1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file defines the SmallVector class. |
11 | /// |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_SMALLVECTOR_H |
15 | #define LLVM_ADT_SMALLVECTOR_H |
16 | |
17 | #include "llvm/Support/Compiler.h" |
18 | #include "llvm/Support/type_traits.h" |
19 | #include <algorithm> |
20 | #include <cassert> |
21 | #include <cstddef> |
22 | #include <cstdlib> |
23 | #include <cstring> |
24 | #include <functional> |
25 | #include <initializer_list> |
26 | #include <iterator> |
27 | #include <limits> |
28 | #include <memory> |
29 | #include <new> |
30 | #include <type_traits> |
31 | #include <utility> |
32 | |
33 | namespace llvm { |
34 | |
35 | template <typename T> class ArrayRef; |
36 | |
37 | template <typename IteratorT> class iterator_range; |
38 | |
39 | template <class Iterator> |
40 | using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< |
41 | typename std::iterator_traits<Iterator>::iterator_category, |
42 | std::input_iterator_tag>::value>; |
43 | |
44 | /// This is all the stuff common to all SmallVectors. |
45 | /// |
46 | /// The template parameter specifies the type which should be used to hold the |
47 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
48 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
49 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
50 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
51 | /// buffering bitcode output - which can exceed 4GB. |
52 | template <class Size_T> class SmallVectorBase { |
53 | protected: |
54 | void *BeginX; |
55 | Size_T Size = 0, Capacity; |
56 | |
57 | /// The maximum value of the Size_T used. |
58 | static constexpr size_t SizeTypeMax() { |
59 | return std::numeric_limits<Size_T>::max(); |
60 | } |
61 | |
62 | SmallVectorBase() = delete; |
63 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
64 | : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {} |
65 | |
66 | /// This is a helper for \a grow() that's out of line to reduce code |
67 | /// duplication. This function will report a fatal error if it can't grow at |
68 | /// least to \p MinSize. |
69 | void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, |
70 | size_t &NewCapacity); |
71 | |
72 | /// This is an implementation of the grow() method which only works |
73 | /// on POD-like data types and is out of line to reduce code duplication. |
74 | /// This function will report a fatal error if it cannot increase capacity. |
75 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
76 | |
77 | /// If vector was first created with capacity 0, getFirstEl() points to the |
78 | /// memory right after, an area unallocated. If a subsequent allocation, |
79 | /// that grows the vector, happens to return the same pointer as getFirstEl(), |
80 | /// get a new allocation, otherwise isSmall() will falsely return that no |
81 | /// allocation was done (true) and the memory will not be freed in the |
82 | /// destructor. If a VSize is given (vector size), also copy that many |
83 | /// elements to the new allocation - used if realloca fails to increase |
84 | /// space, and happens to allocate precisely at BeginX. |
85 | /// This is unlikely to be called often, but resolves a memory leak when the |
86 | /// situation does occur. |
87 | void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity, |
88 | size_t VSize = 0); |
89 | |
90 | public: |
91 | size_t size() const { return Size; } |
92 | size_t capacity() const { return Capacity; } |
93 | |
94 | [[nodiscard]] bool empty() const { return !Size; } |
95 | |
96 | protected: |
97 | /// Set the array size to \p N, which the current array must have enough |
98 | /// capacity for. |
99 | /// |
100 | /// This does not construct or destroy any elements in the vector. |
101 | void set_size(size_t N) { |
102 | assert(N <= capacity()); // implies no overflow in assignment |
103 | Size = static_cast<Size_T>(N); |
104 | } |
105 | |
106 | /// Set the array data pointer to \p Begin and capacity to \p N. |
107 | /// |
108 | /// This does not construct or destroy any elements in the vector. |
109 | // This does not clean up any existing allocation. |
110 | void set_allocation_range(void *Begin, size_t N) { |
111 | assert(N <= SizeTypeMax()); |
112 | BeginX = Begin; |
113 | Capacity = static_cast<Size_T>(N); |
114 | } |
115 | }; |
116 | |
117 | template <class T> |
118 | using SmallVectorSizeType = |
119 | std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
120 | uint32_t>; |
121 | |
122 | /// Figure out the offset of the first element. |
123 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
124 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
125 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
126 | alignas(T) char FirstEl[sizeof(T)]; |
127 | }; |
128 | |
129 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
130 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
131 | /// to avoid unnecessarily requiring T to be complete. |
132 | template <typename T, typename = void> |
133 | class SmallVectorTemplateCommon |
134 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
135 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
136 | |
137 | protected: |
138 | /// Find the address of the first element. For this pointer math to be valid |
139 | /// with small-size of 0 for T with lots of alignment, it's important that |
140 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
141 | void *getFirstEl() const { |
142 | return const_cast<void *>(reinterpret_cast<const void *>( |
143 | reinterpret_cast<const char *>(this) + |
144 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); |
145 | } |
146 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
147 | |
148 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
149 | |
150 | void grow_pod(size_t MinSize, size_t TSize) { |
151 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
152 | } |
153 | |
154 | /// Return true if this is a smallvector which has not had dynamic |
155 | /// memory allocated for it. |
156 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
157 | |
158 | /// Put this vector in a state of being small. |
159 | void resetToSmall() { |
160 | this->BeginX = getFirstEl(); |
161 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
162 | } |
163 | |
164 | /// Return true if V is an internal reference to the given range. |
165 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
166 | // Use std::less to avoid UB. |
167 | std::less<> LessThan; |
168 | return !LessThan(V, First) && LessThan(V, Last); |
169 | } |
170 | |
171 | /// Return true if V is an internal reference to this vector. |
172 | bool isReferenceToStorage(const void *V) const { |
173 | return isReferenceToRange(V, First: this->begin(), Last: this->end()); |
174 | } |
175 | |
176 | /// Return true if First and Last form a valid (possibly empty) range in this |
177 | /// vector's storage. |
178 | bool isRangeInStorage(const void *First, const void *Last) const { |
179 | // Use std::less to avoid UB. |
180 | std::less<> LessThan; |
181 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
182 | !LessThan(this->end(), Last); |
183 | } |
184 | |
185 | /// Return true unless Elt will be invalidated by resizing the vector to |
186 | /// NewSize. |
187 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
188 | // Past the end. |
189 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))) |
190 | return true; |
191 | |
192 | // Return false if Elt will be destroyed by shrinking. |
193 | if (NewSize <= this->size()) |
194 | return Elt < this->begin() + NewSize; |
195 | |
196 | // Return false if we need to grow. |
197 | return NewSize <= this->capacity(); |
198 | } |
199 | |
200 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
201 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
202 | assert(isSafeToReferenceAfterResize(Elt, NewSize) && |
203 | "Attempting to reference an element of the vector in an operation " |
204 | "that invalidates it" ); |
205 | } |
206 | |
207 | /// Check whether Elt will be invalidated by increasing the size of the |
208 | /// vector by N. |
209 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
210 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
211 | } |
212 | |
213 | /// Check whether any part of the range will be invalidated by clearing. |
214 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
215 | if (From == To) |
216 | return; |
217 | this->assertSafeToReferenceAfterResize(From, 0); |
218 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
219 | } |
220 | template < |
221 | class ItTy, |
222 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
223 | bool> = false> |
224 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
225 | |
226 | /// Check whether any part of the range will be invalidated by growing. |
227 | void assertSafeToAddRange(const T *From, const T *To) { |
228 | if (From == To) |
229 | return; |
230 | this->assertSafeToAdd(From, To - From); |
231 | this->assertSafeToAdd(To - 1, To - From); |
232 | } |
233 | template < |
234 | class ItTy, |
235 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
236 | bool> = false> |
237 | void assertSafeToAddRange(ItTy, ItTy) {} |
238 | |
239 | /// Reserve enough space to add one element, and return the updated element |
240 | /// pointer in case it was a reference to the storage. |
241 | template <class U> |
242 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
243 | size_t N) { |
244 | size_t NewSize = This->size() + N; |
245 | if (LLVM_LIKELY(NewSize <= This->capacity())) |
246 | return &Elt; |
247 | |
248 | bool ReferencesStorage = false; |
249 | int64_t Index = -1; |
250 | if (!U::TakesParamByValue) { |
251 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { |
252 | ReferencesStorage = true; |
253 | Index = &Elt - This->begin(); |
254 | } |
255 | } |
256 | This->grow(NewSize); |
257 | return ReferencesStorage ? This->begin() + Index : &Elt; |
258 | } |
259 | |
260 | public: |
261 | using size_type = size_t; |
262 | using difference_type = ptrdiff_t; |
263 | using value_type = T; |
264 | using iterator = T *; |
265 | using const_iterator = const T *; |
266 | |
267 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
268 | using reverse_iterator = std::reverse_iterator<iterator>; |
269 | |
270 | using reference = T &; |
271 | using const_reference = const T &; |
272 | using pointer = T *; |
273 | using const_pointer = const T *; |
274 | |
275 | using Base::capacity; |
276 | using Base::empty; |
277 | using Base::size; |
278 | |
279 | // forward iterator creation methods. |
280 | iterator begin() { return (iterator)this->BeginX; } |
281 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
282 | iterator end() { return begin() + size(); } |
283 | const_iterator end() const { return begin() + size(); } |
284 | |
285 | // reverse iterator creation methods. |
286 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
287 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
288 | reverse_iterator rend() { return reverse_iterator(begin()); } |
289 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
290 | |
291 | size_type size_in_bytes() const { return size() * sizeof(T); } |
292 | size_type max_size() const { |
293 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
294 | } |
295 | |
296 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
297 | |
298 | /// Return a pointer to the vector's buffer, even if empty(). |
299 | pointer data() { return pointer(begin()); } |
300 | /// Return a pointer to the vector's buffer, even if empty(). |
301 | const_pointer data() const { return const_pointer(begin()); } |
302 | |
303 | reference operator[](size_type idx) { |
304 | assert(idx < size()); |
305 | return begin()[idx]; |
306 | } |
307 | const_reference operator[](size_type idx) const { |
308 | assert(idx < size()); |
309 | return begin()[idx]; |
310 | } |
311 | |
312 | reference front() { |
313 | assert(!empty()); |
314 | return begin()[0]; |
315 | } |
316 | const_reference front() const { |
317 | assert(!empty()); |
318 | return begin()[0]; |
319 | } |
320 | |
321 | reference back() { |
322 | assert(!empty()); |
323 | return end()[-1]; |
324 | } |
325 | const_reference back() const { |
326 | assert(!empty()); |
327 | return end()[-1]; |
328 | } |
329 | }; |
330 | |
331 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
332 | /// method implementations that are designed to work with non-trivial T's. |
333 | /// |
334 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
335 | /// trivial destruction. While the standard doesn't specify that you're allowed |
336 | /// copy these types with memcpy, there is no way for the type to observe this. |
337 | /// This catches the important case of std::pair<POD, POD>, which is not |
338 | /// trivially assignable. |
339 | template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && |
340 | (std::is_trivially_move_constructible<T>::value) && |
341 | std::is_trivially_destructible<T>::value> |
342 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
343 | friend class SmallVectorTemplateCommon<T>; |
344 | |
345 | protected: |
346 | static constexpr bool TakesParamByValue = false; |
347 | using ValueParamT = const T &; |
348 | |
349 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
350 | |
351 | static void destroy_range(T *S, T *E) { |
352 | while (S != E) { |
353 | --E; |
354 | E->~T(); |
355 | } |
356 | } |
357 | |
358 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
359 | /// constructing elements as needed. |
360 | template<typename It1, typename It2> |
361 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
362 | std::uninitialized_move(I, E, Dest); |
363 | } |
364 | |
365 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
366 | /// constructing elements as needed. |
367 | template<typename It1, typename It2> |
368 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
369 | std::uninitialized_copy(I, E, Dest); |
370 | } |
371 | |
372 | /// Grow the allocated memory (without initializing new elements), doubling |
373 | /// the size of the allocated memory. Guarantees space for at least one more |
374 | /// element, or MinSize more elements if specified. |
375 | void grow(size_t MinSize = 0); |
376 | |
377 | /// Create a new allocation big enough for \p MinSize and pass back its size |
378 | /// in \p NewCapacity. This is the first section of \a grow(). |
379 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity); |
380 | |
381 | /// Move existing elements over to the new allocation \p NewElts, the middle |
382 | /// section of \a grow(). |
383 | void moveElementsForGrow(T *NewElts); |
384 | |
385 | /// Transfer ownership of the allocation, finishing up \a grow(). |
386 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
387 | |
388 | /// Reserve enough space to add one element, and return the updated element |
389 | /// pointer in case it was a reference to the storage. |
390 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
391 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
392 | } |
393 | |
394 | /// Reserve enough space to add one element, and return the updated element |
395 | /// pointer in case it was a reference to the storage. |
396 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
397 | return const_cast<T *>( |
398 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
399 | } |
400 | |
401 | static T &&forward_value_param(T &&V) { return std::move(V); } |
402 | static const T &forward_value_param(const T &V) { return V; } |
403 | |
404 | void growAndAssign(size_t NumElts, const T &Elt) { |
405 | // Grow manually in case Elt is an internal reference. |
406 | size_t NewCapacity; |
407 | T *NewElts = mallocForGrow(MinSize: NumElts, NewCapacity); |
408 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
409 | this->destroy_range(this->begin(), this->end()); |
410 | takeAllocationForGrow(NewElts, NewCapacity); |
411 | this->set_size(NumElts); |
412 | } |
413 | |
414 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
415 | // Grow manually in case one of Args is an internal reference. |
416 | size_t NewCapacity; |
417 | T *NewElts = mallocForGrow(MinSize: 0, NewCapacity); |
418 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
419 | moveElementsForGrow(NewElts); |
420 | takeAllocationForGrow(NewElts, NewCapacity); |
421 | this->set_size(this->size() + 1); |
422 | return this->back(); |
423 | } |
424 | |
425 | public: |
426 | void push_back(const T &Elt) { |
427 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
428 | ::new ((void *)this->end()) T(*EltPtr); |
429 | this->set_size(this->size() + 1); |
430 | } |
431 | |
432 | void push_back(T &&Elt) { |
433 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
434 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
435 | this->set_size(this->size() + 1); |
436 | } |
437 | |
438 | void pop_back() { |
439 | this->set_size(this->size() - 1); |
440 | this->end()->~T(); |
441 | } |
442 | }; |
443 | |
444 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
445 | template <typename T, bool TriviallyCopyable> |
446 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
447 | size_t NewCapacity; |
448 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
449 | moveElementsForGrow(NewElts); |
450 | takeAllocationForGrow(NewElts, NewCapacity); |
451 | } |
452 | |
453 | template <typename T, bool TriviallyCopyable> |
454 | T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( |
455 | size_t MinSize, size_t &NewCapacity) { |
456 | return static_cast<T *>( |
457 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
458 | this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); |
459 | } |
460 | |
461 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
462 | template <typename T, bool TriviallyCopyable> |
463 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
464 | T *NewElts) { |
465 | // Move the elements over. |
466 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
467 | |
468 | // Destroy the original elements. |
469 | destroy_range(S: this->begin(), E: this->end()); |
470 | } |
471 | |
472 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
473 | template <typename T, bool TriviallyCopyable> |
474 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
475 | T *NewElts, size_t NewCapacity) { |
476 | // If this wasn't grown from the inline copy, deallocate the old space. |
477 | if (!this->isSmall()) |
478 | free(this->begin()); |
479 | |
480 | this->set_allocation_range(NewElts, NewCapacity); |
481 | } |
482 | |
483 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
484 | /// method implementations that are designed to work with trivially copyable |
485 | /// T's. This allows using memcpy in place of copy/move construction and |
486 | /// skipping destruction. |
487 | template <typename T> |
488 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
489 | friend class SmallVectorTemplateCommon<T>; |
490 | |
491 | protected: |
492 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
493 | /// overhead related to mitigations for reference invalidation. |
494 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
495 | |
496 | /// Either const T& or T, depending on whether it's cheap enough to take |
497 | /// parameters by value. |
498 | using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>; |
499 | |
500 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
501 | |
502 | // No need to do a destroy loop for POD's. |
503 | static void destroy_range(T *, T *) {} |
504 | |
505 | /// Move the range [I, E) onto the uninitialized memory |
506 | /// starting with "Dest", constructing elements into it as needed. |
507 | template<typename It1, typename It2> |
508 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
509 | // Just do a copy. |
510 | uninitialized_copy(I, E, Dest); |
511 | } |
512 | |
513 | /// Copy the range [I, E) onto the uninitialized memory |
514 | /// starting with "Dest", constructing elements into it as needed. |
515 | template<typename It1, typename It2> |
516 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
517 | // Arbitrary iterator types; just use the basic implementation. |
518 | std::uninitialized_copy(I, E, Dest); |
519 | } |
520 | |
521 | /// Copy the range [I, E) onto the uninitialized memory |
522 | /// starting with "Dest", constructing elements into it as needed. |
523 | template <typename T1, typename T2> |
524 | static void uninitialized_copy( |
525 | T1 *I, T1 *E, T2 *Dest, |
526 | std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = |
527 | nullptr) { |
528 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
529 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
530 | // use memcpy here. Note that I and E are iterators and thus might be |
531 | // invalid for memcpy if they are equal. |
532 | if (I != E) |
533 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
534 | } |
535 | |
536 | /// Double the size of the allocated memory, guaranteeing space for at |
537 | /// least one more element or MinSize if specified. |
538 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
539 | |
540 | /// Reserve enough space to add one element, and return the updated element |
541 | /// pointer in case it was a reference to the storage. |
542 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
543 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
544 | } |
545 | |
546 | /// Reserve enough space to add one element, and return the updated element |
547 | /// pointer in case it was a reference to the storage. |
548 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
549 | return const_cast<T *>( |
550 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
551 | } |
552 | |
553 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
554 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
555 | |
556 | void growAndAssign(size_t NumElts, T Elt) { |
557 | // Elt has been copied in case it's an internal reference, side-stepping |
558 | // reference invalidation problems without losing the realloc optimization. |
559 | this->set_size(0); |
560 | this->grow(NumElts); |
561 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
562 | this->set_size(NumElts); |
563 | } |
564 | |
565 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
566 | // Use push_back with a copy in case Args has an internal reference, |
567 | // side-stepping reference invalidation problems without losing the realloc |
568 | // optimization. |
569 | push_back(Elt: T(std::forward<ArgTypes>(Args)...)); |
570 | return this->back(); |
571 | } |
572 | |
573 | public: |
574 | void push_back(ValueParamT Elt) { |
575 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
576 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
577 | this->set_size(this->size() + 1); |
578 | } |
579 | |
580 | void pop_back() { this->set_size(this->size() - 1); } |
581 | }; |
582 | |
583 | /// This class consists of common code factored out of the SmallVector class to |
584 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
585 | template <typename T> |
586 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
587 | using SuperClass = SmallVectorTemplateBase<T>; |
588 | |
589 | public: |
590 | using iterator = typename SuperClass::iterator; |
591 | using const_iterator = typename SuperClass::const_iterator; |
592 | using reference = typename SuperClass::reference; |
593 | using size_type = typename SuperClass::size_type; |
594 | |
595 | protected: |
596 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
597 | using ValueParamT = typename SuperClass::ValueParamT; |
598 | |
599 | // Default ctor - Initialize to empty. |
600 | explicit SmallVectorImpl(unsigned N) |
601 | : SmallVectorTemplateBase<T>(N) {} |
602 | |
603 | void assignRemote(SmallVectorImpl &&RHS) { |
604 | this->destroy_range(this->begin(), this->end()); |
605 | if (!this->isSmall()) |
606 | free(this->begin()); |
607 | this->BeginX = RHS.BeginX; |
608 | this->Size = RHS.Size; |
609 | this->Capacity = RHS.Capacity; |
610 | RHS.resetToSmall(); |
611 | } |
612 | |
613 | ~SmallVectorImpl() { |
614 | // Subclass has already destructed this vector's elements. |
615 | // If this wasn't grown from the inline copy, deallocate the old space. |
616 | if (!this->isSmall()) |
617 | free(this->begin()); |
618 | } |
619 | |
620 | public: |
621 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
622 | |
623 | void clear() { |
624 | this->destroy_range(this->begin(), this->end()); |
625 | this->Size = 0; |
626 | } |
627 | |
628 | private: |
629 | // Make set_size() private to avoid misuse in subclasses. |
630 | using SuperClass::set_size; |
631 | |
632 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
633 | if (N == this->size()) |
634 | return; |
635 | |
636 | if (N < this->size()) { |
637 | this->truncate(N); |
638 | return; |
639 | } |
640 | |
641 | this->reserve(N); |
642 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
643 | if (ForOverwrite) |
644 | new (&*I) T; |
645 | else |
646 | new (&*I) T(); |
647 | this->set_size(N); |
648 | } |
649 | |
650 | public: |
651 | void resize(size_type N) { resizeImpl<false>(N); } |
652 | |
653 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
654 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
655 | |
656 | /// Like resize, but requires that \p N is less than \a size(). |
657 | void truncate(size_type N) { |
658 | assert(this->size() >= N && "Cannot increase size with truncate" ); |
659 | this->destroy_range(this->begin() + N, this->end()); |
660 | this->set_size(N); |
661 | } |
662 | |
663 | void resize(size_type N, ValueParamT NV) { |
664 | if (N == this->size()) |
665 | return; |
666 | |
667 | if (N < this->size()) { |
668 | this->truncate(N); |
669 | return; |
670 | } |
671 | |
672 | // N > this->size(). Defer to append. |
673 | this->append(N - this->size(), NV); |
674 | } |
675 | |
676 | void reserve(size_type N) { |
677 | if (this->capacity() < N) |
678 | this->grow(N); |
679 | } |
680 | |
681 | void pop_back_n(size_type NumItems) { |
682 | assert(this->size() >= NumItems); |
683 | truncate(N: this->size() - NumItems); |
684 | } |
685 | |
686 | [[nodiscard]] T pop_back_val() { |
687 | T Result = ::std::move(this->back()); |
688 | this->pop_back(); |
689 | return Result; |
690 | } |
691 | |
692 | void swap(SmallVectorImpl &RHS); |
693 | |
694 | /// Add the specified range to the end of the SmallVector. |
695 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
696 | void append(ItTy in_start, ItTy in_end) { |
697 | this->assertSafeToAddRange(in_start, in_end); |
698 | size_type NumInputs = std::distance(in_start, in_end); |
699 | this->reserve(this->size() + NumInputs); |
700 | this->uninitialized_copy(in_start, in_end, this->end()); |
701 | this->set_size(this->size() + NumInputs); |
702 | } |
703 | |
704 | /// Append \p NumInputs copies of \p Elt to the end. |
705 | void append(size_type NumInputs, ValueParamT Elt) { |
706 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
707 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
708 | this->set_size(this->size() + NumInputs); |
709 | } |
710 | |
711 | void append(std::initializer_list<T> IL) { |
712 | append(IL.begin(), IL.end()); |
713 | } |
714 | |
715 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
716 | |
717 | void assign(size_type NumElts, ValueParamT Elt) { |
718 | // Note that Elt could be an internal reference. |
719 | if (NumElts > this->capacity()) { |
720 | this->growAndAssign(NumElts, Elt); |
721 | return; |
722 | } |
723 | |
724 | // Assign over existing elements. |
725 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
726 | if (NumElts > this->size()) |
727 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
728 | else if (NumElts < this->size()) |
729 | this->destroy_range(this->begin() + NumElts, this->end()); |
730 | this->set_size(NumElts); |
731 | } |
732 | |
733 | // FIXME: Consider assigning over existing elements, rather than clearing & |
734 | // re-initializing them - for all assign(...) variants. |
735 | |
736 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
737 | void assign(ItTy in_start, ItTy in_end) { |
738 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
739 | clear(); |
740 | append(in_start, in_end); |
741 | } |
742 | |
743 | void assign(std::initializer_list<T> IL) { |
744 | clear(); |
745 | append(IL); |
746 | } |
747 | |
748 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
749 | |
750 | iterator erase(const_iterator CI) { |
751 | // Just cast away constness because this is a non-const member function. |
752 | iterator I = const_cast<iterator>(CI); |
753 | |
754 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds." ); |
755 | |
756 | iterator N = I; |
757 | // Shift all elts down one. |
758 | std::move(I+1, this->end(), I); |
759 | // Drop the last elt. |
760 | this->pop_back(); |
761 | return(N); |
762 | } |
763 | |
764 | iterator erase(const_iterator CS, const_iterator CE) { |
765 | // Just cast away constness because this is a non-const member function. |
766 | iterator S = const_cast<iterator>(CS); |
767 | iterator E = const_cast<iterator>(CE); |
768 | |
769 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds." ); |
770 | |
771 | iterator N = S; |
772 | // Shift all elts down. |
773 | iterator I = std::move(E, this->end(), S); |
774 | // Drop the last elts. |
775 | this->destroy_range(I, this->end()); |
776 | this->set_size(I - this->begin()); |
777 | return(N); |
778 | } |
779 | |
780 | private: |
781 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
782 | // Callers ensure that ArgType is derived from T. |
783 | static_assert( |
784 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
785 | T>::value, |
786 | "ArgType must be derived from T!" ); |
787 | |
788 | if (I == this->end()) { // Important special case for empty vector. |
789 | this->push_back(::std::forward<ArgType>(Elt)); |
790 | return this->end()-1; |
791 | } |
792 | |
793 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
794 | |
795 | // Grow if necessary. |
796 | size_t Index = I - this->begin(); |
797 | std::remove_reference_t<ArgType> *EltPtr = |
798 | this->reserveForParamAndGetAddress(Elt); |
799 | I = this->begin() + Index; |
800 | |
801 | ::new ((void*) this->end()) T(::std::move(this->back())); |
802 | // Push everything else over. |
803 | std::move_backward(I, this->end()-1, this->end()); |
804 | this->set_size(this->size() + 1); |
805 | |
806 | // If we just moved the element we're inserting, be sure to update |
807 | // the reference (never happens if TakesParamByValue). |
808 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
809 | "ArgType must be 'T' when taking by value!" ); |
810 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
811 | ++EltPtr; |
812 | |
813 | *I = ::std::forward<ArgType>(*EltPtr); |
814 | return I; |
815 | } |
816 | |
817 | public: |
818 | iterator insert(iterator I, T &&Elt) { |
819 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
820 | } |
821 | |
822 | iterator insert(iterator I, const T &Elt) { |
823 | return insert_one_impl(I, this->forward_value_param(Elt)); |
824 | } |
825 | |
826 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
827 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
828 | size_t InsertElt = I - this->begin(); |
829 | |
830 | if (I == this->end()) { // Important special case for empty vector. |
831 | append(NumToInsert, Elt); |
832 | return this->begin()+InsertElt; |
833 | } |
834 | |
835 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
836 | |
837 | // Ensure there is enough space, and get the (maybe updated) address of |
838 | // Elt. |
839 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
840 | |
841 | // Uninvalidate the iterator. |
842 | I = this->begin()+InsertElt; |
843 | |
844 | // If there are more elements between the insertion point and the end of the |
845 | // range than there are being inserted, we can use a simple approach to |
846 | // insertion. Since we already reserved space, we know that this won't |
847 | // reallocate the vector. |
848 | if (size_t(this->end()-I) >= NumToInsert) { |
849 | T *OldEnd = this->end(); |
850 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
851 | std::move_iterator<iterator>(this->end())); |
852 | |
853 | // Copy the existing elements that get replaced. |
854 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
855 | |
856 | // If we just moved the element we're inserting, be sure to update |
857 | // the reference (never happens if TakesParamByValue). |
858 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
859 | EltPtr += NumToInsert; |
860 | |
861 | std::fill_n(I, NumToInsert, *EltPtr); |
862 | return I; |
863 | } |
864 | |
865 | // Otherwise, we're inserting more elements than exist already, and we're |
866 | // not inserting at the end. |
867 | |
868 | // Move over the elements that we're about to overwrite. |
869 | T *OldEnd = this->end(); |
870 | this->set_size(this->size() + NumToInsert); |
871 | size_t NumOverwritten = OldEnd-I; |
872 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
873 | |
874 | // If we just moved the element we're inserting, be sure to update |
875 | // the reference (never happens if TakesParamByValue). |
876 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
877 | EltPtr += NumToInsert; |
878 | |
879 | // Replace the overwritten part. |
880 | std::fill_n(I, NumOverwritten, *EltPtr); |
881 | |
882 | // Insert the non-overwritten middle part. |
883 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
884 | return I; |
885 | } |
886 | |
887 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
888 | iterator insert(iterator I, ItTy From, ItTy To) { |
889 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
890 | size_t InsertElt = I - this->begin(); |
891 | |
892 | if (I == this->end()) { // Important special case for empty vector. |
893 | append(From, To); |
894 | return this->begin()+InsertElt; |
895 | } |
896 | |
897 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
898 | |
899 | // Check that the reserve that follows doesn't invalidate the iterators. |
900 | this->assertSafeToAddRange(From, To); |
901 | |
902 | size_t NumToInsert = std::distance(From, To); |
903 | |
904 | // Ensure there is enough space. |
905 | reserve(N: this->size() + NumToInsert); |
906 | |
907 | // Uninvalidate the iterator. |
908 | I = this->begin()+InsertElt; |
909 | |
910 | // If there are more elements between the insertion point and the end of the |
911 | // range than there are being inserted, we can use a simple approach to |
912 | // insertion. Since we already reserved space, we know that this won't |
913 | // reallocate the vector. |
914 | if (size_t(this->end()-I) >= NumToInsert) { |
915 | T *OldEnd = this->end(); |
916 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
917 | std::move_iterator<iterator>(this->end())); |
918 | |
919 | // Copy the existing elements that get replaced. |
920 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
921 | |
922 | std::copy(From, To, I); |
923 | return I; |
924 | } |
925 | |
926 | // Otherwise, we're inserting more elements than exist already, and we're |
927 | // not inserting at the end. |
928 | |
929 | // Move over the elements that we're about to overwrite. |
930 | T *OldEnd = this->end(); |
931 | this->set_size(this->size() + NumToInsert); |
932 | size_t NumOverwritten = OldEnd-I; |
933 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
934 | |
935 | // Replace the overwritten part. |
936 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
937 | *J = *From; |
938 | ++J; ++From; |
939 | } |
940 | |
941 | // Insert the non-overwritten middle part. |
942 | this->uninitialized_copy(From, To, OldEnd); |
943 | return I; |
944 | } |
945 | |
946 | void insert(iterator I, std::initializer_list<T> IL) { |
947 | insert(I, IL.begin(), IL.end()); |
948 | } |
949 | |
950 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
951 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
952 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
953 | |
954 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
955 | this->set_size(this->size() + 1); |
956 | return this->back(); |
957 | } |
958 | |
959 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
960 | |
961 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
962 | |
963 | bool operator==(const SmallVectorImpl &RHS) const { |
964 | if (this->size() != RHS.size()) return false; |
965 | return std::equal(this->begin(), this->end(), RHS.begin()); |
966 | } |
967 | bool operator!=(const SmallVectorImpl &RHS) const { |
968 | return !(*this == RHS); |
969 | } |
970 | |
971 | bool operator<(const SmallVectorImpl &RHS) const { |
972 | return std::lexicographical_compare(this->begin(), this->end(), |
973 | RHS.begin(), RHS.end()); |
974 | } |
975 | bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } |
976 | bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } |
977 | bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } |
978 | }; |
979 | |
980 | template <typename T> |
981 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
982 | if (this == &RHS) return; |
983 | |
984 | // We can only avoid copying elements if neither vector is small. |
985 | if (!this->isSmall() && !RHS.isSmall()) { |
986 | std::swap(this->BeginX, RHS.BeginX); |
987 | std::swap(this->Size, RHS.Size); |
988 | std::swap(this->Capacity, RHS.Capacity); |
989 | return; |
990 | } |
991 | this->reserve(RHS.size()); |
992 | RHS.reserve(this->size()); |
993 | |
994 | // Swap the shared elements. |
995 | size_t NumShared = this->size(); |
996 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
997 | for (size_type i = 0; i != NumShared; ++i) |
998 | std::swap((*this)[i], RHS[i]); |
999 | |
1000 | // Copy over the extra elts. |
1001 | if (this->size() > RHS.size()) { |
1002 | size_t EltDiff = this->size() - RHS.size(); |
1003 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
1004 | RHS.set_size(RHS.size() + EltDiff); |
1005 | this->destroy_range(this->begin()+NumShared, this->end()); |
1006 | this->set_size(NumShared); |
1007 | } else if (RHS.size() > this->size()) { |
1008 | size_t EltDiff = RHS.size() - this->size(); |
1009 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
1010 | this->set_size(this->size() + EltDiff); |
1011 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
1012 | RHS.set_size(NumShared); |
1013 | } |
1014 | } |
1015 | |
1016 | template <typename T> |
1017 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
1018 | operator=(const SmallVectorImpl<T> &RHS) { |
1019 | // Avoid self-assignment. |
1020 | if (this == &RHS) return *this; |
1021 | |
1022 | // If we already have sufficient space, assign the common elements, then |
1023 | // destroy any excess. |
1024 | size_t RHSSize = RHS.size(); |
1025 | size_t CurSize = this->size(); |
1026 | if (CurSize >= RHSSize) { |
1027 | // Assign common elements. |
1028 | iterator NewEnd; |
1029 | if (RHSSize) |
1030 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
1031 | else |
1032 | NewEnd = this->begin(); |
1033 | |
1034 | // Destroy excess elements. |
1035 | this->destroy_range(NewEnd, this->end()); |
1036 | |
1037 | // Trim. |
1038 | this->set_size(RHSSize); |
1039 | return *this; |
1040 | } |
1041 | |
1042 | // If we have to grow to have enough elements, destroy the current elements. |
1043 | // This allows us to avoid copying them during the grow. |
1044 | // FIXME: don't do this if they're efficiently moveable. |
1045 | if (this->capacity() < RHSSize) { |
1046 | // Destroy current elements. |
1047 | this->clear(); |
1048 | CurSize = 0; |
1049 | this->grow(RHSSize); |
1050 | } else if (CurSize) { |
1051 | // Otherwise, use assignment for the already-constructed elements. |
1052 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1053 | } |
1054 | |
1055 | // Copy construct the new elements in place. |
1056 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
1057 | this->begin()+CurSize); |
1058 | |
1059 | // Set end. |
1060 | this->set_size(RHSSize); |
1061 | return *this; |
1062 | } |
1063 | |
1064 | template <typename T> |
1065 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
1066 | // Avoid self-assignment. |
1067 | if (this == &RHS) return *this; |
1068 | |
1069 | // If the RHS isn't small, clear this vector and then steal its buffer. |
1070 | if (!RHS.isSmall()) { |
1071 | this->assignRemote(std::move(RHS)); |
1072 | return *this; |
1073 | } |
1074 | |
1075 | // If we already have sufficient space, assign the common elements, then |
1076 | // destroy any excess. |
1077 | size_t RHSSize = RHS.size(); |
1078 | size_t CurSize = this->size(); |
1079 | if (CurSize >= RHSSize) { |
1080 | // Assign common elements. |
1081 | iterator NewEnd = this->begin(); |
1082 | if (RHSSize) |
1083 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
1084 | |
1085 | // Destroy excess elements and trim the bounds. |
1086 | this->destroy_range(NewEnd, this->end()); |
1087 | this->set_size(RHSSize); |
1088 | |
1089 | // Clear the RHS. |
1090 | RHS.clear(); |
1091 | |
1092 | return *this; |
1093 | } |
1094 | |
1095 | // If we have to grow to have enough elements, destroy the current elements. |
1096 | // This allows us to avoid copying them during the grow. |
1097 | // FIXME: this may not actually make any sense if we can efficiently move |
1098 | // elements. |
1099 | if (this->capacity() < RHSSize) { |
1100 | // Destroy current elements. |
1101 | this->clear(); |
1102 | CurSize = 0; |
1103 | this->grow(RHSSize); |
1104 | } else if (CurSize) { |
1105 | // Otherwise, use assignment for the already-constructed elements. |
1106 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1107 | } |
1108 | |
1109 | // Move-construct the new elements in place. |
1110 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
1111 | this->begin()+CurSize); |
1112 | |
1113 | // Set end. |
1114 | this->set_size(RHSSize); |
1115 | |
1116 | RHS.clear(); |
1117 | return *this; |
1118 | } |
1119 | |
1120 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
1121 | /// to avoid allocating unnecessary storage. |
1122 | template <typename T, unsigned N> |
1123 | struct SmallVectorStorage { |
1124 | alignas(T) char InlineElts[N * sizeof(T)]; |
1125 | }; |
1126 | |
1127 | /// We need the storage to be properly aligned even for small-size of 0 so that |
1128 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
1129 | /// well-defined. |
1130 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
1131 | |
1132 | /// Forward declaration of SmallVector so that |
1133 | /// calculateSmallVectorDefaultInlinedElements can reference |
1134 | /// `sizeof(SmallVector<T, 0>)`. |
1135 | template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector; |
1136 | |
1137 | /// Helper class for calculating the default number of inline elements for |
1138 | /// `SmallVector<T>`. |
1139 | /// |
1140 | /// This should be migrated to a constexpr function when our minimum |
1141 | /// compiler support is enough for multi-statement constexpr functions. |
1142 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
1143 | // Parameter controlling the default number of inlined elements |
1144 | // for `SmallVector<T>`. |
1145 | // |
1146 | // The default number of inlined elements ensures that |
1147 | // 1. There is at least one inlined element. |
1148 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
1149 | // it contradicts 1. |
1150 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
1151 | |
1152 | // static_assert that sizeof(T) is not "too big". |
1153 | // |
1154 | // Because our policy guarantees at least one inlined element, it is possible |
1155 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
1156 | // amount of inline storage. We generally consider it an antipattern for a |
1157 | // SmallVector to allocate an excessive amount of inline storage, so we want |
1158 | // to call attention to these cases and make sure that users are making an |
1159 | // intentional decision if they request a lot of inline storage. |
1160 | // |
1161 | // We want this assertion to trigger in pathological cases, but otherwise |
1162 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
1163 | // larger than kPreferredSmallVectorSizeof (otherwise, |
1164 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
1165 | // pattern seems useful in practice). |
1166 | // |
1167 | // One wrinkle is that this assertion is in theory non-portable, since |
1168 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
1169 | // to be much of an issue, because most LLVM development happens on 64-bit |
1170 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
1171 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
1172 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
1173 | // 64-bit host, is expected to be very rare. |
1174 | static_assert( |
1175 | sizeof(T) <= 256, |
1176 | "You are trying to use a default number of inlined elements for " |
1177 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
1178 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
1179 | "sure you really want that much inline storage." ); |
1180 | |
1181 | // Discount the size of the header itself when calculating the maximum inline |
1182 | // bytes. |
1183 | static constexpr size_t PreferredInlineBytes = |
1184 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
1185 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
1186 | static constexpr size_t value = |
1187 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
1188 | }; |
1189 | |
1190 | /// This is a 'vector' (really, a variable-sized array), optimized |
1191 | /// for the case when the array is small. It contains some number of elements |
1192 | /// in-place, which allows it to avoid heap allocation when the actual number of |
1193 | /// elements is below that threshold. This allows normal "small" cases to be |
1194 | /// fast without losing generality for large inputs. |
1195 | /// |
1196 | /// \note |
1197 | /// In the absence of a well-motivated choice for the number of inlined |
1198 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
1199 | /// omitting the \p N). This will choose a default number of inlined elements |
1200 | /// reasonable for allocation on the stack (for example, trying to keep \c |
1201 | /// sizeof(SmallVector<T>) around 64 bytes). |
1202 | /// |
1203 | /// \warning This does not attempt to be exception safe. |
1204 | /// |
1205 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
1206 | template <typename T, |
1207 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
1208 | class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, |
1209 | SmallVectorStorage<T, N> { |
1210 | public: |
1211 | SmallVector() : SmallVectorImpl<T>(N) {} |
1212 | |
1213 | ~SmallVector() { |
1214 | // Destroy the constructed elements in the vector. |
1215 | this->destroy_range(this->begin(), this->end()); |
1216 | } |
1217 | |
1218 | explicit SmallVector(size_t Size) |
1219 | : SmallVectorImpl<T>(N) { |
1220 | this->resize(Size); |
1221 | } |
1222 | |
1223 | SmallVector(size_t Size, const T &Value) |
1224 | : SmallVectorImpl<T>(N) { |
1225 | this->assign(Size, Value); |
1226 | } |
1227 | |
1228 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
1229 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
1230 | this->append(S, E); |
1231 | } |
1232 | |
1233 | template <typename RangeTy> |
1234 | explicit SmallVector(const iterator_range<RangeTy> &R) |
1235 | : SmallVectorImpl<T>(N) { |
1236 | this->append(R.begin(), R.end()); |
1237 | } |
1238 | |
1239 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
1240 | this->append(IL); |
1241 | } |
1242 | |
1243 | template <typename U, |
1244 | typename = std::enable_if_t<std::is_convertible<U, T>::value>> |
1245 | explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { |
1246 | this->append(A.begin(), A.end()); |
1247 | } |
1248 | |
1249 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
1250 | if (!RHS.empty()) |
1251 | SmallVectorImpl<T>::operator=(RHS); |
1252 | } |
1253 | |
1254 | SmallVector &operator=(const SmallVector &RHS) { |
1255 | SmallVectorImpl<T>::operator=(RHS); |
1256 | return *this; |
1257 | } |
1258 | |
1259 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
1260 | if (!RHS.empty()) |
1261 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1262 | } |
1263 | |
1264 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
1265 | if (!RHS.empty()) |
1266 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1267 | } |
1268 | |
1269 | SmallVector &operator=(SmallVector &&RHS) { |
1270 | if (N) { |
1271 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1272 | return *this; |
1273 | } |
1274 | // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the |
1275 | // case. |
1276 | if (this == &RHS) |
1277 | return *this; |
1278 | if (RHS.empty()) { |
1279 | this->destroy_range(this->begin(), this->end()); |
1280 | this->Size = 0; |
1281 | } else { |
1282 | this->assignRemote(std::move(RHS)); |
1283 | } |
1284 | return *this; |
1285 | } |
1286 | |
1287 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
1288 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1289 | return *this; |
1290 | } |
1291 | |
1292 | SmallVector &operator=(std::initializer_list<T> IL) { |
1293 | this->assign(IL); |
1294 | return *this; |
1295 | } |
1296 | }; |
1297 | |
1298 | template <typename T, unsigned N> |
1299 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
1300 | return X.capacity_in_bytes(); |
1301 | } |
1302 | |
1303 | template <typename RangeType> |
1304 | using ValueTypeFromRangeType = |
1305 | std::remove_const_t<std::remove_reference_t<decltype(*std::begin( |
1306 | std::declval<RangeType &>()))>>; |
1307 | |
1308 | /// Given a range of type R, iterate the entire range and return a |
1309 | /// SmallVector with elements of the vector. This is useful, for example, |
1310 | /// when you want to iterate a range and then sort the results. |
1311 | template <unsigned Size, typename R> |
1312 | SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { |
1313 | return {std::begin(Range), std::end(Range)}; |
1314 | } |
1315 | template <typename R> |
1316 | SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { |
1317 | return {std::begin(Range), std::end(Range)}; |
1318 | } |
1319 | |
1320 | template <typename Out, unsigned Size, typename R> |
1321 | SmallVector<Out, Size> to_vector_of(R &&Range) { |
1322 | return {std::begin(Range), std::end(Range)}; |
1323 | } |
1324 | |
1325 | template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { |
1326 | return {std::begin(Range), std::end(Range)}; |
1327 | } |
1328 | |
1329 | // Explicit instantiations |
1330 | extern template class llvm::SmallVectorBase<uint32_t>; |
1331 | #if SIZE_MAX > UINT32_MAX |
1332 | extern template class llvm::SmallVectorBase<uint64_t>; |
1333 | #endif |
1334 | |
1335 | } // end namespace llvm |
1336 | |
1337 | namespace std { |
1338 | |
1339 | /// Implement std::swap in terms of SmallVector swap. |
1340 | template<typename T> |
1341 | inline void |
1342 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
1343 | LHS.swap(RHS); |
1344 | } |
1345 | |
1346 | /// Implement std::swap in terms of SmallVector swap. |
1347 | template<typename T, unsigned N> |
1348 | inline void |
1349 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
1350 | LHS.swap(RHS); |
1351 | } |
1352 | |
1353 | } // end namespace std |
1354 | |
1355 | #endif // LLVM_ADT_SMALLVECTOR_H |
1356 | |