1 | //===- ASTVector.h - Vector that uses ASTContext for allocation ---*- C++ -*-=// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides ASTVector, a vector ADT whose contents are |
10 | // allocated using the allocator associated with an ASTContext.. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | // FIXME: Most of this is copy-and-paste from BumpVector.h and SmallVector.h. |
15 | // We can refactor this core logic into something common. |
16 | |
17 | #ifndef LLVM_CLANG_AST_ASTVECTOR_H |
18 | #define LLVM_CLANG_AST_ASTVECTOR_H |
19 | |
20 | #include "clang/AST/ASTContextAllocate.h" |
21 | #include "llvm/ADT/PointerIntPair.h" |
22 | #include <algorithm> |
23 | #include <cassert> |
24 | #include <cstddef> |
25 | #include <cstring> |
26 | #include <iterator> |
27 | #include <memory> |
28 | #include <type_traits> |
29 | #include <utility> |
30 | |
31 | namespace clang { |
32 | |
33 | class ASTContext; |
34 | |
35 | template<typename T> |
36 | class ASTVector { |
37 | private: |
38 | T *Begin = nullptr; |
39 | T *End = nullptr; |
40 | llvm::PointerIntPair<T *, 1, bool> Capacity; |
41 | |
42 | void setEnd(T *P) { this->End = P; } |
43 | |
44 | protected: |
45 | // Make a tag bit available to users of this class. |
46 | // FIXME: This is a horrible hack. |
47 | bool getTag() const { return Capacity.getInt(); } |
48 | void setTag(bool B) { Capacity.setInt(B); } |
49 | |
50 | public: |
51 | // Default ctor - Initialize to empty. |
52 | ASTVector() : Capacity(nullptr, false) {} |
53 | |
54 | ASTVector(ASTVector &&O) : Begin(O.Begin), End(O.End), Capacity(O.Capacity) { |
55 | O.Begin = O.End = nullptr; |
56 | O.Capacity.setPointer(nullptr); |
57 | O.Capacity.setInt(false); |
58 | } |
59 | |
60 | ASTVector(const ASTContext &C, unsigned N) : Capacity(nullptr, false) { |
61 | reserve(C, N); |
62 | } |
63 | |
64 | ASTVector &operator=(ASTVector &&RHS) { |
65 | ASTVector O(std::move(RHS)); |
66 | |
67 | using std::swap; |
68 | |
69 | swap(Begin, O.Begin); |
70 | swap(End, O.End); |
71 | swap(Capacity, O.Capacity); |
72 | return *this; |
73 | } |
74 | |
75 | ~ASTVector() { |
76 | if (std::is_class<T>::value) { |
77 | // Destroy the constructed elements in the vector. |
78 | destroy_range(S: Begin, E: End); |
79 | } |
80 | } |
81 | |
82 | using size_type = size_t; |
83 | using difference_type = ptrdiff_t; |
84 | using value_type = T; |
85 | using iterator = T *; |
86 | using const_iterator = const T *; |
87 | |
88 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
89 | using reverse_iterator = std::reverse_iterator<iterator>; |
90 | |
91 | using reference = T &; |
92 | using const_reference = const T &; |
93 | using pointer = T *; |
94 | using const_pointer = const T *; |
95 | |
96 | // forward iterator creation methods. |
97 | iterator begin() { return Begin; } |
98 | const_iterator begin() const { return Begin; } |
99 | iterator end() { return End; } |
100 | const_iterator end() const { return End; } |
101 | |
102 | // reverse iterator creation methods. |
103 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
104 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
105 | reverse_iterator rend() { return reverse_iterator(begin()); } |
106 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
107 | |
108 | bool empty() const { return Begin == End; } |
109 | size_type size() const { return End-Begin; } |
110 | |
111 | reference operator[](unsigned idx) { |
112 | assert(Begin + idx < End); |
113 | return Begin[idx]; |
114 | } |
115 | const_reference operator[](unsigned idx) const { |
116 | assert(Begin + idx < End); |
117 | return Begin[idx]; |
118 | } |
119 | |
120 | reference front() { |
121 | return begin()[0]; |
122 | } |
123 | const_reference front() const { |
124 | return begin()[0]; |
125 | } |
126 | |
127 | reference back() { |
128 | return end()[-1]; |
129 | } |
130 | const_reference back() const { |
131 | return end()[-1]; |
132 | } |
133 | |
134 | void pop_back() { |
135 | --End; |
136 | End->~T(); |
137 | } |
138 | |
139 | T pop_back_val() { |
140 | T Result = back(); |
141 | pop_back(); |
142 | return Result; |
143 | } |
144 | |
145 | void clear() { |
146 | if (std::is_class<T>::value) { |
147 | destroy_range(S: Begin, E: End); |
148 | } |
149 | End = Begin; |
150 | } |
151 | |
152 | /// data - Return a pointer to the vector's buffer, even if empty(). |
153 | pointer data() { |
154 | return pointer(Begin); |
155 | } |
156 | |
157 | /// data - Return a pointer to the vector's buffer, even if empty(). |
158 | const_pointer data() const { |
159 | return const_pointer(Begin); |
160 | } |
161 | |
162 | void push_back(const_reference Elt, const ASTContext &C) { |
163 | if (End < this->capacity_ptr()) { |
164 | Retry: |
165 | new (End) T(Elt); |
166 | ++End; |
167 | return; |
168 | } |
169 | grow(C); |
170 | goto Retry; |
171 | } |
172 | |
173 | void reserve(const ASTContext &C, unsigned N) { |
174 | if (unsigned(this->capacity_ptr()-Begin) < N) |
175 | grow(C, MinSize: N); |
176 | } |
177 | |
178 | /// capacity - Return the total number of elements in the currently allocated |
179 | /// buffer. |
180 | size_t capacity() const { return this->capacity_ptr() - Begin; } |
181 | |
182 | /// append - Add the specified range to the end of the SmallVector. |
183 | template<typename in_iter> |
184 | void append(const ASTContext &C, in_iter in_start, in_iter in_end) { |
185 | size_type NumInputs = std::distance(in_start, in_end); |
186 | |
187 | if (NumInputs == 0) |
188 | return; |
189 | |
190 | // Grow allocated space if needed. |
191 | if (NumInputs > size_type(this->capacity_ptr()-this->end())) |
192 | this->grow(C, this->size()+NumInputs); |
193 | |
194 | // Copy the new elements over. |
195 | // TODO: NEED To compile time dispatch on whether in_iter is a random access |
196 | // iterator to use the fast uninitialized_copy. |
197 | std::uninitialized_copy(in_start, in_end, this->end()); |
198 | this->setEnd(this->end() + NumInputs); |
199 | } |
200 | |
201 | /// append - Add the specified range to the end of the SmallVector. |
202 | void append(const ASTContext &C, size_type NumInputs, const T &Elt) { |
203 | // Grow allocated space if needed. |
204 | if (NumInputs > size_type(this->capacity_ptr()-this->end())) |
205 | this->grow(C, this->size()+NumInputs); |
206 | |
207 | // Copy the new elements over. |
208 | std::uninitialized_fill_n(this->end(), NumInputs, Elt); |
209 | this->setEnd(this->end() + NumInputs); |
210 | } |
211 | |
212 | /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory |
213 | /// starting with "Dest", constructing elements into it as needed. |
214 | template<typename It1, typename It2> |
215 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
216 | std::uninitialized_copy(I, E, Dest); |
217 | } |
218 | |
219 | iterator insert(const ASTContext &C, iterator I, const T &Elt) { |
220 | if (I == this->end()) { // Important special case for empty vector. |
221 | push_back(Elt, C); |
222 | return this->end()-1; |
223 | } |
224 | |
225 | if (this->End < this->capacity_ptr()) { |
226 | Retry: |
227 | new (this->end()) T(this->back()); |
228 | this->setEnd(this->end()+1); |
229 | // Push everything else over. |
230 | std::copy_backward(I, this->end()-1, this->end()); |
231 | *I = Elt; |
232 | return I; |
233 | } |
234 | size_t EltNo = I-this->begin(); |
235 | this->grow(C); |
236 | I = this->begin()+EltNo; |
237 | goto Retry; |
238 | } |
239 | |
240 | iterator insert(const ASTContext &C, iterator I, size_type NumToInsert, |
241 | const T &Elt) { |
242 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
243 | size_t InsertElt = I - this->begin(); |
244 | |
245 | if (I == this->end()) { // Important special case for empty vector. |
246 | append(C, NumToInsert, Elt); |
247 | return this->begin() + InsertElt; |
248 | } |
249 | |
250 | // Ensure there is enough space. |
251 | reserve(C, N: static_cast<unsigned>(this->size() + NumToInsert)); |
252 | |
253 | // Uninvalidate the iterator. |
254 | I = this->begin()+InsertElt; |
255 | |
256 | // If there are more elements between the insertion point and the end of the |
257 | // range than there are being inserted, we can use a simple approach to |
258 | // insertion. Since we already reserved space, we know that this won't |
259 | // reallocate the vector. |
260 | if (size_t(this->end()-I) >= NumToInsert) { |
261 | T *OldEnd = this->end(); |
262 | append(C, this->end()-NumToInsert, this->end()); |
263 | |
264 | // Copy the existing elements that get replaced. |
265 | std::copy_backward(I, OldEnd-NumToInsert, OldEnd); |
266 | |
267 | std::fill_n(I, NumToInsert, Elt); |
268 | return I; |
269 | } |
270 | |
271 | // Otherwise, we're inserting more elements than exist already, and we're |
272 | // not inserting at the end. |
273 | |
274 | // Copy over the elements that we're about to overwrite. |
275 | T *OldEnd = this->end(); |
276 | this->setEnd(this->end() + NumToInsert); |
277 | size_t NumOverwritten = OldEnd-I; |
278 | this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); |
279 | |
280 | // Replace the overwritten part. |
281 | std::fill_n(I, NumOverwritten, Elt); |
282 | |
283 | // Insert the non-overwritten middle part. |
284 | std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); |
285 | return I; |
286 | } |
287 | |
288 | template<typename ItTy> |
289 | iterator insert(const ASTContext &C, iterator I, ItTy From, ItTy To) { |
290 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
291 | size_t InsertElt = I - this->begin(); |
292 | |
293 | if (I == this->end()) { // Important special case for empty vector. |
294 | append(C, From, To); |
295 | return this->begin() + InsertElt; |
296 | } |
297 | |
298 | size_t NumToInsert = std::distance(From, To); |
299 | |
300 | // Ensure there is enough space. |
301 | reserve(C, N: static_cast<unsigned>(this->size() + NumToInsert)); |
302 | |
303 | // Uninvalidate the iterator. |
304 | I = this->begin()+InsertElt; |
305 | |
306 | // If there are more elements between the insertion point and the end of the |
307 | // range than there are being inserted, we can use a simple approach to |
308 | // insertion. Since we already reserved space, we know that this won't |
309 | // reallocate the vector. |
310 | if (size_t(this->end()-I) >= NumToInsert) { |
311 | T *OldEnd = this->end(); |
312 | append(C, this->end()-NumToInsert, this->end()); |
313 | |
314 | // Copy the existing elements that get replaced. |
315 | std::copy_backward(I, OldEnd-NumToInsert, OldEnd); |
316 | |
317 | std::copy(From, To, I); |
318 | return I; |
319 | } |
320 | |
321 | // Otherwise, we're inserting more elements than exist already, and we're |
322 | // not inserting at the end. |
323 | |
324 | // Copy over the elements that we're about to overwrite. |
325 | T *OldEnd = this->end(); |
326 | this->setEnd(this->end() + NumToInsert); |
327 | size_t NumOverwritten = OldEnd-I; |
328 | this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); |
329 | |
330 | // Replace the overwritten part. |
331 | for (; NumOverwritten > 0; --NumOverwritten) { |
332 | *I = *From; |
333 | ++I; ++From; |
334 | } |
335 | |
336 | // Insert the non-overwritten middle part. |
337 | this->uninitialized_copy(From, To, OldEnd); |
338 | return I; |
339 | } |
340 | |
341 | void resize(const ASTContext &C, unsigned N, const T &NV) { |
342 | if (N < this->size()) { |
343 | this->destroy_range(this->begin()+N, this->end()); |
344 | this->setEnd(this->begin()+N); |
345 | } else if (N > this->size()) { |
346 | if (this->capacity() < N) |
347 | this->grow(C, N); |
348 | construct_range(S: this->end(), E: this->begin()+N, Elt: NV); |
349 | this->setEnd(this->begin()+N); |
350 | } |
351 | } |
352 | |
353 | private: |
354 | /// grow - double the size of the allocated memory, guaranteeing space for at |
355 | /// least one more element or MinSize if specified. |
356 | void grow(const ASTContext &C, size_type MinSize = 1); |
357 | |
358 | void construct_range(T *S, T *E, const T &Elt) { |
359 | for (; S != E; ++S) |
360 | new (S) T(Elt); |
361 | } |
362 | |
363 | void destroy_range(T *S, T *E) { |
364 | while (S != E) { |
365 | --E; |
366 | E->~T(); |
367 | } |
368 | } |
369 | |
370 | protected: |
371 | const_iterator capacity_ptr() const { |
372 | return (iterator) Capacity.getPointer(); |
373 | } |
374 | |
375 | iterator capacity_ptr() { return (iterator)Capacity.getPointer(); } |
376 | }; |
377 | |
378 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
379 | template <typename T> |
380 | void ASTVector<T>::grow(const ASTContext &C, size_t MinSize) { |
381 | size_t CurCapacity = this->capacity(); |
382 | size_t CurSize = size(); |
383 | size_t NewCapacity = 2*CurCapacity; |
384 | if (NewCapacity < MinSize) |
385 | NewCapacity = MinSize; |
386 | |
387 | // Allocate the memory from the ASTContext. |
388 | T *NewElts = new (C, alignof(T)) T[NewCapacity]; |
389 | |
390 | // Copy the elements over. |
391 | if (Begin != End) { |
392 | if (std::is_class<T>::value) { |
393 | std::uninitialized_copy(Begin, End, NewElts); |
394 | // Destroy the original elements. |
395 | destroy_range(S: Begin, E: End); |
396 | } else { |
397 | // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). |
398 | memcpy(NewElts, Begin, CurSize * sizeof(T)); |
399 | } |
400 | } |
401 | |
402 | // ASTContext never frees any memory. |
403 | Begin = NewElts; |
404 | End = NewElts+CurSize; |
405 | Capacity.setPointer(Begin+NewCapacity); |
406 | } |
407 | |
408 | } // namespace clang |
409 | |
410 | #endif // LLVM_CLANG_AST_ASTVECTOR_H |
411 | |