable_tree(start_pfn: mn->start_pfn,
3173 end_pfn: mn->start_pfn + mn->nr_pages);
3174 fallthrough;
3175 case MEM_CANCEL_OFFLINE:
3176 mutex_lock(&ksm_thread_mutex);
3177 ksm_run &= ~KSM_RUN_OFFLINE;
3178 mutex_unlock(lock: &ksm_thread_mutex);
3179
3180 smp_mb(); /* wake_up_bit advises this */
3181 wake_up_bit(word: &ksm_run, ilog2(KSM_RUN_OFFLINE));
3182 break;
3183 }
3184 return NOTIFY_OK;
3185}
3186#else
3187static void wait_while_offlining(void)
3188{
3189}
3190#endif /* CONFIG_MEMORY_HOTREMOVE */
3191
3192#ifdef CONFIG_PROC_FS
3193long ksm_process_profit(struct mm_struct *mm)
3194{
3195 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3196 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3197}
3198#endif /* CONFIG_PROC_FS */
3199
3200#ifdef CONFIG_SYSFS
3201/*
3202 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3203 */
3204
3205#define KSM_ATTR_RO(_name) \
3206 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3207#define KSM_ATTR(_name) \
3208 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3209
3210static ssize_t sleep_millisecs_show(struct kobject *kobj,
3211 struct kobj_attribute *attr, char *buf)
3212{
3213 return sysfs_emit(buf, fmt: "%u\n", ksm_thread_sleep_millisecs);
3214}
3215
3216static ssize_t sleep_millisecs_store(struct kobject *kobj,
3217 struct kobj_attribute *attr,
3218 const char *buf, size_t count)
3219{
3220 unsigned int msecs;
3221 int err;
3222
3223 err = kstrtouint(s: buf, base: 10, res: &msecs);
3224 if (err)
3225 return -EINVAL;
3226
3227 ksm_thread_sleep_millisecs = msecs;
3228 wake_up_interruptible(&ksm_iter_wait);
3229
3230 return count;
3231}
3232KSM_ATTR(sleep_millisecs);
3233
3234static ssize_t pages_to_scan_show(struct kobject *kobj,
3235 struct kobj_attribute *attr, char *buf)
3236{
3237 return sysfs_emit(buf, fmt: "%u\n", ksm_thread_pages_to_scan);
3238}
3239
3240static ssize_t pages_to_scan_store(struct kobject *kobj,
3241 struct kobj_attribute *attr,
3242 const char *buf, size_t count)
3243{
3244 unsigned int nr_pages;
3245 int err;
3246
3247 err = kstrtouint(s: buf, base: 10, res: &nr_pages);
3248 if (err)
3249 return -EINVAL;
3250
3251 ksm_thread_pages_to_scan = nr_pages;
3252
3253 return count;
3254}
3255KSM_ATTR(pages_to_scan);
3256
3257static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3258 char *buf)
3259{
3260 return sysfs_emit(buf, fmt: "%lu\n", ksm_run);
3261}
3262
3263static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3264 const char *buf, size_t count)
3265{
3266 unsigned int flags;
3267 int err;
3268
3269 err = kstrtouint(s: buf, base: 10, res: &flags);
3270 if (err)
3271 return -EINVAL;
3272 if (flags > KSM_RUN_UNMERGE)
3273 return -EINVAL;
3274
3275 /*
3276 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3277 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3278 * breaking COW to free the pages_shared (but leaves mm_slots
3279 * on the list for when ksmd may be set running again).
3280 */
3281
3282 mutex_lock(&ksm_thread_mutex);
3283 wait_while_offlining();
3284 if (ksm_run != flags) {
3285 ksm_run = flags;
3286 if (flags & KSM_RUN_UNMERGE) {
3287 set_current_oom_origin();
3288 err = unmerge_and_remove_all_rmap_items();
3289 clear_current_oom_origin();
3290 if (err) {
3291 ksm_run = KSM_RUN_STOP;
3292 count = err;
3293 }
3294 }
3295 }
3296 mutex_unlock(lock: &ksm_thread_mutex);
3297
3298 if (flags & KSM_RUN_MERGE)
3299 wake_up_interruptible(&ksm_thread_wait);
3300
3301 return count;
3302}
3303KSM_ATTR(run);
3304
3305#ifdef CONFIG_NUMA
3306static ssize_t merge_across_nodes_show(struct kobject *kobj,
3307 struct kobj_attribute *attr, char *buf)
3308{
3309 return sysfs_emit(buf, fmt: "%u\n", ksm_merge_across_nodes);
3310}
3311
3312static ssize_t merge_across_nodes_store(struct kobject *kobj,
3313 struct kobj_attribute *attr,
3314 const char *buf, size_t count)
3315{
3316 int err;
3317 unsigned long knob;
3318
3319 err = kstrtoul(s: buf, base: 10, res: &knob);
3320 if (err)
3321 return err;
3322 if (knob > 1)
3323 return -EINVAL;
3324
3325 mutex_lock(&ksm_thread_mutex);
3326 wait_while_offlining();
3327 if (ksm_merge_across_nodes != knob) {
3328 if (ksm_pages_shared || remove_all_stable_nodes())
3329 err = -EBUSY;
3330 else if (root_stable_tree == one_stable_tree) {
3331 struct rb_root *buf;
3332 /*
3333 * This is the first time that we switch away from the
3334 * default of merging across nodes: must now allocate
3335 * a buffer to hold as many roots as may be needed.
3336 * Allocate stable and unstable together:
3337 * MAXSMP NODES_SHIFT 10 will use 16kB.
3338 */
3339 buf = kcalloc(n: nr_node_ids + nr_node_ids, size: sizeof(*buf),
3340 GFP_KERNEL);
3341 /* Let us assume that RB_ROOT is NULL is zero */
3342 if (!buf)
3343 err = -ENOMEM;
3344 else {
3345 root_stable_tree = buf;
3346 root_unstable_tree = buf + nr_node_ids;
3347 /* Stable tree is empty but not the unstable */
3348 root_unstable_tree[0] = one_unstable_tree[0];
3349 }
3350 }
3351 if (!err) {
3352 ksm_merge_across_nodes = knob;
3353 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3354 }
3355 }
3356 mutex_unlock(lock: &ksm_thread_mutex);
3357
3358 return err ? err : count;
3359}
3360KSM_ATTR(merge_across_nodes);
3361#endif
3362
3363static ssize_t use_zero_pages_show(struct kobject *kobj,
3364 struct kobj_attribute *attr, char *buf)
3365{
3366 return sysfs_emit(buf, fmt: "%u\n", ksm_use_zero_pages);
3367}
3368static ssize_t use_zero_pages_store(struct kobject *kobj,
3369 struct kobj_attribute *attr,
3370 const char *buf, size_t count)
3371{
3372 int err;
3373 bool value;
3374
3375 err = kstrtobool(s: buf, res: &value);
3376 if (err)
3377 return -EINVAL;
3378
3379 ksm_use_zero_pages = value;
3380
3381 return count;
3382}
3383KSM_ATTR(use_zero_pages);
3384
3385static ssize_t max_page_sharing_show(struct kobject *kobj,
3386 struct kobj_attribute *attr, char *buf)
3387{
3388 return sysfs_emit(buf, fmt: "%u\n", ksm_max_page_sharing);
3389}
3390
3391static ssize_t max_page_sharing_store(struct kobject *kobj,
3392 struct kobj_attribute *attr,
3393 const char *buf, size_t count)
3394{
3395 int err;
3396 int knob;
3397
3398 err = kstrtoint(s: buf, base: 10, res: &knob);
3399 if (err)
3400 return err;
3401 /*
3402 * When a KSM page is created it is shared by 2 mappings. This
3403 * being a signed comparison, it implicitly verifies it's not
3404 * negative.
3405 */
3406 if (knob < 2)
3407 return -EINVAL;
3408
3409 if (READ_ONCE(ksm_max_page_sharing) == knob)
3410 return count;
3411
3412 mutex_lock(&ksm_thread_mutex);
3413 wait_while_offlining();
3414 if (ksm_max_page_sharing != knob) {
3415 if (ksm_pages_shared || remove_all_stable_nodes())
3416 err = -EBUSY;
3417 else
3418 ksm_max_page_sharing = knob;
3419 }
3420 mutex_unlock(lock: &ksm_thread_mutex);
3421
3422 return err ? err : count;
3423}
3424KSM_ATTR(max_page_sharing);
3425
3426static ssize_t pages_scanned_show(struct kobject *kobj,
3427 struct kobj_attribute *attr, char *buf)
3428{
3429 return sysfs_emit(buf, fmt: "%lu\n", ksm_pages_scanned);
3430}
3431KSM_ATTR_RO(pages_scanned);
3432
3433static ssize_t pages_shared_show(struct kobject *kobj,
3434 struct kobj_attribute *attr, char *buf)
3435{
3436 return sysfs_emit(buf, fmt: "%lu\n", ksm_pages_shared);
3437}
3438KSM_ATTR_RO(pages_shared);
3439
3440static ssize_t pages_sharing_show(struct kobject *kobj,
3441 struct kobj_attribute *attr, char *buf)
3442{
3443 return sysfs_emit(buf, fmt: "%lu\n", ksm_pages_sharing);
3444}
3445KSM_ATTR_RO(pages_sharing);
3446
3447static ssize_t pages_unshared_show(struct kobject *kobj,
3448 struct kobj_attribute *attr, char *buf)
3449{
3450 return sysfs_emit(buf, fmt: "%lu\n", ksm_pages_unshared);
3451}
3452KSM_ATTR_RO(pages_unshared);
3453
3454static ssize_t pages_volatile_show(struct kobject *kobj,
3455 struct kobj_attribute *attr, char *buf)
3456{
3457 long ksm_pages_volatile;
3458
3459 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3460 - ksm_pages_sharing - ksm_pages_unshared;
3461 /*
3462 * It was not worth any locking to calculate that statistic,
3463 * but it might therefore sometimes be negative: conceal that.
3464 */
3465 if (ksm_pages_volatile < 0)
3466 ksm_pages_volatile = 0;
3467 return sysfs_emit(buf, fmt: "%ld\n", ksm_pages_volatile);
3468}
3469KSM_ATTR_RO(pages_volatile);
3470
3471static ssize_t pages_skipped_show(struct kobject *kobj,
3472 struct kobj_attribute *attr, char *buf)
3473{
3474 return sysfs_emit(buf, fmt: "%lu\n", ksm_pages_skipped);
3475}
3476KSM_ATTR_RO(pages_skipped);
3477
3478static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3479 struct kobj_attribute *attr, char *buf)
3480{
3481 return sysfs_emit(buf, fmt: "%ld\n", ksm_zero_pages);
3482}
3483KSM_ATTR_RO(ksm_zero_pages);
3484
3485static ssize_t general_profit_show(struct kobject *kobj,
3486 struct kobj_attribute *attr, char *buf)
3487{
3488 long general_profit;
3489
3490 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3491 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3492
3493 return sysfs_emit(buf, fmt: "%ld\n", general_profit);
3494}
3495KSM_ATTR_RO(general_profit);
3496
3497static ssize_t stable_node_dups_show(struct kobject *kobj,
3498 struct kobj_attribute *attr, char *buf)
3499{
3500 return sysfs_emit(buf, fmt: "%lu\n", ksm_stable_node_dups);
3501}
3502KSM_ATTR_RO(stable_node_dups);
3503
3504static ssize_t stable_node_chains_show(struct kobject *kobj,
3505 struct kobj_attribute *attr, char *buf)
3506{
3507 return sysfs_emit(buf, fmt: "%lu\n", ksm_stable_node_chains);
3508}
3509KSM_ATTR_RO(stable_node_chains);
3510
3511static ssize_t
3512stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3513 struct kobj_attribute *attr,
3514 char *buf)
3515{
3516 return sysfs_emit(buf, fmt: "%u\n", ksm_stable_node_chains_prune_millisecs);
3517}
3518
3519static ssize_t
3520stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3521 struct kobj_attribute *attr,
3522 const char *buf, size_t count)
3523{
3524 unsigned int msecs;
3525 int err;
3526
3527 err = kstrtouint(s: buf, base: 10, res: &msecs);
3528 if (err)
3529 return -EINVAL;
3530
3531 ksm_stable_node_chains_prune_millisecs = msecs;
3532
3533 return count;
3534}
3535KSM_ATTR(stable_node_chains_prune_millisecs);
3536
3537static ssize_t full_scans_show(struct kobject *kobj,
3538 struct kobj_attribute *attr, char *buf)
3539{
3540 return sysfs_emit(buf, fmt: "%lu\n", ksm_scan.seqnr);
3541}
3542KSM_ATTR_RO(full_scans);
3543
3544static ssize_t smart_scan_show(struct kobject *kobj,
3545 struct kobj_attribute *attr, char *buf)
3546{
3547 return sysfs_emit(buf, fmt: "%u\n", ksm_smart_scan);
3548}
3549
3550static ssize_t smart_scan_store(struct kobject *kobj,
3551 struct kobj_attribute *attr,
3552 const char *buf, size_t count)
3553{
3554 int err;
3555 bool value;
3556
3557 err = kstrtobool(s: buf, res: &value);
3558 if (err)
3559 return -EINVAL;
3560
3561 ksm_smart_scan = value;
3562 return count;
3563}
3564KSM_ATTR(smart_scan);
3565
3566static struct attribute *ksm_attrs[] = {
3567 &sleep_millisecs_attr.attr,
3568 &pages_to_scan_attr.attr,
3569 &run_attr.attr,
3570 &pages_scanned_attr.attr,
3571 &pages_shared_attr.attr,
3572 &pages_sharing_attr.attr,
3573 &pages_unshared_attr.attr,
3574 &pages_volatile_attr.attr,
3575 &pages_skipped_attr.attr,
3576 &ksm_zero_pages_attr.attr,
3577 &full_scans_attr.attr,
3578#ifdef CONFIG_NUMA
3579 &merge_across_nodes_attr.attr,
3580#endif
3581 &max_page_sharing_attr.attr,
3582 &stable_node_chains_attr.attr,
3583 &stable_node_dups_attr.attr,
3584 &stable_node_chains_prune_millisecs_attr.attr,
3585 &use_zero_pages_attr.attr,
3586 &general_profit_attr.attr,
3587 &smart_scan_attr.attr,
3588 NULL,
3589};
3590
3591static const struct attribute_group ksm_attr_group = {
3592 .attrs = ksm_attrs,
3593 .name = "ksm",
3594};
3595#endif /* CONFIG_SYSFS */
3596
3597static int __init ksm_init(void)
3598{
3599 struct task_struct *ksm_thread;
3600 int err;
3601
3602 /* The correct value depends on page size and endianness */
3603 zero_checksum = calc_checksum(ZERO_PAGE(0));
3604 /* Default to false for backwards compatibility */
3605 ksm_use_zero_pages = false;
3606
3607 err = ksm_slab_init();
3608 if (err)
3609 goto out;
3610
3611 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3612 if (IS_ERR(ptr: ksm_thread)) {
3613 pr_err("ksm: creating kthread failed\n");
3614 err = PTR_ERR(ptr: ksm_thread);
3615 goto out_free;
3616 }
3617
3618#ifdef CONFIG_SYSFS
3619 err = sysfs_create_group(kobj: mm_kobj, grp: &ksm_attr_group);
3620 if (err) {
3621 pr_err("ksm: register sysfs failed\n");
3622 kthread_stop(k: ksm_thread);
3623 goto out_free;
3624 }
3625#else
3626 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3627
3628#endif /* CONFIG_SYSFS */
3629
3630#ifdef CONFIG_MEMORY_HOTREMOVE
3631 /* There is no significance to this priority 100 */
3632 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3633#endif
3634 return 0;
3635
3636out_free:
3637 ksm_slab_free();
3638out:
3639 return err;
3640}
3641subsys_initcall(ksm_init);
3642

source code of linux/mm/ksm.c