1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/compaction.h>
36#include <linux/rmap.h>
37#include <linux/module.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42#include "shuffle.h"
43
44enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48};
49
50static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
52static inline unsigned long memory_block_memmap_size(void)
53{
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55}
56
57static inline unsigned long memory_block_memmap_on_memory_pages(void)
58{
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70}
71
72#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73/*
74 * memory_hotplug.memmap_on_memory parameter
75 */
76static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77{
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(s1: val, s2: "force") || sysfs_streq(s1: val, s2: "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(s: val, res: &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100}
101
102static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103{
104 if (*((int *)kp->arg) == MEMMAP_ON_MEMORY_FORCE)
105 return sprintf(buf: buffer, fmt: "force\n");
106 return param_get_bool(buffer, kp);
107}
108
109static const struct kernel_param_ops memmap_mode_ops = {
110 .set = set_memmap_mode,
111 .get = get_memmap_mode,
112};
113module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
114MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
115 "With value \"force\" it could result in memory wastage due "
116 "to memmap size limitations (Y/N/force)");
117
118static inline bool mhp_memmap_on_memory(void)
119{
120 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
121}
122#else
123static inline bool mhp_memmap_on_memory(void)
124{
125 return false;
126}
127#endif
128
129enum {
130 ONLINE_POLICY_CONTIG_ZONES = 0,
131 ONLINE_POLICY_AUTO_MOVABLE,
132};
133
134static const char * const online_policy_to_str[] = {
135 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
136 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
137};
138
139static int set_online_policy(const char *val, const struct kernel_param *kp)
140{
141 int ret = sysfs_match_string(online_policy_to_str, val);
142
143 if (ret < 0)
144 return ret;
145 *((int *)kp->arg) = ret;
146 return 0;
147}
148
149static int get_online_policy(char *buffer, const struct kernel_param *kp)
150{
151 return sprintf(buf: buffer, fmt: "%s\n", online_policy_to_str[*((int *)kp->arg)]);
152}
153
154/*
155 * memory_hotplug.online_policy: configure online behavior when onlining without
156 * specifying a zone (MMOP_ONLINE)
157 *
158 * "contig-zones": keep zone contiguous
159 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
160 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
161 */
162static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
163static const struct kernel_param_ops online_policy_ops = {
164 .set = set_online_policy,
165 .get = get_online_policy,
166};
167module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
168MODULE_PARM_DESC(online_policy,
169 "Set the online policy (\"contig-zones\", \"auto-movable\") "
170 "Default: \"contig-zones\"");
171
172/*
173 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
174 *
175 * The ratio represent an upper limit and the kernel might decide to not
176 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
177 * doesn't allow for more MOVABLE memory.
178 */
179static unsigned int auto_movable_ratio __read_mostly = 301;
180module_param(auto_movable_ratio, uint, 0644);
181MODULE_PARM_DESC(auto_movable_ratio,
182 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
183 "in percent for \"auto-movable\" online policy. Default: 301");
184
185/*
186 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
187 */
188#ifdef CONFIG_NUMA
189static bool auto_movable_numa_aware __read_mostly = true;
190module_param(auto_movable_numa_aware, bool, 0644);
191MODULE_PARM_DESC(auto_movable_numa_aware,
192 "Consider numa node stats in addition to global stats in "
193 "\"auto-movable\" online policy. Default: true");
194#endif /* CONFIG_NUMA */
195
196/*
197 * online_page_callback contains pointer to current page onlining function.
198 * Initially it is generic_online_page(). If it is required it could be
199 * changed by calling set_online_page_callback() for callback registration
200 * and restore_online_page_callback() for generic callback restore.
201 */
202
203static online_page_callback_t online_page_callback = generic_online_page;
204static DEFINE_MUTEX(online_page_callback_lock);
205
206DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
207
208void get_online_mems(void)
209{
210 percpu_down_read(sem: &mem_hotplug_lock);
211}
212
213void put_online_mems(void)
214{
215 percpu_up_read(sem: &mem_hotplug_lock);
216}
217
218bool movable_node_enabled = false;
219
220#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
221int mhp_default_online_type = MMOP_OFFLINE;
222#else
223int mhp_default_online_type = MMOP_ONLINE;
224#endif
225
226static int __init setup_memhp_default_state(char *str)
227{
228 const int online_type = mhp_online_type_from_str(str);
229
230 if (online_type >= 0)
231 mhp_default_online_type = online_type;
232
233 return 1;
234}
235__setup("memhp_default_state=", setup_memhp_default_state);
236
237void mem_hotplug_begin(void)
238{
239 cpus_read_lock();
240 percpu_down_write(&mem_hotplug_lock);
241}
242
243void mem_hotplug_done(void)
244{
245 percpu_up_write(&mem_hotplug_lock);
246 cpus_read_unlock();
247}
248
249u64 max_mem_size = U64_MAX;
250
251/* add this memory to iomem resource */
252static struct resource *register_memory_resource(u64 start, u64 size,
253 const char *resource_name)
254{
255 struct resource *res;
256 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
257
258 if (strcmp(resource_name, "System RAM"))
259 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
260
261 if (!mhp_range_allowed(start, size, need_mapping: true))
262 return ERR_PTR(error: -E2BIG);
263
264 /*
265 * Make sure value parsed from 'mem=' only restricts memory adding
266 * while booting, so that memory hotplug won't be impacted. Please
267 * refer to document of 'mem=' in kernel-parameters.txt for more
268 * details.
269 */
270 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
271 return ERR_PTR(error: -E2BIG);
272
273 /*
274 * Request ownership of the new memory range. This might be
275 * a child of an existing resource that was present but
276 * not marked as busy.
277 */
278 res = __request_region(&iomem_resource, start, n: size,
279 name: resource_name, flags);
280
281 if (!res) {
282 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
283 start, start + size);
284 return ERR_PTR(error: -EEXIST);
285 }
286 return res;
287}
288
289static void release_memory_resource(struct resource *res)
290{
291 if (!res)
292 return;
293 release_resource(new: res);
294 kfree(objp: res);
295}
296
297static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
298{
299 /*
300 * Disallow all operations smaller than a sub-section and only
301 * allow operations smaller than a section for
302 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
303 * enforces a larger memory_block_size_bytes() granularity for
304 * memory that will be marked online, so this check should only
305 * fire for direct arch_{add,remove}_memory() users outside of
306 * add_memory_resource().
307 */
308 unsigned long min_align;
309
310 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
311 min_align = PAGES_PER_SUBSECTION;
312 else
313 min_align = PAGES_PER_SECTION;
314 if (!IS_ALIGNED(pfn | nr_pages, min_align))
315 return -EINVAL;
316 return 0;
317}
318
319/*
320 * Return page for the valid pfn only if the page is online. All pfn
321 * walkers which rely on the fully initialized page->flags and others
322 * should use this rather than pfn_valid && pfn_to_page
323 */
324struct page *pfn_to_online_page(unsigned long pfn)
325{
326 unsigned long nr = pfn_to_section_nr(pfn);
327 struct dev_pagemap *pgmap;
328 struct mem_section *ms;
329
330 if (nr >= NR_MEM_SECTIONS)
331 return NULL;
332
333 ms = __nr_to_section(nr);
334 if (!online_section(section: ms))
335 return NULL;
336
337 /*
338 * Save some code text when online_section() +
339 * pfn_section_valid() are sufficient.
340 */
341 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
342 return NULL;
343
344 if (!pfn_section_valid(ms, pfn))
345 return NULL;
346
347 if (!online_device_section(section: ms))
348 return pfn_to_page(pfn);
349
350 /*
351 * Slowpath: when ZONE_DEVICE collides with
352 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
353 * the section may be 'offline' but 'valid'. Only
354 * get_dev_pagemap() can determine sub-section online status.
355 */
356 pgmap = get_dev_pagemap(pfn, NULL);
357 put_dev_pagemap(pgmap);
358
359 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
360 if (pgmap)
361 return NULL;
362
363 return pfn_to_page(pfn);
364}
365EXPORT_SYMBOL_GPL(pfn_to_online_page);
366
367int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
368 struct mhp_params *params)
369{
370 const unsigned long end_pfn = pfn + nr_pages;
371 unsigned long cur_nr_pages;
372 int err;
373 struct vmem_altmap *altmap = params->altmap;
374
375 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
376 return -EINVAL;
377
378 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
379
380 if (altmap) {
381 /*
382 * Validate altmap is within bounds of the total request
383 */
384 if (altmap->base_pfn != pfn
385 || vmem_altmap_offset(altmap) > nr_pages) {
386 pr_warn_once("memory add fail, invalid altmap\n");
387 return -EINVAL;
388 }
389 altmap->alloc = 0;
390 }
391
392 if (check_pfn_span(pfn, nr_pages)) {
393 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
394 return -EINVAL;
395 }
396
397 for (; pfn < end_pfn; pfn += cur_nr_pages) {
398 /* Select all remaining pages up to the next section boundary */
399 cur_nr_pages = min(end_pfn - pfn,
400 SECTION_ALIGN_UP(pfn + 1) - pfn);
401 err = sparse_add_section(nid, pfn, nr_pages: cur_nr_pages, altmap,
402 pgmap: params->pgmap);
403 if (err)
404 break;
405 cond_resched();
406 }
407 vmemmap_populate_print_last();
408 return err;
409}
410
411/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
412static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
413 unsigned long start_pfn,
414 unsigned long end_pfn)
415{
416 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
417 if (unlikely(!pfn_to_online_page(start_pfn)))
418 continue;
419
420 if (unlikely(pfn_to_nid(start_pfn) != nid))
421 continue;
422
423 if (zone != page_zone(pfn_to_page(start_pfn)))
424 continue;
425
426 return start_pfn;
427 }
428
429 return 0;
430}
431
432/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
433static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
434 unsigned long start_pfn,
435 unsigned long end_pfn)
436{
437 unsigned long pfn;
438
439 /* pfn is the end pfn of a memory section. */
440 pfn = end_pfn - 1;
441 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
442 if (unlikely(!pfn_to_online_page(pfn)))
443 continue;
444
445 if (unlikely(pfn_to_nid(pfn) != nid))
446 continue;
447
448 if (zone != page_zone(pfn_to_page(pfn)))
449 continue;
450
451 return pfn;
452 }
453
454 return 0;
455}
456
457static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
458 unsigned long end_pfn)
459{
460 unsigned long pfn;
461 int nid = zone_to_nid(zone);
462
463 if (zone->zone_start_pfn == start_pfn) {
464 /*
465 * If the section is smallest section in the zone, it need
466 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
467 * In this case, we find second smallest valid mem_section
468 * for shrinking zone.
469 */
470 pfn = find_smallest_section_pfn(nid, zone, start_pfn: end_pfn,
471 end_pfn: zone_end_pfn(zone));
472 if (pfn) {
473 zone->spanned_pages = zone_end_pfn(zone) - pfn;
474 zone->zone_start_pfn = pfn;
475 } else {
476 zone->zone_start_pfn = 0;
477 zone->spanned_pages = 0;
478 }
479 } else if (zone_end_pfn(zone) == end_pfn) {
480 /*
481 * If the section is biggest section in the zone, it need
482 * shrink zone->spanned_pages.
483 * In this case, we find second biggest valid mem_section for
484 * shrinking zone.
485 */
486 pfn = find_biggest_section_pfn(nid, zone, start_pfn: zone->zone_start_pfn,
487 end_pfn: start_pfn);
488 if (pfn)
489 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
490 else {
491 zone->zone_start_pfn = 0;
492 zone->spanned_pages = 0;
493 }
494 }
495}
496
497static void update_pgdat_span(struct pglist_data *pgdat)
498{
499 unsigned long node_start_pfn = 0, node_end_pfn = 0;
500 struct zone *zone;
501
502 for (zone = pgdat->node_zones;
503 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
504 unsigned long end_pfn = zone_end_pfn(zone);
505
506 /* No need to lock the zones, they can't change. */
507 if (!zone->spanned_pages)
508 continue;
509 if (!node_end_pfn) {
510 node_start_pfn = zone->zone_start_pfn;
511 node_end_pfn = end_pfn;
512 continue;
513 }
514
515 if (end_pfn > node_end_pfn)
516 node_end_pfn = end_pfn;
517 if (zone->zone_start_pfn < node_start_pfn)
518 node_start_pfn = zone->zone_start_pfn;
519 }
520
521 pgdat->node_start_pfn = node_start_pfn;
522 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
523}
524
525void __ref remove_pfn_range_from_zone(struct zone *zone,
526 unsigned long start_pfn,
527 unsigned long nr_pages)
528{
529 const unsigned long end_pfn = start_pfn + nr_pages;
530 struct pglist_data *pgdat = zone->zone_pgdat;
531 unsigned long pfn, cur_nr_pages;
532
533 /* Poison struct pages because they are now uninitialized again. */
534 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
535 cond_resched();
536
537 /* Select all remaining pages up to the next section boundary */
538 cur_nr_pages =
539 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
540 page_init_poison(pfn_to_page(pfn),
541 size: sizeof(struct page) * cur_nr_pages);
542 }
543
544 /*
545 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
546 * we will not try to shrink the zones - which is okay as
547 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
548 */
549 if (zone_is_zone_device(zone))
550 return;
551
552 clear_zone_contiguous(zone);
553
554 shrink_zone_span(zone, start_pfn, end_pfn: start_pfn + nr_pages);
555 update_pgdat_span(pgdat);
556
557 set_zone_contiguous(zone);
558}
559
560/**
561 * __remove_pages() - remove sections of pages
562 * @pfn: starting pageframe (must be aligned to start of a section)
563 * @nr_pages: number of pages to remove (must be multiple of section size)
564 * @altmap: alternative device page map or %NULL if default memmap is used
565 *
566 * Generic helper function to remove section mappings and sysfs entries
567 * for the section of the memory we are removing. Caller needs to make
568 * sure that pages are marked reserved and zones are adjust properly by
569 * calling offline_pages().
570 */
571void __remove_pages(unsigned long pfn, unsigned long nr_pages,
572 struct vmem_altmap *altmap)
573{
574 const unsigned long end_pfn = pfn + nr_pages;
575 unsigned long cur_nr_pages;
576
577 if (check_pfn_span(pfn, nr_pages)) {
578 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
579 return;
580 }
581
582 for (; pfn < end_pfn; pfn += cur_nr_pages) {
583 cond_resched();
584 /* Select all remaining pages up to the next section boundary */
585 cur_nr_pages = min(end_pfn - pfn,
586 SECTION_ALIGN_UP(pfn + 1) - pfn);
587 sparse_remove_section(pfn, nr_pages: cur_nr_pages, altmap);
588 }
589}
590
591int set_online_page_callback(online_page_callback_t callback)
592{
593 int rc = -EINVAL;
594
595 get_online_mems();
596 mutex_lock(&online_page_callback_lock);
597
598 if (online_page_callback == generic_online_page) {
599 online_page_callback = callback;
600 rc = 0;
601 }
602
603 mutex_unlock(lock: &online_page_callback_lock);
604 put_online_mems();
605
606 return rc;
607}
608EXPORT_SYMBOL_GPL(set_online_page_callback);
609
610int restore_online_page_callback(online_page_callback_t callback)
611{
612 int rc = -EINVAL;
613
614 get_online_mems();
615 mutex_lock(&online_page_callback_lock);
616
617 if (online_page_callback == callback) {
618 online_page_callback = generic_online_page;
619 rc = 0;
620 }
621
622 mutex_unlock(lock: &online_page_callback_lock);
623 put_online_mems();
624
625 return rc;
626}
627EXPORT_SYMBOL_GPL(restore_online_page_callback);
628
629void generic_online_page(struct page *page, unsigned int order)
630{
631 /*
632 * Freeing the page with debug_pagealloc enabled will try to unmap it,
633 * so we should map it first. This is better than introducing a special
634 * case in page freeing fast path.
635 */
636 debug_pagealloc_map_pages(page, numpages: 1 << order);
637 __free_pages_core(page, order);
638 totalram_pages_add(count: 1UL << order);
639}
640EXPORT_SYMBOL_GPL(generic_online_page);
641
642static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
643{
644 const unsigned long end_pfn = start_pfn + nr_pages;
645 unsigned long pfn;
646
647 /*
648 * Online the pages in MAX_ORDER aligned chunks. The callback might
649 * decide to not expose all pages to the buddy (e.g., expose them
650 * later). We account all pages as being online and belonging to this
651 * zone ("present").
652 * When using memmap_on_memory, the range might not be aligned to
653 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
654 * this and the first chunk to online will be pageblock_nr_pages.
655 */
656 for (pfn = start_pfn; pfn < end_pfn;) {
657 int order;
658
659 /*
660 * Free to online pages in the largest chunks alignment allows.
661 *
662 * __ffs() behaviour is undefined for 0. start == 0 is
663 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case.
664 */
665 if (pfn)
666 order = min_t(int, MAX_ORDER, __ffs(pfn));
667 else
668 order = MAX_ORDER;
669
670 (*online_page_callback)(pfn_to_page(pfn), order);
671 pfn += (1UL << order);
672 }
673
674 /* mark all involved sections as online */
675 online_mem_sections(start_pfn, end_pfn);
676}
677
678/* check which state of node_states will be changed when online memory */
679static void node_states_check_changes_online(unsigned long nr_pages,
680 struct zone *zone, struct memory_notify *arg)
681{
682 int nid = zone_to_nid(zone);
683
684 arg->status_change_nid = NUMA_NO_NODE;
685 arg->status_change_nid_normal = NUMA_NO_NODE;
686
687 if (!node_state(node: nid, state: N_MEMORY))
688 arg->status_change_nid = nid;
689 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(node: nid, state: N_NORMAL_MEMORY))
690 arg->status_change_nid_normal = nid;
691}
692
693static void node_states_set_node(int node, struct memory_notify *arg)
694{
695 if (arg->status_change_nid_normal >= 0)
696 node_set_state(node, state: N_NORMAL_MEMORY);
697
698 if (arg->status_change_nid >= 0)
699 node_set_state(node, state: N_MEMORY);
700}
701
702static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
703 unsigned long nr_pages)
704{
705 unsigned long old_end_pfn = zone_end_pfn(zone);
706
707 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
708 zone->zone_start_pfn = start_pfn;
709
710 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
711}
712
713static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
714 unsigned long nr_pages)
715{
716 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
717
718 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
719 pgdat->node_start_pfn = start_pfn;
720
721 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
722
723}
724
725#ifdef CONFIG_ZONE_DEVICE
726static void section_taint_zone_device(unsigned long pfn)
727{
728 struct mem_section *ms = __pfn_to_section(pfn);
729
730 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
731}
732#else
733static inline void section_taint_zone_device(unsigned long pfn)
734{
735}
736#endif
737
738/*
739 * Associate the pfn range with the given zone, initializing the memmaps
740 * and resizing the pgdat/zone data to span the added pages. After this
741 * call, all affected pages are PG_reserved.
742 *
743 * All aligned pageblocks are initialized to the specified migratetype
744 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
745 * zone stats (e.g., nr_isolate_pageblock) are touched.
746 */
747void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
748 unsigned long nr_pages,
749 struct vmem_altmap *altmap, int migratetype)
750{
751 struct pglist_data *pgdat = zone->zone_pgdat;
752 int nid = pgdat->node_id;
753
754 clear_zone_contiguous(zone);
755
756 if (zone_is_empty(zone))
757 init_currently_empty_zone(zone, start_pfn, size: nr_pages);
758 resize_zone_range(zone, start_pfn, nr_pages);
759 resize_pgdat_range(pgdat, start_pfn, nr_pages);
760
761 /*
762 * Subsection population requires care in pfn_to_online_page().
763 * Set the taint to enable the slow path detection of
764 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
765 * section.
766 */
767 if (zone_is_zone_device(zone)) {
768 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
769 section_taint_zone_device(pfn: start_pfn);
770 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
771 section_taint_zone_device(pfn: start_pfn + nr_pages);
772 }
773
774 /*
775 * TODO now we have a visible range of pages which are not associated
776 * with their zone properly. Not nice but set_pfnblock_flags_mask
777 * expects the zone spans the pfn range. All the pages in the range
778 * are reserved so nobody should be touching them so we should be safe
779 */
780 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
781 MEMINIT_HOTPLUG, altmap, migratetype);
782
783 set_zone_contiguous(zone);
784}
785
786struct auto_movable_stats {
787 unsigned long kernel_early_pages;
788 unsigned long movable_pages;
789};
790
791static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
792 struct zone *zone)
793{
794 if (zone_idx(zone) == ZONE_MOVABLE) {
795 stats->movable_pages += zone->present_pages;
796 } else {
797 stats->kernel_early_pages += zone->present_early_pages;
798#ifdef CONFIG_CMA
799 /*
800 * CMA pages (never on hotplugged memory) behave like
801 * ZONE_MOVABLE.
802 */
803 stats->movable_pages += zone->cma_pages;
804 stats->kernel_early_pages -= zone->cma_pages;
805#endif /* CONFIG_CMA */
806 }
807}
808struct auto_movable_group_stats {
809 unsigned long movable_pages;
810 unsigned long req_kernel_early_pages;
811};
812
813static int auto_movable_stats_account_group(struct memory_group *group,
814 void *arg)
815{
816 const int ratio = READ_ONCE(auto_movable_ratio);
817 struct auto_movable_group_stats *stats = arg;
818 long pages;
819
820 /*
821 * We don't support modifying the config while the auto-movable online
822 * policy is already enabled. Just avoid the division by zero below.
823 */
824 if (!ratio)
825 return 0;
826
827 /*
828 * Calculate how many early kernel pages this group requires to
829 * satisfy the configured zone ratio.
830 */
831 pages = group->present_movable_pages * 100 / ratio;
832 pages -= group->present_kernel_pages;
833
834 if (pages > 0)
835 stats->req_kernel_early_pages += pages;
836 stats->movable_pages += group->present_movable_pages;
837 return 0;
838}
839
840static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
841 unsigned long nr_pages)
842{
843 unsigned long kernel_early_pages, movable_pages;
844 struct auto_movable_group_stats group_stats = {};
845 struct auto_movable_stats stats = {};
846 pg_data_t *pgdat = NODE_DATA(nid);
847 struct zone *zone;
848 int i;
849
850 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
851 if (nid == NUMA_NO_NODE) {
852 /* TODO: cache values */
853 for_each_populated_zone(zone)
854 auto_movable_stats_account_zone(stats: &stats, zone);
855 } else {
856 for (i = 0; i < MAX_NR_ZONES; i++) {
857 zone = pgdat->node_zones + i;
858 if (populated_zone(zone))
859 auto_movable_stats_account_zone(stats: &stats, zone);
860 }
861 }
862
863 kernel_early_pages = stats.kernel_early_pages;
864 movable_pages = stats.movable_pages;
865
866 /*
867 * Kernel memory inside dynamic memory group allows for more MOVABLE
868 * memory within the same group. Remove the effect of all but the
869 * current group from the stats.
870 */
871 walk_dynamic_memory_groups(nid, func: auto_movable_stats_account_group,
872 excluded: group, arg: &group_stats);
873 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
874 return false;
875 kernel_early_pages -= group_stats.req_kernel_early_pages;
876 movable_pages -= group_stats.movable_pages;
877
878 if (group && group->is_dynamic)
879 kernel_early_pages += group->present_kernel_pages;
880
881 /*
882 * Test if we could online the given number of pages to ZONE_MOVABLE
883 * and still stay in the configured ratio.
884 */
885 movable_pages += nr_pages;
886 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
887}
888
889/*
890 * Returns a default kernel memory zone for the given pfn range.
891 * If no kernel zone covers this pfn range it will automatically go
892 * to the ZONE_NORMAL.
893 */
894static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
895 unsigned long nr_pages)
896{
897 struct pglist_data *pgdat = NODE_DATA(nid);
898 int zid;
899
900 for (zid = 0; zid < ZONE_NORMAL; zid++) {
901 struct zone *zone = &pgdat->node_zones[zid];
902
903 if (zone_intersects(zone, start_pfn, nr_pages))
904 return zone;
905 }
906
907 return &pgdat->node_zones[ZONE_NORMAL];
908}
909
910/*
911 * Determine to which zone to online memory dynamically based on user
912 * configuration and system stats. We care about the following ratio:
913 *
914 * MOVABLE : KERNEL
915 *
916 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
917 * one of the kernel zones. CMA pages inside one of the kernel zones really
918 * behaves like ZONE_MOVABLE, so we treat them accordingly.
919 *
920 * We don't allow for hotplugged memory in a KERNEL zone to increase the
921 * amount of MOVABLE memory we can have, so we end up with:
922 *
923 * MOVABLE : KERNEL_EARLY
924 *
925 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
926 * boot. We base our calculation on KERNEL_EARLY internally, because:
927 *
928 * a) Hotplugged memory in one of the kernel zones can sometimes still get
929 * hotunplugged, especially when hot(un)plugging individual memory blocks.
930 * There is no coordination across memory devices, therefore "automatic"
931 * hotunplugging, as implemented in hypervisors, could result in zone
932 * imbalances.
933 * b) Early/boot memory in one of the kernel zones can usually not get
934 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
935 * with unmovable allocations). While there are corner cases where it might
936 * still work, it is barely relevant in practice.
937 *
938 * Exceptions are dynamic memory groups, which allow for more MOVABLE
939 * memory within the same memory group -- because in that case, there is
940 * coordination within the single memory device managed by a single driver.
941 *
942 * We rely on "present pages" instead of "managed pages", as the latter is
943 * highly unreliable and dynamic in virtualized environments, and does not
944 * consider boot time allocations. For example, memory ballooning adjusts the
945 * managed pages when inflating/deflating the balloon, and balloon compaction
946 * can even migrate inflated pages between zones.
947 *
948 * Using "present pages" is better but some things to keep in mind are:
949 *
950 * a) Some memblock allocations, such as for the crashkernel area, are
951 * effectively unused by the kernel, yet they account to "present pages".
952 * Fortunately, these allocations are comparatively small in relevant setups
953 * (e.g., fraction of system memory).
954 * b) Some hotplugged memory blocks in virtualized environments, esecially
955 * hotplugged by virtio-mem, look like they are completely present, however,
956 * only parts of the memory block are actually currently usable.
957 * "present pages" is an upper limit that can get reached at runtime. As
958 * we base our calculations on KERNEL_EARLY, this is not an issue.
959 */
960static struct zone *auto_movable_zone_for_pfn(int nid,
961 struct memory_group *group,
962 unsigned long pfn,
963 unsigned long nr_pages)
964{
965 unsigned long online_pages = 0, max_pages, end_pfn;
966 struct page *page;
967
968 if (!auto_movable_ratio)
969 goto kernel_zone;
970
971 if (group && !group->is_dynamic) {
972 max_pages = group->s.max_pages;
973 online_pages = group->present_movable_pages;
974
975 /* If anything is !MOVABLE online the rest !MOVABLE. */
976 if (group->present_kernel_pages)
977 goto kernel_zone;
978 } else if (!group || group->d.unit_pages == nr_pages) {
979 max_pages = nr_pages;
980 } else {
981 max_pages = group->d.unit_pages;
982 /*
983 * Take a look at all online sections in the current unit.
984 * We can safely assume that all pages within a section belong
985 * to the same zone, because dynamic memory groups only deal
986 * with hotplugged memory.
987 */
988 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
989 end_pfn = pfn + group->d.unit_pages;
990 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
991 page = pfn_to_online_page(pfn);
992 if (!page)
993 continue;
994 /* If anything is !MOVABLE online the rest !MOVABLE. */
995 if (!is_zone_movable_page(page))
996 goto kernel_zone;
997 online_pages += PAGES_PER_SECTION;
998 }
999 }
1000
1001 /*
1002 * Online MOVABLE if we could *currently* online all remaining parts
1003 * MOVABLE. We expect to (add+) online them immediately next, so if
1004 * nobody interferes, all will be MOVABLE if possible.
1005 */
1006 nr_pages = max_pages - online_pages;
1007 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1008 goto kernel_zone;
1009
1010#ifdef CONFIG_NUMA
1011 if (auto_movable_numa_aware &&
1012 !auto_movable_can_online_movable(nid, group, nr_pages))
1013 goto kernel_zone;
1014#endif /* CONFIG_NUMA */
1015
1016 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1017kernel_zone:
1018 return default_kernel_zone_for_pfn(nid, start_pfn: pfn, nr_pages);
1019}
1020
1021static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1022 unsigned long nr_pages)
1023{
1024 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1025 nr_pages);
1026 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1027 bool in_kernel = zone_intersects(zone: kernel_zone, start_pfn, nr_pages);
1028 bool in_movable = zone_intersects(zone: movable_zone, start_pfn, nr_pages);
1029
1030 /*
1031 * We inherit the existing zone in a simple case where zones do not
1032 * overlap in the given range
1033 */
1034 if (in_kernel ^ in_movable)
1035 return (in_kernel) ? kernel_zone : movable_zone;
1036
1037 /*
1038 * If the range doesn't belong to any zone or two zones overlap in the
1039 * given range then we use movable zone only if movable_node is
1040 * enabled because we always online to a kernel zone by default.
1041 */
1042 return movable_node_enabled ? movable_zone : kernel_zone;
1043}
1044
1045struct zone *zone_for_pfn_range(int online_type, int nid,
1046 struct memory_group *group, unsigned long start_pfn,
1047 unsigned long nr_pages)
1048{
1049 if (online_type == MMOP_ONLINE_KERNEL)
1050 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1051
1052 if (online_type == MMOP_ONLINE_MOVABLE)
1053 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1054
1055 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1056 return auto_movable_zone_for_pfn(nid, group, pfn: start_pfn, nr_pages);
1057
1058 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1059}
1060
1061/*
1062 * This function should only be called by memory_block_{online,offline},
1063 * and {online,offline}_pages.
1064 */
1065void adjust_present_page_count(struct page *page, struct memory_group *group,
1066 long nr_pages)
1067{
1068 struct zone *zone = page_zone(page);
1069 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1070
1071 /*
1072 * We only support onlining/offlining/adding/removing of complete
1073 * memory blocks; therefore, either all is either early or hotplugged.
1074 */
1075 if (early_section(section: __pfn_to_section(page_to_pfn(page))))
1076 zone->present_early_pages += nr_pages;
1077 zone->present_pages += nr_pages;
1078 zone->zone_pgdat->node_present_pages += nr_pages;
1079
1080 if (group && movable)
1081 group->present_movable_pages += nr_pages;
1082 else if (group && !movable)
1083 group->present_kernel_pages += nr_pages;
1084}
1085
1086int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1087 struct zone *zone)
1088{
1089 unsigned long end_pfn = pfn + nr_pages;
1090 int ret, i;
1091
1092 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1093 if (ret)
1094 return ret;
1095
1096 move_pfn_range_to_zone(zone, start_pfn: pfn, nr_pages, NULL, migratetype: MIGRATE_UNMOVABLE);
1097
1098 for (i = 0; i < nr_pages; i++)
1099 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1100
1101 /*
1102 * It might be that the vmemmap_pages fully span sections. If that is
1103 * the case, mark those sections online here as otherwise they will be
1104 * left offline.
1105 */
1106 if (nr_pages >= PAGES_PER_SECTION)
1107 online_mem_sections(start_pfn: pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1108
1109 return ret;
1110}
1111
1112void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1113{
1114 unsigned long end_pfn = pfn + nr_pages;
1115
1116 /*
1117 * It might be that the vmemmap_pages fully span sections. If that is
1118 * the case, mark those sections offline here as otherwise they will be
1119 * left online.
1120 */
1121 if (nr_pages >= PAGES_PER_SECTION)
1122 offline_mem_sections(start_pfn: pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1123
1124 /*
1125 * The pages associated with this vmemmap have been offlined, so
1126 * we can reset its state here.
1127 */
1128 remove_pfn_range_from_zone(zone: page_zone(pfn_to_page(pfn)), start_pfn: pfn, nr_pages);
1129 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1130}
1131
1132int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1133 struct zone *zone, struct memory_group *group)
1134{
1135 unsigned long flags;
1136 int need_zonelists_rebuild = 0;
1137 const int nid = zone_to_nid(zone);
1138 int ret;
1139 struct memory_notify arg;
1140
1141 /*
1142 * {on,off}lining is constrained to full memory sections (or more
1143 * precisely to memory blocks from the user space POV).
1144 * memmap_on_memory is an exception because it reserves initial part
1145 * of the physical memory space for vmemmaps. That space is pageblock
1146 * aligned.
1147 */
1148 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1149 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1150 return -EINVAL;
1151
1152 mem_hotplug_begin();
1153
1154 /* associate pfn range with the zone */
1155 move_pfn_range_to_zone(zone, start_pfn: pfn, nr_pages, NULL, migratetype: MIGRATE_ISOLATE);
1156
1157 arg.start_pfn = pfn;
1158 arg.nr_pages = nr_pages;
1159 node_states_check_changes_online(nr_pages, zone, arg: &arg);
1160
1161 ret = memory_notify(MEM_GOING_ONLINE, v: &arg);
1162 ret = notifier_to_errno(ret);
1163 if (ret)
1164 goto failed_addition;
1165
1166 /*
1167 * Fixup the number of isolated pageblocks before marking the sections
1168 * onlining, such that undo_isolate_page_range() works correctly.
1169 */
1170 spin_lock_irqsave(&zone->lock, flags);
1171 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1172 spin_unlock_irqrestore(lock: &zone->lock, flags);
1173
1174 /*
1175 * If this zone is not populated, then it is not in zonelist.
1176 * This means the page allocator ignores this zone.
1177 * So, zonelist must be updated after online.
1178 */
1179 if (!populated_zone(zone)) {
1180 need_zonelists_rebuild = 1;
1181 setup_zone_pageset(zone);
1182 }
1183
1184 online_pages_range(start_pfn: pfn, nr_pages);
1185 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1186
1187 node_states_set_node(node: nid, arg: &arg);
1188 if (need_zonelists_rebuild)
1189 build_all_zonelists(NULL);
1190
1191 /* Basic onlining is complete, allow allocation of onlined pages. */
1192 undo_isolate_page_range(start_pfn: pfn, end_pfn: pfn + nr_pages, migratetype: MIGRATE_MOVABLE);
1193
1194 /*
1195 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1196 * the tail of the freelist when undoing isolation). Shuffle the whole
1197 * zone to make sure the just onlined pages are properly distributed
1198 * across the whole freelist - to create an initial shuffle.
1199 */
1200 shuffle_zone(z: zone);
1201
1202 /* reinitialise watermarks and update pcp limits */
1203 init_per_zone_wmark_min();
1204
1205 kswapd_run(nid);
1206 kcompactd_run(nid);
1207
1208 writeback_set_ratelimit();
1209
1210 memory_notify(MEM_ONLINE, v: &arg);
1211 mem_hotplug_done();
1212 return 0;
1213
1214failed_addition:
1215 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1216 (unsigned long long) pfn << PAGE_SHIFT,
1217 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1218 memory_notify(MEM_CANCEL_ONLINE, v: &arg);
1219 remove_pfn_range_from_zone(zone, start_pfn: pfn, nr_pages);
1220 mem_hotplug_done();
1221 return ret;
1222}
1223
1224/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1225static pg_data_t __ref *hotadd_init_pgdat(int nid)
1226{
1227 struct pglist_data *pgdat;
1228
1229 /*
1230 * NODE_DATA is preallocated (free_area_init) but its internal
1231 * state is not allocated completely. Add missing pieces.
1232 * Completely offline nodes stay around and they just need
1233 * reintialization.
1234 */
1235 pgdat = NODE_DATA(nid);
1236
1237 /* init node's zones as empty zones, we don't have any present pages.*/
1238 free_area_init_core_hotplug(pgdat);
1239
1240 /*
1241 * The node we allocated has no zone fallback lists. For avoiding
1242 * to access not-initialized zonelist, build here.
1243 */
1244 build_all_zonelists(pgdat);
1245
1246 return pgdat;
1247}
1248
1249/*
1250 * __try_online_node - online a node if offlined
1251 * @nid: the node ID
1252 * @set_node_online: Whether we want to online the node
1253 * called by cpu_up() to online a node without onlined memory.
1254 *
1255 * Returns:
1256 * 1 -> a new node has been allocated
1257 * 0 -> the node is already online
1258 * -ENOMEM -> the node could not be allocated
1259 */
1260static int __try_online_node(int nid, bool set_node_online)
1261{
1262 pg_data_t *pgdat;
1263 int ret = 1;
1264
1265 if (node_online(nid))
1266 return 0;
1267
1268 pgdat = hotadd_init_pgdat(nid);
1269 if (!pgdat) {
1270 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1271 ret = -ENOMEM;
1272 goto out;
1273 }
1274
1275 if (set_node_online) {
1276 node_set_online(nid);
1277 ret = register_one_node(nid);
1278 BUG_ON(ret);
1279 }
1280out:
1281 return ret;
1282}
1283
1284/*
1285 * Users of this function always want to online/register the node
1286 */
1287int try_online_node(int nid)
1288{
1289 int ret;
1290
1291 mem_hotplug_begin();
1292 ret = __try_online_node(nid, set_node_online: true);
1293 mem_hotplug_done();
1294 return ret;
1295}
1296
1297static int check_hotplug_memory_range(u64 start, u64 size)
1298{
1299 /* memory range must be block size aligned */
1300 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1301 !IS_ALIGNED(size, memory_block_size_bytes())) {
1302 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1303 memory_block_size_bytes(), start, size);
1304 return -EINVAL;
1305 }
1306
1307 return 0;
1308}
1309
1310static int online_memory_block(struct memory_block *mem, void *arg)
1311{
1312 mem->online_type = mhp_default_online_type;
1313 return device_online(dev: &mem->dev);
1314}
1315
1316#ifndef arch_supports_memmap_on_memory
1317static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1318{
1319 /*
1320 * As default, we want the vmemmap to span a complete PMD such that we
1321 * can map the vmemmap using a single PMD if supported by the
1322 * architecture.
1323 */
1324 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1325}
1326#endif
1327
1328static bool mhp_supports_memmap_on_memory(unsigned long size)
1329{
1330 unsigned long vmemmap_size = memory_block_memmap_size();
1331 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1332
1333 /*
1334 * Besides having arch support and the feature enabled at runtime, we
1335 * need a few more assumptions to hold true:
1336 *
1337 * a) We span a single memory block: memory onlining/offlinin;g happens
1338 * in memory block granularity. We don't want the vmemmap of online
1339 * memory blocks to reside on offline memory blocks. In the future,
1340 * we might want to support variable-sized memory blocks to make the
1341 * feature more versatile.
1342 *
1343 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1344 * to populate memory from the altmap for unrelated parts (i.e.,
1345 * other memory blocks)
1346 *
1347 * c) The vmemmap pages (and thereby the pages that will be exposed to
1348 * the buddy) have to cover full pageblocks: memory onlining/offlining
1349 * code requires applicable ranges to be page-aligned, for example, to
1350 * set the migratetypes properly.
1351 *
1352 * TODO: Although we have a check here to make sure that vmemmap pages
1353 * fully populate a PMD, it is not the right place to check for
1354 * this. A much better solution involves improving vmemmap code
1355 * to fallback to base pages when trying to populate vmemmap using
1356 * altmap as an alternative source of memory, and we do not exactly
1357 * populate a single PMD.
1358 */
1359 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1360 return false;
1361
1362 /*
1363 * Make sure the vmemmap allocation is fully contained
1364 * so that we always allocate vmemmap memory from altmap area.
1365 */
1366 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1367 return false;
1368
1369 /*
1370 * start pfn should be pageblock_nr_pages aligned for correctly
1371 * setting migrate types
1372 */
1373 if (!pageblock_aligned(memmap_pages))
1374 return false;
1375
1376 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1377 /* No effective hotplugged memory doesn't make sense. */
1378 return false;
1379
1380 return arch_supports_memmap_on_memory(vmemmap_size);
1381}
1382
1383/*
1384 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1385 * and online/offline operations (triggered e.g. by sysfs).
1386 *
1387 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1388 */
1389int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1390{
1391 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1392 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1393 struct vmem_altmap mhp_altmap = {
1394 .base_pfn = PHYS_PFN(res->start),
1395 .end_pfn = PHYS_PFN(res->end),
1396 };
1397 struct memory_group *group = NULL;
1398 u64 start, size;
1399 bool new_node = false;
1400 int ret;
1401
1402 start = res->start;
1403 size = resource_size(res);
1404
1405 ret = check_hotplug_memory_range(start, size);
1406 if (ret)
1407 return ret;
1408
1409 if (mhp_flags & MHP_NID_IS_MGID) {
1410 group = memory_group_find_by_id(mgid: nid);
1411 if (!group)
1412 return -EINVAL;
1413 nid = group->nid;
1414 }
1415
1416 if (!node_possible(nid)) {
1417 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1418 return -EINVAL;
1419 }
1420
1421 mem_hotplug_begin();
1422
1423 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1424 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1425 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1426 ret = memblock_add_node(base: start, size, nid, flags: memblock_flags);
1427 if (ret)
1428 goto error_mem_hotplug_end;
1429 }
1430
1431 ret = __try_online_node(nid, set_node_online: false);
1432 if (ret < 0)
1433 goto error;
1434 new_node = ret;
1435
1436 /*
1437 * Self hosted memmap array
1438 */
1439 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1440 if (mhp_supports_memmap_on_memory(size)) {
1441 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1442 params.altmap = kmalloc(size: sizeof(struct vmem_altmap), GFP_KERNEL);
1443 if (!params.altmap) {
1444 ret = -ENOMEM;
1445 goto error;
1446 }
1447
1448 memcpy(params.altmap, &mhp_altmap, sizeof(mhp_altmap));
1449 }
1450 /* fallback to not using altmap */
1451 }
1452
1453 /* call arch's memory hotadd */
1454 ret = arch_add_memory(nid, start, size, params: &params);
1455 if (ret < 0)
1456 goto error_free;
1457
1458 /* create memory block devices after memory was added */
1459 ret = create_memory_block_devices(start, size, altmap: params.altmap, group);
1460 if (ret) {
1461 arch_remove_memory(start, size, NULL);
1462 goto error_free;
1463 }
1464
1465 if (new_node) {
1466 /* If sysfs file of new node can't be created, cpu on the node
1467 * can't be hot-added. There is no rollback way now.
1468 * So, check by BUG_ON() to catch it reluctantly..
1469 * We online node here. We can't roll back from here.
1470 */
1471 node_set_online(nid);
1472 ret = __register_one_node(nid);
1473 BUG_ON(ret);
1474 }
1475
1476 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1477 PFN_UP(start + size - 1),
1478 context: MEMINIT_HOTPLUG);
1479
1480 /* create new memmap entry */
1481 if (!strcmp(res->name, "System RAM"))
1482 firmware_map_add_hotplug(start, end: start + size, type: "System RAM");
1483
1484 /* device_online() will take the lock when calling online_pages() */
1485 mem_hotplug_done();
1486
1487 /*
1488 * In case we're allowed to merge the resource, flag it and trigger
1489 * merging now that adding succeeded.
1490 */
1491 if (mhp_flags & MHP_MERGE_RESOURCE)
1492 merge_system_ram_resource(res);
1493
1494 /* online pages if requested */
1495 if (mhp_default_online_type != MMOP_OFFLINE)
1496 walk_memory_blocks(start, size, NULL, func: online_memory_block);
1497
1498 return ret;
1499error_free:
1500 kfree(objp: params.altmap);
1501error:
1502 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1503 memblock_remove(base: start, size);
1504error_mem_hotplug_end:
1505 mem_hotplug_done();
1506 return ret;
1507}
1508
1509/* requires device_hotplug_lock, see add_memory_resource() */
1510int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1511{
1512 struct resource *res;
1513 int ret;
1514
1515 res = register_memory_resource(start, size, resource_name: "System RAM");
1516 if (IS_ERR(ptr: res))
1517 return PTR_ERR(ptr: res);
1518
1519 ret = add_memory_resource(nid, res, mhp_flags);
1520 if (ret < 0)
1521 release_memory_resource(res);
1522 return ret;
1523}
1524
1525int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1526{
1527 int rc;
1528
1529 lock_device_hotplug();
1530 rc = __add_memory(nid, start, size, mhp_flags);
1531 unlock_device_hotplug();
1532
1533 return rc;
1534}
1535EXPORT_SYMBOL_GPL(add_memory);
1536
1537/*
1538 * Add special, driver-managed memory to the system as system RAM. Such
1539 * memory is not exposed via the raw firmware-provided memmap as system
1540 * RAM, instead, it is detected and added by a driver - during cold boot,
1541 * after a reboot, and after kexec.
1542 *
1543 * Reasons why this memory should not be used for the initial memmap of a
1544 * kexec kernel or for placing kexec images:
1545 * - The booting kernel is in charge of determining how this memory will be
1546 * used (e.g., use persistent memory as system RAM)
1547 * - Coordination with a hypervisor is required before this memory
1548 * can be used (e.g., inaccessible parts).
1549 *
1550 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1551 * memory map") are created. Also, the created memory resource is flagged
1552 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1553 * this memory as well (esp., not place kexec images onto it).
1554 *
1555 * The resource_name (visible via /proc/iomem) has to have the format
1556 * "System RAM ($DRIVER)".
1557 */
1558int add_memory_driver_managed(int nid, u64 start, u64 size,
1559 const char *resource_name, mhp_t mhp_flags)
1560{
1561 struct resource *res;
1562 int rc;
1563
1564 if (!resource_name ||
1565 strstr(resource_name, "System RAM (") != resource_name ||
1566 resource_name[strlen(resource_name) - 1] != ')')
1567 return -EINVAL;
1568
1569 lock_device_hotplug();
1570
1571 res = register_memory_resource(start, size, resource_name);
1572 if (IS_ERR(ptr: res)) {
1573 rc = PTR_ERR(ptr: res);
1574 goto out_unlock;
1575 }
1576
1577 rc = add_memory_resource(nid, res, mhp_flags);
1578 if (rc < 0)
1579 release_memory_resource(res);
1580
1581out_unlock:
1582 unlock_device_hotplug();
1583 return rc;
1584}
1585EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1586
1587/*
1588 * Platforms should define arch_get_mappable_range() that provides
1589 * maximum possible addressable physical memory range for which the
1590 * linear mapping could be created. The platform returned address
1591 * range must adhere to these following semantics.
1592 *
1593 * - range.start <= range.end
1594 * - Range includes both end points [range.start..range.end]
1595 *
1596 * There is also a fallback definition provided here, allowing the
1597 * entire possible physical address range in case any platform does
1598 * not define arch_get_mappable_range().
1599 */
1600struct range __weak arch_get_mappable_range(void)
1601{
1602 struct range mhp_range = {
1603 .start = 0UL,
1604 .end = -1ULL,
1605 };
1606 return mhp_range;
1607}
1608
1609struct range mhp_get_pluggable_range(bool need_mapping)
1610{
1611 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1612 struct range mhp_range;
1613
1614 if (need_mapping) {
1615 mhp_range = arch_get_mappable_range();
1616 if (mhp_range.start > max_phys) {
1617 mhp_range.start = 0;
1618 mhp_range.end = 0;
1619 }
1620 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1621 } else {
1622 mhp_range.start = 0;
1623 mhp_range.end = max_phys;
1624 }
1625 return mhp_range;
1626}
1627EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1628
1629bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1630{
1631 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1632 u64 end = start + size;
1633
1634 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1635 return true;
1636
1637 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1638 start, end, mhp_range.start, mhp_range.end);
1639 return false;
1640}
1641
1642#ifdef CONFIG_MEMORY_HOTREMOVE
1643/*
1644 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1645 * non-lru movable pages and hugepages). Will skip over most unmovable
1646 * pages (esp., pages that can be skipped when offlining), but bail out on
1647 * definitely unmovable pages.
1648 *
1649 * Returns:
1650 * 0 in case a movable page is found and movable_pfn was updated.
1651 * -ENOENT in case no movable page was found.
1652 * -EBUSY in case a definitely unmovable page was found.
1653 */
1654static int scan_movable_pages(unsigned long start, unsigned long end,
1655 unsigned long *movable_pfn)
1656{
1657 unsigned long pfn;
1658
1659 for (pfn = start; pfn < end; pfn++) {
1660 struct page *page, *head;
1661 unsigned long skip;
1662
1663 if (!pfn_valid(pfn))
1664 continue;
1665 page = pfn_to_page(pfn);
1666 if (PageLRU(page))
1667 goto found;
1668 if (__PageMovable(page))
1669 goto found;
1670
1671 /*
1672 * PageOffline() pages that are not marked __PageMovable() and
1673 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1674 * definitely unmovable. If their reference count would be 0,
1675 * they could at least be skipped when offlining memory.
1676 */
1677 if (PageOffline(page) && page_count(page))
1678 return -EBUSY;
1679
1680 if (!PageHuge(page))
1681 continue;
1682 head = compound_head(page);
1683 /*
1684 * This test is racy as we hold no reference or lock. The
1685 * hugetlb page could have been free'ed and head is no longer
1686 * a hugetlb page before the following check. In such unlikely
1687 * cases false positives and negatives are possible. Calling
1688 * code must deal with these scenarios.
1689 */
1690 if (HPageMigratable(page: head))
1691 goto found;
1692 skip = compound_nr(page: head) - (pfn - page_to_pfn(head));
1693 pfn += skip - 1;
1694 }
1695 return -ENOENT;
1696found:
1697 *movable_pfn = pfn;
1698 return 0;
1699}
1700
1701static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1702{
1703 unsigned long pfn;
1704 struct page *page, *head;
1705 LIST_HEAD(source);
1706 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1707 DEFAULT_RATELIMIT_BURST);
1708
1709 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1710 struct folio *folio;
1711 bool isolated;
1712
1713 if (!pfn_valid(pfn))
1714 continue;
1715 page = pfn_to_page(pfn);
1716 folio = page_folio(page);
1717 head = &folio->page;
1718
1719 if (PageHuge(page)) {
1720 pfn = page_to_pfn(head) + compound_nr(page: head) - 1;
1721 isolate_hugetlb(folio, list: &source);
1722 continue;
1723 } else if (PageTransHuge(page))
1724 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1725
1726 /*
1727 * HWPoison pages have elevated reference counts so the migration would
1728 * fail on them. It also doesn't make any sense to migrate them in the
1729 * first place. Still try to unmap such a page in case it is still mapped
1730 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1731 * the unmap as the catch all safety net).
1732 */
1733 if (PageHWPoison(page)) {
1734 if (WARN_ON(folio_test_lru(folio)))
1735 folio_isolate_lru(folio);
1736 if (folio_mapped(folio))
1737 try_to_unmap(folio, flags: TTU_IGNORE_MLOCK);
1738 continue;
1739 }
1740
1741 if (!get_page_unless_zero(page))
1742 continue;
1743 /*
1744 * We can skip free pages. And we can deal with pages on
1745 * LRU and non-lru movable pages.
1746 */
1747 if (PageLRU(page))
1748 isolated = isolate_lru_page(page);
1749 else
1750 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1751 if (isolated) {
1752 list_add_tail(new: &page->lru, head: &source);
1753 if (!__PageMovable(page))
1754 inc_node_page_state(page, NR_ISOLATED_ANON +
1755 page_is_file_lru(page));
1756
1757 } else {
1758 if (__ratelimit(&migrate_rs)) {
1759 pr_warn("failed to isolate pfn %lx\n", pfn);
1760 dump_page(page, reason: "isolation failed");
1761 }
1762 }
1763 put_page(page);
1764 }
1765 if (!list_empty(head: &source)) {
1766 nodemask_t nmask = node_states[N_MEMORY];
1767 struct migration_target_control mtc = {
1768 .nmask = &nmask,
1769 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1770 };
1771 int ret;
1772
1773 /*
1774 * We have checked that migration range is on a single zone so
1775 * we can use the nid of the first page to all the others.
1776 */
1777 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1778
1779 /*
1780 * try to allocate from a different node but reuse this node
1781 * if there are no other online nodes to be used (e.g. we are
1782 * offlining a part of the only existing node)
1783 */
1784 node_clear(mtc.nid, nmask);
1785 if (nodes_empty(nmask))
1786 node_set(mtc.nid, nmask);
1787 ret = migrate_pages(l: &source, new: alloc_migration_target, NULL,
1788 private: (unsigned long)&mtc, mode: MIGRATE_SYNC, reason: MR_MEMORY_HOTPLUG, NULL);
1789 if (ret) {
1790 list_for_each_entry(page, &source, lru) {
1791 if (__ratelimit(&migrate_rs)) {
1792 pr_warn("migrating pfn %lx failed ret:%d\n",
1793 page_to_pfn(page), ret);
1794 dump_page(page, reason: "migration failure");
1795 }
1796 }
1797 putback_movable_pages(l: &source);
1798 }
1799 }
1800}
1801
1802static int __init cmdline_parse_movable_node(char *p)
1803{
1804 movable_node_enabled = true;
1805 return 0;
1806}
1807early_param("movable_node", cmdline_parse_movable_node);
1808
1809/* check which state of node_states will be changed when offline memory */
1810static void node_states_check_changes_offline(unsigned long nr_pages,
1811 struct zone *zone, struct memory_notify *arg)
1812{
1813 struct pglist_data *pgdat = zone->zone_pgdat;
1814 unsigned long present_pages = 0;
1815 enum zone_type zt;
1816
1817 arg->status_change_nid = NUMA_NO_NODE;
1818 arg->status_change_nid_normal = NUMA_NO_NODE;
1819
1820 /*
1821 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1822 * If the memory to be offline is within the range
1823 * [0..ZONE_NORMAL], and it is the last present memory there,
1824 * the zones in that range will become empty after the offlining,
1825 * thus we can determine that we need to clear the node from
1826 * node_states[N_NORMAL_MEMORY].
1827 */
1828 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1829 present_pages += pgdat->node_zones[zt].present_pages;
1830 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1831 arg->status_change_nid_normal = zone_to_nid(zone);
1832
1833 /*
1834 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1835 * does not apply as we don't support 32bit.
1836 * Here we count the possible pages from ZONE_MOVABLE.
1837 * If after having accounted all the pages, we see that the nr_pages
1838 * to be offlined is over or equal to the accounted pages,
1839 * we know that the node will become empty, and so, we can clear
1840 * it for N_MEMORY as well.
1841 */
1842 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1843
1844 if (nr_pages >= present_pages)
1845 arg->status_change_nid = zone_to_nid(zone);
1846}
1847
1848static void node_states_clear_node(int node, struct memory_notify *arg)
1849{
1850 if (arg->status_change_nid_normal >= 0)
1851 node_clear_state(node, state: N_NORMAL_MEMORY);
1852
1853 if (arg->status_change_nid >= 0)
1854 node_clear_state(node, state: N_MEMORY);
1855}
1856
1857static int count_system_ram_pages_cb(unsigned long start_pfn,
1858 unsigned long nr_pages, void *data)
1859{
1860 unsigned long *nr_system_ram_pages = data;
1861
1862 *nr_system_ram_pages += nr_pages;
1863 return 0;
1864}
1865
1866int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1867 struct zone *zone, struct memory_group *group)
1868{
1869 const unsigned long end_pfn = start_pfn + nr_pages;
1870 unsigned long pfn, system_ram_pages = 0;
1871 const int node = zone_to_nid(zone);
1872 unsigned long flags;
1873 struct memory_notify arg;
1874 char *reason;
1875 int ret;
1876
1877 /*
1878 * {on,off}lining is constrained to full memory sections (or more
1879 * precisely to memory blocks from the user space POV).
1880 * memmap_on_memory is an exception because it reserves initial part
1881 * of the physical memory space for vmemmaps. That space is pageblock
1882 * aligned.
1883 */
1884 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1885 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1886 return -EINVAL;
1887
1888 mem_hotplug_begin();
1889
1890 /*
1891 * Don't allow to offline memory blocks that contain holes.
1892 * Consequently, memory blocks with holes can never get onlined
1893 * via the hotplug path - online_pages() - as hotplugged memory has
1894 * no holes. This way, we e.g., don't have to worry about marking
1895 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1896 * avoid using walk_system_ram_range() later.
1897 */
1898 walk_system_ram_range(start_pfn, nr_pages, arg: &system_ram_pages,
1899 func: count_system_ram_pages_cb);
1900 if (system_ram_pages != nr_pages) {
1901 ret = -EINVAL;
1902 reason = "memory holes";
1903 goto failed_removal;
1904 }
1905
1906 /*
1907 * We only support offlining of memory blocks managed by a single zone,
1908 * checked by calling code. This is just a sanity check that we might
1909 * want to remove in the future.
1910 */
1911 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1912 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1913 ret = -EINVAL;
1914 reason = "multizone range";
1915 goto failed_removal;
1916 }
1917
1918 /*
1919 * Disable pcplists so that page isolation cannot race with freeing
1920 * in a way that pages from isolated pageblock are left on pcplists.
1921 */
1922 zone_pcp_disable(zone);
1923 lru_cache_disable();
1924
1925 /* set above range as isolated */
1926 ret = start_isolate_page_range(start_pfn, end_pfn,
1927 migratetype: MIGRATE_MOVABLE,
1928 MEMORY_OFFLINE | REPORT_FAILURE,
1929 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1930 if (ret) {
1931 reason = "failure to isolate range";
1932 goto failed_removal_pcplists_disabled;
1933 }
1934
1935 arg.start_pfn = start_pfn;
1936 arg.nr_pages = nr_pages;
1937 node_states_check_changes_offline(nr_pages, zone, arg: &arg);
1938
1939 ret = memory_notify(MEM_GOING_OFFLINE, v: &arg);
1940 ret = notifier_to_errno(ret);
1941 if (ret) {
1942 reason = "notifier failure";
1943 goto failed_removal_isolated;
1944 }
1945
1946 do {
1947 pfn = start_pfn;
1948 do {
1949 /*
1950 * Historically we always checked for any signal and
1951 * can't limit it to fatal signals without eventually
1952 * breaking user space.
1953 */
1954 if (signal_pending(current)) {
1955 ret = -EINTR;
1956 reason = "signal backoff";
1957 goto failed_removal_isolated;
1958 }
1959
1960 cond_resched();
1961
1962 ret = scan_movable_pages(start: pfn, end: end_pfn, movable_pfn: &pfn);
1963 if (!ret) {
1964 /*
1965 * TODO: fatal migration failures should bail
1966 * out
1967 */
1968 do_migrate_range(start_pfn: pfn, end_pfn);
1969 }
1970 } while (!ret);
1971
1972 if (ret != -ENOENT) {
1973 reason = "unmovable page";
1974 goto failed_removal_isolated;
1975 }
1976
1977 /*
1978 * Dissolve free hugepages in the memory block before doing
1979 * offlining actually in order to make hugetlbfs's object
1980 * counting consistent.
1981 */
1982 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1983 if (ret) {
1984 reason = "failure to dissolve huge pages";
1985 goto failed_removal_isolated;
1986 }
1987
1988 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1989
1990 } while (ret);
1991
1992 /* Mark all sections offline and remove free pages from the buddy. */
1993 __offline_isolated_pages(start_pfn, end_pfn);
1994 pr_debug("Offlined Pages %ld\n", nr_pages);
1995
1996 /*
1997 * The memory sections are marked offline, and the pageblock flags
1998 * effectively stale; nobody should be touching them. Fixup the number
1999 * of isolated pageblocks, memory onlining will properly revert this.
2000 */
2001 spin_lock_irqsave(&zone->lock, flags);
2002 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2003 spin_unlock_irqrestore(lock: &zone->lock, flags);
2004
2005 lru_cache_enable();
2006 zone_pcp_enable(zone);
2007
2008 /* removal success */
2009 adjust_managed_page_count(pfn_to_page(start_pfn), count: -nr_pages);
2010 adjust_present_page_count(pfn_to_page(start_pfn), group, nr_pages: -nr_pages);
2011
2012 /* reinitialise watermarks and update pcp limits */
2013 init_per_zone_wmark_min();
2014
2015 /*
2016 * Make sure to mark the node as memory-less before rebuilding the zone
2017 * list. Otherwise this node would still appear in the fallback lists.
2018 */
2019 node_states_clear_node(node, arg: &arg);
2020 if (!populated_zone(zone)) {
2021 zone_pcp_reset(zone);
2022 build_all_zonelists(NULL);
2023 }
2024
2025 if (arg.status_change_nid >= 0) {
2026 kcompactd_stop(nid: node);
2027 kswapd_stop(nid: node);
2028 }
2029
2030 writeback_set_ratelimit();
2031
2032 memory_notify(MEM_OFFLINE, v: &arg);
2033 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2034 mem_hotplug_done();
2035 return 0;
2036
2037failed_removal_isolated:
2038 /* pushback to free area */
2039 undo_isolate_page_range(start_pfn, end_pfn, migratetype: MIGRATE_MOVABLE);
2040 memory_notify(MEM_CANCEL_OFFLINE, v: &arg);
2041failed_removal_pcplists_disabled:
2042 lru_cache_enable();
2043 zone_pcp_enable(zone);
2044failed_removal:
2045 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2046 (unsigned long long) start_pfn << PAGE_SHIFT,
2047 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2048 reason);
2049 mem_hotplug_done();
2050 return ret;
2051}
2052
2053static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2054{
2055 int *nid = arg;
2056
2057 *nid = mem->nid;
2058 if (unlikely(mem->state != MEM_OFFLINE)) {
2059 phys_addr_t beginpa, endpa;
2060
2061 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2062 endpa = beginpa + memory_block_size_bytes() - 1;
2063 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2064 &beginpa, &endpa);
2065
2066 return -EBUSY;
2067 }
2068 return 0;
2069}
2070
2071static int test_has_altmap_cb(struct memory_block *mem, void *arg)
2072{
2073 struct memory_block **mem_ptr = (struct memory_block **)arg;
2074 /*
2075 * return the memblock if we have altmap
2076 * and break callback.
2077 */
2078 if (mem->altmap) {
2079 *mem_ptr = mem;
2080 return 1;
2081 }
2082 return 0;
2083}
2084
2085static int check_cpu_on_node(int nid)
2086{
2087 int cpu;
2088
2089 for_each_present_cpu(cpu) {
2090 if (cpu_to_node(cpu) == nid)
2091 /*
2092 * the cpu on this node isn't removed, and we can't
2093 * offline this node.
2094 */
2095 return -EBUSY;
2096 }
2097
2098 return 0;
2099}
2100
2101static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2102{
2103 int nid = *(int *)arg;
2104
2105 /*
2106 * If a memory block belongs to multiple nodes, the stored nid is not
2107 * reliable. However, such blocks are always online (e.g., cannot get
2108 * offlined) and, therefore, are still spanned by the node.
2109 */
2110 return mem->nid == nid ? -EEXIST : 0;
2111}
2112
2113/**
2114 * try_offline_node
2115 * @nid: the node ID
2116 *
2117 * Offline a node if all memory sections and cpus of the node are removed.
2118 *
2119 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2120 * and online/offline operations before this call.
2121 */
2122void try_offline_node(int nid)
2123{
2124 int rc;
2125
2126 /*
2127 * If the node still spans pages (especially ZONE_DEVICE), don't
2128 * offline it. A node spans memory after move_pfn_range_to_zone(),
2129 * e.g., after the memory block was onlined.
2130 */
2131 if (node_spanned_pages(nid))
2132 return;
2133
2134 /*
2135 * Especially offline memory blocks might not be spanned by the
2136 * node. They will get spanned by the node once they get onlined.
2137 * However, they link to the node in sysfs and can get onlined later.
2138 */
2139 rc = for_each_memory_block(arg: &nid, func: check_no_memblock_for_node_cb);
2140 if (rc)
2141 return;
2142
2143 if (check_cpu_on_node(nid))
2144 return;
2145
2146 /*
2147 * all memory/cpu of this node are removed, we can offline this
2148 * node now.
2149 */
2150 node_set_offline(nid);
2151 unregister_one_node(nid);
2152}
2153EXPORT_SYMBOL(try_offline_node);
2154
2155static int __ref try_remove_memory(u64 start, u64 size)
2156{
2157 struct memory_block *mem;
2158 int rc = 0, nid = NUMA_NO_NODE;
2159 struct vmem_altmap *altmap = NULL;
2160
2161 BUG_ON(check_hotplug_memory_range(start, size));
2162
2163 /*
2164 * All memory blocks must be offlined before removing memory. Check
2165 * whether all memory blocks in question are offline and return error
2166 * if this is not the case.
2167 *
2168 * While at it, determine the nid. Note that if we'd have mixed nodes,
2169 * we'd only try to offline the last determined one -- which is good
2170 * enough for the cases we care about.
2171 */
2172 rc = walk_memory_blocks(start, size, arg: &nid, func: check_memblock_offlined_cb);
2173 if (rc)
2174 return rc;
2175
2176 /*
2177 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2178 * the same granularity it was added - a single memory block.
2179 */
2180 if (mhp_memmap_on_memory()) {
2181 rc = walk_memory_blocks(start, size, arg: &mem, func: test_has_altmap_cb);
2182 if (rc) {
2183 if (size != memory_block_size_bytes()) {
2184 pr_warn("Refuse to remove %#llx - %#llx,"
2185 "wrong granularity\n",
2186 start, start + size);
2187 return -EINVAL;
2188 }
2189 altmap = mem->altmap;
2190 /*
2191 * Mark altmap NULL so that we can add a debug
2192 * check on memblock free.
2193 */
2194 mem->altmap = NULL;
2195 }
2196 }
2197
2198 /* remove memmap entry */
2199 firmware_map_remove(start, end: start + size, type: "System RAM");
2200
2201 /*
2202 * Memory block device removal under the device_hotplug_lock is
2203 * a barrier against racing online attempts.
2204 */
2205 remove_memory_block_devices(start, size);
2206
2207 mem_hotplug_begin();
2208
2209 arch_remove_memory(start, size, altmap);
2210
2211 /* Verify that all vmemmap pages have actually been freed. */
2212 if (altmap) {
2213 WARN(altmap->alloc, "Altmap not fully unmapped");
2214 kfree(objp: altmap);
2215 }
2216
2217 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2218 memblock_phys_free(base: start, size);
2219 memblock_remove(base: start, size);
2220 }
2221
2222 release_mem_region_adjustable(start, size);
2223
2224 if (nid != NUMA_NO_NODE)
2225 try_offline_node(nid);
2226
2227 mem_hotplug_done();
2228 return 0;
2229}
2230
2231/**
2232 * __remove_memory - Remove memory if every memory block is offline
2233 * @start: physical address of the region to remove
2234 * @size: size of the region to remove
2235 *
2236 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2237 * and online/offline operations before this call, as required by
2238 * try_offline_node().
2239 */
2240void __remove_memory(u64 start, u64 size)
2241{
2242
2243 /*
2244 * trigger BUG() if some memory is not offlined prior to calling this
2245 * function
2246 */
2247 if (try_remove_memory(start, size))
2248 BUG();
2249}
2250
2251/*
2252 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2253 * some memory is not offline
2254 */
2255int remove_memory(u64 start, u64 size)
2256{
2257 int rc;
2258
2259 lock_device_hotplug();
2260 rc = try_remove_memory(start, size);
2261 unlock_device_hotplug();
2262
2263 return rc;
2264}
2265EXPORT_SYMBOL_GPL(remove_memory);
2266
2267static int try_offline_memory_block(struct memory_block *mem, void *arg)
2268{
2269 uint8_t online_type = MMOP_ONLINE_KERNEL;
2270 uint8_t **online_types = arg;
2271 struct page *page;
2272 int rc;
2273
2274 /*
2275 * Sense the online_type via the zone of the memory block. Offlining
2276 * with multiple zones within one memory block will be rejected
2277 * by offlining code ... so we don't care about that.
2278 */
2279 page = pfn_to_online_page(section_nr_to_pfn(sec: mem->start_section_nr));
2280 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2281 online_type = MMOP_ONLINE_MOVABLE;
2282
2283 rc = device_offline(dev: &mem->dev);
2284 /*
2285 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2286 * so try_reonline_memory_block() can do the right thing.
2287 */
2288 if (!rc)
2289 **online_types = online_type;
2290
2291 (*online_types)++;
2292 /* Ignore if already offline. */
2293 return rc < 0 ? rc : 0;
2294}
2295
2296static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2297{
2298 uint8_t **online_types = arg;
2299 int rc;
2300
2301 if (**online_types != MMOP_OFFLINE) {
2302 mem->online_type = **online_types;
2303 rc = device_online(dev: &mem->dev);
2304 if (rc < 0)
2305 pr_warn("%s: Failed to re-online memory: %d",
2306 __func__, rc);
2307 }
2308
2309 /* Continue processing all remaining memory blocks. */
2310 (*online_types)++;
2311 return 0;
2312}
2313
2314/*
2315 * Try to offline and remove memory. Might take a long time to finish in case
2316 * memory is still in use. Primarily useful for memory devices that logically
2317 * unplugged all memory (so it's no longer in use) and want to offline + remove
2318 * that memory.
2319 */
2320int offline_and_remove_memory(u64 start, u64 size)
2321{
2322 const unsigned long mb_count = size / memory_block_size_bytes();
2323 uint8_t *online_types, *tmp;
2324 int rc;
2325
2326 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2327 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2328 return -EINVAL;
2329
2330 /*
2331 * We'll remember the old online type of each memory block, so we can
2332 * try to revert whatever we did when offlining one memory block fails
2333 * after offlining some others succeeded.
2334 */
2335 online_types = kmalloc_array(n: mb_count, size: sizeof(*online_types),
2336 GFP_KERNEL);
2337 if (!online_types)
2338 return -ENOMEM;
2339 /*
2340 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2341 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2342 * try_reonline_memory_block().
2343 */
2344 memset(online_types, MMOP_OFFLINE, mb_count);
2345
2346 lock_device_hotplug();
2347
2348 tmp = online_types;
2349 rc = walk_memory_blocks(start, size, arg: &tmp, func: try_offline_memory_block);
2350
2351 /*
2352 * In case we succeeded to offline all memory, remove it.
2353 * This cannot fail as it cannot get onlined in the meantime.
2354 */
2355 if (!rc) {
2356 rc = try_remove_memory(start, size);
2357 if (rc)
2358 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2359 }
2360
2361 /*
2362 * Rollback what we did. While memory onlining might theoretically fail
2363 * (nacked by a notifier), it barely ever happens.
2364 */
2365 if (rc) {
2366 tmp = online_types;
2367 walk_memory_blocks(start, size, arg: &tmp,
2368 func: try_reonline_memory_block);
2369 }
2370 unlock_device_hotplug();
2371
2372 kfree(objp: online_types);
2373 return rc;
2374}
2375EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2376#endif /* CONFIG_MEMORY_HOTREMOVE */
2377

source code of linux/mm/memory_hotplug.c