1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/Uniformity.h"
20#include "llvm/CodeGen/MIRFormatter.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineCycleAnalysis.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineOutliner.h"
28#include "llvm/CodeGen/RegisterClassInfo.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/MC/MCInstrInfo.h"
31#include "llvm/Support/BranchProbability.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <utility>
37#include <vector>
38
39namespace llvm {
40
41class DFAPacketizer;
42class InstrItineraryData;
43class LiveIntervals;
44class LiveVariables;
45class MachineLoop;
46class MachineMemOperand;
47class MachineRegisterInfo;
48class MCAsmInfo;
49class MCInst;
50struct MCSchedModel;
51class Module;
52class ScheduleDAG;
53class ScheduleDAGMI;
54class ScheduleHazardRecognizer;
55class SDNode;
56class SelectionDAG;
57class SMSchedule;
58class SwingSchedulerDAG;
59class RegScavenger;
60class TargetRegisterClass;
61class TargetRegisterInfo;
62class TargetSchedModel;
63class TargetSubtargetInfo;
64enum class MachineCombinerPattern;
65enum class MachineTraceStrategy;
66
67template <class T> class SmallVectorImpl;
68
69using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
70
71struct DestSourcePair {
72 const MachineOperand *Destination;
73 const MachineOperand *Source;
74
75 DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
76 : Destination(&Dest), Source(&Src) {}
77};
78
79/// Used to describe a register and immediate addition.
80struct RegImmPair {
81 Register Reg;
82 int64_t Imm;
83
84 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
85};
86
87/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
88/// It holds the register values, the scale value and the displacement.
89/// It also holds a descriptor for the expression used to calculate the address
90/// from the operands.
91struct ExtAddrMode {
92 enum class Formula {
93 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement
94 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
95 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement
96 };
97
98 Register BaseReg;
99 Register ScaledReg;
100 int64_t Scale = 0;
101 int64_t Displacement = 0;
102 Formula Form = Formula::Basic;
103 ExtAddrMode() = default;
104};
105
106//---------------------------------------------------------------------------
107///
108/// TargetInstrInfo - Interface to description of machine instruction set
109///
110class TargetInstrInfo : public MCInstrInfo {
111public:
112 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
113 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
114 : CallFrameSetupOpcode(CFSetupOpcode),
115 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
116 ReturnOpcode(ReturnOpcode) {}
117 TargetInstrInfo(const TargetInstrInfo &) = delete;
118 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
119 virtual ~TargetInstrInfo();
120
121 static bool isGenericOpcode(unsigned Opc) {
122 return Opc <= TargetOpcode::GENERIC_OP_END;
123 }
124
125 static bool isGenericAtomicRMWOpcode(unsigned Opc) {
126 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
127 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
128 }
129
130 /// Given a machine instruction descriptor, returns the register
131 /// class constraint for OpNum, or NULL.
132 virtual
133 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
134 const TargetRegisterInfo *TRI,
135 const MachineFunction &MF) const;
136
137 /// Return true if the instruction is trivially rematerializable, meaning it
138 /// has no side effects and requires no operands that aren't always available.
139 /// This means the only allowed uses are constants and unallocatable physical
140 /// registers so that the instructions result is independent of the place
141 /// in the function.
142 bool isTriviallyReMaterializable(const MachineInstr &MI) const {
143 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
144 MI.getNumOperands() == 1) ||
145 (MI.getDesc().isRematerializable() &&
146 isReallyTriviallyReMaterializable(MI));
147 }
148
149 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
150 /// of instruction rematerialization or sinking.
151 virtual bool isIgnorableUse(const MachineOperand &MO) const {
152 return false;
153 }
154
155 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
156 MachineCycleInfo *CI) const {
157 return true;
158 }
159
160protected:
161 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
162 /// set, this hook lets the target specify whether the instruction is actually
163 /// trivially rematerializable, taking into consideration its operands. This
164 /// predicate must return false if the instruction has any side effects other
165 /// than producing a value, or if it requres any address registers that are
166 /// not always available.
167 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
168
169 /// This method commutes the operands of the given machine instruction MI.
170 /// The operands to be commuted are specified by their indices OpIdx1 and
171 /// OpIdx2.
172 ///
173 /// If a target has any instructions that are commutable but require
174 /// converting to different instructions or making non-trivial changes
175 /// to commute them, this method can be overloaded to do that.
176 /// The default implementation simply swaps the commutable operands.
177 ///
178 /// If NewMI is false, MI is modified in place and returned; otherwise, a
179 /// new machine instruction is created and returned.
180 ///
181 /// Do not call this method for a non-commutable instruction.
182 /// Even though the instruction is commutable, the method may still
183 /// fail to commute the operands, null pointer is returned in such cases.
184 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
185 unsigned OpIdx1,
186 unsigned OpIdx2) const;
187
188 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
189 /// operand indices to (ResultIdx1, ResultIdx2).
190 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
191 /// predefined to some indices or be undefined (designated by the special
192 /// value 'CommuteAnyOperandIndex').
193 /// The predefined result indices cannot be re-defined.
194 /// The function returns true iff after the result pair redefinition
195 /// the fixed result pair is equal to or equivalent to the source pair of
196 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
197 /// the pairs (x,y) and (y,x) are equivalent.
198 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
199 unsigned CommutableOpIdx1,
200 unsigned CommutableOpIdx2);
201
202public:
203 /// These methods return the opcode of the frame setup/destroy instructions
204 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
205 /// order to abstract away the difference between operating with a frame
206 /// pointer and operating without, through the use of these two instructions.
207 ///
208 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
209 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
210
211 /// Returns true if the argument is a frame pseudo instruction.
212 bool isFrameInstr(const MachineInstr &I) const {
213 return I.getOpcode() == getCallFrameSetupOpcode() ||
214 I.getOpcode() == getCallFrameDestroyOpcode();
215 }
216
217 /// Returns true if the argument is a frame setup pseudo instruction.
218 bool isFrameSetup(const MachineInstr &I) const {
219 return I.getOpcode() == getCallFrameSetupOpcode();
220 }
221
222 /// Returns size of the frame associated with the given frame instruction.
223 /// For frame setup instruction this is frame that is set up space set up
224 /// after the instruction. For frame destroy instruction this is the frame
225 /// freed by the caller.
226 /// Note, in some cases a call frame (or a part of it) may be prepared prior
227 /// to the frame setup instruction. It occurs in the calls that involve
228 /// inalloca arguments. This function reports only the size of the frame part
229 /// that is set up between the frame setup and destroy pseudo instructions.
230 int64_t getFrameSize(const MachineInstr &I) const {
231 assert(isFrameInstr(I) && "Not a frame instruction");
232 assert(I.getOperand(0).getImm() >= 0);
233 return I.getOperand(i: 0).getImm();
234 }
235
236 /// Returns the total frame size, which is made up of the space set up inside
237 /// the pair of frame start-stop instructions and the space that is set up
238 /// prior to the pair.
239 int64_t getFrameTotalSize(const MachineInstr &I) const {
240 if (isFrameSetup(I)) {
241 assert(I.getOperand(1).getImm() >= 0 &&
242 "Frame size must not be negative");
243 return getFrameSize(I) + I.getOperand(i: 1).getImm();
244 }
245 return getFrameSize(I);
246 }
247
248 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
249 unsigned getReturnOpcode() const { return ReturnOpcode; }
250
251 /// Returns the actual stack pointer adjustment made by an instruction
252 /// as part of a call sequence. By default, only call frame setup/destroy
253 /// instructions adjust the stack, but targets may want to override this
254 /// to enable more fine-grained adjustment, or adjust by a different value.
255 virtual int getSPAdjust(const MachineInstr &MI) const;
256
257 /// Return true if the instruction is a "coalescable" extension instruction.
258 /// That is, it's like a copy where it's legal for the source to overlap the
259 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
260 /// expected the pre-extension value is available as a subreg of the result
261 /// register. This also returns the sub-register index in SubIdx.
262 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
263 Register &DstReg, unsigned &SubIdx) const {
264 return false;
265 }
266
267 /// If the specified machine instruction is a direct
268 /// load from a stack slot, return the virtual or physical register number of
269 /// the destination along with the FrameIndex of the loaded stack slot. If
270 /// not, return 0. This predicate must return 0 if the instruction has
271 /// any side effects other than loading from the stack slot.
272 virtual Register isLoadFromStackSlot(const MachineInstr &MI,
273 int &FrameIndex) const {
274 return 0;
275 }
276
277 /// Optional extension of isLoadFromStackSlot that returns the number of
278 /// bytes loaded from the stack. This must be implemented if a backend
279 /// supports partial stack slot spills/loads to further disambiguate
280 /// what the load does.
281 virtual Register isLoadFromStackSlot(const MachineInstr &MI,
282 int &FrameIndex,
283 unsigned &MemBytes) const {
284 MemBytes = 0;
285 return isLoadFromStackSlot(MI, FrameIndex);
286 }
287
288 /// Check for post-frame ptr elimination stack locations as well.
289 /// This uses a heuristic so it isn't reliable for correctness.
290 virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI,
291 int &FrameIndex) const {
292 return 0;
293 }
294
295 /// If the specified machine instruction has a load from a stack slot,
296 /// return true along with the FrameIndices of the loaded stack slot and the
297 /// machine mem operands containing the reference.
298 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
299 /// any instructions that loads from the stack. This is just a hint, as some
300 /// cases may be missed.
301 virtual bool hasLoadFromStackSlot(
302 const MachineInstr &MI,
303 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
304
305 /// If the specified machine instruction is a direct
306 /// store to a stack slot, return the virtual or physical register number of
307 /// the source reg along with the FrameIndex of the loaded stack slot. If
308 /// not, return 0. This predicate must return 0 if the instruction has
309 /// any side effects other than storing to the stack slot.
310 virtual Register isStoreToStackSlot(const MachineInstr &MI,
311 int &FrameIndex) const {
312 return 0;
313 }
314
315 /// Optional extension of isStoreToStackSlot that returns the number of
316 /// bytes stored to the stack. This must be implemented if a backend
317 /// supports partial stack slot spills/loads to further disambiguate
318 /// what the store does.
319 virtual Register isStoreToStackSlot(const MachineInstr &MI,
320 int &FrameIndex,
321 unsigned &MemBytes) const {
322 MemBytes = 0;
323 return isStoreToStackSlot(MI, FrameIndex);
324 }
325
326 /// Check for post-frame ptr elimination stack locations as well.
327 /// This uses a heuristic, so it isn't reliable for correctness.
328 virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI,
329 int &FrameIndex) const {
330 return 0;
331 }
332
333 /// If the specified machine instruction has a store to a stack slot,
334 /// return true along with the FrameIndices of the loaded stack slot and the
335 /// machine mem operands containing the reference.
336 /// If not, return false. Unlike isStoreToStackSlot,
337 /// this returns true for any instructions that stores to the
338 /// stack. This is just a hint, as some cases may be missed.
339 virtual bool hasStoreToStackSlot(
340 const MachineInstr &MI,
341 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
342
343 /// Return true if the specified machine instruction
344 /// is a copy of one stack slot to another and has no other effect.
345 /// Provide the identity of the two frame indices.
346 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
347 int &SrcFrameIndex) const {
348 return false;
349 }
350
351 /// Compute the size in bytes and offset within a stack slot of a spilled
352 /// register or subregister.
353 ///
354 /// \param [out] Size in bytes of the spilled value.
355 /// \param [out] Offset in bytes within the stack slot.
356 /// \returns true if both Size and Offset are successfully computed.
357 ///
358 /// Not all subregisters have computable spill slots. For example,
359 /// subregisters registers may not be byte-sized, and a pair of discontiguous
360 /// subregisters has no single offset.
361 ///
362 /// Targets with nontrivial bigendian implementations may need to override
363 /// this, particularly to support spilled vector registers.
364 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
365 unsigned &Size, unsigned &Offset,
366 const MachineFunction &MF) const;
367
368 /// Return true if the given instruction is terminator that is unspillable,
369 /// according to isUnspillableTerminatorImpl.
370 bool isUnspillableTerminator(const MachineInstr *MI) const {
371 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
372 }
373
374 /// Returns the size in bytes of the specified MachineInstr, or ~0U
375 /// when this function is not implemented by a target.
376 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
377 return ~0U;
378 }
379
380 /// Return true if the instruction is as cheap as a move instruction.
381 ///
382 /// Targets for different archs need to override this, and different
383 /// micro-architectures can also be finely tuned inside.
384 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
385 return MI.isAsCheapAsAMove();
386 }
387
388 /// Return true if the instruction should be sunk by MachineSink.
389 ///
390 /// MachineSink determines on its own whether the instruction is safe to sink;
391 /// this gives the target a hook to override the default behavior with regards
392 /// to which instructions should be sunk.
393 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
394
395 /// Return false if the instruction should not be hoisted by MachineLICM.
396 ///
397 /// MachineLICM determines on its own whether the instruction is safe to
398 /// hoist; this gives the target a hook to extend this assessment and prevent
399 /// an instruction being hoisted from a given loop for target specific
400 /// reasons.
401 virtual bool shouldHoist(const MachineInstr &MI,
402 const MachineLoop *FromLoop) const {
403 return true;
404 }
405
406 /// Re-issue the specified 'original' instruction at the
407 /// specific location targeting a new destination register.
408 /// The register in Orig->getOperand(0).getReg() will be substituted by
409 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
410 /// SubIdx.
411 virtual void reMaterialize(MachineBasicBlock &MBB,
412 MachineBasicBlock::iterator MI, Register DestReg,
413 unsigned SubIdx, const MachineInstr &Orig,
414 const TargetRegisterInfo &TRI) const;
415
416 /// Clones instruction or the whole instruction bundle \p Orig and
417 /// insert into \p MBB before \p InsertBefore. The target may update operands
418 /// that are required to be unique.
419 ///
420 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
421 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
422 MachineBasicBlock::iterator InsertBefore,
423 const MachineInstr &Orig) const;
424
425 /// This method must be implemented by targets that
426 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
427 /// may be able to convert a two-address instruction into one or more true
428 /// three-address instructions on demand. This allows the X86 target (for
429 /// example) to convert ADD and SHL instructions into LEA instructions if they
430 /// would require register copies due to two-addressness.
431 ///
432 /// This method returns a null pointer if the transformation cannot be
433 /// performed, otherwise it returns the last new instruction.
434 ///
435 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
436 /// replacing \p MI with new instructions, even though this function does not
437 /// remove MI.
438 virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
439 LiveVariables *LV,
440 LiveIntervals *LIS) const {
441 return nullptr;
442 }
443
444 // This constant can be used as an input value of operand index passed to
445 // the method findCommutedOpIndices() to tell the method that the
446 // corresponding operand index is not pre-defined and that the method
447 // can pick any commutable operand.
448 static const unsigned CommuteAnyOperandIndex = ~0U;
449
450 /// This method commutes the operands of the given machine instruction MI.
451 ///
452 /// The operands to be commuted are specified by their indices OpIdx1 and
453 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
454 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
455 /// any arbitrarily chosen commutable operand. If both arguments are set to
456 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
457 /// operands; then commutes them if such operands could be found.
458 ///
459 /// If NewMI is false, MI is modified in place and returned; otherwise, a
460 /// new machine instruction is created and returned.
461 ///
462 /// Do not call this method for a non-commutable instruction or
463 /// for non-commuable operands.
464 /// Even though the instruction is commutable, the method may still
465 /// fail to commute the operands, null pointer is returned in such cases.
466 MachineInstr *
467 commuteInstruction(MachineInstr &MI, bool NewMI = false,
468 unsigned OpIdx1 = CommuteAnyOperandIndex,
469 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
470
471 /// Returns true iff the routine could find two commutable operands in the
472 /// given machine instruction.
473 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
474 /// If any of the INPUT values is set to the special value
475 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
476 /// operand, then returns its index in the corresponding argument.
477 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
478 /// looks for 2 commutable operands.
479 /// If INPUT values refer to some operands of MI, then the method simply
480 /// returns true if the corresponding operands are commutable and returns
481 /// false otherwise.
482 ///
483 /// For example, calling this method this way:
484 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
485 /// findCommutedOpIndices(MI, Op1, Op2);
486 /// can be interpreted as a query asking to find an operand that would be
487 /// commutable with the operand#1.
488 virtual bool findCommutedOpIndices(const MachineInstr &MI,
489 unsigned &SrcOpIdx1,
490 unsigned &SrcOpIdx2) const;
491
492 /// Returns true if the target has a preference on the operands order of
493 /// the given machine instruction. And specify if \p Commute is required to
494 /// get the desired operands order.
495 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
496 return false;
497 }
498
499 /// A pair composed of a register and a sub-register index.
500 /// Used to give some type checking when modeling Reg:SubReg.
501 struct RegSubRegPair {
502 Register Reg;
503 unsigned SubReg;
504
505 RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
506 : Reg(Reg), SubReg(SubReg) {}
507
508 bool operator==(const RegSubRegPair& P) const {
509 return Reg == P.Reg && SubReg == P.SubReg;
510 }
511 bool operator!=(const RegSubRegPair& P) const {
512 return !(*this == P);
513 }
514 };
515
516 /// A pair composed of a pair of a register and a sub-register index,
517 /// and another sub-register index.
518 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
519 struct RegSubRegPairAndIdx : RegSubRegPair {
520 unsigned SubIdx;
521
522 RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
523 unsigned SubIdx = 0)
524 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
525 };
526
527 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
528 /// and \p DefIdx.
529 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
530 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
531 /// flag are not added to this list.
532 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
533 /// two elements:
534 /// - %1:sub1, sub0
535 /// - %2<:0>, sub1
536 ///
537 /// \returns true if it is possible to build such an input sequence
538 /// with the pair \p MI, \p DefIdx. False otherwise.
539 ///
540 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
541 ///
542 /// \note The generic implementation does not provide any support for
543 /// MI.isRegSequenceLike(). In other words, one has to override
544 /// getRegSequenceLikeInputs for target specific instructions.
545 bool
546 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
547 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
548
549 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
550 /// and \p DefIdx.
551 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
552 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
553 /// - %1:sub1, sub0
554 ///
555 /// \returns true if it is possible to build such an input sequence
556 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
557 /// False otherwise.
558 ///
559 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
560 ///
561 /// \note The generic implementation does not provide any support for
562 /// MI.isExtractSubregLike(). In other words, one has to override
563 /// getExtractSubregLikeInputs for target specific instructions.
564 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
565 RegSubRegPairAndIdx &InputReg) const;
566
567 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
568 /// and \p DefIdx.
569 /// \p [out] BaseReg and \p [out] InsertedReg contain
570 /// the equivalent inputs of INSERT_SUBREG.
571 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
572 /// - BaseReg: %0:sub0
573 /// - InsertedReg: %1:sub1, sub3
574 ///
575 /// \returns true if it is possible to build such an input sequence
576 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
577 /// False otherwise.
578 ///
579 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
580 ///
581 /// \note The generic implementation does not provide any support for
582 /// MI.isInsertSubregLike(). In other words, one has to override
583 /// getInsertSubregLikeInputs for target specific instructions.
584 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
585 RegSubRegPair &BaseReg,
586 RegSubRegPairAndIdx &InsertedReg) const;
587
588 /// Return true if two machine instructions would produce identical values.
589 /// By default, this is only true when the two instructions
590 /// are deemed identical except for defs. If this function is called when the
591 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
592 /// aggressive checks.
593 virtual bool produceSameValue(const MachineInstr &MI0,
594 const MachineInstr &MI1,
595 const MachineRegisterInfo *MRI = nullptr) const;
596
597 /// \returns true if a branch from an instruction with opcode \p BranchOpc
598 /// bytes is capable of jumping to a position \p BrOffset bytes away.
599 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
600 int64_t BrOffset) const {
601 llvm_unreachable("target did not implement");
602 }
603
604 /// \returns The block that branch instruction \p MI jumps to.
605 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
606 llvm_unreachable("target did not implement");
607 }
608
609 /// Insert an unconditional indirect branch at the end of \p MBB to \p
610 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
611 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
612 /// the offset of the position to insert the new branch.
613 virtual void insertIndirectBranch(MachineBasicBlock &MBB,
614 MachineBasicBlock &NewDestBB,
615 MachineBasicBlock &RestoreBB,
616 const DebugLoc &DL, int64_t BrOffset = 0,
617 RegScavenger *RS = nullptr) const {
618 llvm_unreachable("target did not implement");
619 }
620
621 /// Analyze the branching code at the end of MBB, returning
622 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
623 /// implemented for a target). Upon success, this returns false and returns
624 /// with the following information in various cases:
625 ///
626 /// 1. If this block ends with no branches (it just falls through to its succ)
627 /// just return false, leaving TBB/FBB null.
628 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
629 /// the destination block.
630 /// 3. If this block ends with a conditional branch and it falls through to a
631 /// successor block, it sets TBB to be the branch destination block and a
632 /// list of operands that evaluate the condition. These operands can be
633 /// passed to other TargetInstrInfo methods to create new branches.
634 /// 4. If this block ends with a conditional branch followed by an
635 /// unconditional branch, it returns the 'true' destination in TBB, the
636 /// 'false' destination in FBB, and a list of operands that evaluate the
637 /// condition. These operands can be passed to other TargetInstrInfo
638 /// methods to create new branches.
639 ///
640 /// Note that removeBranch and insertBranch must be implemented to support
641 /// cases where this method returns success.
642 ///
643 /// If AllowModify is true, then this routine is allowed to modify the basic
644 /// block (e.g. delete instructions after the unconditional branch).
645 ///
646 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
647 /// before calling this function.
648 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
649 MachineBasicBlock *&FBB,
650 SmallVectorImpl<MachineOperand> &Cond,
651 bool AllowModify = false) const {
652 return true;
653 }
654
655 /// Represents a predicate at the MachineFunction level. The control flow a
656 /// MachineBranchPredicate represents is:
657 ///
658 /// Reg = LHS `Predicate` RHS == ConditionDef
659 /// if Reg then goto TrueDest else goto FalseDest
660 ///
661 struct MachineBranchPredicate {
662 enum ComparePredicate {
663 PRED_EQ, // True if two values are equal
664 PRED_NE, // True if two values are not equal
665 PRED_INVALID // Sentinel value
666 };
667
668 ComparePredicate Predicate = PRED_INVALID;
669 MachineOperand LHS = MachineOperand::CreateImm(Val: 0);
670 MachineOperand RHS = MachineOperand::CreateImm(Val: 0);
671 MachineBasicBlock *TrueDest = nullptr;
672 MachineBasicBlock *FalseDest = nullptr;
673 MachineInstr *ConditionDef = nullptr;
674
675 /// SingleUseCondition is true if ConditionDef is dead except for the
676 /// branch(es) at the end of the basic block.
677 ///
678 bool SingleUseCondition = false;
679
680 explicit MachineBranchPredicate() = default;
681 };
682
683 /// Analyze the branching code at the end of MBB and parse it into the
684 /// MachineBranchPredicate structure if possible. Returns false on success
685 /// and true on failure.
686 ///
687 /// If AllowModify is true, then this routine is allowed to modify the basic
688 /// block (e.g. delete instructions after the unconditional branch).
689 ///
690 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
691 MachineBranchPredicate &MBP,
692 bool AllowModify = false) const {
693 return true;
694 }
695
696 /// Remove the branching code at the end of the specific MBB.
697 /// This is only invoked in cases where analyzeBranch returns success. It
698 /// returns the number of instructions that were removed.
699 /// If \p BytesRemoved is non-null, report the change in code size from the
700 /// removed instructions.
701 virtual unsigned removeBranch(MachineBasicBlock &MBB,
702 int *BytesRemoved = nullptr) const {
703 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
704 }
705
706 /// Insert branch code into the end of the specified MachineBasicBlock. The
707 /// operands to this method are the same as those returned by analyzeBranch.
708 /// This is only invoked in cases where analyzeBranch returns success. It
709 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
710 /// report the change in code size from the added instructions.
711 ///
712 /// It is also invoked by tail merging to add unconditional branches in
713 /// cases where analyzeBranch doesn't apply because there was no original
714 /// branch to analyze. At least this much must be implemented, else tail
715 /// merging needs to be disabled.
716 ///
717 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
718 /// before calling this function.
719 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
720 MachineBasicBlock *FBB,
721 ArrayRef<MachineOperand> Cond,
722 const DebugLoc &DL,
723 int *BytesAdded = nullptr) const {
724 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
725 }
726
727 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
728 MachineBasicBlock *DestBB,
729 const DebugLoc &DL,
730 int *BytesAdded = nullptr) const {
731 return insertBranch(MBB, TBB: DestBB, FBB: nullptr, Cond: ArrayRef<MachineOperand>(), DL,
732 BytesAdded);
733 }
734
735 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
736 /// implementations to query attributes of the loop being pipelined and to
737 /// apply target-specific updates to the loop once pipelining is complete.
738 class PipelinerLoopInfo {
739 public:
740 virtual ~PipelinerLoopInfo();
741 /// Return true if the given instruction should not be pipelined and should
742 /// be ignored. An example could be a loop comparison, or induction variable
743 /// update with no users being pipelined.
744 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
745
746 /// Return true if the proposed schedule should used. Otherwise return
747 /// false to not pipeline the loop. This function should be used to ensure
748 /// that pipelined loops meet target-specific quality heuristics.
749 virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
750 return true;
751 }
752
753 /// Create a condition to determine if the trip count of the loop is greater
754 /// than TC, where TC is always one more than for the previous prologue or
755 /// 0 if this is being called for the outermost prologue.
756 ///
757 /// If the trip count is statically known to be greater than TC, return
758 /// true. If the trip count is statically known to be not greater than TC,
759 /// return false. Otherwise return nullopt and fill out Cond with the test
760 /// condition.
761 ///
762 /// Note: This hook is guaranteed to be called from the innermost to the
763 /// outermost prologue of the loop being software pipelined.
764 virtual std::optional<bool>
765 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
766 SmallVectorImpl<MachineOperand> &Cond) = 0;
767
768 /// Modify the loop such that the trip count is
769 /// OriginalTC + TripCountAdjust.
770 virtual void adjustTripCount(int TripCountAdjust) = 0;
771
772 /// Called when the loop's preheader has been modified to NewPreheader.
773 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
774
775 /// Called when the loop is being removed. Any instructions in the preheader
776 /// should be removed.
777 ///
778 /// Once this function is called, no other functions on this object are
779 /// valid; the loop has been removed.
780 virtual void disposed() = 0;
781 };
782
783 /// Analyze loop L, which must be a single-basic-block loop, and if the
784 /// conditions can be understood enough produce a PipelinerLoopInfo object.
785 virtual std::unique_ptr<PipelinerLoopInfo>
786 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
787 return nullptr;
788 }
789
790 /// Analyze the loop code, return true if it cannot be understood. Upon
791 /// success, this function returns false and returns information about the
792 /// induction variable and compare instruction used at the end.
793 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
794 MachineInstr *&CmpInst) const {
795 return true;
796 }
797
798 /// Generate code to reduce the loop iteration by one and check if the loop
799 /// is finished. Return the value/register of the new loop count. We need
800 /// this function when peeling off one or more iterations of a loop. This
801 /// function assumes the nth iteration is peeled first.
802 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
803 MachineBasicBlock &PreHeader,
804 MachineInstr *IndVar, MachineInstr &Cmp,
805 SmallVectorImpl<MachineOperand> &Cond,
806 SmallVectorImpl<MachineInstr *> &PrevInsts,
807 unsigned Iter, unsigned MaxIter) const {
808 llvm_unreachable("Target didn't implement ReduceLoopCount");
809 }
810
811 /// Delete the instruction OldInst and everything after it, replacing it with
812 /// an unconditional branch to NewDest. This is used by the tail merging pass.
813 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
814 MachineBasicBlock *NewDest) const;
815
816 /// Return true if it's legal to split the given basic
817 /// block at the specified instruction (i.e. instruction would be the start
818 /// of a new basic block).
819 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
820 MachineBasicBlock::iterator MBBI) const {
821 return true;
822 }
823
824 /// Return true if it's profitable to predicate
825 /// instructions with accumulated instruction latency of "NumCycles"
826 /// of the specified basic block, where the probability of the instructions
827 /// being executed is given by Probability, and Confidence is a measure
828 /// of our confidence that it will be properly predicted.
829 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
830 unsigned ExtraPredCycles,
831 BranchProbability Probability) const {
832 return false;
833 }
834
835 /// Second variant of isProfitableToIfCvt. This one
836 /// checks for the case where two basic blocks from true and false path
837 /// of a if-then-else (diamond) are predicated on mutually exclusive
838 /// predicates, where the probability of the true path being taken is given
839 /// by Probability, and Confidence is a measure of our confidence that it
840 /// will be properly predicted.
841 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
842 unsigned ExtraTCycles,
843 MachineBasicBlock &FMBB, unsigned NumFCycles,
844 unsigned ExtraFCycles,
845 BranchProbability Probability) const {
846 return false;
847 }
848
849 /// Return true if it's profitable for if-converter to duplicate instructions
850 /// of specified accumulated instruction latencies in the specified MBB to
851 /// enable if-conversion.
852 /// The probability of the instructions being executed is given by
853 /// Probability, and Confidence is a measure of our confidence that it
854 /// will be properly predicted.
855 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
856 unsigned NumCycles,
857 BranchProbability Probability) const {
858 return false;
859 }
860
861 /// Return the increase in code size needed to predicate a contiguous run of
862 /// NumInsts instructions.
863 virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
864 unsigned NumInsts) const {
865 return 0;
866 }
867
868 /// Return an estimate for the code size reduction (in bytes) which will be
869 /// caused by removing the given branch instruction during if-conversion.
870 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
871 return getInstSizeInBytes(MI);
872 }
873
874 /// Return true if it's profitable to unpredicate
875 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
876 /// exclusive predicates.
877 /// e.g.
878 /// subeq r0, r1, #1
879 /// addne r0, r1, #1
880 /// =>
881 /// sub r0, r1, #1
882 /// addne r0, r1, #1
883 ///
884 /// This may be profitable is conditional instructions are always executed.
885 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
886 MachineBasicBlock &FMBB) const {
887 return false;
888 }
889
890 /// Return true if it is possible to insert a select
891 /// instruction that chooses between TrueReg and FalseReg based on the
892 /// condition code in Cond.
893 ///
894 /// When successful, also return the latency in cycles from TrueReg,
895 /// FalseReg, and Cond to the destination register. In most cases, a select
896 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
897 ///
898 /// Some x86 implementations have 2-cycle cmov instructions.
899 ///
900 /// @param MBB Block where select instruction would be inserted.
901 /// @param Cond Condition returned by analyzeBranch.
902 /// @param DstReg Virtual dest register that the result should write to.
903 /// @param TrueReg Virtual register to select when Cond is true.
904 /// @param FalseReg Virtual register to select when Cond is false.
905 /// @param CondCycles Latency from Cond+Branch to select output.
906 /// @param TrueCycles Latency from TrueReg to select output.
907 /// @param FalseCycles Latency from FalseReg to select output.
908 virtual bool canInsertSelect(const MachineBasicBlock &MBB,
909 ArrayRef<MachineOperand> Cond, Register DstReg,
910 Register TrueReg, Register FalseReg,
911 int &CondCycles, int &TrueCycles,
912 int &FalseCycles) const {
913 return false;
914 }
915
916 /// Insert a select instruction into MBB before I that will copy TrueReg to
917 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
918 ///
919 /// This function can only be called after canInsertSelect() returned true.
920 /// The condition in Cond comes from analyzeBranch, and it can be assumed
921 /// that the same flags or registers required by Cond are available at the
922 /// insertion point.
923 ///
924 /// @param MBB Block where select instruction should be inserted.
925 /// @param I Insertion point.
926 /// @param DL Source location for debugging.
927 /// @param DstReg Virtual register to be defined by select instruction.
928 /// @param Cond Condition as computed by analyzeBranch.
929 /// @param TrueReg Virtual register to copy when Cond is true.
930 /// @param FalseReg Virtual register to copy when Cons is false.
931 virtual void insertSelect(MachineBasicBlock &MBB,
932 MachineBasicBlock::iterator I, const DebugLoc &DL,
933 Register DstReg, ArrayRef<MachineOperand> Cond,
934 Register TrueReg, Register FalseReg) const {
935 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
936 }
937
938 /// Analyze the given select instruction, returning true if
939 /// it cannot be understood. It is assumed that MI->isSelect() is true.
940 ///
941 /// When successful, return the controlling condition and the operands that
942 /// determine the true and false result values.
943 ///
944 /// Result = SELECT Cond, TrueOp, FalseOp
945 ///
946 /// Some targets can optimize select instructions, for example by predicating
947 /// the instruction defining one of the operands. Such targets should set
948 /// Optimizable.
949 ///
950 /// @param MI Select instruction to analyze.
951 /// @param Cond Condition controlling the select.
952 /// @param TrueOp Operand number of the value selected when Cond is true.
953 /// @param FalseOp Operand number of the value selected when Cond is false.
954 /// @param Optimizable Returned as true if MI is optimizable.
955 /// @returns False on success.
956 virtual bool analyzeSelect(const MachineInstr &MI,
957 SmallVectorImpl<MachineOperand> &Cond,
958 unsigned &TrueOp, unsigned &FalseOp,
959 bool &Optimizable) const {
960 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
961 return true;
962 }
963
964 /// Given a select instruction that was understood by
965 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
966 /// merging it with one of its operands. Returns NULL on failure.
967 ///
968 /// When successful, returns the new select instruction. The client is
969 /// responsible for deleting MI.
970 ///
971 /// If both sides of the select can be optimized, PreferFalse is used to pick
972 /// a side.
973 ///
974 /// @param MI Optimizable select instruction.
975 /// @param NewMIs Set that record all MIs in the basic block up to \p
976 /// MI. Has to be updated with any newly created MI or deleted ones.
977 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
978 /// @returns Optimized instruction or NULL.
979 virtual MachineInstr *optimizeSelect(MachineInstr &MI,
980 SmallPtrSetImpl<MachineInstr *> &NewMIs,
981 bool PreferFalse = false) const {
982 // This function must be implemented if Optimizable is ever set.
983 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
984 }
985
986 /// Emit instructions to copy a pair of physical registers.
987 ///
988 /// This function should support copies within any legal register class as
989 /// well as any cross-class copies created during instruction selection.
990 ///
991 /// The source and destination registers may overlap, which may require a
992 /// careful implementation when multiple copy instructions are required for
993 /// large registers. See for example the ARM target.
994 virtual void copyPhysReg(MachineBasicBlock &MBB,
995 MachineBasicBlock::iterator MI, const DebugLoc &DL,
996 MCRegister DestReg, MCRegister SrcReg,
997 bool KillSrc) const {
998 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
999 }
1000
1001 /// Allow targets to tell MachineVerifier whether a specific register
1002 /// MachineOperand can be used as part of PC-relative addressing.
1003 /// PC-relative addressing modes in many CISC architectures contain
1004 /// (non-PC) registers as offsets or scaling values, which inherently
1005 /// tags the corresponding MachineOperand with OPERAND_PCREL.
1006 ///
1007 /// @param MO The MachineOperand in question. MO.isReg() should always
1008 /// be true.
1009 /// @return Whether this operand is allowed to be used PC-relatively.
1010 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1011 return false;
1012 }
1013
1014 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1015 /// using a jump table, otherwise -1.
1016 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1017
1018protected:
1019 /// Target-dependent implementation for IsCopyInstr.
1020 /// If the specific machine instruction is a instruction that moves/copies
1021 /// value from one register to another register return destination and source
1022 /// registers as machine operands.
1023 virtual std::optional<DestSourcePair>
1024 isCopyInstrImpl(const MachineInstr &MI) const {
1025 return std::nullopt;
1026 }
1027
1028 virtual std::optional<DestSourcePair>
1029 isCopyLikeInstrImpl(const MachineInstr &MI) const {
1030 return std::nullopt;
1031 }
1032
1033 /// Return true if the given terminator MI is not expected to spill. This
1034 /// sets the live interval as not spillable and adjusts phi node lowering to
1035 /// not introduce copies after the terminator. Use with care, these are
1036 /// currently used for hardware loop intrinsics in very controlled situations,
1037 /// created prior to registry allocation in loops that only have single phi
1038 /// users for the terminators value. They may run out of registers if not used
1039 /// carefully.
1040 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1041 return false;
1042 }
1043
1044public:
1045 /// If the specific machine instruction is a instruction that moves/copies
1046 /// value from one register to another register return destination and source
1047 /// registers as machine operands.
1048 /// For COPY-instruction the method naturally returns destination and source
1049 /// registers as machine operands, for all other instructions the method calls
1050 /// target-dependent implementation.
1051 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1052 if (MI.isCopy()) {
1053 return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)};
1054 }
1055 return isCopyInstrImpl(MI);
1056 }
1057
1058 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1059 // ultimately generates a copy instruction.
1060 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1061 if (auto IsCopyInstr = isCopyInstr(MI))
1062 return IsCopyInstr;
1063 return isCopyLikeInstrImpl(MI);
1064 }
1065
1066 bool isFullCopyInstr(const MachineInstr &MI) const {
1067 auto DestSrc = isCopyInstr(MI);
1068 if (!DestSrc)
1069 return false;
1070
1071 const MachineOperand *DestRegOp = DestSrc->Destination;
1072 const MachineOperand *SrcRegOp = DestSrc->Source;
1073 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1074 }
1075
1076 /// If the specific machine instruction is an instruction that adds an
1077 /// immediate value and a register, and stores the result in the given
1078 /// register \c Reg, return a pair of the source register and the offset
1079 /// which has been added.
1080 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1081 Register Reg) const {
1082 return std::nullopt;
1083 }
1084
1085 /// Returns true if MI is an instruction that defines Reg to have a constant
1086 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1087 /// should be interpreted as modulo size of Reg.
1088 virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1089 const Register Reg,
1090 int64_t &ImmVal) const {
1091 return false;
1092 }
1093
1094 /// Store the specified register of the given register class to the specified
1095 /// stack frame index. The store instruction is to be added to the given
1096 /// machine basic block before the specified machine instruction. If isKill
1097 /// is true, the register operand is the last use and must be marked kill. If
1098 /// \p SrcReg is being directly spilled as part of assigning a virtual
1099 /// register, \p VReg is the register being assigned. This additional register
1100 /// argument is needed for certain targets when invoked from RegAllocFast to
1101 /// map the spilled physical register to its virtual register. A null register
1102 /// can be passed elsewhere.
1103 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1104 MachineBasicBlock::iterator MI,
1105 Register SrcReg, bool isKill, int FrameIndex,
1106 const TargetRegisterClass *RC,
1107 const TargetRegisterInfo *TRI,
1108 Register VReg) const {
1109 llvm_unreachable("Target didn't implement "
1110 "TargetInstrInfo::storeRegToStackSlot!");
1111 }
1112
1113 /// Load the specified register of the given register class from the specified
1114 /// stack frame index. The load instruction is to be added to the given
1115 /// machine basic block before the specified machine instruction. If \p
1116 /// DestReg is being directly reloaded as part of assigning a virtual
1117 /// register, \p VReg is the register being assigned. This additional register
1118 /// argument is needed for certain targets when invoked from RegAllocFast to
1119 /// map the loaded physical register to its virtual register. A null register
1120 /// can be passed elsewhere.
1121 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1122 MachineBasicBlock::iterator MI,
1123 Register DestReg, int FrameIndex,
1124 const TargetRegisterClass *RC,
1125 const TargetRegisterInfo *TRI,
1126 Register VReg) const {
1127 llvm_unreachable("Target didn't implement "
1128 "TargetInstrInfo::loadRegFromStackSlot!");
1129 }
1130
1131 /// This function is called for all pseudo instructions
1132 /// that remain after register allocation. Many pseudo instructions are
1133 /// created to help register allocation. This is the place to convert them
1134 /// into real instructions. The target can edit MI in place, or it can insert
1135 /// new instructions and erase MI. The function should return true if
1136 /// anything was changed.
1137 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1138
1139 /// Check whether the target can fold a load that feeds a subreg operand
1140 /// (or a subreg operand that feeds a store).
1141 /// For example, X86 may want to return true if it can fold
1142 /// movl (%esp), %eax
1143 /// subb, %al, ...
1144 /// Into:
1145 /// subb (%esp), ...
1146 ///
1147 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1148 /// reject subregs - but since this behavior used to be enforced in the
1149 /// target-independent code, moving this responsibility to the targets
1150 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1151 virtual bool isSubregFoldable() const { return false; }
1152
1153 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1154 /// operands which can't be folded into stack references. Operands outside
1155 /// of the range are most likely foldable but it is not guaranteed.
1156 /// These instructions are unique in that stack references for some operands
1157 /// have the same execution cost (e.g. none) as the unfolded register forms.
1158 /// The ranged return is guaranteed to include all operands which can't be
1159 /// folded at zero cost.
1160 virtual std::pair<unsigned, unsigned>
1161 getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1162
1163 /// Attempt to fold a load or store of the specified stack
1164 /// slot into the specified machine instruction for the specified operand(s).
1165 /// If this is possible, a new instruction is returned with the specified
1166 /// operand folded, otherwise NULL is returned.
1167 /// The new instruction is inserted before MI, and the client is responsible
1168 /// for removing the old instruction.
1169 /// If VRM is passed, the assigned physregs can be inspected by target to
1170 /// decide on using an opcode (note that those assignments can still change).
1171 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1172 int FI,
1173 LiveIntervals *LIS = nullptr,
1174 VirtRegMap *VRM = nullptr) const;
1175
1176 /// Same as the previous version except it allows folding of any load and
1177 /// store from / to any address, not just from a specific stack slot.
1178 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1179 MachineInstr &LoadMI,
1180 LiveIntervals *LIS = nullptr) const;
1181
1182 /// This function defines the logic to lower COPY instruction to
1183 /// target specific instruction(s).
1184 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1185
1186 /// Return true when there is potentially a faster code sequence
1187 /// for an instruction chain ending in \p Root. All potential patterns are
1188 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1189 /// order since the pattern evaluator stops checking as soon as it finds a
1190 /// faster sequence.
1191 /// \param Root - Instruction that could be combined with one of its operands
1192 /// \param Patterns - Vector of possible combination patterns
1193 virtual bool
1194 getMachineCombinerPatterns(MachineInstr &Root,
1195 SmallVectorImpl<MachineCombinerPattern> &Patterns,
1196 bool DoRegPressureReduce) const;
1197
1198 /// Return true if target supports reassociation of instructions in machine
1199 /// combiner pass to reduce register pressure for a given BB.
1200 virtual bool
1201 shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
1202 const RegisterClassInfo *RegClassInfo) const {
1203 return false;
1204 }
1205
1206 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1207 virtual void
1208 finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1209 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1210
1211 /// Return true when a code sequence can improve throughput. It
1212 /// should be called only for instructions in loops.
1213 /// \param Pattern - combiner pattern
1214 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1215
1216 /// Return true if the input \P Inst is part of a chain of dependent ops
1217 /// that are suitable for reassociation, otherwise return false.
1218 /// If the instruction's operands must be commuted to have a previous
1219 /// instruction of the same type define the first source operand, \P Commuted
1220 /// will be set to true.
1221 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1222
1223 /// Return true when \P Inst is both associative and commutative. If \P Invert
1224 /// is true, then the inverse of \P Inst operation must be tested.
1225 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
1226 bool Invert = false) const {
1227 return false;
1228 }
1229
1230 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1231 /// for sub and vice versa).
1232 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1233 return std::nullopt;
1234 }
1235
1236 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1237 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1238
1239 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1240 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1241 const MachineBasicBlock *MBB) const;
1242
1243 /// Return true when \P Inst has reassociable sibling.
1244 virtual bool hasReassociableSibling(const MachineInstr &Inst,
1245 bool &Commuted) const;
1246
1247 /// When getMachineCombinerPatterns() finds patterns, this function generates
1248 /// the instructions that could replace the original code sequence. The client
1249 /// has to decide whether the actual replacement is beneficial or not.
1250 /// \param Root - Instruction that could be combined with one of its operands
1251 /// \param Pattern - Combination pattern for Root
1252 /// \param InsInstrs - Vector of new instructions that implement P
1253 /// \param DelInstrs - Old instructions, including Root, that could be
1254 /// replaced by InsInstr
1255 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1256 /// InsInstr that defines it
1257 virtual void genAlternativeCodeSequence(
1258 MachineInstr &Root, MachineCombinerPattern Pattern,
1259 SmallVectorImpl<MachineInstr *> &InsInstrs,
1260 SmallVectorImpl<MachineInstr *> &DelInstrs,
1261 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1262
1263 /// When calculate the latency of the root instruction, accumulate the
1264 /// latency of the sequence to the root latency.
1265 /// \param Root - Instruction that could be combined with one of its operands
1266 virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const {
1267 return true;
1268 }
1269
1270 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1271 /// reduce critical path length.
1272 void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1273 MachineCombinerPattern Pattern,
1274 SmallVectorImpl<MachineInstr *> &InsInstrs,
1275 SmallVectorImpl<MachineInstr *> &DelInstrs,
1276 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1277
1278 /// Reassociation of some instructions requires inverse operations (e.g.
1279 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1280 /// (new root opcode, new prev opcode) that must be used to reassociate \P
1281 /// Root and \P Prev accoring to \P Pattern.
1282 std::pair<unsigned, unsigned>
1283 getReassociationOpcodes(MachineCombinerPattern Pattern,
1284 const MachineInstr &Root,
1285 const MachineInstr &Prev) const;
1286
1287 /// The limit on resource length extension we accept in MachineCombiner Pass.
1288 virtual int getExtendResourceLenLimit() const { return 0; }
1289
1290 /// This is an architecture-specific helper function of reassociateOps.
1291 /// Set special operand attributes for new instructions after reassociation.
1292 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1293 MachineInstr &NewMI1,
1294 MachineInstr &NewMI2) const {}
1295
1296 /// Return true when a target supports MachineCombiner.
1297 virtual bool useMachineCombiner() const { return false; }
1298
1299 /// Return a strategy that MachineCombiner must use when creating traces.
1300 virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const;
1301
1302 /// Return true if the given SDNode can be copied during scheduling
1303 /// even if it has glue.
1304 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1305
1306protected:
1307 /// Target-dependent implementation for foldMemoryOperand.
1308 /// Target-independent code in foldMemoryOperand will
1309 /// take care of adding a MachineMemOperand to the newly created instruction.
1310 /// The instruction and any auxiliary instructions necessary will be inserted
1311 /// at InsertPt.
1312 virtual MachineInstr *
1313 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1314 ArrayRef<unsigned> Ops,
1315 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1316 LiveIntervals *LIS = nullptr,
1317 VirtRegMap *VRM = nullptr) const {
1318 return nullptr;
1319 }
1320
1321 /// Target-dependent implementation for foldMemoryOperand.
1322 /// Target-independent code in foldMemoryOperand will
1323 /// take care of adding a MachineMemOperand to the newly created instruction.
1324 /// The instruction and any auxiliary instructions necessary will be inserted
1325 /// at InsertPt.
1326 virtual MachineInstr *foldMemoryOperandImpl(
1327 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1328 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1329 LiveIntervals *LIS = nullptr) const {
1330 return nullptr;
1331 }
1332
1333 /// Target-dependent implementation of getRegSequenceInputs.
1334 ///
1335 /// \returns true if it is possible to build the equivalent
1336 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1337 ///
1338 /// \pre MI.isRegSequenceLike().
1339 ///
1340 /// \see TargetInstrInfo::getRegSequenceInputs.
1341 virtual bool getRegSequenceLikeInputs(
1342 const MachineInstr &MI, unsigned DefIdx,
1343 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1344 return false;
1345 }
1346
1347 /// Target-dependent implementation of getExtractSubregInputs.
1348 ///
1349 /// \returns true if it is possible to build the equivalent
1350 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1351 ///
1352 /// \pre MI.isExtractSubregLike().
1353 ///
1354 /// \see TargetInstrInfo::getExtractSubregInputs.
1355 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1356 unsigned DefIdx,
1357 RegSubRegPairAndIdx &InputReg) const {
1358 return false;
1359 }
1360
1361 /// Target-dependent implementation of getInsertSubregInputs.
1362 ///
1363 /// \returns true if it is possible to build the equivalent
1364 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1365 ///
1366 /// \pre MI.isInsertSubregLike().
1367 ///
1368 /// \see TargetInstrInfo::getInsertSubregInputs.
1369 virtual bool
1370 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1371 RegSubRegPair &BaseReg,
1372 RegSubRegPairAndIdx &InsertedReg) const {
1373 return false;
1374 }
1375
1376public:
1377 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1378 /// a store or a load and a store into two or more instruction. If this is
1379 /// possible, returns true as well as the new instructions by reference.
1380 virtual bool
1381 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1382 bool UnfoldLoad, bool UnfoldStore,
1383 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1384 return false;
1385 }
1386
1387 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1388 SmallVectorImpl<SDNode *> &NewNodes) const {
1389 return false;
1390 }
1391
1392 /// Returns the opcode of the would be new
1393 /// instruction after load / store are unfolded from an instruction of the
1394 /// specified opcode. It returns zero if the specified unfolding is not
1395 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1396 /// index of the operand which will hold the register holding the loaded
1397 /// value.
1398 virtual unsigned
1399 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1400 unsigned *LoadRegIndex = nullptr) const {
1401 return 0;
1402 }
1403
1404 /// This is used by the pre-regalloc scheduler to determine if two loads are
1405 /// loading from the same base address. It should only return true if the base
1406 /// pointers are the same and the only differences between the two addresses
1407 /// are the offset. It also returns the offsets by reference.
1408 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1409 int64_t &Offset1,
1410 int64_t &Offset2) const {
1411 return false;
1412 }
1413
1414 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1415 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1416 /// On some targets if two loads are loading from
1417 /// addresses in the same cache line, it's better if they are scheduled
1418 /// together. This function takes two integers that represent the load offsets
1419 /// from the common base address. It returns true if it decides it's desirable
1420 /// to schedule the two loads together. "NumLoads" is the number of loads that
1421 /// have already been scheduled after Load1.
1422 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1423 int64_t Offset1, int64_t Offset2,
1424 unsigned NumLoads) const {
1425 return false;
1426 }
1427
1428 /// Get the base operand and byte offset of an instruction that reads/writes
1429 /// memory. This is a convenience function for callers that are only prepared
1430 /// to handle a single base operand.
1431 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1432 /// abstraction that supports negative offsets.
1433 bool getMemOperandWithOffset(const MachineInstr &MI,
1434 const MachineOperand *&BaseOp, int64_t &Offset,
1435 bool &OffsetIsScalable,
1436 const TargetRegisterInfo *TRI) const;
1437
1438 /// Get zero or more base operands and the byte offset of an instruction that
1439 /// reads/writes memory. Note that there may be zero base operands if the
1440 /// instruction accesses a constant address.
1441 /// It returns false if MI does not read/write memory.
1442 /// It returns false if base operands and offset could not be determined.
1443 /// It is not guaranteed to always recognize base operands and offsets in all
1444 /// cases.
1445 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1446 /// abstraction that supports negative offsets.
1447 virtual bool getMemOperandsWithOffsetWidth(
1448 const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1449 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1450 const TargetRegisterInfo *TRI) const {
1451 return false;
1452 }
1453
1454 /// Return true if the instruction contains a base register and offset. If
1455 /// true, the function also sets the operand position in the instruction
1456 /// for the base register and offset.
1457 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1458 unsigned &BasePos,
1459 unsigned &OffsetPos) const {
1460 return false;
1461 }
1462
1463 /// Target dependent implementation to get the values constituting the address
1464 /// MachineInstr that is accessing memory. These values are returned as a
1465 /// struct ExtAddrMode which contains all relevant information to make up the
1466 /// address.
1467 virtual std::optional<ExtAddrMode>
1468 getAddrModeFromMemoryOp(const MachineInstr &MemI,
1469 const TargetRegisterInfo *TRI) const {
1470 return std::nullopt;
1471 }
1472
1473 /// Check if it's possible and beneficial to fold the addressing computation
1474 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1475 /// memory instruction is a user of the virtual register `Reg`, which in turn
1476 /// is the ultimate destination of zero or more COPY instructions from the
1477 /// output register of `AddrI`.
1478 /// Return the adddressing mode after folding in `AM`.
1479 virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg,
1480 const MachineInstr &AddrI,
1481 ExtAddrMode &AM) const {
1482 return false;
1483 }
1484
1485 /// Emit a load/store instruction with the same value register as `MemI`, but
1486 /// using the address from `AM`. The addressing mode must have been obtained
1487 /// from `canFoldIntoAddr` for the same memory instruction.
1488 virtual MachineInstr *emitLdStWithAddr(MachineInstr &MemI,
1489 const ExtAddrMode &AM) const {
1490 llvm_unreachable("target did not implement emitLdStWithAddr()");
1491 }
1492
1493 /// Returns true if MI's Def is NullValueReg, and the MI
1494 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1495 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1496 /// function can return true even if becomes zero. Specifically cases such as
1497 /// NullValueReg = shl NullValueReg, 63.
1498 virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1499 const Register NullValueReg,
1500 const TargetRegisterInfo *TRI) const {
1501 return false;
1502 }
1503
1504 /// If the instruction is an increment of a constant value, return the amount.
1505 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1506 return false;
1507 }
1508
1509 /// Returns true if the two given memory operations should be scheduled
1510 /// adjacent. Note that you have to add:
1511 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1512 /// or
1513 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1514 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1515 ///
1516 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1517 /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1518 /// operations.
1519 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1520 /// scaled by a runtime quantity.
1521 /// \p ClusterSize is the number of operations in the resulting load/store
1522 /// cluster if this hook returns true.
1523 /// \p NumBytes is the number of bytes that will be loaded from all the
1524 /// clustered loads if this hook returns true.
1525 virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1526 int64_t Offset1, bool OffsetIsScalable1,
1527 ArrayRef<const MachineOperand *> BaseOps2,
1528 int64_t Offset2, bool OffsetIsScalable2,
1529 unsigned ClusterSize,
1530 unsigned NumBytes) const {
1531 llvm_unreachable("target did not implement shouldClusterMemOps()");
1532 }
1533
1534 /// Reverses the branch condition of the specified condition list,
1535 /// returning false on success and true if it cannot be reversed.
1536 virtual bool
1537 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1538 return true;
1539 }
1540
1541 /// Insert a noop into the instruction stream at the specified point.
1542 virtual void insertNoop(MachineBasicBlock &MBB,
1543 MachineBasicBlock::iterator MI) const;
1544
1545 /// Insert noops into the instruction stream at the specified point.
1546 virtual void insertNoops(MachineBasicBlock &MBB,
1547 MachineBasicBlock::iterator MI,
1548 unsigned Quantity) const;
1549
1550 /// Return the noop instruction to use for a noop.
1551 virtual MCInst getNop() const;
1552
1553 /// Return true for post-incremented instructions.
1554 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1555
1556 /// Returns true if the instruction is already predicated.
1557 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1558
1559 /// Assumes the instruction is already predicated and returns true if the
1560 /// instruction can be predicated again.
1561 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1562 assert(isPredicated(MI) && "Instruction is not predicated");
1563 return false;
1564 }
1565
1566 // Returns a MIRPrinter comment for this machine operand.
1567 virtual std::string
1568 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1569 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1570
1571 /// Returns true if the instruction is a
1572 /// terminator instruction that has not been predicated.
1573 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1574
1575 /// Returns true if MI is an unconditional tail call.
1576 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1577 return false;
1578 }
1579
1580 /// Returns true if the tail call can be made conditional on BranchCond.
1581 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1582 const MachineInstr &TailCall) const {
1583 return false;
1584 }
1585
1586 /// Replace the conditional branch in MBB with a conditional tail call.
1587 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1588 SmallVectorImpl<MachineOperand> &Cond,
1589 const MachineInstr &TailCall) const {
1590 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1591 }
1592
1593 /// Convert the instruction into a predicated instruction.
1594 /// It returns true if the operation was successful.
1595 virtual bool PredicateInstruction(MachineInstr &MI,
1596 ArrayRef<MachineOperand> Pred) const;
1597
1598 /// Returns true if the first specified predicate
1599 /// subsumes the second, e.g. GE subsumes GT.
1600 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1601 ArrayRef<MachineOperand> Pred2) const {
1602 return false;
1603 }
1604
1605 /// If the specified instruction defines any predicate
1606 /// or condition code register(s) used for predication, returns true as well
1607 /// as the definition predicate(s) by reference.
1608 /// SkipDead should be set to false at any point that dead
1609 /// predicate instructions should be considered as being defined.
1610 /// A dead predicate instruction is one that is guaranteed to be removed
1611 /// after a call to PredicateInstruction.
1612 virtual bool ClobbersPredicate(MachineInstr &MI,
1613 std::vector<MachineOperand> &Pred,
1614 bool SkipDead) const {
1615 return false;
1616 }
1617
1618 /// Return true if the specified instruction can be predicated.
1619 /// By default, this returns true for every instruction with a
1620 /// PredicateOperand.
1621 virtual bool isPredicable(const MachineInstr &MI) const {
1622 return MI.getDesc().isPredicable();
1623 }
1624
1625 /// Return true if it's safe to move a machine
1626 /// instruction that defines the specified register class.
1627 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1628 return true;
1629 }
1630
1631 /// Test if the given instruction should be considered a scheduling boundary.
1632 /// This primarily includes labels and terminators.
1633 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1634 const MachineBasicBlock *MBB,
1635 const MachineFunction &MF) const;
1636
1637 /// Measure the specified inline asm to determine an approximation of its
1638 /// length.
1639 virtual unsigned getInlineAsmLength(
1640 const char *Str, const MCAsmInfo &MAI,
1641 const TargetSubtargetInfo *STI = nullptr) const;
1642
1643 /// Allocate and return a hazard recognizer to use for this target when
1644 /// scheduling the machine instructions before register allocation.
1645 virtual ScheduleHazardRecognizer *
1646 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1647 const ScheduleDAG *DAG) const;
1648
1649 /// Allocate and return a hazard recognizer to use for this target when
1650 /// scheduling the machine instructions before register allocation.
1651 virtual ScheduleHazardRecognizer *
1652 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1653 const ScheduleDAGMI *DAG) const;
1654
1655 /// Allocate and return a hazard recognizer to use for this target when
1656 /// scheduling the machine instructions after register allocation.
1657 virtual ScheduleHazardRecognizer *
1658 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1659 const ScheduleDAG *DAG) const;
1660
1661 /// Allocate and return a hazard recognizer to use for by non-scheduling
1662 /// passes.
1663 virtual ScheduleHazardRecognizer *
1664 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1665 return nullptr;
1666 }
1667
1668 /// Provide a global flag for disabling the PreRA hazard recognizer that
1669 /// targets may choose to honor.
1670 bool usePreRAHazardRecognizer() const;
1671
1672 /// For a comparison instruction, return the source registers
1673 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1674 /// compares against in CmpValue. Return true if the comparison instruction
1675 /// can be analyzed.
1676 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1677 Register &SrcReg2, int64_t &Mask,
1678 int64_t &Value) const {
1679 return false;
1680 }
1681
1682 /// See if the comparison instruction can be converted
1683 /// into something more efficient. E.g., on ARM most instructions can set the
1684 /// flags register, obviating the need for a separate CMP.
1685 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1686 Register SrcReg2, int64_t Mask,
1687 int64_t Value,
1688 const MachineRegisterInfo *MRI) const {
1689 return false;
1690 }
1691 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1692
1693 /// Try to remove the load by folding it to a register operand at the use.
1694 /// We fold the load instructions if and only if the
1695 /// def and use are in the same BB. We only look at one load and see
1696 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1697 /// defined by the load we are trying to fold. DefMI returns the machine
1698 /// instruction that defines FoldAsLoadDefReg, and the function returns
1699 /// the machine instruction generated due to folding.
1700 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1701 const MachineRegisterInfo *MRI,
1702 Register &FoldAsLoadDefReg,
1703 MachineInstr *&DefMI) const {
1704 return nullptr;
1705 }
1706
1707 /// 'Reg' is known to be defined by a move immediate instruction,
1708 /// try to fold the immediate into the use instruction.
1709 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1710 /// then the caller may assume that DefMI has been erased from its parent
1711 /// block. The caller may assume that it will not be erased by this
1712 /// function otherwise.
1713 virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1714 Register Reg, MachineRegisterInfo *MRI) const {
1715 return false;
1716 }
1717
1718 /// Return the number of u-operations the given machine
1719 /// instruction will be decoded to on the target cpu. The itinerary's
1720 /// IssueWidth is the number of microops that can be dispatched each
1721 /// cycle. An instruction with zero microops takes no dispatch resources.
1722 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1723 const MachineInstr &MI) const;
1724
1725 /// Return true for pseudo instructions that don't consume any
1726 /// machine resources in their current form. These are common cases that the
1727 /// scheduler should consider free, rather than conservatively handling them
1728 /// as instructions with no itinerary.
1729 bool isZeroCost(unsigned Opcode) const {
1730 return Opcode <= TargetOpcode::COPY;
1731 }
1732
1733 virtual std::optional<unsigned>
1734 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1735 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1736
1737 /// Compute and return the use operand latency of a given pair of def and use.
1738 /// In most cases, the static scheduling itinerary was enough to determine the
1739 /// operand latency. But it may not be possible for instructions with variable
1740 /// number of defs / uses.
1741 ///
1742 /// This is a raw interface to the itinerary that may be directly overridden
1743 /// by a target. Use computeOperandLatency to get the best estimate of
1744 /// latency.
1745 virtual std::optional<unsigned>
1746 getOperandLatency(const InstrItineraryData *ItinData,
1747 const MachineInstr &DefMI, unsigned DefIdx,
1748 const MachineInstr &UseMI, unsigned UseIdx) const;
1749
1750 /// Compute the instruction latency of a given instruction.
1751 /// If the instruction has higher cost when predicated, it's returned via
1752 /// PredCost.
1753 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1754 const MachineInstr &MI,
1755 unsigned *PredCost = nullptr) const;
1756
1757 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1758
1759 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1760 SDNode *Node) const;
1761
1762 /// Return the default expected latency for a def based on its opcode.
1763 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1764 const MachineInstr &DefMI) const;
1765
1766 /// Return true if this opcode has high latency to its result.
1767 virtual bool isHighLatencyDef(int opc) const { return false; }
1768
1769 /// Compute operand latency between a def of 'Reg'
1770 /// and a use in the current loop. Return true if the target considered
1771 /// it 'high'. This is used by optimization passes such as machine LICM to
1772 /// determine whether it makes sense to hoist an instruction out even in a
1773 /// high register pressure situation.
1774 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1775 const MachineRegisterInfo *MRI,
1776 const MachineInstr &DefMI, unsigned DefIdx,
1777 const MachineInstr &UseMI,
1778 unsigned UseIdx) const {
1779 return false;
1780 }
1781
1782 /// Compute operand latency of a def of 'Reg'. Return true
1783 /// if the target considered it 'low'.
1784 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1785 const MachineInstr &DefMI,
1786 unsigned DefIdx) const;
1787
1788 /// Perform target-specific instruction verification.
1789 virtual bool verifyInstruction(const MachineInstr &MI,
1790 StringRef &ErrInfo) const {
1791 return true;
1792 }
1793
1794 /// Return the current execution domain and bit mask of
1795 /// possible domains for instruction.
1796 ///
1797 /// Some micro-architectures have multiple execution domains, and multiple
1798 /// opcodes that perform the same operation in different domains. For
1799 /// example, the x86 architecture provides the por, orps, and orpd
1800 /// instructions that all do the same thing. There is a latency penalty if a
1801 /// register is written in one domain and read in another.
1802 ///
1803 /// This function returns a pair (domain, mask) containing the execution
1804 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1805 /// function can be used to change the opcode to one of the domains in the
1806 /// bit mask. Instructions whose execution domain can't be changed should
1807 /// return a 0 mask.
1808 ///
1809 /// The execution domain numbers don't have any special meaning except domain
1810 /// 0 is used for instructions that are not associated with any interesting
1811 /// execution domain.
1812 ///
1813 virtual std::pair<uint16_t, uint16_t>
1814 getExecutionDomain(const MachineInstr &MI) const {
1815 return std::make_pair(x: 0, y: 0);
1816 }
1817
1818 /// Change the opcode of MI to execute in Domain.
1819 ///
1820 /// The bit (1 << Domain) must be set in the mask returned from
1821 /// getExecutionDomain(MI).
1822 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1823
1824 /// Returns the preferred minimum clearance
1825 /// before an instruction with an unwanted partial register update.
1826 ///
1827 /// Some instructions only write part of a register, and implicitly need to
1828 /// read the other parts of the register. This may cause unwanted stalls
1829 /// preventing otherwise unrelated instructions from executing in parallel in
1830 /// an out-of-order CPU.
1831 ///
1832 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1833 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1834 /// the instruction needs to wait for the old value of the register to become
1835 /// available:
1836 ///
1837 /// addps %xmm1, %xmm0
1838 /// movaps %xmm0, (%rax)
1839 /// cvtsi2ss %rbx, %xmm0
1840 ///
1841 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1842 /// instruction before it can issue, even though the high bits of %xmm0
1843 /// probably aren't needed.
1844 ///
1845 /// This hook returns the preferred clearance before MI, measured in
1846 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1847 /// instructions before MI. It should only return a positive value for
1848 /// unwanted dependencies. If the old bits of the defined register have
1849 /// useful values, or if MI is determined to otherwise read the dependency,
1850 /// the hook should return 0.
1851 ///
1852 /// The unwanted dependency may be handled by:
1853 ///
1854 /// 1. Allocating the same register for an MI def and use. That makes the
1855 /// unwanted dependency identical to a required dependency.
1856 ///
1857 /// 2. Allocating a register for the def that has no defs in the previous N
1858 /// instructions.
1859 ///
1860 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1861 /// allows the target to insert a dependency breaking instruction.
1862 ///
1863 virtual unsigned
1864 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1865 const TargetRegisterInfo *TRI) const {
1866 // The default implementation returns 0 for no partial register dependency.
1867 return 0;
1868 }
1869
1870 /// Return the minimum clearance before an instruction that reads an
1871 /// unused register.
1872 ///
1873 /// For example, AVX instructions may copy part of a register operand into
1874 /// the unused high bits of the destination register.
1875 ///
1876 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1877 ///
1878 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1879 /// false dependence on any previous write to %xmm0.
1880 ///
1881 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1882 /// does not take an operand index. Instead sets \p OpNum to the index of the
1883 /// unused register.
1884 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1885 const TargetRegisterInfo *TRI) const {
1886 // The default implementation returns 0 for no undef register dependency.
1887 return 0;
1888 }
1889
1890 /// Insert a dependency-breaking instruction
1891 /// before MI to eliminate an unwanted dependency on OpNum.
1892 ///
1893 /// If it wasn't possible to avoid a def in the last N instructions before MI
1894 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1895 /// unwanted dependency.
1896 ///
1897 /// On x86, an xorps instruction can be used as a dependency breaker:
1898 ///
1899 /// addps %xmm1, %xmm0
1900 /// movaps %xmm0, (%rax)
1901 /// xorps %xmm0, %xmm0
1902 /// cvtsi2ss %rbx, %xmm0
1903 ///
1904 /// An <imp-kill> operand should be added to MI if an instruction was
1905 /// inserted. This ties the instructions together in the post-ra scheduler.
1906 ///
1907 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1908 const TargetRegisterInfo *TRI) const {}
1909
1910 /// Create machine specific model for scheduling.
1911 virtual DFAPacketizer *
1912 CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1913 return nullptr;
1914 }
1915
1916 /// Sometimes, it is possible for the target
1917 /// to tell, even without aliasing information, that two MIs access different
1918 /// memory addresses. This function returns true if two MIs access different
1919 /// memory addresses and false otherwise.
1920 ///
1921 /// Assumes any physical registers used to compute addresses have the same
1922 /// value for both instructions. (This is the most useful assumption for
1923 /// post-RA scheduling.)
1924 ///
1925 /// See also MachineInstr::mayAlias, which is implemented on top of this
1926 /// function.
1927 virtual bool
1928 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1929 const MachineInstr &MIb) const {
1930 assert(MIa.mayLoadOrStore() &&
1931 "MIa must load from or modify a memory location");
1932 assert(MIb.mayLoadOrStore() &&
1933 "MIb must load from or modify a memory location");
1934 return false;
1935 }
1936
1937 /// Return the value to use for the MachineCSE's LookAheadLimit,
1938 /// which is a heuristic used for CSE'ing phys reg defs.
1939 virtual unsigned getMachineCSELookAheadLimit() const {
1940 // The default lookahead is small to prevent unprofitable quadratic
1941 // behavior.
1942 return 5;
1943 }
1944
1945 /// Return the maximal number of alias checks on memory operands. For
1946 /// instructions with more than one memory operands, the alias check on a
1947 /// single MachineInstr pair has quadratic overhead and results in
1948 /// unacceptable performance in the worst case. The limit here is to clamp
1949 /// that maximal checks performed. Usually, that's the product of memory
1950 /// operand numbers from that pair of MachineInstr to be checked. For
1951 /// instance, with two MachineInstrs with 4 and 5 memory operands
1952 /// correspondingly, a total of 20 checks are required. With this limit set to
1953 /// 16, their alias check is skipped. We choose to limit the product instead
1954 /// of the individual instruction as targets may have special MachineInstrs
1955 /// with a considerably high number of memory operands, such as `ldm` in ARM.
1956 /// Setting this limit per MachineInstr would result in either too high
1957 /// overhead or too rigid restriction.
1958 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1959
1960 /// Return an array that contains the ids of the target indices (used for the
1961 /// TargetIndex machine operand) and their names.
1962 ///
1963 /// MIR Serialization is able to serialize only the target indices that are
1964 /// defined by this method.
1965 virtual ArrayRef<std::pair<int, const char *>>
1966 getSerializableTargetIndices() const {
1967 return std::nullopt;
1968 }
1969
1970 /// Decompose the machine operand's target flags into two values - the direct
1971 /// target flag value and any of bit flags that are applied.
1972 virtual std::pair<unsigned, unsigned>
1973 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1974 return std::make_pair(x: 0u, y: 0u);
1975 }
1976
1977 /// Return an array that contains the direct target flag values and their
1978 /// names.
1979 ///
1980 /// MIR Serialization is able to serialize only the target flags that are
1981 /// defined by this method.
1982 virtual ArrayRef<std::pair<unsigned, const char *>>
1983 getSerializableDirectMachineOperandTargetFlags() const {
1984 return std::nullopt;
1985 }
1986
1987 /// Return an array that contains the bitmask target flag values and their
1988 /// names.
1989 ///
1990 /// MIR Serialization is able to serialize only the target flags that are
1991 /// defined by this method.
1992 virtual ArrayRef<std::pair<unsigned, const char *>>
1993 getSerializableBitmaskMachineOperandTargetFlags() const {
1994 return std::nullopt;
1995 }
1996
1997 /// Return an array that contains the MMO target flag values and their
1998 /// names.
1999 ///
2000 /// MIR Serialization is able to serialize only the MMO target flags that are
2001 /// defined by this method.
2002 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
2003 getSerializableMachineMemOperandTargetFlags() const {
2004 return std::nullopt;
2005 }
2006
2007 /// Determines whether \p Inst is a tail call instruction. Override this
2008 /// method on targets that do not properly set MCID::Return and MCID::Call on
2009 /// tail call instructions."
2010 virtual bool isTailCall(const MachineInstr &Inst) const {
2011 return Inst.isReturn() && Inst.isCall();
2012 }
2013
2014 /// True if the instruction is bound to the top of its basic block and no
2015 /// other instructions shall be inserted before it. This can be implemented
2016 /// to prevent register allocator to insert spills for \p Reg before such
2017 /// instructions.
2018 virtual bool isBasicBlockPrologue(const MachineInstr &MI,
2019 Register Reg = Register()) const {
2020 return false;
2021 }
2022
2023 /// Allows targets to use appropriate copy instruction while spilitting live
2024 /// range of a register in register allocation.
2025 virtual unsigned getLiveRangeSplitOpcode(Register Reg,
2026 const MachineFunction &MF) const {
2027 return TargetOpcode::COPY;
2028 }
2029
2030 /// During PHI eleimination lets target to make necessary checks and
2031 /// insert the copy to the PHI destination register in a target specific
2032 /// manner.
2033 virtual MachineInstr *createPHIDestinationCopy(
2034 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
2035 const DebugLoc &DL, Register Src, Register Dst) const {
2036 return BuildMI(BB&: MBB, I: InsPt, MIMD: DL, MCID: get(Opcode: TargetOpcode::COPY), DestReg: Dst)
2037 .addReg(RegNo: Src);
2038 }
2039
2040 /// During PHI eleimination lets target to make necessary checks and
2041 /// insert the copy to the PHI destination register in a target specific
2042 /// manner.
2043 virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
2044 MachineBasicBlock::iterator InsPt,
2045 const DebugLoc &DL, Register Src,
2046 unsigned SrcSubReg,
2047 Register Dst) const {
2048 return BuildMI(BB&: MBB, I: InsPt, MIMD: DL, MCID: get(Opcode: TargetOpcode::COPY), DestReg: Dst)
2049 .addReg(RegNo: Src, flags: 0, SubReg: SrcSubReg);
2050 }
2051
2052 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2053 /// information for a set of outlining candidates. Returns std::nullopt if the
2054 /// candidates are not suitable for outlining.
2055 virtual std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
2056 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
2057 llvm_unreachable(
2058 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2059 }
2060
2061 /// Optional target hook to create the LLVM IR attributes for the outlined
2062 /// function. If overridden, the overriding function must call the default
2063 /// implementation.
2064 virtual void mergeOutliningCandidateAttributes(
2065 Function &F, std::vector<outliner::Candidate> &Candidates) const;
2066
2067protected:
2068 /// Target-dependent implementation for getOutliningTypeImpl.
2069 virtual outliner::InstrType
2070 getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2071 llvm_unreachable(
2072 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2073 }
2074
2075public:
2076 /// Returns how or if \p MIT should be outlined. \p Flags is the
2077 /// target-specific information returned by isMBBSafeToOutlineFrom.
2078 outliner::InstrType
2079 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const;
2080
2081 /// Optional target hook that returns true if \p MBB is safe to outline from,
2082 /// and returns any target-specific information in \p Flags.
2083 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2084 unsigned &Flags) const;
2085
2086 /// Optional target hook which partitions \p MBB into outlinable ranges for
2087 /// instruction mapping purposes. Each range is defined by two iterators:
2088 /// [start, end).
2089 ///
2090 /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2091 /// top of the block should come before ranges closer to the end of the block.
2092 ///
2093 /// Ranges cannot overlap.
2094 ///
2095 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2096 ///
2097 /// All instructions not present in an outlinable range are considered
2098 /// illegal.
2099 virtual SmallVector<
2100 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2101 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2102 return {std::make_pair(x: MBB.begin(), y: MBB.end())};
2103 }
2104
2105 /// Insert a custom frame for outlined functions.
2106 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
2107 const outliner::OutlinedFunction &OF) const {
2108 llvm_unreachable(
2109 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2110 }
2111
2112 /// Insert a call to an outlined function into the program.
2113 /// Returns an iterator to the spot where we inserted the call. This must be
2114 /// implemented by the target.
2115 virtual MachineBasicBlock::iterator
2116 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
2117 MachineBasicBlock::iterator &It, MachineFunction &MF,
2118 outliner::Candidate &C) const {
2119 llvm_unreachable(
2120 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2121 }
2122
2123 /// Insert an architecture-specific instruction to clear a register. If you
2124 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2125 /// \p AllowSideEffects to \p false.
2126 virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB,
2127 MachineBasicBlock::iterator Iter,
2128 DebugLoc &DL,
2129 bool AllowSideEffects = true) const {
2130#if 0
2131 // FIXME: This should exist once all platforms that use stack protectors
2132 // implements it.
2133 llvm_unreachable(
2134 "Target didn't implement TargetInstrInfo::buildClearRegister!");
2135#endif
2136 }
2137
2138 /// Return true if the function can safely be outlined from.
2139 /// A function \p MF is considered safe for outlining if an outlined function
2140 /// produced from instructions in F will produce a program which produces the
2141 /// same output for any set of given inputs.
2142 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
2143 bool OutlineFromLinkOnceODRs) const {
2144 llvm_unreachable("Target didn't implement "
2145 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2146 }
2147
2148 /// Return true if the function should be outlined from by default.
2149 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
2150 return false;
2151 }
2152
2153 /// Return true if the function is a viable candidate for machine function
2154 /// splitting. The criteria for if a function can be split may vary by target.
2155 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2156
2157 /// Return true if the MachineBasicBlock can safely be split to the cold
2158 /// section. On AArch64, certain instructions may cause a block to be unsafe
2159 /// to split to the cold section.
2160 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2161 return true;
2162 }
2163
2164 /// Produce the expression describing the \p MI loading a value into
2165 /// the physical register \p Reg. This hook should only be used with
2166 /// \p MIs belonging to VReg-less functions.
2167 virtual std::optional<ParamLoadedValue>
2168 describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2169
2170 /// Given the generic extension instruction \p ExtMI, returns true if this
2171 /// extension is a likely candidate for being folded into an another
2172 /// instruction.
2173 virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
2174 MachineRegisterInfo &MRI) const {
2175 return false;
2176 }
2177
2178 /// Return MIR formatter to format/parse MIR operands. Target can override
2179 /// this virtual function and return target specific MIR formatter.
2180 virtual const MIRFormatter *getMIRFormatter() const {
2181 if (!Formatter.get())
2182 Formatter = std::make_unique<MIRFormatter>();
2183 return Formatter.get();
2184 }
2185
2186 /// Returns the target-specific default value for tail duplication.
2187 /// This value will be used if the tail-dup-placement-threshold argument is
2188 /// not provided.
2189 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2190 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2191 }
2192
2193 /// Returns the callee operand from the given \p MI.
2194 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2195 return MI.getOperand(i: 0);
2196 }
2197
2198 /// Return the uniformity behavior of the given instruction.
2199 virtual InstructionUniformity
2200 getInstructionUniformity(const MachineInstr &MI) const {
2201 return InstructionUniformity::Default;
2202 }
2203
2204 /// Returns true if the given \p MI defines a TargetIndex operand that can be
2205 /// tracked by their offset, can have values, and can have debug info
2206 /// associated with it. If so, sets \p Index and \p Offset of the target index
2207 /// operand.
2208 virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2209 int64_t &Offset) const {
2210 return false;
2211 }
2212
2213 // Get the call frame size just before MI.
2214 unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2215
2216 /// Fills in the necessary MachineOperands to refer to a frame index.
2217 /// The best way to understand this is to print `asm(""::"m"(x));` after
2218 /// finalize-isel. Example:
2219 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2220 /// we would add placeholders for: ^ ^ ^ ^
2221 virtual void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
2222 int FI) const {
2223 llvm_unreachable("unknown number of operands necessary");
2224 }
2225
2226private:
2227 mutable std::unique_ptr<MIRFormatter> Formatter;
2228 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2229 unsigned CatchRetOpcode;
2230 unsigned ReturnOpcode;
2231};
2232
2233/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2234template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2235 using RegInfo = DenseMapInfo<unsigned>;
2236
2237 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2238 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2239 RegInfo::getEmptyKey());
2240 }
2241
2242 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2243 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2244 RegInfo::getTombstoneKey());
2245 }
2246
2247 /// Reuse getHashValue implementation from
2248 /// std::pair<unsigned, unsigned>.
2249 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2250 std::pair<unsigned, unsigned> PairVal = std::make_pair(x: Val.Reg, y: Val.SubReg);
2251 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2252 }
2253
2254 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2255 const TargetInstrInfo::RegSubRegPair &RHS) {
2256 return RegInfo::isEqual(LHS: LHS.Reg, RHS: RHS.Reg) &&
2257 RegInfo::isEqual(LHS: LHS.SubReg, RHS: RHS.SubReg);
2258 }
2259};
2260
2261} // end namespace llvm
2262
2263#endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2264

source code of llvm/include/llvm/CodeGen/TargetInstrInfo.h