1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <optional>
24#include <utility>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31struct Align;
32
33template <typename T> class SmallVectorImpl;
34template <typename T> class ArrayRef;
35template <typename T, typename Enable> struct DenseMapInfo;
36
37class APInt;
38
39inline APInt operator-(APInt);
40
41//===----------------------------------------------------------------------===//
42// APInt Class
43//===----------------------------------------------------------------------===//
44
45/// Class for arbitrary precision integers.
46///
47/// APInt is a functional replacement for common case unsigned integer type like
48/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50/// than 64-bits of precision. APInt provides a variety of arithmetic operators
51/// and methods to manipulate integer values of any bit-width. It supports both
52/// the typical integer arithmetic and comparison operations as well as bitwise
53/// manipulation.
54///
55/// The class has several invariants worth noting:
56/// * All bit, byte, and word positions are zero-based.
57/// * Once the bit width is set, it doesn't change except by the Truncate,
58/// SignExtend, or ZeroExtend operations.
59/// * All binary operators must be on APInt instances of the same bit width.
60/// Attempting to use these operators on instances with different bit
61/// widths will yield an assertion.
62/// * The value is stored canonically as an unsigned value. For operations
63/// where it makes a difference, there are both signed and unsigned variants
64/// of the operation. For example, sdiv and udiv. However, because the bit
65/// widths must be the same, operations such as Mul and Add produce the same
66/// results regardless of whether the values are interpreted as signed or
67/// not.
68/// * In general, the class tries to follow the style of computation that LLVM
69/// uses in its IR. This simplifies its use for LLVM.
70/// * APInt supports zero-bit-width values, but operations that require bits
71/// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
72/// integer). This means that operations like zero extension and logical
73/// shifts are defined, but sign extension and ashr is not. Zero bit values
74/// compare and hash equal to themselves, and countLeadingZeros returns 0.
75///
76class [[nodiscard]] APInt {
77public:
78 typedef uint64_t WordType;
79
80 /// This enum is used to hold the constants we needed for APInt.
81 enum : unsigned {
82 /// Byte size of a word.
83 APINT_WORD_SIZE = sizeof(WordType),
84 /// Bits in a word.
85 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
86 };
87
88 enum class Rounding {
89 DOWN,
90 TOWARD_ZERO,
91 UP,
92 };
93
94 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
95
96 /// \name Constructors
97 /// @{
98
99 /// Create a new APInt of numBits width, initialized as val.
100 ///
101 /// If isSigned is true then val is treated as if it were a signed value
102 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
103 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
104 /// the range of val are zero filled).
105 ///
106 /// \param numBits the bit width of the constructed APInt
107 /// \param val the initial value of the APInt
108 /// \param isSigned how to treat signedness of val
109 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
110 : BitWidth(numBits) {
111 if (isSingleWord()) {
112 U.VAL = val;
113 clearUnusedBits();
114 } else {
115 initSlowCase(val, isSigned);
116 }
117 }
118
119 /// Construct an APInt of numBits width, initialized as bigVal[].
120 ///
121 /// Note that bigVal.size() can be smaller or larger than the corresponding
122 /// bit width but any extraneous bits will be dropped.
123 ///
124 /// \param numBits the bit width of the constructed APInt
125 /// \param bigVal a sequence of words to form the initial value of the APInt
126 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
127
128 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
129 /// deprecated because this constructor is prone to ambiguity with the
130 /// APInt(unsigned, uint64_t, bool) constructor.
131 ///
132 /// If this overload is ever deleted, care should be taken to prevent calls
133 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
134 /// constructor.
135 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
136
137 /// Construct an APInt from a string representation.
138 ///
139 /// This constructor interprets the string \p str in the given radix. The
140 /// interpretation stops when the first character that is not suitable for the
141 /// radix is encountered, or the end of the string. Acceptable radix values
142 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
143 /// string to require more bits than numBits.
144 ///
145 /// \param numBits the bit width of the constructed APInt
146 /// \param str the string to be interpreted
147 /// \param radix the radix to use for the conversion
148 APInt(unsigned numBits, StringRef str, uint8_t radix);
149
150 /// Default constructor that creates an APInt with a 1-bit zero value.
151 explicit APInt() { U.VAL = 0; }
152
153 /// Copy Constructor.
154 APInt(const APInt &that) : BitWidth(that.BitWidth) {
155 if (isSingleWord())
156 U.VAL = that.U.VAL;
157 else
158 initSlowCase(that);
159 }
160
161 /// Move Constructor.
162 APInt(APInt &&that) : BitWidth(that.BitWidth) {
163 memcpy(dest: &U, src: &that.U, n: sizeof(U));
164 that.BitWidth = 0;
165 }
166
167 /// Destructor.
168 ~APInt() {
169 if (needsCleanup())
170 delete[] U.pVal;
171 }
172
173 /// @}
174 /// \name Value Generators
175 /// @{
176
177 /// Get the '0' value for the specified bit-width.
178 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
179
180 /// Return an APInt zero bits wide.
181 static APInt getZeroWidth() { return getZero(numBits: 0); }
182
183 /// Gets maximum unsigned value of APInt for specific bit width.
184 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
185
186 /// Gets maximum signed value of APInt for a specific bit width.
187 static APInt getSignedMaxValue(unsigned numBits) {
188 APInt API = getAllOnes(numBits);
189 API.clearBit(BitPosition: numBits - 1);
190 return API;
191 }
192
193 /// Gets minimum unsigned value of APInt for a specific bit width.
194 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
195
196 /// Gets minimum signed value of APInt for a specific bit width.
197 static APInt getSignedMinValue(unsigned numBits) {
198 APInt API(numBits, 0);
199 API.setBit(numBits - 1);
200 return API;
201 }
202
203 /// Get the SignMask for a specific bit width.
204 ///
205 /// This is just a wrapper function of getSignedMinValue(), and it helps code
206 /// readability when we want to get a SignMask.
207 static APInt getSignMask(unsigned BitWidth) {
208 return getSignedMinValue(numBits: BitWidth);
209 }
210
211 /// Return an APInt of a specified width with all bits set.
212 static APInt getAllOnes(unsigned numBits) {
213 return APInt(numBits, WORDTYPE_MAX, true);
214 }
215
216 /// Return an APInt with exactly one bit set in the result.
217 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
218 APInt Res(numBits, 0);
219 Res.setBit(BitNo);
220 return Res;
221 }
222
223 /// Get a value with a block of bits set.
224 ///
225 /// Constructs an APInt value that has a contiguous range of bits set. The
226 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
227 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
228 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
229 /// \p hiBit.
230 ///
231 /// \param numBits the intended bit width of the result
232 /// \param loBit the index of the lowest bit set.
233 /// \param hiBit the index of the highest bit set.
234 ///
235 /// \returns An APInt value with the requested bits set.
236 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
237 APInt Res(numBits, 0);
238 Res.setBits(loBit, hiBit);
239 return Res;
240 }
241
242 /// Wrap version of getBitsSet.
243 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
244 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
245 /// with parameters (32, 28, 4), you would get 0xF000000F.
246 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
247 /// set.
248 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
249 unsigned hiBit) {
250 APInt Res(numBits, 0);
251 Res.setBitsWithWrap(loBit, hiBit);
252 return Res;
253 }
254
255 /// Constructs an APInt value that has a contiguous range of bits set. The
256 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
257 /// bits will be zero. For example, with parameters(32, 12) you would get
258 /// 0xFFFFF000.
259 ///
260 /// \param numBits the intended bit width of the result
261 /// \param loBit the index of the lowest bit to set.
262 ///
263 /// \returns An APInt value with the requested bits set.
264 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
265 APInt Res(numBits, 0);
266 Res.setBitsFrom(loBit);
267 return Res;
268 }
269
270 /// Constructs an APInt value that has the top hiBitsSet bits set.
271 ///
272 /// \param numBits the bitwidth of the result
273 /// \param hiBitsSet the number of high-order bits set in the result.
274 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
275 APInt Res(numBits, 0);
276 Res.setHighBits(hiBitsSet);
277 return Res;
278 }
279
280 /// Constructs an APInt value that has the bottom loBitsSet bits set.
281 ///
282 /// \param numBits the bitwidth of the result
283 /// \param loBitsSet the number of low-order bits set in the result.
284 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
285 APInt Res(numBits, 0);
286 Res.setLowBits(loBitsSet);
287 return Res;
288 }
289
290 /// Return a value containing V broadcasted over NewLen bits.
291 static APInt getSplat(unsigned NewLen, const APInt &V);
292
293 /// @}
294 /// \name Value Tests
295 /// @{
296
297 /// Determine if this APInt just has one word to store value.
298 ///
299 /// \returns true if the number of bits <= 64, false otherwise.
300 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
301
302 /// Determine sign of this APInt.
303 ///
304 /// This tests the high bit of this APInt to determine if it is set.
305 ///
306 /// \returns true if this APInt is negative, false otherwise
307 bool isNegative() const { return (*this)[BitWidth - 1]; }
308
309 /// Determine if this APInt Value is non-negative (>= 0)
310 ///
311 /// This tests the high bit of the APInt to determine if it is unset.
312 bool isNonNegative() const { return !isNegative(); }
313
314 /// Determine if sign bit of this APInt is set.
315 ///
316 /// This tests the high bit of this APInt to determine if it is set.
317 ///
318 /// \returns true if this APInt has its sign bit set, false otherwise.
319 bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
320
321 /// Determine if sign bit of this APInt is clear.
322 ///
323 /// This tests the high bit of this APInt to determine if it is clear.
324 ///
325 /// \returns true if this APInt has its sign bit clear, false otherwise.
326 bool isSignBitClear() const { return !isSignBitSet(); }
327
328 /// Determine if this APInt Value is positive.
329 ///
330 /// This tests if the value of this APInt is positive (> 0). Note
331 /// that 0 is not a positive value.
332 ///
333 /// \returns true if this APInt is positive.
334 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
335
336 /// Determine if this APInt Value is non-positive (<= 0).
337 ///
338 /// \returns true if this APInt is non-positive.
339 bool isNonPositive() const { return !isStrictlyPositive(); }
340
341 /// Determine if this APInt Value only has the specified bit set.
342 ///
343 /// \returns true if this APInt only has the specified bit set.
344 bool isOneBitSet(unsigned BitNo) const {
345 return (*this)[BitNo] && popcount() == 1;
346 }
347
348 /// Determine if all bits are set. This is true for zero-width values.
349 bool isAllOnes() const {
350 if (BitWidth == 0)
351 return true;
352 if (isSingleWord())
353 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
354 return countTrailingOnesSlowCase() == BitWidth;
355 }
356
357 /// Determine if this value is zero, i.e. all bits are clear.
358 bool isZero() const {
359 if (isSingleWord())
360 return U.VAL == 0;
361 return countLeadingZerosSlowCase() == BitWidth;
362 }
363
364 /// Determine if this is a value of 1.
365 ///
366 /// This checks to see if the value of this APInt is one.
367 bool isOne() const {
368 if (isSingleWord())
369 return U.VAL == 1;
370 return countLeadingZerosSlowCase() == BitWidth - 1;
371 }
372
373 /// Determine if this is the largest unsigned value.
374 ///
375 /// This checks to see if the value of this APInt is the maximum unsigned
376 /// value for the APInt's bit width.
377 bool isMaxValue() const { return isAllOnes(); }
378
379 /// Determine if this is the largest signed value.
380 ///
381 /// This checks to see if the value of this APInt is the maximum signed
382 /// value for the APInt's bit width.
383 bool isMaxSignedValue() const {
384 if (isSingleWord()) {
385 assert(BitWidth && "zero width values not allowed");
386 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
387 }
388 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
389 }
390
391 /// Determine if this is the smallest unsigned value.
392 ///
393 /// This checks to see if the value of this APInt is the minimum unsigned
394 /// value for the APInt's bit width.
395 bool isMinValue() const { return isZero(); }
396
397 /// Determine if this is the smallest signed value.
398 ///
399 /// This checks to see if the value of this APInt is the minimum signed
400 /// value for the APInt's bit width.
401 bool isMinSignedValue() const {
402 if (isSingleWord()) {
403 assert(BitWidth && "zero width values not allowed");
404 return U.VAL == (WordType(1) << (BitWidth - 1));
405 }
406 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
407 }
408
409 /// Check if this APInt has an N-bits unsigned integer value.
410 bool isIntN(unsigned N) const { return getActiveBits() <= N; }
411
412 /// Check if this APInt has an N-bits signed integer value.
413 bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
414
415 /// Check if this APInt's value is a power of two greater than zero.
416 ///
417 /// \returns true if the argument APInt value is a power of two > 0.
418 bool isPowerOf2() const {
419 if (isSingleWord()) {
420 assert(BitWidth && "zero width values not allowed");
421 return isPowerOf2_64(Value: U.VAL);
422 }
423 return countPopulationSlowCase() == 1;
424 }
425
426 /// Check if this APInt's negated value is a power of two greater than zero.
427 bool isNegatedPowerOf2() const {
428 assert(BitWidth && "zero width values not allowed");
429 if (isNonNegative())
430 return false;
431 // NegatedPowerOf2 - shifted mask in the top bits.
432 unsigned LO = countl_one();
433 unsigned TZ = countr_zero();
434 return (LO + TZ) == BitWidth;
435 }
436
437 /// Checks if this APInt -interpreted as an address- is aligned to the
438 /// provided value.
439 bool isAligned(Align A) const;
440
441 /// Check if the APInt's value is returned by getSignMask.
442 ///
443 /// \returns true if this is the value returned by getSignMask.
444 bool isSignMask() const { return isMinSignedValue(); }
445
446 /// Convert APInt to a boolean value.
447 ///
448 /// This converts the APInt to a boolean value as a test against zero.
449 bool getBoolValue() const { return !isZero(); }
450
451 /// If this value is smaller than the specified limit, return it, otherwise
452 /// return the limit value. This causes the value to saturate to the limit.
453 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
454 return ugt(RHS: Limit) ? Limit : getZExtValue();
455 }
456
457 /// Check if the APInt consists of a repeated bit pattern.
458 ///
459 /// e.g. 0x01010101 satisfies isSplat(8).
460 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
461 /// width without remainder.
462 bool isSplat(unsigned SplatSizeInBits) const;
463
464 /// \returns true if this APInt value is a sequence of \param numBits ones
465 /// starting at the least significant bit with the remainder zero.
466 bool isMask(unsigned numBits) const {
467 assert(numBits != 0 && "numBits must be non-zero");
468 assert(numBits <= BitWidth && "numBits out of range");
469 if (isSingleWord())
470 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
471 unsigned Ones = countTrailingOnesSlowCase();
472 return (numBits == Ones) &&
473 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
474 }
475
476 /// \returns true if this APInt is a non-empty sequence of ones starting at
477 /// the least significant bit with the remainder zero.
478 /// Ex. isMask(0x0000FFFFU) == true.
479 bool isMask() const {
480 if (isSingleWord())
481 return isMask_64(Value: U.VAL);
482 unsigned Ones = countTrailingOnesSlowCase();
483 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484 }
485
486 /// Return true if this APInt value contains a non-empty sequence of ones with
487 /// the remainder zero.
488 bool isShiftedMask() const {
489 if (isSingleWord())
490 return isShiftedMask_64(Value: U.VAL);
491 unsigned Ones = countPopulationSlowCase();
492 unsigned LeadZ = countLeadingZerosSlowCase();
493 return (Ones + LeadZ + countr_zero()) == BitWidth;
494 }
495
496 /// Return true if this APInt value contains a non-empty sequence of ones with
497 /// the remainder zero. If true, \p MaskIdx will specify the index of the
498 /// lowest set bit and \p MaskLen is updated to specify the length of the
499 /// mask, else neither are updated.
500 bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
501 if (isSingleWord())
502 return isShiftedMask_64(Value: U.VAL, MaskIdx, MaskLen);
503 unsigned Ones = countPopulationSlowCase();
504 unsigned LeadZ = countLeadingZerosSlowCase();
505 unsigned TrailZ = countTrailingZerosSlowCase();
506 if ((Ones + LeadZ + TrailZ) != BitWidth)
507 return false;
508 MaskLen = Ones;
509 MaskIdx = TrailZ;
510 return true;
511 }
512
513 /// Compute an APInt containing numBits highbits from this APInt.
514 ///
515 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
516 /// bits and right shift to the least significant bit.
517 ///
518 /// \returns the high "numBits" bits of this APInt.
519 APInt getHiBits(unsigned numBits) const;
520
521 /// Compute an APInt containing numBits lowbits from this APInt.
522 ///
523 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
524 /// bits.
525 ///
526 /// \returns the low "numBits" bits of this APInt.
527 APInt getLoBits(unsigned numBits) const;
528
529 /// Determine if two APInts have the same value, after zero-extending
530 /// one of them (if needed!) to ensure that the bit-widths match.
531 static bool isSameValue(const APInt &I1, const APInt &I2) {
532 if (I1.getBitWidth() == I2.getBitWidth())
533 return I1 == I2;
534
535 if (I1.getBitWidth() > I2.getBitWidth())
536 return I1 == I2.zext(width: I1.getBitWidth());
537
538 return I1.zext(width: I2.getBitWidth()) == I2;
539 }
540
541 /// Overload to compute a hash_code for an APInt value.
542 friend hash_code hash_value(const APInt &Arg);
543
544 /// This function returns a pointer to the internal storage of the APInt.
545 /// This is useful for writing out the APInt in binary form without any
546 /// conversions.
547 const uint64_t *getRawData() const {
548 if (isSingleWord())
549 return &U.VAL;
550 return &U.pVal[0];
551 }
552
553 /// @}
554 /// \name Unary Operators
555 /// @{
556
557 /// Postfix increment operator. Increment *this by 1.
558 ///
559 /// \returns a new APInt value representing the original value of *this.
560 APInt operator++(int) {
561 APInt API(*this);
562 ++(*this);
563 return API;
564 }
565
566 /// Prefix increment operator.
567 ///
568 /// \returns *this incremented by one
569 APInt &operator++();
570
571 /// Postfix decrement operator. Decrement *this by 1.
572 ///
573 /// \returns a new APInt value representing the original value of *this.
574 APInt operator--(int) {
575 APInt API(*this);
576 --(*this);
577 return API;
578 }
579
580 /// Prefix decrement operator.
581 ///
582 /// \returns *this decremented by one.
583 APInt &operator--();
584
585 /// Logical negation operation on this APInt returns true if zero, like normal
586 /// integers.
587 bool operator!() const { return isZero(); }
588
589 /// @}
590 /// \name Assignment Operators
591 /// @{
592
593 /// Copy assignment operator.
594 ///
595 /// \returns *this after assignment of RHS.
596 APInt &operator=(const APInt &RHS) {
597 // The common case (both source or dest being inline) doesn't require
598 // allocation or deallocation.
599 if (isSingleWord() && RHS.isSingleWord()) {
600 U.VAL = RHS.U.VAL;
601 BitWidth = RHS.BitWidth;
602 return *this;
603 }
604
605 assignSlowCase(RHS);
606 return *this;
607 }
608
609 /// Move assignment operator.
610 APInt &operator=(APInt &&that) {
611#ifdef EXPENSIVE_CHECKS
612 // Some std::shuffle implementations still do self-assignment.
613 if (this == &that)
614 return *this;
615#endif
616 assert(this != &that && "Self-move not supported");
617 if (!isSingleWord())
618 delete[] U.pVal;
619
620 // Use memcpy so that type based alias analysis sees both VAL and pVal
621 // as modified.
622 memcpy(dest: &U, src: &that.U, n: sizeof(U));
623
624 BitWidth = that.BitWidth;
625 that.BitWidth = 0;
626 return *this;
627 }
628
629 /// Assignment operator.
630 ///
631 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
632 /// the bit width, the excess bits are truncated. If the bit width is larger
633 /// than 64, the value is zero filled in the unspecified high order bits.
634 ///
635 /// \returns *this after assignment of RHS value.
636 APInt &operator=(uint64_t RHS) {
637 if (isSingleWord()) {
638 U.VAL = RHS;
639 return clearUnusedBits();
640 }
641 U.pVal[0] = RHS;
642 memset(s: U.pVal + 1, c: 0, n: (getNumWords() - 1) * APINT_WORD_SIZE);
643 return *this;
644 }
645
646 /// Bitwise AND assignment operator.
647 ///
648 /// Performs a bitwise AND operation on this APInt and RHS. The result is
649 /// assigned to *this.
650 ///
651 /// \returns *this after ANDing with RHS.
652 APInt &operator&=(const APInt &RHS) {
653 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
654 if (isSingleWord())
655 U.VAL &= RHS.U.VAL;
656 else
657 andAssignSlowCase(RHS);
658 return *this;
659 }
660
661 /// Bitwise AND assignment operator.
662 ///
663 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
664 /// logically zero-extended or truncated to match the bit-width of
665 /// the LHS.
666 APInt &operator&=(uint64_t RHS) {
667 if (isSingleWord()) {
668 U.VAL &= RHS;
669 return *this;
670 }
671 U.pVal[0] &= RHS;
672 memset(s: U.pVal + 1, c: 0, n: (getNumWords() - 1) * APINT_WORD_SIZE);
673 return *this;
674 }
675
676 /// Bitwise OR assignment operator.
677 ///
678 /// Performs a bitwise OR operation on this APInt and RHS. The result is
679 /// assigned *this;
680 ///
681 /// \returns *this after ORing with RHS.
682 APInt &operator|=(const APInt &RHS) {
683 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
684 if (isSingleWord())
685 U.VAL |= RHS.U.VAL;
686 else
687 orAssignSlowCase(RHS);
688 return *this;
689 }
690
691 /// Bitwise OR assignment operator.
692 ///
693 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
694 /// logically zero-extended or truncated to match the bit-width of
695 /// the LHS.
696 APInt &operator|=(uint64_t RHS) {
697 if (isSingleWord()) {
698 U.VAL |= RHS;
699 return clearUnusedBits();
700 }
701 U.pVal[0] |= RHS;
702 return *this;
703 }
704
705 /// Bitwise XOR assignment operator.
706 ///
707 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
708 /// assigned to *this.
709 ///
710 /// \returns *this after XORing with RHS.
711 APInt &operator^=(const APInt &RHS) {
712 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
713 if (isSingleWord())
714 U.VAL ^= RHS.U.VAL;
715 else
716 xorAssignSlowCase(RHS);
717 return *this;
718 }
719
720 /// Bitwise XOR assignment operator.
721 ///
722 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
723 /// logically zero-extended or truncated to match the bit-width of
724 /// the LHS.
725 APInt &operator^=(uint64_t RHS) {
726 if (isSingleWord()) {
727 U.VAL ^= RHS;
728 return clearUnusedBits();
729 }
730 U.pVal[0] ^= RHS;
731 return *this;
732 }
733
734 /// Multiplication assignment operator.
735 ///
736 /// Multiplies this APInt by RHS and assigns the result to *this.
737 ///
738 /// \returns *this
739 APInt &operator*=(const APInt &RHS);
740 APInt &operator*=(uint64_t RHS);
741
742 /// Addition assignment operator.
743 ///
744 /// Adds RHS to *this and assigns the result to *this.
745 ///
746 /// \returns *this
747 APInt &operator+=(const APInt &RHS);
748 APInt &operator+=(uint64_t RHS);
749
750 /// Subtraction assignment operator.
751 ///
752 /// Subtracts RHS from *this and assigns the result to *this.
753 ///
754 /// \returns *this
755 APInt &operator-=(const APInt &RHS);
756 APInt &operator-=(uint64_t RHS);
757
758 /// Left-shift assignment function.
759 ///
760 /// Shifts *this left by shiftAmt and assigns the result to *this.
761 ///
762 /// \returns *this after shifting left by ShiftAmt
763 APInt &operator<<=(unsigned ShiftAmt) {
764 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
765 if (isSingleWord()) {
766 if (ShiftAmt == BitWidth)
767 U.VAL = 0;
768 else
769 U.VAL <<= ShiftAmt;
770 return clearUnusedBits();
771 }
772 shlSlowCase(ShiftAmt);
773 return *this;
774 }
775
776 /// Left-shift assignment function.
777 ///
778 /// Shifts *this left by shiftAmt and assigns the result to *this.
779 ///
780 /// \returns *this after shifting left by ShiftAmt
781 APInt &operator<<=(const APInt &ShiftAmt);
782
783 /// @}
784 /// \name Binary Operators
785 /// @{
786
787 /// Multiplication operator.
788 ///
789 /// Multiplies this APInt by RHS and returns the result.
790 APInt operator*(const APInt &RHS) const;
791
792 /// Left logical shift operator.
793 ///
794 /// Shifts this APInt left by \p Bits and returns the result.
795 APInt operator<<(unsigned Bits) const { return shl(shiftAmt: Bits); }
796
797 /// Left logical shift operator.
798 ///
799 /// Shifts this APInt left by \p Bits and returns the result.
800 APInt operator<<(const APInt &Bits) const { return shl(ShiftAmt: Bits); }
801
802 /// Arithmetic right-shift function.
803 ///
804 /// Arithmetic right-shift this APInt by shiftAmt.
805 APInt ashr(unsigned ShiftAmt) const {
806 APInt R(*this);
807 R.ashrInPlace(ShiftAmt);
808 return R;
809 }
810
811 /// Arithmetic right-shift this APInt by ShiftAmt in place.
812 void ashrInPlace(unsigned ShiftAmt) {
813 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
814 if (isSingleWord()) {
815 int64_t SExtVAL = SignExtend64(X: U.VAL, B: BitWidth);
816 if (ShiftAmt == BitWidth)
817 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
818 else
819 U.VAL = SExtVAL >> ShiftAmt;
820 clearUnusedBits();
821 return;
822 }
823 ashrSlowCase(ShiftAmt);
824 }
825
826 /// Logical right-shift function.
827 ///
828 /// Logical right-shift this APInt by shiftAmt.
829 APInt lshr(unsigned shiftAmt) const {
830 APInt R(*this);
831 R.lshrInPlace(ShiftAmt: shiftAmt);
832 return R;
833 }
834
835 /// Logical right-shift this APInt by ShiftAmt in place.
836 void lshrInPlace(unsigned ShiftAmt) {
837 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
838 if (isSingleWord()) {
839 if (ShiftAmt == BitWidth)
840 U.VAL = 0;
841 else
842 U.VAL >>= ShiftAmt;
843 return;
844 }
845 lshrSlowCase(ShiftAmt);
846 }
847
848 /// Left-shift function.
849 ///
850 /// Left-shift this APInt by shiftAmt.
851 APInt shl(unsigned shiftAmt) const {
852 APInt R(*this);
853 R <<= shiftAmt;
854 return R;
855 }
856
857 /// relative logical shift right
858 APInt relativeLShr(int RelativeShift) const {
859 return RelativeShift > 0 ? lshr(shiftAmt: RelativeShift) : shl(shiftAmt: -RelativeShift);
860 }
861
862 /// relative logical shift left
863 APInt relativeLShl(int RelativeShift) const {
864 return relativeLShr(RelativeShift: -RelativeShift);
865 }
866
867 /// relative arithmetic shift right
868 APInt relativeAShr(int RelativeShift) const {
869 return RelativeShift > 0 ? ashr(ShiftAmt: RelativeShift) : shl(shiftAmt: -RelativeShift);
870 }
871
872 /// relative arithmetic shift left
873 APInt relativeAShl(int RelativeShift) const {
874 return relativeAShr(RelativeShift: -RelativeShift);
875 }
876
877 /// Rotate left by rotateAmt.
878 APInt rotl(unsigned rotateAmt) const;
879
880 /// Rotate right by rotateAmt.
881 APInt rotr(unsigned rotateAmt) const;
882
883 /// Arithmetic right-shift function.
884 ///
885 /// Arithmetic right-shift this APInt by shiftAmt.
886 APInt ashr(const APInt &ShiftAmt) const {
887 APInt R(*this);
888 R.ashrInPlace(shiftAmt: ShiftAmt);
889 return R;
890 }
891
892 /// Arithmetic right-shift this APInt by shiftAmt in place.
893 void ashrInPlace(const APInt &shiftAmt);
894
895 /// Logical right-shift function.
896 ///
897 /// Logical right-shift this APInt by shiftAmt.
898 APInt lshr(const APInt &ShiftAmt) const {
899 APInt R(*this);
900 R.lshrInPlace(ShiftAmt);
901 return R;
902 }
903
904 /// Logical right-shift this APInt by ShiftAmt in place.
905 void lshrInPlace(const APInt &ShiftAmt);
906
907 /// Left-shift function.
908 ///
909 /// Left-shift this APInt by shiftAmt.
910 APInt shl(const APInt &ShiftAmt) const {
911 APInt R(*this);
912 R <<= ShiftAmt;
913 return R;
914 }
915
916 /// Rotate left by rotateAmt.
917 APInt rotl(const APInt &rotateAmt) const;
918
919 /// Rotate right by rotateAmt.
920 APInt rotr(const APInt &rotateAmt) const;
921
922 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
923 /// equivalent to:
924 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
925 APInt concat(const APInt &NewLSB) const {
926 /// If the result will be small, then both the merged values are small.
927 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
928 if (NewWidth <= APINT_BITS_PER_WORD)
929 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
930 return concatSlowCase(NewLSB);
931 }
932
933 /// Unsigned division operation.
934 ///
935 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
936 /// RHS are treated as unsigned quantities for purposes of this division.
937 ///
938 /// \returns a new APInt value containing the division result, rounded towards
939 /// zero.
940 APInt udiv(const APInt &RHS) const;
941 APInt udiv(uint64_t RHS) const;
942
943 /// Signed division function for APInt.
944 ///
945 /// Signed divide this APInt by APInt RHS.
946 ///
947 /// The result is rounded towards zero.
948 APInt sdiv(const APInt &RHS) const;
949 APInt sdiv(int64_t RHS) const;
950
951 /// Unsigned remainder operation.
952 ///
953 /// Perform an unsigned remainder operation on this APInt with RHS being the
954 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
955 /// of this operation.
956 ///
957 /// \returns a new APInt value containing the remainder result
958 APInt urem(const APInt &RHS) const;
959 uint64_t urem(uint64_t RHS) const;
960
961 /// Function for signed remainder operation.
962 ///
963 /// Signed remainder operation on APInt.
964 ///
965 /// Note that this is a true remainder operation and not a modulo operation
966 /// because the sign follows the sign of the dividend which is *this.
967 APInt srem(const APInt &RHS) const;
968 int64_t srem(int64_t RHS) const;
969
970 /// Dual division/remainder interface.
971 ///
972 /// Sometimes it is convenient to divide two APInt values and obtain both the
973 /// quotient and remainder. This function does both operations in the same
974 /// computation making it a little more efficient. The pair of input arguments
975 /// may overlap with the pair of output arguments. It is safe to call
976 /// udivrem(X, Y, X, Y), for example.
977 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
978 APInt &Remainder);
979 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
980 uint64_t &Remainder);
981
982 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
983 APInt &Remainder);
984 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
985 int64_t &Remainder);
986
987 // Operations that return overflow indicators.
988 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
989 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
990 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
991 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
992 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
993 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
994 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
995 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
996 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
997 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
998 APInt ushl_ov(unsigned Amt, bool &Overflow) const;
999
1000 // Operations that saturate
1001 APInt sadd_sat(const APInt &RHS) const;
1002 APInt uadd_sat(const APInt &RHS) const;
1003 APInt ssub_sat(const APInt &RHS) const;
1004 APInt usub_sat(const APInt &RHS) const;
1005 APInt smul_sat(const APInt &RHS) const;
1006 APInt umul_sat(const APInt &RHS) const;
1007 APInt sshl_sat(const APInt &RHS) const;
1008 APInt sshl_sat(unsigned RHS) const;
1009 APInt ushl_sat(const APInt &RHS) const;
1010 APInt ushl_sat(unsigned RHS) const;
1011
1012 /// Array-indexing support.
1013 ///
1014 /// \returns the bit value at bitPosition
1015 bool operator[](unsigned bitPosition) const {
1016 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1017 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1018 }
1019
1020 /// @}
1021 /// \name Comparison Operators
1022 /// @{
1023
1024 /// Equality operator.
1025 ///
1026 /// Compares this APInt with RHS for the validity of the equality
1027 /// relationship.
1028 bool operator==(const APInt &RHS) const {
1029 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1030 if (isSingleWord())
1031 return U.VAL == RHS.U.VAL;
1032 return equalSlowCase(RHS);
1033 }
1034
1035 /// Equality operator.
1036 ///
1037 /// Compares this APInt with a uint64_t for the validity of the equality
1038 /// relationship.
1039 ///
1040 /// \returns true if *this == Val
1041 bool operator==(uint64_t Val) const {
1042 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1043 }
1044
1045 /// Equality comparison.
1046 ///
1047 /// Compares this APInt with RHS for the validity of the equality
1048 /// relationship.
1049 ///
1050 /// \returns true if *this == Val
1051 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1052
1053 /// Inequality operator.
1054 ///
1055 /// Compares this APInt with RHS for the validity of the inequality
1056 /// relationship.
1057 ///
1058 /// \returns true if *this != Val
1059 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1060
1061 /// Inequality operator.
1062 ///
1063 /// Compares this APInt with a uint64_t for the validity of the inequality
1064 /// relationship.
1065 ///
1066 /// \returns true if *this != Val
1067 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1068
1069 /// Inequality comparison
1070 ///
1071 /// Compares this APInt with RHS for the validity of the inequality
1072 /// relationship.
1073 ///
1074 /// \returns true if *this != Val
1075 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1076
1077 /// Unsigned less than comparison
1078 ///
1079 /// Regards both *this and RHS as unsigned quantities and compares them for
1080 /// the validity of the less-than relationship.
1081 ///
1082 /// \returns true if *this < RHS when both are considered unsigned.
1083 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1084
1085 /// Unsigned less than comparison
1086 ///
1087 /// Regards both *this as an unsigned quantity and compares it with RHS for
1088 /// the validity of the less-than relationship.
1089 ///
1090 /// \returns true if *this < RHS when considered unsigned.
1091 bool ult(uint64_t RHS) const {
1092 // Only need to check active bits if not a single word.
1093 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1094 }
1095
1096 /// Signed less than comparison
1097 ///
1098 /// Regards both *this and RHS as signed quantities and compares them for
1099 /// validity of the less-than relationship.
1100 ///
1101 /// \returns true if *this < RHS when both are considered signed.
1102 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1103
1104 /// Signed less than comparison
1105 ///
1106 /// Regards both *this as a signed quantity and compares it with RHS for
1107 /// the validity of the less-than relationship.
1108 ///
1109 /// \returns true if *this < RHS when considered signed.
1110 bool slt(int64_t RHS) const {
1111 return (!isSingleWord() && getSignificantBits() > 64)
1112 ? isNegative()
1113 : getSExtValue() < RHS;
1114 }
1115
1116 /// Unsigned less or equal comparison
1117 ///
1118 /// Regards both *this and RHS as unsigned quantities and compares them for
1119 /// validity of the less-or-equal relationship.
1120 ///
1121 /// \returns true if *this <= RHS when both are considered unsigned.
1122 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1123
1124 /// Unsigned less or equal comparison
1125 ///
1126 /// Regards both *this as an unsigned quantity and compares it with RHS for
1127 /// the validity of the less-or-equal relationship.
1128 ///
1129 /// \returns true if *this <= RHS when considered unsigned.
1130 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1131
1132 /// Signed less or equal comparison
1133 ///
1134 /// Regards both *this and RHS as signed quantities and compares them for
1135 /// validity of the less-or-equal relationship.
1136 ///
1137 /// \returns true if *this <= RHS when both are considered signed.
1138 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1139
1140 /// Signed less or equal comparison
1141 ///
1142 /// Regards both *this as a signed quantity and compares it with RHS for the
1143 /// validity of the less-or-equal relationship.
1144 ///
1145 /// \returns true if *this <= RHS when considered signed.
1146 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1147
1148 /// Unsigned greater than comparison
1149 ///
1150 /// Regards both *this and RHS as unsigned quantities and compares them for
1151 /// the validity of the greater-than relationship.
1152 ///
1153 /// \returns true if *this > RHS when both are considered unsigned.
1154 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1155
1156 /// Unsigned greater than comparison
1157 ///
1158 /// Regards both *this as an unsigned quantity and compares it with RHS for
1159 /// the validity of the greater-than relationship.
1160 ///
1161 /// \returns true if *this > RHS when considered unsigned.
1162 bool ugt(uint64_t RHS) const {
1163 // Only need to check active bits if not a single word.
1164 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1165 }
1166
1167 /// Signed greater than comparison
1168 ///
1169 /// Regards both *this and RHS as signed quantities and compares them for the
1170 /// validity of the greater-than relationship.
1171 ///
1172 /// \returns true if *this > RHS when both are considered signed.
1173 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1174
1175 /// Signed greater than comparison
1176 ///
1177 /// Regards both *this as a signed quantity and compares it with RHS for
1178 /// the validity of the greater-than relationship.
1179 ///
1180 /// \returns true if *this > RHS when considered signed.
1181 bool sgt(int64_t RHS) const {
1182 return (!isSingleWord() && getSignificantBits() > 64)
1183 ? !isNegative()
1184 : getSExtValue() > RHS;
1185 }
1186
1187 /// Unsigned greater or equal comparison
1188 ///
1189 /// Regards both *this and RHS as unsigned quantities and compares them for
1190 /// validity of the greater-or-equal relationship.
1191 ///
1192 /// \returns true if *this >= RHS when both are considered unsigned.
1193 bool uge(const APInt &RHS) const { return !ult(RHS); }
1194
1195 /// Unsigned greater or equal comparison
1196 ///
1197 /// Regards both *this as an unsigned quantity and compares it with RHS for
1198 /// the validity of the greater-or-equal relationship.
1199 ///
1200 /// \returns true if *this >= RHS when considered unsigned.
1201 bool uge(uint64_t RHS) const { return !ult(RHS); }
1202
1203 /// Signed greater or equal comparison
1204 ///
1205 /// Regards both *this and RHS as signed quantities and compares them for
1206 /// validity of the greater-or-equal relationship.
1207 ///
1208 /// \returns true if *this >= RHS when both are considered signed.
1209 bool sge(const APInt &RHS) const { return !slt(RHS); }
1210
1211 /// Signed greater or equal comparison
1212 ///
1213 /// Regards both *this as a signed quantity and compares it with RHS for
1214 /// the validity of the greater-or-equal relationship.
1215 ///
1216 /// \returns true if *this >= RHS when considered signed.
1217 bool sge(int64_t RHS) const { return !slt(RHS); }
1218
1219 /// This operation tests if there are any pairs of corresponding bits
1220 /// between this APInt and RHS that are both set.
1221 bool intersects(const APInt &RHS) const {
1222 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1223 if (isSingleWord())
1224 return (U.VAL & RHS.U.VAL) != 0;
1225 return intersectsSlowCase(RHS);
1226 }
1227
1228 /// This operation checks that all bits set in this APInt are also set in RHS.
1229 bool isSubsetOf(const APInt &RHS) const {
1230 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1231 if (isSingleWord())
1232 return (U.VAL & ~RHS.U.VAL) == 0;
1233 return isSubsetOfSlowCase(RHS);
1234 }
1235
1236 /// @}
1237 /// \name Resizing Operators
1238 /// @{
1239
1240 /// Truncate to new width.
1241 ///
1242 /// Truncate the APInt to a specified width. It is an error to specify a width
1243 /// that is greater than the current width.
1244 APInt trunc(unsigned width) const;
1245
1246 /// Truncate to new width with unsigned saturation.
1247 ///
1248 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1249 /// the new bitwidth, then return truncated APInt. Else, return max value.
1250 APInt truncUSat(unsigned width) const;
1251
1252 /// Truncate to new width with signed saturation.
1253 ///
1254 /// If this APInt, treated as signed integer, can be losslessly truncated to
1255 /// the new bitwidth, then return truncated APInt. Else, return either
1256 /// signed min value if the APInt was negative, or signed max value.
1257 APInt truncSSat(unsigned width) const;
1258
1259 /// Sign extend to a new width.
1260 ///
1261 /// This operation sign extends the APInt to a new width. If the high order
1262 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1263 /// It is an error to specify a width that is less than the
1264 /// current width.
1265 APInt sext(unsigned width) const;
1266
1267 /// Zero extend to a new width.
1268 ///
1269 /// This operation zero extends the APInt to a new width. The high order bits
1270 /// are filled with 0 bits. It is an error to specify a width that is less
1271 /// than the current width.
1272 APInt zext(unsigned width) const;
1273
1274 /// Sign extend or truncate to width
1275 ///
1276 /// Make this APInt have the bit width given by \p width. The value is sign
1277 /// extended, truncated, or left alone to make it that width.
1278 APInt sextOrTrunc(unsigned width) const;
1279
1280 /// Zero extend or truncate to width
1281 ///
1282 /// Make this APInt have the bit width given by \p width. The value is zero
1283 /// extended, truncated, or left alone to make it that width.
1284 APInt zextOrTrunc(unsigned width) const;
1285
1286 /// @}
1287 /// \name Bit Manipulation Operators
1288 /// @{
1289
1290 /// Set every bit to 1.
1291 void setAllBits() {
1292 if (isSingleWord())
1293 U.VAL = WORDTYPE_MAX;
1294 else
1295 // Set all the bits in all the words.
1296 memset(s: U.pVal, c: -1, n: getNumWords() * APINT_WORD_SIZE);
1297 // Clear the unused ones
1298 clearUnusedBits();
1299 }
1300
1301 /// Set the given bit to 1 whose position is given as "bitPosition".
1302 void setBit(unsigned BitPosition) {
1303 assert(BitPosition < BitWidth && "BitPosition out of range");
1304 WordType Mask = maskBit(bitPosition: BitPosition);
1305 if (isSingleWord())
1306 U.VAL |= Mask;
1307 else
1308 U.pVal[whichWord(bitPosition: BitPosition)] |= Mask;
1309 }
1310
1311 /// Set the sign bit to 1.
1312 void setSignBit() { setBit(BitWidth - 1); }
1313
1314 /// Set a given bit to a given value.
1315 void setBitVal(unsigned BitPosition, bool BitValue) {
1316 if (BitValue)
1317 setBit(BitPosition);
1318 else
1319 clearBit(BitPosition);
1320 }
1321
1322 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1323 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1324 /// setBits when \p loBit < \p hiBit.
1325 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1326 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1327 assert(hiBit <= BitWidth && "hiBit out of range");
1328 assert(loBit <= BitWidth && "loBit out of range");
1329 if (loBit < hiBit) {
1330 setBits(loBit, hiBit);
1331 return;
1332 }
1333 setLowBits(hiBit);
1334 setHighBits(BitWidth - loBit);
1335 }
1336
1337 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1338 /// This function handles case when \p loBit <= \p hiBit.
1339 void setBits(unsigned loBit, unsigned hiBit) {
1340 assert(hiBit <= BitWidth && "hiBit out of range");
1341 assert(loBit <= BitWidth && "loBit out of range");
1342 assert(loBit <= hiBit && "loBit greater than hiBit");
1343 if (loBit == hiBit)
1344 return;
1345 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1346 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1347 mask <<= loBit;
1348 if (isSingleWord())
1349 U.VAL |= mask;
1350 else
1351 U.pVal[0] |= mask;
1352 } else {
1353 setBitsSlowCase(loBit, hiBit);
1354 }
1355 }
1356
1357 /// Set the top bits starting from loBit.
1358 void setBitsFrom(unsigned loBit) { return setBits(loBit, hiBit: BitWidth); }
1359
1360 /// Set the bottom loBits bits.
1361 void setLowBits(unsigned loBits) { return setBits(loBit: 0, hiBit: loBits); }
1362
1363 /// Set the top hiBits bits.
1364 void setHighBits(unsigned hiBits) {
1365 return setBits(loBit: BitWidth - hiBits, hiBit: BitWidth);
1366 }
1367
1368 /// Set every bit to 0.
1369 void clearAllBits() {
1370 if (isSingleWord())
1371 U.VAL = 0;
1372 else
1373 memset(s: U.pVal, c: 0, n: getNumWords() * APINT_WORD_SIZE);
1374 }
1375
1376 /// Set a given bit to 0.
1377 ///
1378 /// Set the given bit to 0 whose position is given as "bitPosition".
1379 void clearBit(unsigned BitPosition) {
1380 assert(BitPosition < BitWidth && "BitPosition out of range");
1381 WordType Mask = ~maskBit(bitPosition: BitPosition);
1382 if (isSingleWord())
1383 U.VAL &= Mask;
1384 else
1385 U.pVal[whichWord(bitPosition: BitPosition)] &= Mask;
1386 }
1387
1388 /// Set bottom loBits bits to 0.
1389 void clearLowBits(unsigned loBits) {
1390 assert(loBits <= BitWidth && "More bits than bitwidth");
1391 APInt Keep = getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - loBits);
1392 *this &= Keep;
1393 }
1394
1395 /// Set the sign bit to 0.
1396 void clearSignBit() { clearBit(BitPosition: BitWidth - 1); }
1397
1398 /// Toggle every bit to its opposite value.
1399 void flipAllBits() {
1400 if (isSingleWord()) {
1401 U.VAL ^= WORDTYPE_MAX;
1402 clearUnusedBits();
1403 } else {
1404 flipAllBitsSlowCase();
1405 }
1406 }
1407
1408 /// Toggles a given bit to its opposite value.
1409 ///
1410 /// Toggle a given bit to its opposite value whose position is given
1411 /// as "bitPosition".
1412 void flipBit(unsigned bitPosition);
1413
1414 /// Negate this APInt in place.
1415 void negate() {
1416 flipAllBits();
1417 ++(*this);
1418 }
1419
1420 /// Insert the bits from a smaller APInt starting at bitPosition.
1421 void insertBits(const APInt &SubBits, unsigned bitPosition);
1422 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1423
1424 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1425 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1426 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1427
1428 /// @}
1429 /// \name Value Characterization Functions
1430 /// @{
1431
1432 /// Return the number of bits in the APInt.
1433 unsigned getBitWidth() const { return BitWidth; }
1434
1435 /// Get the number of words.
1436 ///
1437 /// Here one word's bitwidth equals to that of uint64_t.
1438 ///
1439 /// \returns the number of words to hold the integer value of this APInt.
1440 unsigned getNumWords() const { return getNumWords(BitWidth); }
1441
1442 /// Get the number of words.
1443 ///
1444 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1445 ///
1446 /// \returns the number of words to hold the integer value with a given bit
1447 /// width.
1448 static unsigned getNumWords(unsigned BitWidth) {
1449 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1450 }
1451
1452 /// Compute the number of active bits in the value
1453 ///
1454 /// This function returns the number of active bits which is defined as the
1455 /// bit width minus the number of leading zeros. This is used in several
1456 /// computations to see how "wide" the value is.
1457 unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1458
1459 /// Compute the number of active words in the value of this APInt.
1460 ///
1461 /// This is used in conjunction with getActiveData to extract the raw value of
1462 /// the APInt.
1463 unsigned getActiveWords() const {
1464 unsigned numActiveBits = getActiveBits();
1465 return numActiveBits ? whichWord(bitPosition: numActiveBits - 1) + 1 : 1;
1466 }
1467
1468 /// Get the minimum bit size for this signed APInt
1469 ///
1470 /// Computes the minimum bit width for this APInt while considering it to be a
1471 /// signed (and probably negative) value. If the value is not negative, this
1472 /// function returns the same value as getActiveBits()+1. Otherwise, it
1473 /// returns the smallest bit width that will retain the negative value. For
1474 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1475 /// for -1, this function will always return 1.
1476 unsigned getSignificantBits() const {
1477 return BitWidth - getNumSignBits() + 1;
1478 }
1479
1480 /// Get zero extended value
1481 ///
1482 /// This method attempts to return the value of this APInt as a zero extended
1483 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1484 /// uint64_t. Otherwise an assertion will result.
1485 uint64_t getZExtValue() const {
1486 if (isSingleWord())
1487 return U.VAL;
1488 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1489 return U.pVal[0];
1490 }
1491
1492 /// Get zero extended value if possible
1493 ///
1494 /// This method attempts to return the value of this APInt as a zero extended
1495 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1496 /// uint64_t. Otherwise no value is returned.
1497 std::optional<uint64_t> tryZExtValue() const {
1498 return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1499 : std::nullopt;
1500 };
1501
1502 /// Get sign extended value
1503 ///
1504 /// This method attempts to return the value of this APInt as a sign extended
1505 /// int64_t. The bit width must be <= 64 or the value must fit within an
1506 /// int64_t. Otherwise an assertion will result.
1507 int64_t getSExtValue() const {
1508 if (isSingleWord())
1509 return SignExtend64(X: U.VAL, B: BitWidth);
1510 assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1511 return int64_t(U.pVal[0]);
1512 }
1513
1514 /// Get sign extended value if possible
1515 ///
1516 /// This method attempts to return the value of this APInt as a sign extended
1517 /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1518 /// int64_t. Otherwise no value is returned.
1519 std::optional<int64_t> trySExtValue() const {
1520 return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1521 : std::nullopt;
1522 };
1523
1524 /// Get bits required for string value.
1525 ///
1526 /// This method determines how many bits are required to hold the APInt
1527 /// equivalent of the string given by \p str.
1528 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1529
1530 /// Get the bits that are sufficient to represent the string value. This may
1531 /// over estimate the amount of bits required, but it does not require
1532 /// parsing the value in the string.
1533 static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1534
1535 /// The APInt version of std::countl_zero.
1536 ///
1537 /// It counts the number of zeros from the most significant bit to the first
1538 /// one bit.
1539 ///
1540 /// \returns BitWidth if the value is zero, otherwise returns the number of
1541 /// zeros from the most significant bit to the first one bits.
1542 unsigned countl_zero() const {
1543 if (isSingleWord()) {
1544 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1545 return llvm::countl_zero(Val: U.VAL) - unusedBits;
1546 }
1547 return countLeadingZerosSlowCase();
1548 }
1549
1550 unsigned countLeadingZeros() const { return countl_zero(); }
1551
1552 /// Count the number of leading one bits.
1553 ///
1554 /// This function is an APInt version of std::countl_one. It counts the number
1555 /// of ones from the most significant bit to the first zero bit.
1556 ///
1557 /// \returns 0 if the high order bit is not set, otherwise returns the number
1558 /// of 1 bits from the most significant to the least
1559 unsigned countl_one() const {
1560 if (isSingleWord()) {
1561 if (LLVM_UNLIKELY(BitWidth == 0))
1562 return 0;
1563 return llvm::countl_one(Value: U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1564 }
1565 return countLeadingOnesSlowCase();
1566 }
1567
1568 unsigned countLeadingOnes() const { return countl_one(); }
1569
1570 /// Computes the number of leading bits of this APInt that are equal to its
1571 /// sign bit.
1572 unsigned getNumSignBits() const {
1573 return isNegative() ? countl_one() : countl_zero();
1574 }
1575
1576 /// Count the number of trailing zero bits.
1577 ///
1578 /// This function is an APInt version of std::countr_zero. It counts the
1579 /// number of zeros from the least significant bit to the first set bit.
1580 ///
1581 /// \returns BitWidth if the value is zero, otherwise returns the number of
1582 /// zeros from the least significant bit to the first one bit.
1583 unsigned countr_zero() const {
1584 if (isSingleWord()) {
1585 unsigned TrailingZeros = llvm::countr_zero(Val: U.VAL);
1586 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1587 }
1588 return countTrailingZerosSlowCase();
1589 }
1590
1591 unsigned countTrailingZeros() const { return countr_zero(); }
1592
1593 /// Count the number of trailing one bits.
1594 ///
1595 /// This function is an APInt version of std::countr_one. It counts the number
1596 /// of ones from the least significant bit to the first zero bit.
1597 ///
1598 /// \returns BitWidth if the value is all ones, otherwise returns the number
1599 /// of ones from the least significant bit to the first zero bit.
1600 unsigned countr_one() const {
1601 if (isSingleWord())
1602 return llvm::countr_one(Value: U.VAL);
1603 return countTrailingOnesSlowCase();
1604 }
1605
1606 unsigned countTrailingOnes() const { return countr_one(); }
1607
1608 /// Count the number of bits set.
1609 ///
1610 /// This function is an APInt version of std::popcount. It counts the number
1611 /// of 1 bits in the APInt value.
1612 ///
1613 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1614 unsigned popcount() const {
1615 if (isSingleWord())
1616 return llvm::popcount(Value: U.VAL);
1617 return countPopulationSlowCase();
1618 }
1619
1620 /// @}
1621 /// \name Conversion Functions
1622 /// @{
1623 void print(raw_ostream &OS, bool isSigned) const;
1624
1625 /// Converts an APInt to a string and append it to Str. Str is commonly a
1626 /// SmallString. If Radix > 10, UpperCase determine the case of letter
1627 /// digits.
1628 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1629 bool formatAsCLiteral = false, bool UpperCase = true) const;
1630
1631 /// Considers the APInt to be unsigned and converts it into a string in the
1632 /// radix given. The radix can be 2, 8, 10 16, or 36.
1633 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1634 toString(Str, Radix, Signed: false, formatAsCLiteral: false);
1635 }
1636
1637 /// Considers the APInt to be signed and converts it into a string in the
1638 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1639 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1640 toString(Str, Radix, Signed: true, formatAsCLiteral: false);
1641 }
1642
1643 /// \returns a byte-swapped representation of this APInt Value.
1644 APInt byteSwap() const;
1645
1646 /// \returns the value with the bit representation reversed of this APInt
1647 /// Value.
1648 APInt reverseBits() const;
1649
1650 /// Converts this APInt to a double value.
1651 double roundToDouble(bool isSigned) const;
1652
1653 /// Converts this unsigned APInt to a double value.
1654 double roundToDouble() const { return roundToDouble(isSigned: false); }
1655
1656 /// Converts this signed APInt to a double value.
1657 double signedRoundToDouble() const { return roundToDouble(isSigned: true); }
1658
1659 /// Converts APInt bits to a double
1660 ///
1661 /// The conversion does not do a translation from integer to double, it just
1662 /// re-interprets the bits as a double. Note that it is valid to do this on
1663 /// any bit width. Exactly 64 bits will be translated.
1664 double bitsToDouble() const { return llvm::bit_cast<double>(from: getWord(bitPosition: 0)); }
1665
1666 /// Converts APInt bits to a float
1667 ///
1668 /// The conversion does not do a translation from integer to float, it just
1669 /// re-interprets the bits as a float. Note that it is valid to do this on
1670 /// any bit width. Exactly 32 bits will be translated.
1671 float bitsToFloat() const {
1672 return llvm::bit_cast<float>(from: static_cast<uint32_t>(getWord(bitPosition: 0)));
1673 }
1674
1675 /// Converts a double to APInt bits.
1676 ///
1677 /// The conversion does not do a translation from double to integer, it just
1678 /// re-interprets the bits of the double.
1679 static APInt doubleToBits(double V) {
1680 return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(from: V));
1681 }
1682
1683 /// Converts a float to APInt bits.
1684 ///
1685 /// The conversion does not do a translation from float to integer, it just
1686 /// re-interprets the bits of the float.
1687 static APInt floatToBits(float V) {
1688 return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(from: V));
1689 }
1690
1691 /// @}
1692 /// \name Mathematics Operations
1693 /// @{
1694
1695 /// \returns the floor log base 2 of this APInt.
1696 unsigned logBase2() const { return getActiveBits() - 1; }
1697
1698 /// \returns the ceil log base 2 of this APInt.
1699 unsigned ceilLogBase2() const {
1700 APInt temp(*this);
1701 --temp;
1702 return temp.getActiveBits();
1703 }
1704
1705 /// \returns the nearest log base 2 of this APInt. Ties round up.
1706 ///
1707 /// NOTE: When we have a BitWidth of 1, we define:
1708 ///
1709 /// log2(0) = UINT32_MAX
1710 /// log2(1) = 0
1711 ///
1712 /// to get around any mathematical concerns resulting from
1713 /// referencing 2 in a space where 2 does no exist.
1714 unsigned nearestLogBase2() const;
1715
1716 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1717 /// otherwise
1718 int32_t exactLogBase2() const {
1719 if (!isPowerOf2())
1720 return -1;
1721 return logBase2();
1722 }
1723
1724 /// Compute the square root.
1725 APInt sqrt() const;
1726
1727 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
1728 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
1729 /// wide APInt) is unchanged due to how negation works.
1730 APInt abs() const {
1731 if (isNegative())
1732 return -(*this);
1733 return *this;
1734 }
1735
1736 /// \returns the multiplicative inverse for a given modulo.
1737 APInt multiplicativeInverse(const APInt &modulo) const;
1738
1739 /// @}
1740 /// \name Building-block Operations for APInt and APFloat
1741 /// @{
1742
1743 // These building block operations operate on a representation of arbitrary
1744 // precision, two's-complement, bignum integer values. They should be
1745 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1746 // generally a pointer to the base of an array of integer parts, representing
1747 // an unsigned bignum, and a count of how many parts there are.
1748
1749 /// Sets the least significant part of a bignum to the input value, and zeroes
1750 /// out higher parts.
1751 static void tcSet(WordType *, WordType, unsigned);
1752
1753 /// Assign one bignum to another.
1754 static void tcAssign(WordType *, const WordType *, unsigned);
1755
1756 /// Returns true if a bignum is zero, false otherwise.
1757 static bool tcIsZero(const WordType *, unsigned);
1758
1759 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1760 static int tcExtractBit(const WordType *, unsigned bit);
1761
1762 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1763 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1764 /// significant bit of DST. All high bits above srcBITS in DST are
1765 /// zero-filled.
1766 static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1767 unsigned srcBits, unsigned srcLSB);
1768
1769 /// Set the given bit of a bignum. Zero-based.
1770 static void tcSetBit(WordType *, unsigned bit);
1771
1772 /// Clear the given bit of a bignum. Zero-based.
1773 static void tcClearBit(WordType *, unsigned bit);
1774
1775 /// Returns the bit number of the least or most significant set bit of a
1776 /// number. If the input number has no bits set -1U is returned.
1777 static unsigned tcLSB(const WordType *, unsigned n);
1778 static unsigned tcMSB(const WordType *parts, unsigned n);
1779
1780 /// Negate a bignum in-place.
1781 static void tcNegate(WordType *, unsigned);
1782
1783 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1784 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1785 /// DST += RHS. Returns the carry flag.
1786 static WordType tcAddPart(WordType *, WordType, unsigned);
1787
1788 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1789 static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1790 unsigned);
1791 /// DST -= RHS. Returns the carry flag.
1792 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1793
1794 /// DST += SRC * MULTIPLIER + PART if add is true
1795 /// DST = SRC * MULTIPLIER + PART if add is false
1796 ///
1797 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1798 /// start at the same point, i.e. DST == SRC.
1799 ///
1800 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1801 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1802 /// result, and if all of the omitted higher parts were zero return zero,
1803 /// otherwise overflow occurred and return one.
1804 static int tcMultiplyPart(WordType *dst, const WordType *src,
1805 WordType multiplier, WordType carry,
1806 unsigned srcParts, unsigned dstParts, bool add);
1807
1808 /// DST = LHS * RHS, where DST has the same width as the operands and is
1809 /// filled with the least significant parts of the result. Returns one if
1810 /// overflow occurred, otherwise zero. DST must be disjoint from both
1811 /// operands.
1812 static int tcMultiply(WordType *, const WordType *, const WordType *,
1813 unsigned);
1814
1815 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1816 /// operands. No overflow occurs. DST must be disjoint from both operands.
1817 static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1818 unsigned, unsigned);
1819
1820 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1821 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1822 /// REMAINDER to the remainder, return zero. i.e.
1823 ///
1824 /// OLD_LHS = RHS * LHS + REMAINDER
1825 ///
1826 /// SCRATCH is a bignum of the same size as the operands and result for use by
1827 /// the routine; its contents need not be initialized and are destroyed. LHS,
1828 /// REMAINDER and SCRATCH must be distinct.
1829 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1830 WordType *scratch, unsigned parts);
1831
1832 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1833 /// restrictions on Count.
1834 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1835
1836 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1837 /// restrictions on Count.
1838 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1839
1840 /// Comparison (unsigned) of two bignums.
1841 static int tcCompare(const WordType *, const WordType *, unsigned);
1842
1843 /// Increment a bignum in-place. Return the carry flag.
1844 static WordType tcIncrement(WordType *dst, unsigned parts) {
1845 return tcAddPart(dst, 1, parts);
1846 }
1847
1848 /// Decrement a bignum in-place. Return the borrow flag.
1849 static WordType tcDecrement(WordType *dst, unsigned parts) {
1850 return tcSubtractPart(dst, 1, parts);
1851 }
1852
1853 /// Used to insert APInt objects, or objects that contain APInt objects, into
1854 /// FoldingSets.
1855 void Profile(FoldingSetNodeID &id) const;
1856
1857 /// debug method
1858 void dump() const;
1859
1860 /// Returns whether this instance allocated memory.
1861 bool needsCleanup() const { return !isSingleWord(); }
1862
1863private:
1864 /// This union is used to store the integer value. When the
1865 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1866 union {
1867 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1868 uint64_t *pVal; ///< Used to store the >64 bits integer value.
1869 } U;
1870
1871 unsigned BitWidth = 1; ///< The number of bits in this APInt.
1872
1873 friend struct DenseMapInfo<APInt, void>;
1874 friend class APSInt;
1875
1876 /// This constructor is used only internally for speed of construction of
1877 /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1878 /// is not public.
1879 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1880
1881 /// Determine which word a bit is in.
1882 ///
1883 /// \returns the word position for the specified bit position.
1884 static unsigned whichWord(unsigned bitPosition) {
1885 return bitPosition / APINT_BITS_PER_WORD;
1886 }
1887
1888 /// Determine which bit in a word the specified bit position is in.
1889 static unsigned whichBit(unsigned bitPosition) {
1890 return bitPosition % APINT_BITS_PER_WORD;
1891 }
1892
1893 /// Get a single bit mask.
1894 ///
1895 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1896 /// This method generates and returns a uint64_t (word) mask for a single
1897 /// bit at a specific bit position. This is used to mask the bit in the
1898 /// corresponding word.
1899 static uint64_t maskBit(unsigned bitPosition) {
1900 return 1ULL << whichBit(bitPosition);
1901 }
1902
1903 /// Clear unused high order bits
1904 ///
1905 /// This method is used internally to clear the top "N" bits in the high order
1906 /// word that are not used by the APInt. This is needed after the most
1907 /// significant word is assigned a value to ensure that those bits are
1908 /// zero'd out.
1909 APInt &clearUnusedBits() {
1910 // Compute how many bits are used in the final word.
1911 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1912
1913 // Mask out the high bits.
1914 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1915 if (LLVM_UNLIKELY(BitWidth == 0))
1916 mask = 0;
1917
1918 if (isSingleWord())
1919 U.VAL &= mask;
1920 else
1921 U.pVal[getNumWords() - 1] &= mask;
1922 return *this;
1923 }
1924
1925 /// Get the word corresponding to a bit position
1926 /// \returns the corresponding word for the specified bit position.
1927 uint64_t getWord(unsigned bitPosition) const {
1928 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1929 }
1930
1931 /// Utility method to change the bit width of this APInt to new bit width,
1932 /// allocating and/or deallocating as necessary. There is no guarantee on the
1933 /// value of any bits upon return. Caller should populate the bits after.
1934 void reallocate(unsigned NewBitWidth);
1935
1936 /// Convert a char array into an APInt
1937 ///
1938 /// \param radix 2, 8, 10, 16, or 36
1939 /// Converts a string into a number. The string must be non-empty
1940 /// and well-formed as a number of the given base. The bit-width
1941 /// must be sufficient to hold the result.
1942 ///
1943 /// This is used by the constructors that take string arguments.
1944 ///
1945 /// StringRef::getAsInteger is superficially similar but (1) does
1946 /// not assume that the string is well-formed and (2) grows the
1947 /// result to hold the input.
1948 void fromString(unsigned numBits, StringRef str, uint8_t radix);
1949
1950 /// An internal division function for dividing APInts.
1951 ///
1952 /// This is used by the toString method to divide by the radix. It simply
1953 /// provides a more convenient form of divide for internal use since KnuthDiv
1954 /// has specific constraints on its inputs. If those constraints are not met
1955 /// then it provides a simpler form of divide.
1956 static void divide(const WordType *LHS, unsigned lhsWords,
1957 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1958 WordType *Remainder);
1959
1960 /// out-of-line slow case for inline constructor
1961 void initSlowCase(uint64_t val, bool isSigned);
1962
1963 /// shared code between two array constructors
1964 void initFromArray(ArrayRef<uint64_t> array);
1965
1966 /// out-of-line slow case for inline copy constructor
1967 void initSlowCase(const APInt &that);
1968
1969 /// out-of-line slow case for shl
1970 void shlSlowCase(unsigned ShiftAmt);
1971
1972 /// out-of-line slow case for lshr.
1973 void lshrSlowCase(unsigned ShiftAmt);
1974
1975 /// out-of-line slow case for ashr.
1976 void ashrSlowCase(unsigned ShiftAmt);
1977
1978 /// out-of-line slow case for operator=
1979 void assignSlowCase(const APInt &RHS);
1980
1981 /// out-of-line slow case for operator==
1982 bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1983
1984 /// out-of-line slow case for countLeadingZeros
1985 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1986
1987 /// out-of-line slow case for countLeadingOnes.
1988 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1989
1990 /// out-of-line slow case for countTrailingZeros.
1991 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1992
1993 /// out-of-line slow case for countTrailingOnes
1994 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1995
1996 /// out-of-line slow case for countPopulation
1997 unsigned countPopulationSlowCase() const LLVM_READONLY;
1998
1999 /// out-of-line slow case for intersects.
2000 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2001
2002 /// out-of-line slow case for isSubsetOf.
2003 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2004
2005 /// out-of-line slow case for setBits.
2006 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2007
2008 /// out-of-line slow case for flipAllBits.
2009 void flipAllBitsSlowCase();
2010
2011 /// out-of-line slow case for concat.
2012 APInt concatSlowCase(const APInt &NewLSB) const;
2013
2014 /// out-of-line slow case for operator&=.
2015 void andAssignSlowCase(const APInt &RHS);
2016
2017 /// out-of-line slow case for operator|=.
2018 void orAssignSlowCase(const APInt &RHS);
2019
2020 /// out-of-line slow case for operator^=.
2021 void xorAssignSlowCase(const APInt &RHS);
2022
2023 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2024 /// to, or greater than RHS.
2025 int compare(const APInt &RHS) const LLVM_READONLY;
2026
2027 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2028 /// to, or greater than RHS.
2029 int compareSigned(const APInt &RHS) const LLVM_READONLY;
2030
2031 /// @}
2032};
2033
2034inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2035
2036inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2037
2038/// Unary bitwise complement operator.
2039///
2040/// \returns an APInt that is the bitwise complement of \p v.
2041inline APInt operator~(APInt v) {
2042 v.flipAllBits();
2043 return v;
2044}
2045
2046inline APInt operator&(APInt a, const APInt &b) {
2047 a &= b;
2048 return a;
2049}
2050
2051inline APInt operator&(const APInt &a, APInt &&b) {
2052 b &= a;
2053 return std::move(b);
2054}
2055
2056inline APInt operator&(APInt a, uint64_t RHS) {
2057 a &= RHS;
2058 return a;
2059}
2060
2061inline APInt operator&(uint64_t LHS, APInt b) {
2062 b &= LHS;
2063 return b;
2064}
2065
2066inline APInt operator|(APInt a, const APInt &b) {
2067 a |= b;
2068 return a;
2069}
2070
2071inline APInt operator|(const APInt &a, APInt &&b) {
2072 b |= a;
2073 return std::move(b);
2074}
2075
2076inline APInt operator|(APInt a, uint64_t RHS) {
2077 a |= RHS;
2078 return a;
2079}
2080
2081inline APInt operator|(uint64_t LHS, APInt b) {
2082 b |= LHS;
2083 return b;
2084}
2085
2086inline APInt operator^(APInt a, const APInt &b) {
2087 a ^= b;
2088 return a;
2089}
2090
2091inline APInt operator^(const APInt &a, APInt &&b) {
2092 b ^= a;
2093 return std::move(b);
2094}
2095
2096inline APInt operator^(APInt a, uint64_t RHS) {
2097 a ^= RHS;
2098 return a;
2099}
2100
2101inline APInt operator^(uint64_t LHS, APInt b) {
2102 b ^= LHS;
2103 return b;
2104}
2105
2106inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2107 I.print(OS, isSigned: true);
2108 return OS;
2109}
2110
2111inline APInt operator-(APInt v) {
2112 v.negate();
2113 return v;
2114}
2115
2116inline APInt operator+(APInt a, const APInt &b) {
2117 a += b;
2118 return a;
2119}
2120
2121inline APInt operator+(const APInt &a, APInt &&b) {
2122 b += a;
2123 return std::move(b);
2124}
2125
2126inline APInt operator+(APInt a, uint64_t RHS) {
2127 a += RHS;
2128 return a;
2129}
2130
2131inline APInt operator+(uint64_t LHS, APInt b) {
2132 b += LHS;
2133 return b;
2134}
2135
2136inline APInt operator-(APInt a, const APInt &b) {
2137 a -= b;
2138 return a;
2139}
2140
2141inline APInt operator-(const APInt &a, APInt &&b) {
2142 b.negate();
2143 b += a;
2144 return std::move(b);
2145}
2146
2147inline APInt operator-(APInt a, uint64_t RHS) {
2148 a -= RHS;
2149 return a;
2150}
2151
2152inline APInt operator-(uint64_t LHS, APInt b) {
2153 b.negate();
2154 b += LHS;
2155 return b;
2156}
2157
2158inline APInt operator*(APInt a, uint64_t RHS) {
2159 a *= RHS;
2160 return a;
2161}
2162
2163inline APInt operator*(uint64_t LHS, APInt b) {
2164 b *= LHS;
2165 return b;
2166}
2167
2168namespace APIntOps {
2169
2170/// Determine the smaller of two APInts considered to be signed.
2171inline const APInt &smin(const APInt &A, const APInt &B) {
2172 return A.slt(RHS: B) ? A : B;
2173}
2174
2175/// Determine the larger of two APInts considered to be signed.
2176inline const APInt &smax(const APInt &A, const APInt &B) {
2177 return A.sgt(RHS: B) ? A : B;
2178}
2179
2180/// Determine the smaller of two APInts considered to be unsigned.
2181inline const APInt &umin(const APInt &A, const APInt &B) {
2182 return A.ult(RHS: B) ? A : B;
2183}
2184
2185/// Determine the larger of two APInts considered to be unsigned.
2186inline const APInt &umax(const APInt &A, const APInt &B) {
2187 return A.ugt(RHS: B) ? A : B;
2188}
2189
2190/// Compute GCD of two unsigned APInt values.
2191///
2192/// This function returns the greatest common divisor of the two APInt values
2193/// using Stein's algorithm.
2194///
2195/// \returns the greatest common divisor of A and B.
2196APInt GreatestCommonDivisor(APInt A, APInt B);
2197
2198/// Converts the given APInt to a double value.
2199///
2200/// Treats the APInt as an unsigned value for conversion purposes.
2201inline double RoundAPIntToDouble(const APInt &APIVal) {
2202 return APIVal.roundToDouble();
2203}
2204
2205/// Converts the given APInt to a double value.
2206///
2207/// Treats the APInt as a signed value for conversion purposes.
2208inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2209 return APIVal.signedRoundToDouble();
2210}
2211
2212/// Converts the given APInt to a float value.
2213inline float RoundAPIntToFloat(const APInt &APIVal) {
2214 return float(RoundAPIntToDouble(APIVal));
2215}
2216
2217/// Converts the given APInt to a float value.
2218///
2219/// Treats the APInt as a signed value for conversion purposes.
2220inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2221 return float(APIVal.signedRoundToDouble());
2222}
2223
2224/// Converts the given double value into a APInt.
2225///
2226/// This function convert a double value to an APInt value.
2227APInt RoundDoubleToAPInt(double Double, unsigned width);
2228
2229/// Converts a float value into a APInt.
2230///
2231/// Converts a float value into an APInt value.
2232inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2233 return RoundDoubleToAPInt(Double: double(Float), width);
2234}
2235
2236/// Return A unsign-divided by B, rounded by the given rounding mode.
2237APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2238
2239/// Return A sign-divided by B, rounded by the given rounding mode.
2240APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2241
2242/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2243/// (e.g. 32 for i32).
2244/// This function finds the smallest number n, such that
2245/// (a) n >= 0 and q(n) = 0, or
2246/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2247/// integers, belong to two different intervals [Rk, Rk+R),
2248/// where R = 2^BW, and k is an integer.
2249/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2250/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2251/// subtraction (treated as addition of negated numbers) would always
2252/// count as an overflow, but here we want to allow values to decrease
2253/// and increase as long as they are within the same interval.
2254/// Specifically, adding of two negative numbers should not cause an
2255/// overflow (as long as the magnitude does not exceed the bit width).
2256/// On the other hand, given a positive number, adding a negative
2257/// number to it can give a negative result, which would cause the
2258/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2259/// treated as a special case of an overflow.
2260///
2261/// This function returns std::nullopt if after finding k that minimizes the
2262/// positive solution to q(n) = kR, both solutions are contained between
2263/// two consecutive integers.
2264///
2265/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2266/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2267/// virtue of *signed* overflow. This function will *not* find such an n,
2268/// however it may find a value of n satisfying the inequalities due to
2269/// an *unsigned* overflow (if the values are treated as unsigned).
2270/// To find a solution for a signed overflow, treat it as a problem of
2271/// finding an unsigned overflow with a range with of BW-1.
2272///
2273/// The returned value may have a different bit width from the input
2274/// coefficients.
2275std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2276 unsigned RangeWidth);
2277
2278/// Compare two values, and if they are different, return the position of the
2279/// most significant bit that is different in the values.
2280std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2281 const APInt &B);
2282
2283/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2284/// by \param A to \param NewBitWidth bits.
2285///
2286/// MatchAnyBits: (Default)
2287/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2288/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2289///
2290/// MatchAllBits:
2291/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2292/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2293/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2294APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2295 bool MatchAllBits = false);
2296} // namespace APIntOps
2297
2298// See friend declaration above. This additional declaration is required in
2299// order to compile LLVM with IBM xlC compiler.
2300hash_code hash_value(const APInt &Arg);
2301
2302/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2303/// with the integer held in IntVal.
2304void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2305
2306/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2307/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2308void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2309
2310/// Provide DenseMapInfo for APInt.
2311template <> struct DenseMapInfo<APInt, void> {
2312 static inline APInt getEmptyKey() {
2313 APInt V(nullptr, 0);
2314 V.U.VAL = ~0ULL;
2315 return V;
2316 }
2317
2318 static inline APInt getTombstoneKey() {
2319 APInt V(nullptr, 0);
2320 V.U.VAL = ~1ULL;
2321 return V;
2322 }
2323
2324 static unsigned getHashValue(const APInt &Key);
2325
2326 static bool isEqual(const APInt &LHS, const APInt &RHS) {
2327 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2328 }
2329};
2330
2331} // namespace llvm
2332
2333#endif
2334

source code of llvm/include/llvm/ADT/APInt.h