1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * page->flags PG_locked (lock_page)
54 */
55
56#include <linux/mm.h>
57#include <linux/sched/mm.h>
58#include <linux/sched/task.h>
59#include <linux/pagemap.h>
60#include <linux/swap.h>
61#include <linux/swapops.h>
62#include <linux/slab.h>
63#include <linux/init.h>
64#include <linux/ksm.h>
65#include <linux/rmap.h>
66#include <linux/rcupdate.h>
67#include <linux/export.h>
68#include <linux/memcontrol.h>
69#include <linux/mmu_notifier.h>
70#include <linux/migrate.h>
71#include <linux/hugetlb.h>
72#include <linux/huge_mm.h>
73#include <linux/backing-dev.h>
74#include <linux/page_idle.h>
75#include <linux/memremap.h>
76#include <linux/userfaultfd_k.h>
77#include <linux/mm_inline.h>
78
79#include <asm/tlbflush.h>
80
81#define CREATE_TRACE_POINTS
82#include <trace/events/tlb.h>
83#include <trace/events/migrate.h>
84
85#include "internal.h"
86
87static struct kmem_cache *anon_vma_cachep;
88static struct kmem_cache *anon_vma_chain_cachep;
89
90static inline struct anon_vma *anon_vma_alloc(void)
91{
92 struct anon_vma *anon_vma;
93
94 anon_vma = kmem_cache_alloc(cachep: anon_vma_cachep, GFP_KERNEL);
95 if (anon_vma) {
96 atomic_set(v: &anon_vma->refcount, i: 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
100 /*
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
103 */
104 anon_vma->root = anon_vma;
105 }
106
107 return anon_vma;
108}
109
110static inline void anon_vma_free(struct anon_vma *anon_vma)
111{
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113
114 /*
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
117 * freed.
118 *
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 *
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
125 * LOCK MB
126 * atomic_read() rwsem_is_locked()
127 *
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
130 */
131 might_sleep();
132 if (rwsem_is_locked(sem: &anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
135 }
136
137 kmem_cache_free(s: anon_vma_cachep, objp: anon_vma);
138}
139
140static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141{
142 return kmem_cache_alloc(cachep: anon_vma_chain_cachep, flags: gfp);
143}
144
145static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146{
147 kmem_cache_free(s: anon_vma_chain_cachep, objp: anon_vma_chain);
148}
149
150static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
153{
154 avc->vma = vma;
155 avc->anon_vma = anon_vma;
156 list_add(new: &avc->same_vma, head: &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(node: avc, root: &anon_vma->rb_root);
158}
159
160/**
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
163 *
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
167 *
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
174 *
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
180 *
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
184 * an anon_vma.
185 *
186 * This must be called with the mmap_lock held for reading.
187 */
188int __anon_vma_prepare(struct vm_area_struct *vma)
189{
190 struct mm_struct *mm = vma->vm_mm;
191 struct anon_vma *anon_vma, *allocated;
192 struct anon_vma_chain *avc;
193
194 might_sleep();
195
196 avc = anon_vma_chain_alloc(GFP_KERNEL);
197 if (!avc)
198 goto out_enomem;
199
200 anon_vma = find_mergeable_anon_vma(vma);
201 allocated = NULL;
202 if (!anon_vma) {
203 anon_vma = anon_vma_alloc();
204 if (unlikely(!anon_vma))
205 goto out_enomem_free_avc;
206 anon_vma->num_children++; /* self-parent link for new root */
207 allocated = anon_vma;
208 }
209
210 anon_vma_lock_write(anon_vma);
211 /* page_table_lock to protect against threads */
212 spin_lock(lock: &mm->page_table_lock);
213 if (likely(!vma->anon_vma)) {
214 vma->anon_vma = anon_vma;
215 anon_vma_chain_link(vma, avc, anon_vma);
216 anon_vma->num_active_vmas++;
217 allocated = NULL;
218 avc = NULL;
219 }
220 spin_unlock(lock: &mm->page_table_lock);
221 anon_vma_unlock_write(anon_vma);
222
223 if (unlikely(allocated))
224 put_anon_vma(anon_vma: allocated);
225 if (unlikely(avc))
226 anon_vma_chain_free(anon_vma_chain: avc);
227
228 return 0;
229
230 out_enomem_free_avc:
231 anon_vma_chain_free(anon_vma_chain: avc);
232 out_enomem:
233 return -ENOMEM;
234}
235
236/*
237 * This is a useful helper function for locking the anon_vma root as
238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239 * have the same vma.
240 *
241 * Such anon_vma's should have the same root, so you'd expect to see
242 * just a single mutex_lock for the whole traversal.
243 */
244static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245{
246 struct anon_vma *new_root = anon_vma->root;
247 if (new_root != root) {
248 if (WARN_ON_ONCE(root))
249 up_write(sem: &root->rwsem);
250 root = new_root;
251 down_write(sem: &root->rwsem);
252 }
253 return root;
254}
255
256static inline void unlock_anon_vma_root(struct anon_vma *root)
257{
258 if (root)
259 up_write(sem: &root->rwsem);
260}
261
262/*
263 * Attach the anon_vmas from src to dst.
264 * Returns 0 on success, -ENOMEM on failure.
265 *
266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270 * call, we can identify this case by checking (!dst->anon_vma &&
271 * src->anon_vma).
272 *
273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275 * This prevents degradation of anon_vma hierarchy to endless linear chain in
276 * case of constantly forking task. On the other hand, an anon_vma with more
277 * than one child isn't reused even if there was no alive vma, thus rmap
278 * walker has a good chance of avoiding scanning the whole hierarchy when it
279 * searches where page is mapped.
280 */
281int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282{
283 struct anon_vma_chain *avc, *pavc;
284 struct anon_vma *root = NULL;
285
286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 struct anon_vma *anon_vma;
288
289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 if (unlikely(!avc)) {
291 unlock_anon_vma_root(root);
292 root = NULL;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto enomem_failure;
296 }
297 anon_vma = pavc->anon_vma;
298 root = lock_anon_vma_root(root, anon_vma);
299 anon_vma_chain_link(vma: dst, avc, anon_vma);
300
301 /*
302 * Reuse existing anon_vma if it has no vma and only one
303 * anon_vma child.
304 *
305 * Root anon_vma is never reused:
306 * it has self-parent reference and at least one child.
307 */
308 if (!dst->anon_vma && src->anon_vma &&
309 anon_vma->num_children < 2 &&
310 anon_vma->num_active_vmas == 0)
311 dst->anon_vma = anon_vma;
312 }
313 if (dst->anon_vma)
314 dst->anon_vma->num_active_vmas++;
315 unlock_anon_vma_root(root);
316 return 0;
317
318 enomem_failure:
319 /*
320 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 * be incorrectly decremented in unlink_anon_vmas().
322 * We can safely do this because callers of anon_vma_clone() don't care
323 * about dst->anon_vma if anon_vma_clone() failed.
324 */
325 dst->anon_vma = NULL;
326 unlink_anon_vmas(dst);
327 return -ENOMEM;
328}
329
330/*
331 * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 * the corresponding VMA in the parent process is attached to.
333 * Returns 0 on success, non-zero on failure.
334 */
335int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336{
337 struct anon_vma_chain *avc;
338 struct anon_vma *anon_vma;
339 int error;
340
341 /* Don't bother if the parent process has no anon_vma here. */
342 if (!pvma->anon_vma)
343 return 0;
344
345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 vma->anon_vma = NULL;
347
348 /*
349 * First, attach the new VMA to the parent VMA's anon_vmas,
350 * so rmap can find non-COWed pages in child processes.
351 */
352 error = anon_vma_clone(dst: vma, src: pvma);
353 if (error)
354 return error;
355
356 /* An existing anon_vma has been reused, all done then. */
357 if (vma->anon_vma)
358 return 0;
359
360 /* Then add our own anon_vma. */
361 anon_vma = anon_vma_alloc();
362 if (!anon_vma)
363 goto out_error;
364 anon_vma->num_active_vmas++;
365 avc = anon_vma_chain_alloc(GFP_KERNEL);
366 if (!avc)
367 goto out_error_free_anon_vma;
368
369 /*
370 * The root anon_vma's rwsem is the lock actually used when we
371 * lock any of the anon_vmas in this anon_vma tree.
372 */
373 anon_vma->root = pvma->anon_vma->root;
374 anon_vma->parent = pvma->anon_vma;
375 /*
376 * With refcounts, an anon_vma can stay around longer than the
377 * process it belongs to. The root anon_vma needs to be pinned until
378 * this anon_vma is freed, because the lock lives in the root.
379 */
380 get_anon_vma(anon_vma: anon_vma->root);
381 /* Mark this anon_vma as the one where our new (COWed) pages go. */
382 vma->anon_vma = anon_vma;
383 anon_vma_lock_write(anon_vma);
384 anon_vma_chain_link(vma, avc, anon_vma);
385 anon_vma->parent->num_children++;
386 anon_vma_unlock_write(anon_vma);
387
388 return 0;
389
390 out_error_free_anon_vma:
391 put_anon_vma(anon_vma);
392 out_error:
393 unlink_anon_vmas(vma);
394 return -ENOMEM;
395}
396
397void unlink_anon_vmas(struct vm_area_struct *vma)
398{
399 struct anon_vma_chain *avc, *next;
400 struct anon_vma *root = NULL;
401
402 /*
403 * Unlink each anon_vma chained to the VMA. This list is ordered
404 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 */
406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 struct anon_vma *anon_vma = avc->anon_vma;
408
409 root = lock_anon_vma_root(root, anon_vma);
410 anon_vma_interval_tree_remove(node: avc, root: &anon_vma->rb_root);
411
412 /*
413 * Leave empty anon_vmas on the list - we'll need
414 * to free them outside the lock.
415 */
416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 anon_vma->parent->num_children--;
418 continue;
419 }
420
421 list_del(entry: &avc->same_vma);
422 anon_vma_chain_free(anon_vma_chain: avc);
423 }
424 if (vma->anon_vma) {
425 vma->anon_vma->num_active_vmas--;
426
427 /*
428 * vma would still be needed after unlink, and anon_vma will be prepared
429 * when handle fault.
430 */
431 vma->anon_vma = NULL;
432 }
433 unlock_anon_vma_root(root);
434
435 /*
436 * Iterate the list once more, it now only contains empty and unlinked
437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 * needing to write-acquire the anon_vma->root->rwsem.
439 */
440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 struct anon_vma *anon_vma = avc->anon_vma;
442
443 VM_WARN_ON(anon_vma->num_children);
444 VM_WARN_ON(anon_vma->num_active_vmas);
445 put_anon_vma(anon_vma);
446
447 list_del(entry: &avc->same_vma);
448 anon_vma_chain_free(anon_vma_chain: avc);
449 }
450}
451
452static void anon_vma_ctor(void *data)
453{
454 struct anon_vma *anon_vma = data;
455
456 init_rwsem(&anon_vma->rwsem);
457 atomic_set(v: &anon_vma->refcount, i: 0);
458 anon_vma->rb_root = RB_ROOT_CACHED;
459}
460
461void __init anon_vma_init(void)
462{
463 anon_vma_cachep = kmem_cache_create(name: "anon_vma", size: sizeof(struct anon_vma),
464 align: 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 ctor: anon_vma_ctor);
466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 SLAB_PANIC|SLAB_ACCOUNT);
468}
469
470/*
471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 *
473 * Since there is no serialization what so ever against page_remove_rmap()
474 * the best this function can do is return a refcount increased anon_vma
475 * that might have been relevant to this page.
476 *
477 * The page might have been remapped to a different anon_vma or the anon_vma
478 * returned may already be freed (and even reused).
479 *
480 * In case it was remapped to a different anon_vma, the new anon_vma will be a
481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482 * ensure that any anon_vma obtained from the page will still be valid for as
483 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 *
485 * All users of this function must be very careful when walking the anon_vma
486 * chain and verify that the page in question is indeed mapped in it
487 * [ something equivalent to page_mapped_in_vma() ].
488 *
489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491 * if there is a mapcount, we can dereference the anon_vma after observing
492 * those.
493 */
494struct anon_vma *folio_get_anon_vma(struct folio *folio)
495{
496 struct anon_vma *anon_vma = NULL;
497 unsigned long anon_mapping;
498
499 rcu_read_lock();
500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 goto out;
503 if (!folio_mapped(folio))
504 goto out;
505
506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 if (!atomic_inc_not_zero(v: &anon_vma->refcount)) {
508 anon_vma = NULL;
509 goto out;
510 }
511
512 /*
513 * If this folio is still mapped, then its anon_vma cannot have been
514 * freed. But if it has been unmapped, we have no security against the
515 * anon_vma structure being freed and reused (for another anon_vma:
516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 * above cannot corrupt).
518 */
519 if (!folio_mapped(folio)) {
520 rcu_read_unlock();
521 put_anon_vma(anon_vma);
522 return NULL;
523 }
524out:
525 rcu_read_unlock();
526
527 return anon_vma;
528}
529
530/*
531 * Similar to folio_get_anon_vma() except it locks the anon_vma.
532 *
533 * Its a little more complex as it tries to keep the fast path to a single
534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535 * reference like with folio_get_anon_vma() and then block on the mutex
536 * on !rwc->try_lock case.
537 */
538struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 struct rmap_walk_control *rwc)
540{
541 struct anon_vma *anon_vma = NULL;
542 struct anon_vma *root_anon_vma;
543 unsigned long anon_mapping;
544
545 rcu_read_lock();
546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 goto out;
549 if (!folio_mapped(folio))
550 goto out;
551
552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 root_anon_vma = READ_ONCE(anon_vma->root);
554 if (down_read_trylock(sem: &root_anon_vma->rwsem)) {
555 /*
556 * If the folio is still mapped, then this anon_vma is still
557 * its anon_vma, and holding the mutex ensures that it will
558 * not go away, see anon_vma_free().
559 */
560 if (!folio_mapped(folio)) {
561 up_read(sem: &root_anon_vma->rwsem);
562 anon_vma = NULL;
563 }
564 goto out;
565 }
566
567 if (rwc && rwc->try_lock) {
568 anon_vma = NULL;
569 rwc->contended = true;
570 goto out;
571 }
572
573 /* trylock failed, we got to sleep */
574 if (!atomic_inc_not_zero(v: &anon_vma->refcount)) {
575 anon_vma = NULL;
576 goto out;
577 }
578
579 if (!folio_mapped(folio)) {
580 rcu_read_unlock();
581 put_anon_vma(anon_vma);
582 return NULL;
583 }
584
585 /* we pinned the anon_vma, its safe to sleep */
586 rcu_read_unlock();
587 anon_vma_lock_read(anon_vma);
588
589 if (atomic_dec_and_test(v: &anon_vma->refcount)) {
590 /*
591 * Oops, we held the last refcount, release the lock
592 * and bail -- can't simply use put_anon_vma() because
593 * we'll deadlock on the anon_vma_lock_write() recursion.
594 */
595 anon_vma_unlock_read(anon_vma);
596 __put_anon_vma(anon_vma);
597 anon_vma = NULL;
598 }
599
600 return anon_vma;
601
602out:
603 rcu_read_unlock();
604 return anon_vma;
605}
606
607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608/*
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
613 */
614void try_to_unmap_flush(void)
615{
616 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617
618 if (!tlb_ubc->flush_required)
619 return;
620
621 arch_tlbbatch_flush(batch: &tlb_ubc->arch);
622 tlb_ubc->flush_required = false;
623 tlb_ubc->writable = false;
624}
625
626/* Flush iff there are potentially writable TLB entries that can race with IO */
627void try_to_unmap_flush_dirty(void)
628{
629 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
633}
634
635/*
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 */
639#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640#define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642#define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644
645static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
646 unsigned long uaddr)
647{
648 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
649 int batch;
650 bool writable = pte_dirty(pte: pteval);
651
652 if (!pte_accessible(mm, a: pteval))
653 return;
654
655 arch_tlbbatch_add_pending(batch: &tlb_ubc->arch, mm, uaddr);
656 tlb_ubc->flush_required = true;
657
658 /*
659 * Ensure compiler does not re-order the setting of tlb_flush_batched
660 * before the PTE is cleared.
661 */
662 barrier();
663 batch = atomic_read(v: &mm->tlb_flush_batched);
664retry:
665 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
666 /*
667 * Prevent `pending' from catching up with `flushed' because of
668 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
669 * `pending' becomes large.
670 */
671 if (!atomic_try_cmpxchg(v: &mm->tlb_flush_batched, old: &batch, new: 1))
672 goto retry;
673 } else {
674 atomic_inc(v: &mm->tlb_flush_batched);
675 }
676
677 /*
678 * If the PTE was dirty then it's best to assume it's writable. The
679 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
680 * before the page is queued for IO.
681 */
682 if (writable)
683 tlb_ubc->writable = true;
684}
685
686/*
687 * Returns true if the TLB flush should be deferred to the end of a batch of
688 * unmap operations to reduce IPIs.
689 */
690static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
691{
692 if (!(flags & TTU_BATCH_FLUSH))
693 return false;
694
695 return arch_tlbbatch_should_defer(mm);
696}
697
698/*
699 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
700 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
701 * operation such as mprotect or munmap to race between reclaim unmapping
702 * the page and flushing the page. If this race occurs, it potentially allows
703 * access to data via a stale TLB entry. Tracking all mm's that have TLB
704 * batching in flight would be expensive during reclaim so instead track
705 * whether TLB batching occurred in the past and if so then do a flush here
706 * if required. This will cost one additional flush per reclaim cycle paid
707 * by the first operation at risk such as mprotect and mumap.
708 *
709 * This must be called under the PTL so that an access to tlb_flush_batched
710 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
711 * via the PTL.
712 */
713void flush_tlb_batched_pending(struct mm_struct *mm)
714{
715 int batch = atomic_read(v: &mm->tlb_flush_batched);
716 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
717 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
718
719 if (pending != flushed) {
720 arch_flush_tlb_batched_pending(mm);
721 /*
722 * If the new TLB flushing is pending during flushing, leave
723 * mm->tlb_flush_batched as is, to avoid losing flushing.
724 */
725 atomic_cmpxchg(v: &mm->tlb_flush_batched, old: batch,
726 new: pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
727 }
728}
729#else
730static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
731 unsigned long uaddr)
732{
733}
734
735static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
736{
737 return false;
738}
739#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
740
741/*
742 * At what user virtual address is page expected in vma?
743 * Caller should check the page is actually part of the vma.
744 */
745unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
746{
747 struct folio *folio = page_folio(page);
748 if (folio_test_anon(folio)) {
749 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
750 /*
751 * Note: swapoff's unuse_vma() is more efficient with this
752 * check, and needs it to match anon_vma when KSM is active.
753 */
754 if (!vma->anon_vma || !page__anon_vma ||
755 vma->anon_vma->root != page__anon_vma->root)
756 return -EFAULT;
757 } else if (!vma->vm_file) {
758 return -EFAULT;
759 } else if (vma->vm_file->f_mapping != folio->mapping) {
760 return -EFAULT;
761 }
762
763 return vma_address(page, vma);
764}
765
766/*
767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
769 * represents.
770 */
771pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
772{
773 pgd_t *pgd;
774 p4d_t *p4d;
775 pud_t *pud;
776 pmd_t *pmd = NULL;
777
778 pgd = pgd_offset(mm, address);
779 if (!pgd_present(pgd: *pgd))
780 goto out;
781
782 p4d = p4d_offset(pgd, address);
783 if (!p4d_present(p4d: *p4d))
784 goto out;
785
786 pud = pud_offset(p4d, address);
787 if (!pud_present(pud: *pud))
788 goto out;
789
790 pmd = pmd_offset(pud, address);
791out:
792 return pmd;
793}
794
795struct folio_referenced_arg {
796 int mapcount;
797 int referenced;
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
800};
801
802/*
803 * arg: folio_referenced_arg will be passed
804 */
805static bool folio_referenced_one(struct folio *folio,
806 struct vm_area_struct *vma, unsigned long address, void *arg)
807{
808 struct folio_referenced_arg *pra = arg;
809 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
810 int referenced = 0;
811 unsigned long start = address, ptes = 0;
812
813 while (page_vma_mapped_walk(pvmw: &pvmw)) {
814 address = pvmw.address;
815
816 if (vma->vm_flags & VM_LOCKED) {
817 if (!folio_test_large(folio) || !pvmw.pte) {
818 /* Restore the mlock which got missed */
819 mlock_vma_folio(folio, vma);
820 page_vma_mapped_walk_done(pvmw: &pvmw);
821 pra->vm_flags |= VM_LOCKED;
822 return false; /* To break the loop */
823 }
824 /*
825 * For large folio fully mapped to VMA, will
826 * be handled after the pvmw loop.
827 *
828 * For large folio cross VMA boundaries, it's
829 * expected to be picked by page reclaim. But
830 * should skip reference of pages which are in
831 * the range of VM_LOCKED vma. As page reclaim
832 * should just count the reference of pages out
833 * the range of VM_LOCKED vma.
834 */
835 ptes++;
836 pra->mapcount--;
837 continue;
838 }
839
840 if (pvmw.pte) {
841 if (lru_gen_enabled() &&
842 pte_young(pte: ptep_get(ptep: pvmw.pte))) {
843 lru_gen_look_around(pvmw: &pvmw);
844 referenced++;
845 }
846
847 if (ptep_clear_flush_young_notify(vma, address,
848 pvmw.pte))
849 referenced++;
850 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
851 if (pmdp_clear_flush_young_notify(vma, address,
852 pvmw.pmd))
853 referenced++;
854 } else {
855 /* unexpected pmd-mapped folio? */
856 WARN_ON_ONCE(1);
857 }
858
859 pra->mapcount--;
860 }
861
862 if ((vma->vm_flags & VM_LOCKED) &&
863 folio_test_large(folio) &&
864 folio_within_vma(folio, vma)) {
865 unsigned long s_align, e_align;
866
867 s_align = ALIGN_DOWN(start, PMD_SIZE);
868 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
869
870 /* folio doesn't cross page table boundary and fully mapped */
871 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
872 /* Restore the mlock which got missed */
873 mlock_vma_folio(folio, vma);
874 pra->vm_flags |= VM_LOCKED;
875 return false; /* To break the loop */
876 }
877 }
878
879 if (referenced)
880 folio_clear_idle(folio);
881 if (folio_test_clear_young(folio))
882 referenced++;
883
884 if (referenced) {
885 pra->referenced++;
886 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
887 }
888
889 if (!pra->mapcount)
890 return false; /* To break the loop */
891
892 return true;
893}
894
895static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
896{
897 struct folio_referenced_arg *pra = arg;
898 struct mem_cgroup *memcg = pra->memcg;
899
900 /*
901 * Ignore references from this mapping if it has no recency. If the
902 * folio has been used in another mapping, we will catch it; if this
903 * other mapping is already gone, the unmap path will have set the
904 * referenced flag or activated the folio in zap_pte_range().
905 */
906 if (!vma_has_recency(vma))
907 return true;
908
909 /*
910 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
911 * of references from different cgroups.
912 */
913 if (memcg && !mm_match_cgroup(mm: vma->vm_mm, memcg))
914 return true;
915
916 return false;
917}
918
919/**
920 * folio_referenced() - Test if the folio was referenced.
921 * @folio: The folio to test.
922 * @is_locked: Caller holds lock on the folio.
923 * @memcg: target memory cgroup
924 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
925 *
926 * Quick test_and_clear_referenced for all mappings of a folio,
927 *
928 * Return: The number of mappings which referenced the folio. Return -1 if
929 * the function bailed out due to rmap lock contention.
930 */
931int folio_referenced(struct folio *folio, int is_locked,
932 struct mem_cgroup *memcg, unsigned long *vm_flags)
933{
934 int we_locked = 0;
935 struct folio_referenced_arg pra = {
936 .mapcount = folio_mapcount(folio),
937 .memcg = memcg,
938 };
939 struct rmap_walk_control rwc = {
940 .rmap_one = folio_referenced_one,
941 .arg = (void *)&pra,
942 .anon_lock = folio_lock_anon_vma_read,
943 .try_lock = true,
944 .invalid_vma = invalid_folio_referenced_vma,
945 };
946
947 *vm_flags = 0;
948 if (!pra.mapcount)
949 return 0;
950
951 if (!folio_raw_mapping(folio))
952 return 0;
953
954 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
955 we_locked = folio_trylock(folio);
956 if (!we_locked)
957 return 1;
958 }
959
960 rmap_walk(folio, rwc: &rwc);
961 *vm_flags = pra.vm_flags;
962
963 if (we_locked)
964 folio_unlock(folio);
965
966 return rwc.contended ? -1 : pra.referenced;
967}
968
969static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
970{
971 int cleaned = 0;
972 struct vm_area_struct *vma = pvmw->vma;
973 struct mmu_notifier_range range;
974 unsigned long address = pvmw->address;
975
976 /*
977 * We have to assume the worse case ie pmd for invalidation. Note that
978 * the folio can not be freed from this function.
979 */
980 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_PROTECTION_PAGE, flags: 0,
981 mm: vma->vm_mm, start: address, end: vma_address_end(pvmw));
982 mmu_notifier_invalidate_range_start(range: &range);
983
984 while (page_vma_mapped_walk(pvmw)) {
985 int ret = 0;
986
987 address = pvmw->address;
988 if (pvmw->pte) {
989 pte_t *pte = pvmw->pte;
990 pte_t entry = ptep_get(ptep: pte);
991
992 if (!pte_dirty(pte: entry) && !pte_write(pte: entry))
993 continue;
994
995 flush_cache_page(vma, vmaddr: address, pfn: pte_pfn(pte: entry));
996 entry = ptep_clear_flush(vma, address, ptep: pte);
997 entry = pte_wrprotect(pte: entry);
998 entry = pte_mkclean(pte: entry);
999 set_pte_at(vma->vm_mm, address, pte, entry);
1000 ret = 1;
1001 } else {
1002#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1003 pmd_t *pmd = pvmw->pmd;
1004 pmd_t entry;
1005
1006 if (!pmd_dirty(pmd: *pmd) && !pmd_write(pmd: *pmd))
1007 continue;
1008
1009 flush_cache_range(vma, start: address,
1010 end: address + HPAGE_PMD_SIZE);
1011 entry = pmdp_invalidate(vma, address, pmdp: pmd);
1012 entry = pmd_wrprotect(pmd: entry);
1013 entry = pmd_mkclean(pmd: entry);
1014 set_pmd_at(mm: vma->vm_mm, addr: address, pmdp: pmd, pmd: entry);
1015 ret = 1;
1016#else
1017 /* unexpected pmd-mapped folio? */
1018 WARN_ON_ONCE(1);
1019#endif
1020 }
1021
1022 if (ret)
1023 cleaned++;
1024 }
1025
1026 mmu_notifier_invalidate_range_end(range: &range);
1027
1028 return cleaned;
1029}
1030
1031static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1032 unsigned long address, void *arg)
1033{
1034 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1035 int *cleaned = arg;
1036
1037 *cleaned += page_vma_mkclean_one(pvmw: &pvmw);
1038
1039 return true;
1040}
1041
1042static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1043{
1044 if (vma->vm_flags & VM_SHARED)
1045 return false;
1046
1047 return true;
1048}
1049
1050int folio_mkclean(struct folio *folio)
1051{
1052 int cleaned = 0;
1053 struct address_space *mapping;
1054 struct rmap_walk_control rwc = {
1055 .arg = (void *)&cleaned,
1056 .rmap_one = page_mkclean_one,
1057 .invalid_vma = invalid_mkclean_vma,
1058 };
1059
1060 BUG_ON(!folio_test_locked(folio));
1061
1062 if (!folio_mapped(folio))
1063 return 0;
1064
1065 mapping = folio_mapping(folio);
1066 if (!mapping)
1067 return 0;
1068
1069 rmap_walk(folio, rwc: &rwc);
1070
1071 return cleaned;
1072}
1073EXPORT_SYMBOL_GPL(folio_mkclean);
1074
1075/**
1076 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1077 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1078 * within the @vma of shared mappings. And since clean PTEs
1079 * should also be readonly, write protects them too.
1080 * @pfn: start pfn.
1081 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1082 * @pgoff: page offset that the @pfn mapped with.
1083 * @vma: vma that @pfn mapped within.
1084 *
1085 * Returns the number of cleaned PTEs (including PMDs).
1086 */
1087int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1088 struct vm_area_struct *vma)
1089{
1090 struct page_vma_mapped_walk pvmw = {
1091 .pfn = pfn,
1092 .nr_pages = nr_pages,
1093 .pgoff = pgoff,
1094 .vma = vma,
1095 .flags = PVMW_SYNC,
1096 };
1097
1098 if (invalid_mkclean_vma(vma, NULL))
1099 return 0;
1100
1101 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1102 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1103
1104 return page_vma_mkclean_one(pvmw: &pvmw);
1105}
1106
1107int folio_total_mapcount(struct folio *folio)
1108{
1109 int mapcount = folio_entire_mapcount(folio);
1110 int nr_pages;
1111 int i;
1112
1113 /* In the common case, avoid the loop when no pages mapped by PTE */
1114 if (folio_nr_pages_mapped(folio) == 0)
1115 return mapcount;
1116 /*
1117 * Add all the PTE mappings of those pages mapped by PTE.
1118 * Limit the loop to folio_nr_pages_mapped()?
1119 * Perhaps: given all the raciness, that may be a good or a bad idea.
1120 */
1121 nr_pages = folio_nr_pages(folio);
1122 for (i = 0; i < nr_pages; i++)
1123 mapcount += atomic_read(v: &folio_page(folio, i)->_mapcount);
1124
1125 /* But each of those _mapcounts was based on -1 */
1126 mapcount += nr_pages;
1127 return mapcount;
1128}
1129
1130/**
1131 * folio_move_anon_rmap - move a folio to our anon_vma
1132 * @folio: The folio to move to our anon_vma
1133 * @vma: The vma the folio belongs to
1134 *
1135 * When a folio belongs exclusively to one process after a COW event,
1136 * that folio can be moved into the anon_vma that belongs to just that
1137 * process, so the rmap code will not search the parent or sibling processes.
1138 */
1139void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1140{
1141 void *anon_vma = vma->anon_vma;
1142
1143 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1144 VM_BUG_ON_VMA(!anon_vma, vma);
1145
1146 anon_vma += PAGE_MAPPING_ANON;
1147 /*
1148 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1149 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1150 * folio_test_anon()) will not see one without the other.
1151 */
1152 WRITE_ONCE(folio->mapping, anon_vma);
1153}
1154
1155/**
1156 * __folio_set_anon - set up a new anonymous rmap for a folio
1157 * @folio: The folio to set up the new anonymous rmap for.
1158 * @vma: VM area to add the folio to.
1159 * @address: User virtual address of the mapping
1160 * @exclusive: Whether the folio is exclusive to the process.
1161 */
1162static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1163 unsigned long address, bool exclusive)
1164{
1165 struct anon_vma *anon_vma = vma->anon_vma;
1166
1167 BUG_ON(!anon_vma);
1168
1169 /*
1170 * If the folio isn't exclusive to this vma, we must use the _oldest_
1171 * possible anon_vma for the folio mapping!
1172 */
1173 if (!exclusive)
1174 anon_vma = anon_vma->root;
1175
1176 /*
1177 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1178 * Make sure the compiler doesn't split the stores of anon_vma and
1179 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1180 * could mistake the mapping for a struct address_space and crash.
1181 */
1182 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1183 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1184 folio->index = linear_page_index(vma, address);
1185}
1186
1187/**
1188 * __page_check_anon_rmap - sanity check anonymous rmap addition
1189 * @folio: The folio containing @page.
1190 * @page: the page to check the mapping of
1191 * @vma: the vm area in which the mapping is added
1192 * @address: the user virtual address mapped
1193 */
1194static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1195 struct vm_area_struct *vma, unsigned long address)
1196{
1197 /*
1198 * The page's anon-rmap details (mapping and index) are guaranteed to
1199 * be set up correctly at this point.
1200 *
1201 * We have exclusion against page_add_anon_rmap because the caller
1202 * always holds the page locked.
1203 *
1204 * We have exclusion against page_add_new_anon_rmap because those pages
1205 * are initially only visible via the pagetables, and the pte is locked
1206 * over the call to page_add_new_anon_rmap.
1207 */
1208 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1209 folio);
1210 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1211 page);
1212}
1213
1214/**
1215 * page_add_anon_rmap - add pte mapping to an anonymous page
1216 * @page: the page to add the mapping to
1217 * @vma: the vm area in which the mapping is added
1218 * @address: the user virtual address mapped
1219 * @flags: the rmap flags
1220 *
1221 * The caller needs to hold the pte lock, and the page must be locked in
1222 * the anon_vma case: to serialize mapping,index checking after setting,
1223 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1224 * (but PageKsm is never downgraded to PageAnon).
1225 */
1226void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1227 unsigned long address, rmap_t flags)
1228{
1229 struct folio *folio = page_folio(page);
1230 atomic_t *mapped = &folio->_nr_pages_mapped;
1231 int nr = 0, nr_pmdmapped = 0;
1232 bool compound = flags & RMAP_COMPOUND;
1233 bool first;
1234
1235 /* Is page being mapped by PTE? Is this its first map to be added? */
1236 if (likely(!compound)) {
1237 first = atomic_inc_and_test(v: &page->_mapcount);
1238 nr = first;
1239 if (first && folio_test_large(folio)) {
1240 nr = atomic_inc_return_relaxed(v: mapped);
1241 nr = (nr < COMPOUND_MAPPED);
1242 }
1243 } else if (folio_test_pmd_mappable(folio)) {
1244 /* That test is redundant: it's for safety or to optimize out */
1245
1246 first = atomic_inc_and_test(v: &folio->_entire_mapcount);
1247 if (first) {
1248 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, v: mapped);
1249 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1250 nr_pmdmapped = folio_nr_pages(folio);
1251 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1252 /* Raced ahead of a remove and another add? */
1253 if (unlikely(nr < 0))
1254 nr = 0;
1255 } else {
1256 /* Raced ahead of a remove of COMPOUND_MAPPED */
1257 nr = 0;
1258 }
1259 }
1260 }
1261
1262 if (nr_pmdmapped)
1263 __lruvec_stat_mod_folio(folio, idx: NR_ANON_THPS, val: nr_pmdmapped);
1264 if (nr)
1265 __lruvec_stat_mod_folio(folio, idx: NR_ANON_MAPPED, val: nr);
1266
1267 if (unlikely(!folio_test_anon(folio))) {
1268 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1269 /*
1270 * For a PTE-mapped large folio, we only know that the single
1271 * PTE is exclusive. Further, __folio_set_anon() might not get
1272 * folio->index right when not given the address of the head
1273 * page.
1274 */
1275 VM_WARN_ON_FOLIO(folio_test_large(folio) && !compound, folio);
1276 __folio_set_anon(folio, vma, address,
1277 exclusive: !!(flags & RMAP_EXCLUSIVE));
1278 } else if (likely(!folio_test_ksm(folio))) {
1279 __page_check_anon_rmap(folio, page, vma, address);
1280 }
1281 if (flags & RMAP_EXCLUSIVE)
1282 SetPageAnonExclusive(page);
1283 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1284 VM_WARN_ON_FOLIO((atomic_read(&page->_mapcount) > 0 ||
1285 (folio_test_large(folio) && folio_entire_mapcount(folio) > 1)) &&
1286 PageAnonExclusive(page), folio);
1287
1288 /*
1289 * For large folio, only mlock it if it's fully mapped to VMA. It's
1290 * not easy to check whether the large folio is fully mapped to VMA
1291 * here. Only mlock normal 4K folio and leave page reclaim to handle
1292 * large folio.
1293 */
1294 if (!folio_test_large(folio))
1295 mlock_vma_folio(folio, vma);
1296}
1297
1298/**
1299 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1300 * @folio: The folio to add the mapping to.
1301 * @vma: the vm area in which the mapping is added
1302 * @address: the user virtual address mapped
1303 *
1304 * Like page_add_anon_rmap() but must only be called on *new* folios.
1305 * This means the inc-and-test can be bypassed.
1306 * The folio does not have to be locked.
1307 *
1308 * If the folio is large, it is accounted as a THP. As the folio
1309 * is new, it's assumed to be mapped exclusively by a single process.
1310 */
1311void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1312 unsigned long address)
1313{
1314 int nr;
1315
1316 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1317 __folio_set_swapbacked(folio);
1318
1319 if (likely(!folio_test_pmd_mappable(folio))) {
1320 /* increment count (starts at -1) */
1321 atomic_set(v: &folio->_mapcount, i: 0);
1322 nr = 1;
1323 } else {
1324 /* increment count (starts at -1) */
1325 atomic_set(v: &folio->_entire_mapcount, i: 0);
1326 atomic_set(v: &folio->_nr_pages_mapped, COMPOUND_MAPPED);
1327 nr = folio_nr_pages(folio);
1328 __lruvec_stat_mod_folio(folio, idx: NR_ANON_THPS, val: nr);
1329 }
1330
1331 __lruvec_stat_mod_folio(folio, idx: NR_ANON_MAPPED, val: nr);
1332 __folio_set_anon(folio, vma, address, exclusive: true);
1333 SetPageAnonExclusive(&folio->page);
1334}
1335
1336/**
1337 * folio_add_file_rmap_range - add pte mapping to page range of a folio
1338 * @folio: The folio to add the mapping to
1339 * @page: The first page to add
1340 * @nr_pages: The number of pages which will be mapped
1341 * @vma: the vm area in which the mapping is added
1342 * @compound: charge the page as compound or small page
1343 *
1344 * The page range of folio is defined by [first_page, first_page + nr_pages)
1345 *
1346 * The caller needs to hold the pte lock.
1347 */
1348void folio_add_file_rmap_range(struct folio *folio, struct page *page,
1349 unsigned int nr_pages, struct vm_area_struct *vma,
1350 bool compound)
1351{
1352 atomic_t *mapped = &folio->_nr_pages_mapped;
1353 unsigned int nr_pmdmapped = 0, first;
1354 int nr = 0;
1355
1356 VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio);
1357
1358 /* Is page being mapped by PTE? Is this its first map to be added? */
1359 if (likely(!compound)) {
1360 do {
1361 first = atomic_inc_and_test(v: &page->_mapcount);
1362 if (first && folio_test_large(folio)) {
1363 first = atomic_inc_return_relaxed(v: mapped);
1364 first = (first < COMPOUND_MAPPED);
1365 }
1366
1367 if (first)
1368 nr++;
1369 } while (page++, --nr_pages > 0);
1370 } else if (folio_test_pmd_mappable(folio)) {
1371 /* That test is redundant: it's for safety or to optimize out */
1372
1373 first = atomic_inc_and_test(v: &folio->_entire_mapcount);
1374 if (first) {
1375 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, v: mapped);
1376 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1377 nr_pmdmapped = folio_nr_pages(folio);
1378 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1379 /* Raced ahead of a remove and another add? */
1380 if (unlikely(nr < 0))
1381 nr = 0;
1382 } else {
1383 /* Raced ahead of a remove of COMPOUND_MAPPED */
1384 nr = 0;
1385 }
1386 }
1387 }
1388
1389 if (nr_pmdmapped)
1390 __lruvec_stat_mod_folio(folio, idx: folio_test_swapbacked(folio) ?
1391 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, val: nr_pmdmapped);
1392 if (nr)
1393 __lruvec_stat_mod_folio(folio, idx: NR_FILE_MAPPED, val: nr);
1394
1395 /* See comments in page_add_anon_rmap() */
1396 if (!folio_test_large(folio))
1397 mlock_vma_folio(folio, vma);
1398}
1399
1400/**
1401 * page_add_file_rmap - add pte mapping to a file page
1402 * @page: the page to add the mapping to
1403 * @vma: the vm area in which the mapping is added
1404 * @compound: charge the page as compound or small page
1405 *
1406 * The caller needs to hold the pte lock.
1407 */
1408void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1409 bool compound)
1410{
1411 struct folio *folio = page_folio(page);
1412 unsigned int nr_pages;
1413
1414 VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page);
1415
1416 if (likely(!compound))
1417 nr_pages = 1;
1418 else
1419 nr_pages = folio_nr_pages(folio);
1420
1421 folio_add_file_rmap_range(folio, page, nr_pages, vma, compound);
1422}
1423
1424/**
1425 * page_remove_rmap - take down pte mapping from a page
1426 * @page: page to remove mapping from
1427 * @vma: the vm area from which the mapping is removed
1428 * @compound: uncharge the page as compound or small page
1429 *
1430 * The caller needs to hold the pte lock.
1431 */
1432void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1433 bool compound)
1434{
1435 struct folio *folio = page_folio(page);
1436 atomic_t *mapped = &folio->_nr_pages_mapped;
1437 int nr = 0, nr_pmdmapped = 0;
1438 bool last;
1439 enum node_stat_item idx;
1440
1441 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1442
1443 /* Hugetlb pages are not counted in NR_*MAPPED */
1444 if (unlikely(folio_test_hugetlb(folio))) {
1445 /* hugetlb pages are always mapped with pmds */
1446 atomic_dec(v: &folio->_entire_mapcount);
1447 return;
1448 }
1449
1450 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1451 if (likely(!compound)) {
1452 last = atomic_add_negative(i: -1, v: &page->_mapcount);
1453 nr = last;
1454 if (last && folio_test_large(folio)) {
1455 nr = atomic_dec_return_relaxed(v: mapped);
1456 nr = (nr < COMPOUND_MAPPED);
1457 }
1458 } else if (folio_test_pmd_mappable(folio)) {
1459 /* That test is redundant: it's for safety or to optimize out */
1460
1461 last = atomic_add_negative(i: -1, v: &folio->_entire_mapcount);
1462 if (last) {
1463 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, v: mapped);
1464 if (likely(nr < COMPOUND_MAPPED)) {
1465 nr_pmdmapped = folio_nr_pages(folio);
1466 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1467 /* Raced ahead of another remove and an add? */
1468 if (unlikely(nr < 0))
1469 nr = 0;
1470 } else {
1471 /* An add of COMPOUND_MAPPED raced ahead */
1472 nr = 0;
1473 }
1474 }
1475 }
1476
1477 if (nr_pmdmapped) {
1478 if (folio_test_anon(folio))
1479 idx = NR_ANON_THPS;
1480 else if (folio_test_swapbacked(folio))
1481 idx = NR_SHMEM_PMDMAPPED;
1482 else
1483 idx = NR_FILE_PMDMAPPED;
1484 __lruvec_stat_mod_folio(folio, idx, val: -nr_pmdmapped);
1485 }
1486 if (nr) {
1487 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1488 __lruvec_stat_mod_folio(folio, idx, val: -nr);
1489
1490 /*
1491 * Queue anon THP for deferred split if at least one
1492 * page of the folio is unmapped and at least one page
1493 * is still mapped.
1494 */
1495 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1496 if (!compound || nr < nr_pmdmapped)
1497 deferred_split_folio(folio);
1498 }
1499
1500 /*
1501 * It would be tidy to reset folio_test_anon mapping when fully
1502 * unmapped, but that might overwrite a racing page_add_anon_rmap
1503 * which increments mapcount after us but sets mapping before us:
1504 * so leave the reset to free_pages_prepare, and remember that
1505 * it's only reliable while mapped.
1506 */
1507
1508 munlock_vma_folio(folio, vma);
1509}
1510
1511/*
1512 * @arg: enum ttu_flags will be passed to this argument
1513 */
1514static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1515 unsigned long address, void *arg)
1516{
1517 struct mm_struct *mm = vma->vm_mm;
1518 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1519 pte_t pteval;
1520 struct page *subpage;
1521 bool anon_exclusive, ret = true;
1522 struct mmu_notifier_range range;
1523 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1524 unsigned long pfn;
1525 unsigned long hsz = 0;
1526
1527 /*
1528 * When racing against e.g. zap_pte_range() on another cpu,
1529 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1530 * try_to_unmap() may return before page_mapped() has become false,
1531 * if page table locking is skipped: use TTU_SYNC to wait for that.
1532 */
1533 if (flags & TTU_SYNC)
1534 pvmw.flags = PVMW_SYNC;
1535
1536 if (flags & TTU_SPLIT_HUGE_PMD)
1537 split_huge_pmd_address(vma, address, freeze: false, folio);
1538
1539 /*
1540 * For THP, we have to assume the worse case ie pmd for invalidation.
1541 * For hugetlb, it could be much worse if we need to do pud
1542 * invalidation in the case of pmd sharing.
1543 *
1544 * Note that the folio can not be freed in this function as call of
1545 * try_to_unmap() must hold a reference on the folio.
1546 */
1547 range.end = vma_address_end(pvmw: &pvmw);
1548 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm: vma->vm_mm,
1549 start: address, end: range.end);
1550 if (folio_test_hugetlb(folio)) {
1551 /*
1552 * If sharing is possible, start and end will be adjusted
1553 * accordingly.
1554 */
1555 adjust_range_if_pmd_sharing_possible(vma, start: &range.start,
1556 end: &range.end);
1557
1558 /* We need the huge page size for set_huge_pte_at() */
1559 hsz = huge_page_size(h: hstate_vma(vma));
1560 }
1561 mmu_notifier_invalidate_range_start(range: &range);
1562
1563 while (page_vma_mapped_walk(pvmw: &pvmw)) {
1564 /* Unexpected PMD-mapped THP? */
1565 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1566
1567 /*
1568 * If the folio is in an mlock()d vma, we must not swap it out.
1569 */
1570 if (!(flags & TTU_IGNORE_MLOCK) &&
1571 (vma->vm_flags & VM_LOCKED)) {
1572 /* Restore the mlock which got missed */
1573 if (!folio_test_large(folio))
1574 mlock_vma_folio(folio, vma);
1575 page_vma_mapped_walk_done(pvmw: &pvmw);
1576 ret = false;
1577 break;
1578 }
1579
1580 pfn = pte_pfn(pte: ptep_get(ptep: pvmw.pte));
1581 subpage = folio_page(folio, pfn - folio_pfn(folio));
1582 address = pvmw.address;
1583 anon_exclusive = folio_test_anon(folio) &&
1584 PageAnonExclusive(page: subpage);
1585
1586 if (folio_test_hugetlb(folio)) {
1587 bool anon = folio_test_anon(folio);
1588
1589 /*
1590 * The try_to_unmap() is only passed a hugetlb page
1591 * in the case where the hugetlb page is poisoned.
1592 */
1593 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1594 /*
1595 * huge_pmd_unshare may unmap an entire PMD page.
1596 * There is no way of knowing exactly which PMDs may
1597 * be cached for this mm, so we must flush them all.
1598 * start/end were already adjusted above to cover this
1599 * range.
1600 */
1601 flush_cache_range(vma, start: range.start, end: range.end);
1602
1603 /*
1604 * To call huge_pmd_unshare, i_mmap_rwsem must be
1605 * held in write mode. Caller needs to explicitly
1606 * do this outside rmap routines.
1607 *
1608 * We also must hold hugetlb vma_lock in write mode.
1609 * Lock order dictates acquiring vma_lock BEFORE
1610 * i_mmap_rwsem. We can only try lock here and fail
1611 * if unsuccessful.
1612 */
1613 if (!anon) {
1614 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1615 if (!hugetlb_vma_trylock_write(vma)) {
1616 page_vma_mapped_walk_done(pvmw: &pvmw);
1617 ret = false;
1618 break;
1619 }
1620 if (huge_pmd_unshare(mm, vma, addr: address, ptep: pvmw.pte)) {
1621 hugetlb_vma_unlock_write(vma);
1622 flush_tlb_range(vma,
1623 range.start, range.end);
1624 /*
1625 * The ref count of the PMD page was
1626 * dropped which is part of the way map
1627 * counting is done for shared PMDs.
1628 * Return 'true' here. When there is
1629 * no other sharing, huge_pmd_unshare
1630 * returns false and we will unmap the
1631 * actual page and drop map count
1632 * to zero.
1633 */
1634 page_vma_mapped_walk_done(pvmw: &pvmw);
1635 break;
1636 }
1637 hugetlb_vma_unlock_write(vma);
1638 }
1639 pteval = huge_ptep_clear_flush(vma, addr: address, ptep: pvmw.pte);
1640 } else {
1641 flush_cache_page(vma, vmaddr: address, pfn);
1642 /* Nuke the page table entry. */
1643 if (should_defer_flush(mm, flags)) {
1644 /*
1645 * We clear the PTE but do not flush so potentially
1646 * a remote CPU could still be writing to the folio.
1647 * If the entry was previously clean then the
1648 * architecture must guarantee that a clear->dirty
1649 * transition on a cached TLB entry is written through
1650 * and traps if the PTE is unmapped.
1651 */
1652 pteval = ptep_get_and_clear(mm, addr: address, ptep: pvmw.pte);
1653
1654 set_tlb_ubc_flush_pending(mm, pteval, uaddr: address);
1655 } else {
1656 pteval = ptep_clear_flush(vma, address, ptep: pvmw.pte);
1657 }
1658 }
1659
1660 /*
1661 * Now the pte is cleared. If this pte was uffd-wp armed,
1662 * we may want to replace a none pte with a marker pte if
1663 * it's file-backed, so we don't lose the tracking info.
1664 */
1665 pte_install_uffd_wp_if_needed(vma, addr: address, pte: pvmw.pte, pteval);
1666
1667 /* Set the dirty flag on the folio now the pte is gone. */
1668 if (pte_dirty(pte: pteval))
1669 folio_mark_dirty(folio);
1670
1671 /* Update high watermark before we lower rss */
1672 update_hiwater_rss(mm);
1673
1674 if (PageHWPoison(page: subpage) && (flags & TTU_HWPOISON)) {
1675 pteval = swp_entry_to_pte(entry: make_hwpoison_entry(page: subpage));
1676 if (folio_test_hugetlb(folio)) {
1677 hugetlb_count_sub(l: folio_nr_pages(folio), mm);
1678 set_huge_pte_at(mm, addr: address, ptep: pvmw.pte, pte: pteval,
1679 sz: hsz);
1680 } else {
1681 dec_mm_counter(mm, member: mm_counter(page: &folio->page));
1682 set_pte_at(mm, address, pvmw.pte, pteval);
1683 }
1684
1685 } else if (pte_unused(pte: pteval) && !userfaultfd_armed(vma)) {
1686 /*
1687 * The guest indicated that the page content is of no
1688 * interest anymore. Simply discard the pte, vmscan
1689 * will take care of the rest.
1690 * A future reference will then fault in a new zero
1691 * page. When userfaultfd is active, we must not drop
1692 * this page though, as its main user (postcopy
1693 * migration) will not expect userfaults on already
1694 * copied pages.
1695 */
1696 dec_mm_counter(mm, member: mm_counter(page: &folio->page));
1697 } else if (folio_test_anon(folio)) {
1698 swp_entry_t entry = page_swap_entry(page: subpage);
1699 pte_t swp_pte;
1700 /*
1701 * Store the swap location in the pte.
1702 * See handle_pte_fault() ...
1703 */
1704 if (unlikely(folio_test_swapbacked(folio) !=
1705 folio_test_swapcache(folio))) {
1706 WARN_ON_ONCE(1);
1707 ret = false;
1708 page_vma_mapped_walk_done(pvmw: &pvmw);
1709 break;
1710 }
1711
1712 /* MADV_FREE page check */
1713 if (!folio_test_swapbacked(folio)) {
1714 int ref_count, map_count;
1715
1716 /*
1717 * Synchronize with gup_pte_range():
1718 * - clear PTE; barrier; read refcount
1719 * - inc refcount; barrier; read PTE
1720 */
1721 smp_mb();
1722
1723 ref_count = folio_ref_count(folio);
1724 map_count = folio_mapcount(folio);
1725
1726 /*
1727 * Order reads for page refcount and dirty flag
1728 * (see comments in __remove_mapping()).
1729 */
1730 smp_rmb();
1731
1732 /*
1733 * The only page refs must be one from isolation
1734 * plus the rmap(s) (dropped by discard:).
1735 */
1736 if (ref_count == 1 + map_count &&
1737 !folio_test_dirty(folio)) {
1738 dec_mm_counter(mm, member: MM_ANONPAGES);
1739 goto discard;
1740 }
1741
1742 /*
1743 * If the folio was redirtied, it cannot be
1744 * discarded. Remap the page to page table.
1745 */
1746 set_pte_at(mm, address, pvmw.pte, pteval);
1747 folio_set_swapbacked(folio);
1748 ret = false;
1749 page_vma_mapped_walk_done(pvmw: &pvmw);
1750 break;
1751 }
1752
1753 if (swap_duplicate(entry) < 0) {
1754 set_pte_at(mm, address, pvmw.pte, pteval);
1755 ret = false;
1756 page_vma_mapped_walk_done(pvmw: &pvmw);
1757 break;
1758 }
1759 if (arch_unmap_one(mm, vma, addr: address, orig_pte: pteval) < 0) {
1760 swap_free(entry);
1761 set_pte_at(mm, address, pvmw.pte, pteval);
1762 ret = false;
1763 page_vma_mapped_walk_done(pvmw: &pvmw);
1764 break;
1765 }
1766
1767 /* See page_try_share_anon_rmap(): clear PTE first. */
1768 if (anon_exclusive &&
1769 page_try_share_anon_rmap(page: subpage)) {
1770 swap_free(entry);
1771 set_pte_at(mm, address, pvmw.pte, pteval);
1772 ret = false;
1773 page_vma_mapped_walk_done(pvmw: &pvmw);
1774 break;
1775 }
1776 if (list_empty(head: &mm->mmlist)) {
1777 spin_lock(lock: &mmlist_lock);
1778 if (list_empty(head: &mm->mmlist))
1779 list_add(new: &mm->mmlist, head: &init_mm.mmlist);
1780 spin_unlock(lock: &mmlist_lock);
1781 }
1782 dec_mm_counter(mm, member: MM_ANONPAGES);
1783 inc_mm_counter(mm, member: MM_SWAPENTS);
1784 swp_pte = swp_entry_to_pte(entry);
1785 if (anon_exclusive)
1786 swp_pte = pte_swp_mkexclusive(pte: swp_pte);
1787 if (pte_soft_dirty(pte: pteval))
1788 swp_pte = pte_swp_mksoft_dirty(pte: swp_pte);
1789 if (pte_uffd_wp(pte: pteval))
1790 swp_pte = pte_swp_mkuffd_wp(pte: swp_pte);
1791 set_pte_at(mm, address, pvmw.pte, swp_pte);
1792 } else {
1793 /*
1794 * This is a locked file-backed folio,
1795 * so it cannot be removed from the page
1796 * cache and replaced by a new folio before
1797 * mmu_notifier_invalidate_range_end, so no
1798 * concurrent thread might update its page table
1799 * to point at a new folio while a device is
1800 * still using this folio.
1801 *
1802 * See Documentation/mm/mmu_notifier.rst
1803 */
1804 dec_mm_counter(mm, member: mm_counter_file(page: &folio->page));
1805 }
1806discard:
1807 page_remove_rmap(page: subpage, vma, compound: folio_test_hugetlb(folio));
1808 if (vma->vm_flags & VM_LOCKED)
1809 mlock_drain_local();
1810 folio_put(folio);
1811 }
1812
1813 mmu_notifier_invalidate_range_end(range: &range);
1814
1815 return ret;
1816}
1817
1818static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1819{
1820 return vma_is_temporary_stack(vma);
1821}
1822
1823static int folio_not_mapped(struct folio *folio)
1824{
1825 return !folio_mapped(folio);
1826}
1827
1828/**
1829 * try_to_unmap - Try to remove all page table mappings to a folio.
1830 * @folio: The folio to unmap.
1831 * @flags: action and flags
1832 *
1833 * Tries to remove all the page table entries which are mapping this
1834 * folio. It is the caller's responsibility to check if the folio is
1835 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1836 *
1837 * Context: Caller must hold the folio lock.
1838 */
1839void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1840{
1841 struct rmap_walk_control rwc = {
1842 .rmap_one = try_to_unmap_one,
1843 .arg = (void *)flags,
1844 .done = folio_not_mapped,
1845 .anon_lock = folio_lock_anon_vma_read,
1846 };
1847
1848 if (flags & TTU_RMAP_LOCKED)
1849 rmap_walk_locked(folio, rwc: &rwc);
1850 else
1851 rmap_walk(folio, rwc: &rwc);
1852}
1853
1854/*
1855 * @arg: enum ttu_flags will be passed to this argument.
1856 *
1857 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1858 * containing migration entries.
1859 */
1860static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1861 unsigned long address, void *arg)
1862{
1863 struct mm_struct *mm = vma->vm_mm;
1864 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1865 pte_t pteval;
1866 struct page *subpage;
1867 bool anon_exclusive, ret = true;
1868 struct mmu_notifier_range range;
1869 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1870 unsigned long pfn;
1871 unsigned long hsz = 0;
1872
1873 /*
1874 * When racing against e.g. zap_pte_range() on another cpu,
1875 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1876 * try_to_migrate() may return before page_mapped() has become false,
1877 * if page table locking is skipped: use TTU_SYNC to wait for that.
1878 */
1879 if (flags & TTU_SYNC)
1880 pvmw.flags = PVMW_SYNC;
1881
1882 /*
1883 * unmap_page() in mm/huge_memory.c is the only user of migration with
1884 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1885 */
1886 if (flags & TTU_SPLIT_HUGE_PMD)
1887 split_huge_pmd_address(vma, address, freeze: true, folio);
1888
1889 /*
1890 * For THP, we have to assume the worse case ie pmd for invalidation.
1891 * For hugetlb, it could be much worse if we need to do pud
1892 * invalidation in the case of pmd sharing.
1893 *
1894 * Note that the page can not be free in this function as call of
1895 * try_to_unmap() must hold a reference on the page.
1896 */
1897 range.end = vma_address_end(pvmw: &pvmw);
1898 mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm: vma->vm_mm,
1899 start: address, end: range.end);
1900 if (folio_test_hugetlb(folio)) {
1901 /*
1902 * If sharing is possible, start and end will be adjusted
1903 * accordingly.
1904 */
1905 adjust_range_if_pmd_sharing_possible(vma, start: &range.start,
1906 end: &range.end);
1907
1908 /* We need the huge page size for set_huge_pte_at() */
1909 hsz = huge_page_size(h: hstate_vma(vma));
1910 }
1911 mmu_notifier_invalidate_range_start(range: &range);
1912
1913 while (page_vma_mapped_walk(pvmw: &pvmw)) {
1914#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1915 /* PMD-mapped THP migration entry */
1916 if (!pvmw.pte) {
1917 subpage = folio_page(folio,
1918 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1919 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1920 !folio_test_pmd_mappable(folio), folio);
1921
1922 if (set_pmd_migration_entry(pvmw: &pvmw, page: subpage)) {
1923 ret = false;
1924 page_vma_mapped_walk_done(pvmw: &pvmw);
1925 break;
1926 }
1927 continue;
1928 }
1929#endif
1930
1931 /* Unexpected PMD-mapped THP? */
1932 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1933
1934 pfn = pte_pfn(pte: ptep_get(ptep: pvmw.pte));
1935
1936 if (folio_is_zone_device(folio)) {
1937 /*
1938 * Our PTE is a non-present device exclusive entry and
1939 * calculating the subpage as for the common case would
1940 * result in an invalid pointer.
1941 *
1942 * Since only PAGE_SIZE pages can currently be
1943 * migrated, just set it to page. This will need to be
1944 * changed when hugepage migrations to device private
1945 * memory are supported.
1946 */
1947 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1948 subpage = &folio->page;
1949 } else {
1950 subpage = folio_page(folio, pfn - folio_pfn(folio));
1951 }
1952 address = pvmw.address;
1953 anon_exclusive = folio_test_anon(folio) &&
1954 PageAnonExclusive(page: subpage);
1955
1956 if (folio_test_hugetlb(folio)) {
1957 bool anon = folio_test_anon(folio);
1958
1959 /*
1960 * huge_pmd_unshare may unmap an entire PMD page.
1961 * There is no way of knowing exactly which PMDs may
1962 * be cached for this mm, so we must flush them all.
1963 * start/end were already adjusted above to cover this
1964 * range.
1965 */
1966 flush_cache_range(vma, start: range.start, end: range.end);
1967
1968 /*
1969 * To call huge_pmd_unshare, i_mmap_rwsem must be
1970 * held in write mode. Caller needs to explicitly
1971 * do this outside rmap routines.
1972 *
1973 * We also must hold hugetlb vma_lock in write mode.
1974 * Lock order dictates acquiring vma_lock BEFORE
1975 * i_mmap_rwsem. We can only try lock here and
1976 * fail if unsuccessful.
1977 */
1978 if (!anon) {
1979 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1980 if (!hugetlb_vma_trylock_write(vma)) {
1981 page_vma_mapped_walk_done(pvmw: &pvmw);
1982 ret = false;
1983 break;
1984 }
1985 if (huge_pmd_unshare(mm, vma, addr: address, ptep: pvmw.pte)) {
1986 hugetlb_vma_unlock_write(vma);
1987 flush_tlb_range(vma,
1988 range.start, range.end);
1989
1990 /*
1991 * The ref count of the PMD page was
1992 * dropped which is part of the way map
1993 * counting is done for shared PMDs.
1994 * Return 'true' here. When there is
1995 * no other sharing, huge_pmd_unshare
1996 * returns false and we will unmap the
1997 * actual page and drop map count
1998 * to zero.
1999 */
2000 page_vma_mapped_walk_done(pvmw: &pvmw);
2001 break;
2002 }
2003 hugetlb_vma_unlock_write(vma);
2004 }
2005 /* Nuke the hugetlb page table entry */
2006 pteval = huge_ptep_clear_flush(vma, addr: address, ptep: pvmw.pte);
2007 } else {
2008 flush_cache_page(vma, vmaddr: address, pfn);
2009 /* Nuke the page table entry. */
2010 if (should_defer_flush(mm, flags)) {
2011 /*
2012 * We clear the PTE but do not flush so potentially
2013 * a remote CPU could still be writing to the folio.
2014 * If the entry was previously clean then the
2015 * architecture must guarantee that a clear->dirty
2016 * transition on a cached TLB entry is written through
2017 * and traps if the PTE is unmapped.
2018 */
2019 pteval = ptep_get_and_clear(mm, addr: address, ptep: pvmw.pte);
2020
2021 set_tlb_ubc_flush_pending(mm, pteval, uaddr: address);
2022 } else {
2023 pteval = ptep_clear_flush(vma, address, ptep: pvmw.pte);
2024 }
2025 }
2026
2027 /* Set the dirty flag on the folio now the pte is gone. */
2028 if (pte_dirty(pte: pteval))
2029 folio_mark_dirty(folio);
2030
2031 /* Update high watermark before we lower rss */
2032 update_hiwater_rss(mm);
2033
2034 if (folio_is_device_private(folio)) {
2035 unsigned long pfn = folio_pfn(folio);
2036 swp_entry_t entry;
2037 pte_t swp_pte;
2038
2039 if (anon_exclusive)
2040 BUG_ON(page_try_share_anon_rmap(subpage));
2041
2042 /*
2043 * Store the pfn of the page in a special migration
2044 * pte. do_swap_page() will wait until the migration
2045 * pte is removed and then restart fault handling.
2046 */
2047 entry = pte_to_swp_entry(pte: pteval);
2048 if (is_writable_device_private_entry(entry))
2049 entry = make_writable_migration_entry(offset: pfn);
2050 else if (anon_exclusive)
2051 entry = make_readable_exclusive_migration_entry(offset: pfn);
2052 else
2053 entry = make_readable_migration_entry(offset: pfn);
2054 swp_pte = swp_entry_to_pte(entry);
2055
2056 /*
2057 * pteval maps a zone device page and is therefore
2058 * a swap pte.
2059 */
2060 if (pte_swp_soft_dirty(pte: pteval))
2061 swp_pte = pte_swp_mksoft_dirty(pte: swp_pte);
2062 if (pte_swp_uffd_wp(pte: pteval))
2063 swp_pte = pte_swp_mkuffd_wp(pte: swp_pte);
2064 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2065 trace_set_migration_pte(addr: pvmw.address, pte: pte_val(pte: swp_pte),
2066 order: compound_order(page: &folio->page));
2067 /*
2068 * No need to invalidate here it will synchronize on
2069 * against the special swap migration pte.
2070 */
2071 } else if (PageHWPoison(page: subpage)) {
2072 pteval = swp_entry_to_pte(entry: make_hwpoison_entry(page: subpage));
2073 if (folio_test_hugetlb(folio)) {
2074 hugetlb_count_sub(l: folio_nr_pages(folio), mm);
2075 set_huge_pte_at(mm, addr: address, ptep: pvmw.pte, pte: pteval,
2076 sz: hsz);
2077 } else {
2078 dec_mm_counter(mm, member: mm_counter(page: &folio->page));
2079 set_pte_at(mm, address, pvmw.pte, pteval);
2080 }
2081
2082 } else if (pte_unused(pte: pteval) && !userfaultfd_armed(vma)) {
2083 /*
2084 * The guest indicated that the page content is of no
2085 * interest anymore. Simply discard the pte, vmscan
2086 * will take care of the rest.
2087 * A future reference will then fault in a new zero
2088 * page. When userfaultfd is active, we must not drop
2089 * this page though, as its main user (postcopy
2090 * migration) will not expect userfaults on already
2091 * copied pages.
2092 */
2093 dec_mm_counter(mm, member: mm_counter(page: &folio->page));
2094 } else {
2095 swp_entry_t entry;
2096 pte_t swp_pte;
2097
2098 if (arch_unmap_one(mm, vma, addr: address, orig_pte: pteval) < 0) {
2099 if (folio_test_hugetlb(folio))
2100 set_huge_pte_at(mm, addr: address, ptep: pvmw.pte,
2101 pte: pteval, sz: hsz);
2102 else
2103 set_pte_at(mm, address, pvmw.pte, pteval);
2104 ret = false;
2105 page_vma_mapped_walk_done(pvmw: &pvmw);
2106 break;
2107 }
2108 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2109 !anon_exclusive, subpage);
2110
2111 /* See page_try_share_anon_rmap(): clear PTE first. */
2112 if (anon_exclusive &&
2113 page_try_share_anon_rmap(page: subpage)) {
2114 if (folio_test_hugetlb(folio))
2115 set_huge_pte_at(mm, addr: address, ptep: pvmw.pte,
2116 pte: pteval, sz: hsz);
2117 else
2118 set_pte_at(mm, address, pvmw.pte, pteval);
2119 ret = false;
2120 page_vma_mapped_walk_done(pvmw: &pvmw);
2121 break;
2122 }
2123
2124 /*
2125 * Store the pfn of the page in a special migration
2126 * pte. do_swap_page() will wait until the migration
2127 * pte is removed and then restart fault handling.
2128 */
2129 if (pte_write(pte: pteval))
2130 entry = make_writable_migration_entry(
2131 page_to_pfn(subpage));
2132 else if (anon_exclusive)
2133 entry = make_readable_exclusive_migration_entry(
2134 page_to_pfn(subpage));
2135 else
2136 entry = make_readable_migration_entry(
2137 page_to_pfn(subpage));
2138 if (pte_young(pte: pteval))
2139 entry = make_migration_entry_young(entry);
2140 if (pte_dirty(pte: pteval))
2141 entry = make_migration_entry_dirty(entry);
2142 swp_pte = swp_entry_to_pte(entry);
2143 if (pte_soft_dirty(pte: pteval))
2144 swp_pte = pte_swp_mksoft_dirty(pte: swp_pte);
2145 if (pte_uffd_wp(pte: pteval))
2146 swp_pte = pte_swp_mkuffd_wp(pte: swp_pte);
2147 if (folio_test_hugetlb(folio))
2148 set_huge_pte_at(mm, addr: address, ptep: pvmw.pte, pte: swp_pte,
2149 sz: hsz);
2150 else
2151 set_pte_at(mm, address, pvmw.pte, swp_pte);
2152 trace_set_migration_pte(addr: address, pte: pte_val(pte: swp_pte),
2153 order: compound_order(page: &folio->page));
2154 /*
2155 * No need to invalidate here it will synchronize on
2156 * against the special swap migration pte.
2157 */
2158 }
2159
2160 page_remove_rmap(page: subpage, vma, compound: folio_test_hugetlb(folio));
2161 if (vma->vm_flags & VM_LOCKED)
2162 mlock_drain_local();
2163 folio_put(folio);
2164 }
2165
2166 mmu_notifier_invalidate_range_end(range: &range);
2167
2168 return ret;
2169}
2170
2171/**
2172 * try_to_migrate - try to replace all page table mappings with swap entries
2173 * @folio: the folio to replace page table entries for
2174 * @flags: action and flags
2175 *
2176 * Tries to remove all the page table entries which are mapping this folio and
2177 * replace them with special swap entries. Caller must hold the folio lock.
2178 */
2179void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2180{
2181 struct rmap_walk_control rwc = {
2182 .rmap_one = try_to_migrate_one,
2183 .arg = (void *)flags,
2184 .done = folio_not_mapped,
2185 .anon_lock = folio_lock_anon_vma_read,
2186 };
2187
2188 /*
2189 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2190 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2191 */
2192 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2193 TTU_SYNC | TTU_BATCH_FLUSH)))
2194 return;
2195
2196 if (folio_is_zone_device(folio) &&
2197 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2198 return;
2199
2200 /*
2201 * During exec, a temporary VMA is setup and later moved.
2202 * The VMA is moved under the anon_vma lock but not the
2203 * page tables leading to a race where migration cannot
2204 * find the migration ptes. Rather than increasing the
2205 * locking requirements of exec(), migration skips
2206 * temporary VMAs until after exec() completes.
2207 */
2208 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2209 rwc.invalid_vma = invalid_migration_vma;
2210
2211 if (flags & TTU_RMAP_LOCKED)
2212 rmap_walk_locked(folio, rwc: &rwc);
2213 else
2214 rmap_walk(folio, rwc: &rwc);
2215}
2216
2217#ifdef CONFIG_DEVICE_PRIVATE
2218struct make_exclusive_args {
2219 struct mm_struct *mm;
2220 unsigned long address;
2221 void *owner;
2222 bool valid;
2223};
2224
2225static bool page_make_device_exclusive_one(struct folio *folio,
2226 struct vm_area_struct *vma, unsigned long address, void *priv)
2227{
2228 struct mm_struct *mm = vma->vm_mm;
2229 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2230 struct make_exclusive_args *args = priv;
2231 pte_t pteval;
2232 struct page *subpage;
2233 bool ret = true;
2234 struct mmu_notifier_range range;
2235 swp_entry_t entry;
2236 pte_t swp_pte;
2237 pte_t ptent;
2238
2239 mmu_notifier_range_init_owner(range: &range, event: MMU_NOTIFY_EXCLUSIVE, flags: 0,
2240 mm: vma->vm_mm, start: address, min(vma->vm_end,
2241 address + folio_size(folio)),
2242 owner: args->owner);
2243 mmu_notifier_invalidate_range_start(range: &range);
2244
2245 while (page_vma_mapped_walk(pvmw: &pvmw)) {
2246 /* Unexpected PMD-mapped THP? */
2247 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2248
2249 ptent = ptep_get(ptep: pvmw.pte);
2250 if (!pte_present(a: ptent)) {
2251 ret = false;
2252 page_vma_mapped_walk_done(pvmw: &pvmw);
2253 break;
2254 }
2255
2256 subpage = folio_page(folio,
2257 pte_pfn(ptent) - folio_pfn(folio));
2258 address = pvmw.address;
2259
2260 /* Nuke the page table entry. */
2261 flush_cache_page(vma, vmaddr: address, pfn: pte_pfn(pte: ptent));
2262 pteval = ptep_clear_flush(vma, address, ptep: pvmw.pte);
2263
2264 /* Set the dirty flag on the folio now the pte is gone. */
2265 if (pte_dirty(pte: pteval))
2266 folio_mark_dirty(folio);
2267
2268 /*
2269 * Check that our target page is still mapped at the expected
2270 * address.
2271 */
2272 if (args->mm == mm && args->address == address &&
2273 pte_write(pte: pteval))
2274 args->valid = true;
2275
2276 /*
2277 * Store the pfn of the page in a special migration
2278 * pte. do_swap_page() will wait until the migration
2279 * pte is removed and then restart fault handling.
2280 */
2281 if (pte_write(pte: pteval))
2282 entry = make_writable_device_exclusive_entry(
2283 page_to_pfn(subpage));
2284 else
2285 entry = make_readable_device_exclusive_entry(
2286 page_to_pfn(subpage));
2287 swp_pte = swp_entry_to_pte(entry);
2288 if (pte_soft_dirty(pte: pteval))
2289 swp_pte = pte_swp_mksoft_dirty(pte: swp_pte);
2290 if (pte_uffd_wp(pte: pteval))
2291 swp_pte = pte_swp_mkuffd_wp(pte: swp_pte);
2292
2293 set_pte_at(mm, address, pvmw.pte, swp_pte);
2294
2295 /*
2296 * There is a reference on the page for the swap entry which has
2297 * been removed, so shouldn't take another.
2298 */
2299 page_remove_rmap(page: subpage, vma, compound: false);
2300 }
2301
2302 mmu_notifier_invalidate_range_end(range: &range);
2303
2304 return ret;
2305}
2306
2307/**
2308 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2309 * @folio: The folio to replace page table entries for.
2310 * @mm: The mm_struct where the folio is expected to be mapped.
2311 * @address: Address where the folio is expected to be mapped.
2312 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2313 *
2314 * Tries to remove all the page table entries which are mapping this
2315 * folio and replace them with special device exclusive swap entries to
2316 * grant a device exclusive access to the folio.
2317 *
2318 * Context: Caller must hold the folio lock.
2319 * Return: false if the page is still mapped, or if it could not be unmapped
2320 * from the expected address. Otherwise returns true (success).
2321 */
2322static bool folio_make_device_exclusive(struct folio *folio,
2323 struct mm_struct *mm, unsigned long address, void *owner)
2324{
2325 struct make_exclusive_args args = {
2326 .mm = mm,
2327 .address = address,
2328 .owner = owner,
2329 .valid = false,
2330 };
2331 struct rmap_walk_control rwc = {
2332 .rmap_one = page_make_device_exclusive_one,
2333 .done = folio_not_mapped,
2334 .anon_lock = folio_lock_anon_vma_read,
2335 .arg = &args,
2336 };
2337
2338 /*
2339 * Restrict to anonymous folios for now to avoid potential writeback
2340 * issues.
2341 */
2342 if (!folio_test_anon(folio))
2343 return false;
2344
2345 rmap_walk(folio, rwc: &rwc);
2346
2347 return args.valid && !folio_mapcount(folio);
2348}
2349
2350/**
2351 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2352 * @mm: mm_struct of associated target process
2353 * @start: start of the region to mark for exclusive device access
2354 * @end: end address of region
2355 * @pages: returns the pages which were successfully marked for exclusive access
2356 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2357 *
2358 * Returns: number of pages found in the range by GUP. A page is marked for
2359 * exclusive access only if the page pointer is non-NULL.
2360 *
2361 * This function finds ptes mapping page(s) to the given address range, locks
2362 * them and replaces mappings with special swap entries preventing userspace CPU
2363 * access. On fault these entries are replaced with the original mapping after
2364 * calling MMU notifiers.
2365 *
2366 * A driver using this to program access from a device must use a mmu notifier
2367 * critical section to hold a device specific lock during programming. Once
2368 * programming is complete it should drop the page lock and reference after
2369 * which point CPU access to the page will revoke the exclusive access.
2370 */
2371int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2372 unsigned long end, struct page **pages,
2373 void *owner)
2374{
2375 long npages = (end - start) >> PAGE_SHIFT;
2376 long i;
2377
2378 npages = get_user_pages_remote(mm, start, nr_pages: npages,
2379 gup_flags: FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2380 pages, NULL);
2381 if (npages < 0)
2382 return npages;
2383
2384 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2385 struct folio *folio = page_folio(pages[i]);
2386 if (PageTail(page: pages[i]) || !folio_trylock(folio)) {
2387 folio_put(folio);
2388 pages[i] = NULL;
2389 continue;
2390 }
2391
2392 if (!folio_make_device_exclusive(folio, mm, address: start, owner)) {
2393 folio_unlock(folio);
2394 folio_put(folio);
2395 pages[i] = NULL;
2396 }
2397 }
2398
2399 return npages;
2400}
2401EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2402#endif
2403
2404void __put_anon_vma(struct anon_vma *anon_vma)
2405{
2406 struct anon_vma *root = anon_vma->root;
2407
2408 anon_vma_free(anon_vma);
2409 if (root != anon_vma && atomic_dec_and_test(v: &root->refcount))
2410 anon_vma_free(anon_vma: root);
2411}
2412
2413static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2414 struct rmap_walk_control *rwc)
2415{
2416 struct anon_vma *anon_vma;
2417
2418 if (rwc->anon_lock)
2419 return rwc->anon_lock(folio, rwc);
2420
2421 /*
2422 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2423 * because that depends on page_mapped(); but not all its usages
2424 * are holding mmap_lock. Users without mmap_lock are required to
2425 * take a reference count to prevent the anon_vma disappearing
2426 */
2427 anon_vma = folio_anon_vma(folio);
2428 if (!anon_vma)
2429 return NULL;
2430
2431 if (anon_vma_trylock_read(anon_vma))
2432 goto out;
2433
2434 if (rwc->try_lock) {
2435 anon_vma = NULL;
2436 rwc->contended = true;
2437 goto out;
2438 }
2439
2440 anon_vma_lock_read(anon_vma);
2441out:
2442 return anon_vma;
2443}
2444
2445/*
2446 * rmap_walk_anon - do something to anonymous page using the object-based
2447 * rmap method
2448 * @folio: the folio to be handled
2449 * @rwc: control variable according to each walk type
2450 * @locked: caller holds relevant rmap lock
2451 *
2452 * Find all the mappings of a folio using the mapping pointer and the vma
2453 * chains contained in the anon_vma struct it points to.
2454 */
2455static void rmap_walk_anon(struct folio *folio,
2456 struct rmap_walk_control *rwc, bool locked)
2457{
2458 struct anon_vma *anon_vma;
2459 pgoff_t pgoff_start, pgoff_end;
2460 struct anon_vma_chain *avc;
2461
2462 if (locked) {
2463 anon_vma = folio_anon_vma(folio);
2464 /* anon_vma disappear under us? */
2465 VM_BUG_ON_FOLIO(!anon_vma, folio);
2466 } else {
2467 anon_vma = rmap_walk_anon_lock(folio, rwc);
2468 }
2469 if (!anon_vma)
2470 return;
2471
2472 pgoff_start = folio_pgoff(folio);
2473 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2474 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2475 pgoff_start, pgoff_end) {
2476 struct vm_area_struct *vma = avc->vma;
2477 unsigned long address = vma_address(page: &folio->page, vma);
2478
2479 VM_BUG_ON_VMA(address == -EFAULT, vma);
2480 cond_resched();
2481
2482 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2483 continue;
2484
2485 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2486 break;
2487 if (rwc->done && rwc->done(folio))
2488 break;
2489 }
2490
2491 if (!locked)
2492 anon_vma_unlock_read(anon_vma);
2493}
2494
2495/*
2496 * rmap_walk_file - do something to file page using the object-based rmap method
2497 * @folio: the folio to be handled
2498 * @rwc: control variable according to each walk type
2499 * @locked: caller holds relevant rmap lock
2500 *
2501 * Find all the mappings of a folio using the mapping pointer and the vma chains
2502 * contained in the address_space struct it points to.
2503 */
2504static void rmap_walk_file(struct folio *folio,
2505 struct rmap_walk_control *rwc, bool locked)
2506{
2507 struct address_space *mapping = folio_mapping(folio);
2508 pgoff_t pgoff_start, pgoff_end;
2509 struct vm_area_struct *vma;
2510
2511 /*
2512 * The page lock not only makes sure that page->mapping cannot
2513 * suddenly be NULLified by truncation, it makes sure that the
2514 * structure at mapping cannot be freed and reused yet,
2515 * so we can safely take mapping->i_mmap_rwsem.
2516 */
2517 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2518
2519 if (!mapping)
2520 return;
2521
2522 pgoff_start = folio_pgoff(folio);
2523 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2524 if (!locked) {
2525 if (i_mmap_trylock_read(mapping))
2526 goto lookup;
2527
2528 if (rwc->try_lock) {
2529 rwc->contended = true;
2530 return;
2531 }
2532
2533 i_mmap_lock_read(mapping);
2534 }
2535lookup:
2536 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2537 pgoff_start, pgoff_end) {
2538 unsigned long address = vma_address(page: &folio->page, vma);
2539
2540 VM_BUG_ON_VMA(address == -EFAULT, vma);
2541 cond_resched();
2542
2543 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2544 continue;
2545
2546 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2547 goto done;
2548 if (rwc->done && rwc->done(folio))
2549 goto done;
2550 }
2551
2552done:
2553 if (!locked)
2554 i_mmap_unlock_read(mapping);
2555}
2556
2557void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2558{
2559 if (unlikely(folio_test_ksm(folio)))
2560 rmap_walk_ksm(folio, rwc);
2561 else if (folio_test_anon(folio))
2562 rmap_walk_anon(folio, rwc, locked: false);
2563 else
2564 rmap_walk_file(folio, rwc, locked: false);
2565}
2566
2567/* Like rmap_walk, but caller holds relevant rmap lock */
2568void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2569{
2570 /* no ksm support for now */
2571 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2572 if (folio_test_anon(folio))
2573 rmap_walk_anon(folio, rwc, locked: true);
2574 else
2575 rmap_walk_file(folio, rwc, locked: true);
2576}
2577
2578#ifdef CONFIG_HUGETLB_PAGE
2579/*
2580 * The following two functions are for anonymous (private mapped) hugepages.
2581 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2582 * and no lru code, because we handle hugepages differently from common pages.
2583 *
2584 * RMAP_COMPOUND is ignored.
2585 */
2586void hugepage_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2587 unsigned long address, rmap_t flags)
2588{
2589 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2590
2591 atomic_inc(v: &folio->_entire_mapcount);
2592 if (flags & RMAP_EXCLUSIVE)
2593 SetPageAnonExclusive(&folio->page);
2594 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2595 PageAnonExclusive(&folio->page), folio);
2596}
2597
2598void hugepage_add_new_anon_rmap(struct folio *folio,
2599 struct vm_area_struct *vma, unsigned long address)
2600{
2601 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2602 /* increment count (starts at -1) */
2603 atomic_set(v: &folio->_entire_mapcount, i: 0);
2604 folio_clear_hugetlb_restore_reserve(folio);
2605 __folio_set_anon(folio, vma, address, exclusive: true);
2606 SetPageAnonExclusive(&folio->page);
2607}
2608#endif /* CONFIG_HUGETLB_PAGE */
2609

source code of linux/mm/rmap.c