1 | //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file provides a collection of function (or more generally, callable) |
10 | /// type erasure utilities supplementing those provided by the standard library |
11 | /// in `<function>`. |
12 | /// |
13 | /// It provides `unique_function`, which works like `std::function` but supports |
14 | /// move-only callable objects and const-qualification. |
15 | /// |
16 | /// Future plans: |
17 | /// - Add a `function` that provides ref-qualified support, which doesn't work |
18 | /// with `std::function`. |
19 | /// - Provide support for specifying multiple signatures to type erase callable |
20 | /// objects with an overload set, such as those produced by generic lambdas. |
21 | /// - Expand to include a copyable utility that directly replaces std::function |
22 | /// but brings the above improvements. |
23 | /// |
24 | /// Note that LLVM's utilities are greatly simplified by not supporting |
25 | /// allocators. |
26 | /// |
27 | /// If the standard library ever begins to provide comparable facilities we can |
28 | /// consider switching to those. |
29 | /// |
30 | //===----------------------------------------------------------------------===// |
31 | |
32 | #ifndef LLVM_ADT_FUNCTIONEXTRAS_H |
33 | #define |
34 | |
35 | #include "llvm/ADT/PointerIntPair.h" |
36 | #include "llvm/ADT/PointerUnion.h" |
37 | #include "llvm/ADT/STLForwardCompat.h" |
38 | #include "llvm/Support/Compiler.h" |
39 | #include "llvm/Support/MemAlloc.h" |
40 | #include "llvm/Support/type_traits.h" |
41 | #include <cstring> |
42 | #include <memory> |
43 | #include <type_traits> |
44 | |
45 | namespace llvm { |
46 | |
47 | /// unique_function is a type-erasing functor similar to std::function. |
48 | /// |
49 | /// It can hold move-only function objects, like lambdas capturing unique_ptrs. |
50 | /// Accordingly, it is movable but not copyable. |
51 | /// |
52 | /// It supports const-qualification: |
53 | /// - unique_function<int() const> has a const operator(). |
54 | /// It can only hold functions which themselves have a const operator(). |
55 | /// - unique_function<int()> has a non-const operator(). |
56 | /// It can hold functions with a non-const operator(), like mutable lambdas. |
57 | template <typename FunctionT> class unique_function; |
58 | |
59 | namespace detail { |
60 | |
61 | template <typename T> |
62 | using EnableIfTrivial = |
63 | std::enable_if_t<std::is_trivially_move_constructible<T>::value && |
64 | std::is_trivially_destructible<T>::value>; |
65 | template <typename CallableT, typename ThisT> |
66 | using EnableUnlessSameType = |
67 | std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>; |
68 | template <typename CallableT, typename Ret, typename... Params> |
69 | using EnableIfCallable = std::enable_if_t<std::disjunction< |
70 | std::is_void<Ret>, |
71 | std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)), |
72 | Ret>, |
73 | std::is_same<const decltype(std::declval<CallableT>()( |
74 | std::declval<Params>()...)), |
75 | Ret>, |
76 | std::is_convertible<decltype(std::declval<CallableT>()( |
77 | std::declval<Params>()...)), |
78 | Ret>>::value>; |
79 | |
80 | template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase { |
81 | protected: |
82 | static constexpr size_t InlineStorageSize = sizeof(void *) * 3; |
83 | |
84 | template <typename T, class = void> |
85 | struct IsSizeLessThanThresholdT : std::false_type {}; |
86 | |
87 | template <typename T> |
88 | struct IsSizeLessThanThresholdT< |
89 | T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {}; |
90 | |
91 | // Provide a type function to map parameters that won't observe extra copies |
92 | // or moves and which are small enough to likely pass in register to values |
93 | // and all other types to l-value reference types. We use this to compute the |
94 | // types used in our erased call utility to minimize copies and moves unless |
95 | // doing so would force things unnecessarily into memory. |
96 | // |
97 | // The heuristic used is related to common ABI register passing conventions. |
98 | // It doesn't have to be exact though, and in one way it is more strict |
99 | // because we want to still be able to observe either moves *or* copies. |
100 | template <typename T> struct AdjustedParamTBase { |
101 | static_assert(!std::is_reference<T>::value, |
102 | "references should be handled by template specialization" ); |
103 | using type = |
104 | std::conditional_t<std::is_trivially_copy_constructible<T>::value && |
105 | std::is_trivially_move_constructible<T>::value && |
106 | IsSizeLessThanThresholdT<T>::value, |
107 | T, T &>; |
108 | }; |
109 | |
110 | // This specialization ensures that 'AdjustedParam<V<T>&>' or |
111 | // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is |
112 | // an incomplete type and V a templated type. |
113 | template <typename T> struct AdjustedParamTBase<T &> { using type = T &; }; |
114 | template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; }; |
115 | |
116 | template <typename T> |
117 | using AdjustedParamT = typename AdjustedParamTBase<T>::type; |
118 | |
119 | // The type of the erased function pointer we use as a callback to dispatch to |
120 | // the stored callable when it is trivial to move and destroy. |
121 | using CallPtrT = ReturnT (*)(void *CallableAddr, |
122 | AdjustedParamT<ParamTs>... Params); |
123 | using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr); |
124 | using DestroyPtrT = void (*)(void *CallableAddr); |
125 | |
126 | /// A struct to hold a single trivial callback with sufficient alignment for |
127 | /// our bitpacking. |
128 | struct alignas(8) TrivialCallback { |
129 | CallPtrT CallPtr; |
130 | }; |
131 | |
132 | /// A struct we use to aggregate three callbacks when we need full set of |
133 | /// operations. |
134 | struct alignas(8) NonTrivialCallbacks { |
135 | CallPtrT CallPtr; |
136 | MovePtrT MovePtr; |
137 | DestroyPtrT DestroyPtr; |
138 | }; |
139 | |
140 | // Create a pointer union between either a pointer to a static trivial call |
141 | // pointer in a struct or a pointer to a static struct of the call, move, and |
142 | // destroy pointers. |
143 | using CallbackPointerUnionT = |
144 | PointerUnion<TrivialCallback *, NonTrivialCallbacks *>; |
145 | |
146 | // The main storage buffer. This will either have a pointer to out-of-line |
147 | // storage or an inline buffer storing the callable. |
148 | union StorageUnionT { |
149 | // For out-of-line storage we keep a pointer to the underlying storage and |
150 | // the size. This is enough to deallocate the memory. |
151 | struct OutOfLineStorageT { |
152 | void *StoragePtr; |
153 | size_t Size; |
154 | size_t Alignment; |
155 | } OutOfLineStorage; |
156 | static_assert( |
157 | sizeof(OutOfLineStorageT) <= InlineStorageSize, |
158 | "Should always use all of the out-of-line storage for inline storage!" ); |
159 | |
160 | // For in-line storage, we just provide an aligned character buffer. We |
161 | // provide three pointers worth of storage here. |
162 | // This is mutable as an inlined `const unique_function<void() const>` may |
163 | // still modify its own mutable members. |
164 | mutable std::aligned_storage_t<InlineStorageSize, alignof(void *)> |
165 | InlineStorage; |
166 | } StorageUnion; |
167 | |
168 | // A compressed pointer to either our dispatching callback or our table of |
169 | // dispatching callbacks and the flag for whether the callable itself is |
170 | // stored inline or not. |
171 | PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag; |
172 | |
173 | bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); } |
174 | |
175 | bool isTrivialCallback() const { |
176 | return isa<TrivialCallback *>(CallbackAndInlineFlag.getPointer()); |
177 | } |
178 | |
179 | CallPtrT getTrivialCallback() const { |
180 | return cast<TrivialCallback *>(CallbackAndInlineFlag.getPointer())->CallPtr; |
181 | } |
182 | |
183 | NonTrivialCallbacks *getNonTrivialCallbacks() const { |
184 | return cast<NonTrivialCallbacks *>(CallbackAndInlineFlag.getPointer()); |
185 | } |
186 | |
187 | CallPtrT getCallPtr() const { |
188 | return isTrivialCallback() ? getTrivialCallback() |
189 | : getNonTrivialCallbacks()->CallPtr; |
190 | } |
191 | |
192 | // These three functions are only const in the narrow sense. They return |
193 | // mutable pointers to function state. |
194 | // This allows unique_function<T const>::operator() to be const, even if the |
195 | // underlying functor may be internally mutable. |
196 | // |
197 | // const callers must ensure they're only used in const-correct ways. |
198 | void *getCalleePtr() const { |
199 | return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage(); |
200 | } |
201 | void *getInlineStorage() const { return &StorageUnion.InlineStorage; } |
202 | void *getOutOfLineStorage() const { |
203 | return StorageUnion.OutOfLineStorage.StoragePtr; |
204 | } |
205 | |
206 | size_t getOutOfLineStorageSize() const { |
207 | return StorageUnion.OutOfLineStorage.Size; |
208 | } |
209 | size_t getOutOfLineStorageAlignment() const { |
210 | return StorageUnion.OutOfLineStorage.Alignment; |
211 | } |
212 | |
213 | void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) { |
214 | StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment}; |
215 | } |
216 | |
217 | template <typename CalledAsT> |
218 | static ReturnT CallImpl(void *CallableAddr, |
219 | AdjustedParamT<ParamTs>... Params) { |
220 | auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr); |
221 | return Func(std::forward<ParamTs>(Params)...); |
222 | } |
223 | |
224 | template <typename CallableT> |
225 | static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept { |
226 | new (LHSCallableAddr) |
227 | CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr))); |
228 | } |
229 | |
230 | template <typename CallableT> |
231 | static void DestroyImpl(void *CallableAddr) noexcept { |
232 | reinterpret_cast<CallableT *>(CallableAddr)->~CallableT(); |
233 | } |
234 | |
235 | // The pointers to call/move/destroy functions are determined for each |
236 | // callable type (and called-as type, which determines the overload chosen). |
237 | // (definitions are out-of-line). |
238 | |
239 | // By default, we need an object that contains all the different |
240 | // type erased behaviors needed. Create a static instance of the struct type |
241 | // here and each instance will contain a pointer to it. |
242 | // Wrap in a struct to avoid https://gcc.gnu.org/PR71954 |
243 | template <typename CallableT, typename CalledAs, typename Enable = void> |
244 | struct CallbacksHolder { |
245 | static NonTrivialCallbacks Callbacks; |
246 | }; |
247 | // See if we can create a trivial callback. We need the callable to be |
248 | // trivially moved and trivially destroyed so that we don't have to store |
249 | // type erased callbacks for those operations. |
250 | template <typename CallableT, typename CalledAs> |
251 | struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> { |
252 | static TrivialCallback Callbacks; |
253 | }; |
254 | |
255 | // A simple tag type so the call-as type to be passed to the constructor. |
256 | template <typename T> struct CalledAs {}; |
257 | |
258 | // Essentially the "main" unique_function constructor, but subclasses |
259 | // provide the qualified type to be used for the call. |
260 | // (We always store a T, even if the call will use a pointer to const T). |
261 | template <typename CallableT, typename CalledAsT> |
262 | UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) { |
263 | bool IsInlineStorage = true; |
264 | void *CallableAddr = getInlineStorage(); |
265 | if (sizeof(CallableT) > InlineStorageSize || |
266 | alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) { |
267 | IsInlineStorage = false; |
268 | // Allocate out-of-line storage. FIXME: Use an explicit alignment |
269 | // parameter in C++17 mode. |
270 | auto Size = sizeof(CallableT); |
271 | auto Alignment = alignof(CallableT); |
272 | CallableAddr = allocate_buffer(Size, Alignment); |
273 | setOutOfLineStorage(Ptr: CallableAddr, Size, Alignment); |
274 | } |
275 | |
276 | // Now move into the storage. |
277 | new (CallableAddr) CallableT(std::move(Callable)); |
278 | CallbackAndInlineFlag.setPointerAndInt( |
279 | &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage); |
280 | } |
281 | |
282 | ~UniqueFunctionBase() { |
283 | if (!CallbackAndInlineFlag.getPointer()) |
284 | return; |
285 | |
286 | // Cache this value so we don't re-check it after type-erased operations. |
287 | bool IsInlineStorage = isInlineStorage(); |
288 | |
289 | if (!isTrivialCallback()) |
290 | getNonTrivialCallbacks()->DestroyPtr( |
291 | IsInlineStorage ? getInlineStorage() : getOutOfLineStorage()); |
292 | |
293 | if (!IsInlineStorage) |
294 | deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(), |
295 | getOutOfLineStorageAlignment()); |
296 | } |
297 | |
298 | UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept { |
299 | // Copy the callback and inline flag. |
300 | CallbackAndInlineFlag = RHS.CallbackAndInlineFlag; |
301 | |
302 | // If the RHS is empty, just copying the above is sufficient. |
303 | if (!RHS) |
304 | return; |
305 | |
306 | if (!isInlineStorage()) { |
307 | // The out-of-line case is easiest to move. |
308 | StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage; |
309 | } else if (isTrivialCallback()) { |
310 | // Move is trivial, just memcpy the bytes across. |
311 | memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize); |
312 | } else { |
313 | // Non-trivial move, so dispatch to a type-erased implementation. |
314 | getNonTrivialCallbacks()->MovePtr(getInlineStorage(), |
315 | RHS.getInlineStorage()); |
316 | } |
317 | |
318 | // Clear the old callback and inline flag to get back to as-if-null. |
319 | RHS.CallbackAndInlineFlag = {}; |
320 | |
321 | #if !defined(NDEBUG) && !LLVM_ADDRESS_SANITIZER_BUILD |
322 | // In debug builds without ASan, we also scribble across the rest of the |
323 | // storage. Scribbling under AddressSanitizer (ASan) is disabled to prevent |
324 | // overwriting poisoned objects (e.g., annotated short strings). |
325 | memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize); |
326 | #endif |
327 | } |
328 | |
329 | UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept { |
330 | if (this == &RHS) |
331 | return *this; |
332 | |
333 | // Because we don't try to provide any exception safety guarantees we can |
334 | // implement move assignment very simply by first destroying the current |
335 | // object and then move-constructing over top of it. |
336 | this->~UniqueFunctionBase(); |
337 | new (this) UniqueFunctionBase(std::move(RHS)); |
338 | return *this; |
339 | } |
340 | |
341 | UniqueFunctionBase() = default; |
342 | |
343 | public: |
344 | explicit operator bool() const { |
345 | return (bool)CallbackAndInlineFlag.getPointer(); |
346 | } |
347 | }; |
348 | |
349 | template <typename R, typename... P> |
350 | template <typename CallableT, typename CalledAsT, typename Enable> |
351 | typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase< |
352 | R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = { |
353 | &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>}; |
354 | |
355 | template <typename R, typename... P> |
356 | template <typename CallableT, typename CalledAsT> |
357 | typename UniqueFunctionBase<R, P...>::TrivialCallback |
358 | UniqueFunctionBase<R, P...>::CallbacksHolder< |
359 | CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{ |
360 | &CallImpl<CalledAsT>}; |
361 | |
362 | } // namespace detail |
363 | |
364 | template <typename R, typename... P> |
365 | class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> { |
366 | using Base = detail::UniqueFunctionBase<R, P...>; |
367 | |
368 | public: |
369 | unique_function() = default; |
370 | unique_function(std::nullptr_t) {} |
371 | unique_function(unique_function &&) = default; |
372 | unique_function(const unique_function &) = delete; |
373 | unique_function &operator=(unique_function &&) = default; |
374 | unique_function &operator=(const unique_function &) = delete; |
375 | |
376 | template <typename CallableT> |
377 | unique_function( |
378 | CallableT Callable, |
379 | detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, |
380 | detail::EnableIfCallable<CallableT, R, P...> * = nullptr) |
381 | : Base(std::forward<CallableT>(Callable), |
382 | typename Base::template CalledAs<CallableT>{}) {} |
383 | |
384 | R operator()(P... Params) { |
385 | return this->getCallPtr()(this->getCalleePtr(), Params...); |
386 | } |
387 | }; |
388 | |
389 | template <typename R, typename... P> |
390 | class unique_function<R(P...) const> |
391 | : public detail::UniqueFunctionBase<R, P...> { |
392 | using Base = detail::UniqueFunctionBase<R, P...>; |
393 | |
394 | public: |
395 | unique_function() = default; |
396 | unique_function(std::nullptr_t) {} |
397 | unique_function(unique_function &&) = default; |
398 | unique_function(const unique_function &) = delete; |
399 | unique_function &operator=(unique_function &&) = default; |
400 | unique_function &operator=(const unique_function &) = delete; |
401 | |
402 | template <typename CallableT> |
403 | unique_function( |
404 | CallableT Callable, |
405 | detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, |
406 | detail::EnableIfCallable<const CallableT, R, P...> * = nullptr) |
407 | : Base(std::forward<CallableT>(Callable), |
408 | typename Base::template CalledAs<const CallableT>{}) {} |
409 | |
410 | R operator()(P... Params) const { |
411 | return this->getCallPtr()(this->getCalleePtr(), Params...); |
412 | } |
413 | }; |
414 | |
415 | } // end namespace llvm |
416 | |
417 | #endif // LLVM_ADT_FUNCTIONEXTRAS_H |
418 | |