1//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// @file
10/// This file contains the declarations for metadata subclasses.
11/// They represent the different flavors of metadata that live in LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_METADATA_H
16#define LLVM_IR_METADATA_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include "llvm/ADT/PointerUnion.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/ilist_node.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Constant.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/IR/Value.h"
29#include "llvm/Support/CBindingWrapping.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/ErrorHandling.h"
32#include <cassert>
33#include <cstddef>
34#include <cstdint>
35#include <iterator>
36#include <memory>
37#include <string>
38#include <type_traits>
39#include <utility>
40
41namespace llvm {
42
43class Module;
44class ModuleSlotTracker;
45class raw_ostream;
46class DPValue;
47template <typename T> class StringMapEntry;
48template <typename ValueTy> class StringMapEntryStorage;
49class Type;
50
51enum LLVMConstants : uint32_t {
52 DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53};
54
55/// Magic number in the value profile metadata showing a target has been
56/// promoted for the instruction and shouldn't be promoted again.
57const uint64_t NOMORE_ICP_MAGICNUM = -1;
58
59/// Root of the metadata hierarchy.
60///
61/// This is a root class for typeless data in the IR.
62class Metadata {
63 friend class ReplaceableMetadataImpl;
64
65 /// RTTI.
66 const unsigned char SubclassID;
67
68protected:
69 /// Active type of storage.
70 enum StorageType { Uniqued, Distinct, Temporary };
71
72 /// Storage flag for non-uniqued, otherwise unowned, metadata.
73 unsigned char Storage : 7;
74
75 unsigned char SubclassData1 : 1;
76 unsigned short SubclassData16 = 0;
77 unsigned SubclassData32 = 0;
78
79public:
80 enum MetadataKind {
81#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
82#include "llvm/IR/Metadata.def"
83 };
84
85protected:
86 Metadata(unsigned ID, StorageType Storage)
87 : SubclassID(ID), Storage(Storage), SubclassData1(false) {
88 static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
89 }
90
91 ~Metadata() = default;
92
93 /// Default handling of a changed operand, which asserts.
94 ///
95 /// If subclasses pass themselves in as owners to a tracking node reference,
96 /// they must provide an implementation of this method.
97 void handleChangedOperand(void *, Metadata *) {
98 llvm_unreachable("Unimplemented in Metadata subclass");
99 }
100
101public:
102 unsigned getMetadataID() const { return SubclassID; }
103
104 /// User-friendly dump.
105 ///
106 /// If \c M is provided, metadata nodes will be numbered canonically;
107 /// otherwise, pointer addresses are substituted.
108 ///
109 /// Note: this uses an explicit overload instead of default arguments so that
110 /// the nullptr version is easy to call from a debugger.
111 ///
112 /// @{
113 void dump() const;
114 void dump(const Module *M) const;
115 /// @}
116
117 /// Print.
118 ///
119 /// Prints definition of \c this.
120 ///
121 /// If \c M is provided, metadata nodes will be numbered canonically;
122 /// otherwise, pointer addresses are substituted.
123 /// @{
124 void print(raw_ostream &OS, const Module *M = nullptr,
125 bool IsForDebug = false) const;
126 void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
127 bool IsForDebug = false) const;
128 /// @}
129
130 /// Print as operand.
131 ///
132 /// Prints reference of \c this.
133 ///
134 /// If \c M is provided, metadata nodes will be numbered canonically;
135 /// otherwise, pointer addresses are substituted.
136 /// @{
137 void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
138 void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
139 const Module *M = nullptr) const;
140 /// @}
141};
142
143// Create wrappers for C Binding types (see CBindingWrapping.h).
144DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
145
146// Specialized opaque metadata conversions.
147inline Metadata **unwrap(LLVMMetadataRef *MDs) {
148 return reinterpret_cast<Metadata**>(MDs);
149}
150
151#define HANDLE_METADATA(CLASS) class CLASS;
152#include "llvm/IR/Metadata.def"
153
154// Provide specializations of isa so that we don't need definitions of
155// subclasses to see if the metadata is a subclass.
156#define HANDLE_METADATA_LEAF(CLASS) \
157 template <> struct isa_impl<CLASS, Metadata> { \
158 static inline bool doit(const Metadata &MD) { \
159 return MD.getMetadataID() == Metadata::CLASS##Kind; \
160 } \
161 };
162#include "llvm/IR/Metadata.def"
163
164inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
165 MD.print(OS);
166 return OS;
167}
168
169/// Metadata wrapper in the Value hierarchy.
170///
171/// A member of the \a Value hierarchy to represent a reference to metadata.
172/// This allows, e.g., intrinsics to have metadata as operands.
173///
174/// Notably, this is the only thing in either hierarchy that is allowed to
175/// reference \a LocalAsMetadata.
176class MetadataAsValue : public Value {
177 friend class ReplaceableMetadataImpl;
178 friend class LLVMContextImpl;
179
180 Metadata *MD;
181
182 MetadataAsValue(Type *Ty, Metadata *MD);
183
184 /// Drop use of metadata (during teardown).
185 void dropUse() { MD = nullptr; }
186
187public:
188 ~MetadataAsValue();
189
190 static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
191 static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
192
193 Metadata *getMetadata() const { return MD; }
194
195 static bool classof(const Value *V) {
196 return V->getValueID() == MetadataAsValueVal;
197 }
198
199private:
200 void handleChangedMetadata(Metadata *MD);
201 void track();
202 void untrack();
203};
204
205/// Base class for tracking ValueAsMetadata/DIArgLists with user lookups and
206/// Owner callbacks outside of ValueAsMetadata.
207///
208/// Currently only inherited by DPValue; if other classes need to use it, then
209/// a SubclassID will need to be added (either as a new field or by making
210/// DebugValue into a PointerIntUnion) to discriminate between the subclasses in
211/// lookup and callback handling.
212class DebugValueUser {
213protected:
214 // Capacity to store 3 debug values.
215 // TODO: Not all DebugValueUser instances need all 3 elements, if we
216 // restructure the DPValue class then we can template parameterize this array
217 // size.
218 std::array<Metadata *, 3> DebugValues;
219
220 ArrayRef<Metadata *> getDebugValues() const { return DebugValues; }
221
222public:
223 DPValue *getUser();
224 const DPValue *getUser() const;
225 /// To be called by ReplaceableMetadataImpl::replaceAllUsesWith, where `Old`
226 /// is a pointer to one of the pointers in `DebugValues` (so should be type
227 /// Metadata**), and `NewDebugValue` is the new Metadata* that is replacing
228 /// *Old.
229 /// For manually replacing elements of DebugValues,
230 /// `resetDebugValue(Idx, NewDebugValue)` should be used instead.
231 void handleChangedValue(void *Old, Metadata *NewDebugValue);
232 DebugValueUser() = default;
233 explicit DebugValueUser(std::array<Metadata *, 3> DebugValues)
234 : DebugValues(DebugValues) {
235 trackDebugValues();
236 }
237 DebugValueUser(DebugValueUser &&X) {
238 DebugValues = X.DebugValues;
239 retrackDebugValues(X);
240 }
241 DebugValueUser(const DebugValueUser &X) {
242 DebugValues = X.DebugValues;
243 trackDebugValues();
244 }
245
246 DebugValueUser &operator=(DebugValueUser &&X) {
247 if (&X == this)
248 return *this;
249
250 untrackDebugValues();
251 DebugValues = X.DebugValues;
252 retrackDebugValues(X);
253 return *this;
254 }
255
256 DebugValueUser &operator=(const DebugValueUser &X) {
257 if (&X == this)
258 return *this;
259
260 untrackDebugValues();
261 DebugValues = X.DebugValues;
262 trackDebugValues();
263 return *this;
264 }
265
266 ~DebugValueUser() { untrackDebugValues(); }
267
268 void resetDebugValues() {
269 untrackDebugValues();
270 DebugValues.fill(u: nullptr);
271 }
272
273 void resetDebugValue(size_t Idx, Metadata *DebugValue) {
274 assert(Idx < 3 && "Invalid debug value index.");
275 untrackDebugValue(Idx);
276 DebugValues[Idx] = DebugValue;
277 trackDebugValue(Idx);
278 }
279
280 bool operator==(const DebugValueUser &X) const {
281 return DebugValues == X.DebugValues;
282 }
283 bool operator!=(const DebugValueUser &X) const {
284 return DebugValues != X.DebugValues;
285 }
286
287private:
288 void trackDebugValue(size_t Idx);
289 void trackDebugValues();
290
291 void untrackDebugValue(size_t Idx);
292 void untrackDebugValues();
293
294 void retrackDebugValues(DebugValueUser &X);
295};
296
297/// API for tracking metadata references through RAUW and deletion.
298///
299/// Shared API for updating \a Metadata pointers in subclasses that support
300/// RAUW.
301///
302/// This API is not meant to be used directly. See \a TrackingMDRef for a
303/// user-friendly tracking reference.
304class MetadataTracking {
305public:
306 /// Track the reference to metadata.
307 ///
308 /// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
309 /// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
310 /// deleted, \c MD will be set to \c nullptr.
311 ///
312 /// If tracking isn't supported, \c *MD will not change.
313 ///
314 /// \return true iff tracking is supported by \c MD.
315 static bool track(Metadata *&MD) {
316 return track(Ref: &MD, MD&: *MD, Owner: static_cast<Metadata *>(nullptr));
317 }
318
319 /// Track the reference to metadata for \a Metadata.
320 ///
321 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
322 /// tell it that its operand changed. This could trigger \c Owner being
323 /// re-uniqued.
324 static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
325 return track(Ref, MD, Owner: &Owner);
326 }
327
328 /// Track the reference to metadata for \a MetadataAsValue.
329 ///
330 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
331 /// tell it that its operand changed. This could trigger \c Owner being
332 /// re-uniqued.
333 static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
334 return track(Ref, MD, Owner: &Owner);
335 }
336
337 /// Track the reference to metadata for \a DebugValueUser.
338 ///
339 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
340 /// tell it that its operand changed. This could trigger \c Owner being
341 /// re-uniqued.
342 static bool track(void *Ref, Metadata &MD, DebugValueUser &Owner) {
343 return track(Ref, MD, Owner: &Owner);
344 }
345
346 /// Stop tracking a reference to metadata.
347 ///
348 /// Stops \c *MD from tracking \c MD.
349 static void untrack(Metadata *&MD) { untrack(Ref: &MD, MD&: *MD); }
350 static void untrack(void *Ref, Metadata &MD);
351
352 /// Move tracking from one reference to another.
353 ///
354 /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
355 /// except that ownership callbacks are maintained.
356 ///
357 /// Note: it is an error if \c *MD does not equal \c New.
358 ///
359 /// \return true iff tracking is supported by \c MD.
360 static bool retrack(Metadata *&MD, Metadata *&New) {
361 return retrack(Ref: &MD, MD&: *MD, New: &New);
362 }
363 static bool retrack(void *Ref, Metadata &MD, void *New);
364
365 /// Check whether metadata is replaceable.
366 static bool isReplaceable(const Metadata &MD);
367
368 using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *, DebugValueUser *>;
369
370private:
371 /// Track a reference to metadata for an owner.
372 ///
373 /// Generalized version of tracking.
374 static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
375};
376
377/// Shared implementation of use-lists for replaceable metadata.
378///
379/// Most metadata cannot be RAUW'ed. This is a shared implementation of
380/// use-lists and associated API for the three that support it (
381/// \a ValueAsMetadata, \a TempMDNode, and \a DIArgList).
382class ReplaceableMetadataImpl {
383 friend class MetadataTracking;
384
385public:
386 using OwnerTy = MetadataTracking::OwnerTy;
387
388private:
389 LLVMContext &Context;
390 uint64_t NextIndex = 0;
391 SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
392
393public:
394 ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
395
396 ~ReplaceableMetadataImpl() {
397 assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
398 }
399
400 LLVMContext &getContext() const { return Context; }
401
402 /// Replace all uses of this with MD.
403 ///
404 /// Replace all uses of this with \c MD, which is allowed to be null.
405 void replaceAllUsesWith(Metadata *MD);
406 /// Replace all uses of the constant with Undef in debug info metadata
407 static void SalvageDebugInfo(const Constant &C);
408 /// Returns the list of all DIArgList users of this.
409 SmallVector<Metadata *> getAllArgListUsers();
410 /// Returns the list of all DPValue users of this.
411 SmallVector<DPValue *> getAllDPValueUsers();
412
413 /// Resolve all uses of this.
414 ///
415 /// Resolve all uses of this, turning off RAUW permanently. If \c
416 /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
417 /// is resolved.
418 void resolveAllUses(bool ResolveUsers = true);
419
420 unsigned getNumUses() const { return UseMap.size(); }
421
422private:
423 void addRef(void *Ref, OwnerTy Owner);
424 void dropRef(void *Ref);
425 void moveRef(void *Ref, void *New, const Metadata &MD);
426
427 /// Lazily construct RAUW support on MD.
428 ///
429 /// If this is an unresolved MDNode, RAUW support will be created on-demand.
430 /// ValueAsMetadata always has RAUW support.
431 static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
432
433 /// Get RAUW support on MD, if it exists.
434 static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
435
436 /// Check whether this node will support RAUW.
437 ///
438 /// Returns \c true unless getOrCreate() would return null.
439 static bool isReplaceable(const Metadata &MD);
440};
441
442/// Value wrapper in the Metadata hierarchy.
443///
444/// This is a custom value handle that allows other metadata to refer to
445/// classes in the Value hierarchy.
446///
447/// Because of full uniquing support, each value is only wrapped by a single \a
448/// ValueAsMetadata object, so the lookup maps are far more efficient than
449/// those using ValueHandleBase.
450class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
451 friend class ReplaceableMetadataImpl;
452 friend class LLVMContextImpl;
453
454 Value *V;
455
456 /// Drop users without RAUW (during teardown).
457 void dropUsers() {
458 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ ResolveUsers: false);
459 }
460
461protected:
462 ValueAsMetadata(unsigned ID, Value *V)
463 : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
464 assert(V && "Expected valid value");
465 }
466
467 ~ValueAsMetadata() = default;
468
469public:
470 static ValueAsMetadata *get(Value *V);
471
472 static ConstantAsMetadata *getConstant(Value *C) {
473 return cast<ConstantAsMetadata>(Val: get(V: C));
474 }
475
476 static LocalAsMetadata *getLocal(Value *Local) {
477 return cast<LocalAsMetadata>(Val: get(V: Local));
478 }
479
480 static ValueAsMetadata *getIfExists(Value *V);
481
482 static ConstantAsMetadata *getConstantIfExists(Value *C) {
483 return cast_or_null<ConstantAsMetadata>(Val: getIfExists(V: C));
484 }
485
486 static LocalAsMetadata *getLocalIfExists(Value *Local) {
487 return cast_or_null<LocalAsMetadata>(Val: getIfExists(V: Local));
488 }
489
490 Value *getValue() const { return V; }
491 Type *getType() const { return V->getType(); }
492 LLVMContext &getContext() const { return V->getContext(); }
493
494 SmallVector<Metadata *> getAllArgListUsers() {
495 return ReplaceableMetadataImpl::getAllArgListUsers();
496 }
497 SmallVector<DPValue *> getAllDPValueUsers() {
498 return ReplaceableMetadataImpl::getAllDPValueUsers();
499 }
500
501 static void handleDeletion(Value *V);
502 static void handleRAUW(Value *From, Value *To);
503
504protected:
505 /// Handle collisions after \a Value::replaceAllUsesWith().
506 ///
507 /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
508 /// \a Value gets RAUW'ed and the target already exists, this is used to
509 /// merge the two metadata nodes.
510 void replaceAllUsesWith(Metadata *MD) {
511 ReplaceableMetadataImpl::replaceAllUsesWith(MD);
512 }
513
514public:
515 static bool classof(const Metadata *MD) {
516 return MD->getMetadataID() == LocalAsMetadataKind ||
517 MD->getMetadataID() == ConstantAsMetadataKind;
518 }
519};
520
521class ConstantAsMetadata : public ValueAsMetadata {
522 friend class ValueAsMetadata;
523
524 ConstantAsMetadata(Constant *C)
525 : ValueAsMetadata(ConstantAsMetadataKind, C) {}
526
527public:
528 static ConstantAsMetadata *get(Constant *C) {
529 return ValueAsMetadata::getConstant(C);
530 }
531
532 static ConstantAsMetadata *getIfExists(Constant *C) {
533 return ValueAsMetadata::getConstantIfExists(C);
534 }
535
536 Constant *getValue() const {
537 return cast<Constant>(Val: ValueAsMetadata::getValue());
538 }
539
540 static bool classof(const Metadata *MD) {
541 return MD->getMetadataID() == ConstantAsMetadataKind;
542 }
543};
544
545class LocalAsMetadata : public ValueAsMetadata {
546 friend class ValueAsMetadata;
547
548 LocalAsMetadata(Value *Local)
549 : ValueAsMetadata(LocalAsMetadataKind, Local) {
550 assert(!isa<Constant>(Local) && "Expected local value");
551 }
552
553public:
554 static LocalAsMetadata *get(Value *Local) {
555 return ValueAsMetadata::getLocal(Local);
556 }
557
558 static LocalAsMetadata *getIfExists(Value *Local) {
559 return ValueAsMetadata::getLocalIfExists(Local);
560 }
561
562 static bool classof(const Metadata *MD) {
563 return MD->getMetadataID() == LocalAsMetadataKind;
564 }
565};
566
567/// Transitional API for extracting constants from Metadata.
568///
569/// This namespace contains transitional functions for metadata that points to
570/// \a Constants.
571///
572/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
573/// operands could refer to any \a Value. There's was a lot of code like this:
574///
575/// \code
576/// MDNode *N = ...;
577/// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
578/// \endcode
579///
580/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
581/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
582/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
583/// cast in the \a Value hierarchy. Besides creating boiler-plate, this
584/// requires subtle control flow changes.
585///
586/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
587/// so that metadata can refer to numbers without traversing a bridge to the \a
588/// Value hierarchy. In this final state, the code above would look like this:
589///
590/// \code
591/// MDNode *N = ...;
592/// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
593/// \endcode
594///
595/// The API in this namespace supports the transition. \a MDInt doesn't exist
596/// yet, and even once it does, changing each metadata schema to use it is its
597/// own mini-project. In the meantime this API prevents us from introducing
598/// complex and bug-prone control flow that will disappear in the end. In
599/// particular, the above code looks like this:
600///
601/// \code
602/// MDNode *N = ...;
603/// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
604/// \endcode
605///
606/// The full set of provided functions includes:
607///
608/// mdconst::hasa <=> isa
609/// mdconst::extract <=> cast
610/// mdconst::extract_or_null <=> cast_or_null
611/// mdconst::dyn_extract <=> dyn_cast
612/// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
613///
614/// The target of the cast must be a subclass of \a Constant.
615namespace mdconst {
616
617namespace detail {
618
619template <class T> T &make();
620template <class T, class Result> struct HasDereference {
621 using Yes = char[1];
622 using No = char[2];
623 template <size_t N> struct SFINAE {};
624
625 template <class U, class V>
626 static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
627 template <class U, class V> static No &hasDereference(...);
628
629 static const bool value =
630 sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
631};
632template <class V, class M> struct IsValidPointer {
633 static const bool value = std::is_base_of<Constant, V>::value &&
634 HasDereference<M, const Metadata &>::value;
635};
636template <class V, class M> struct IsValidReference {
637 static const bool value = std::is_base_of<Constant, V>::value &&
638 std::is_convertible<M, const Metadata &>::value;
639};
640
641} // end namespace detail
642
643/// Check whether Metadata has a Value.
644///
645/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
646/// type \c X.
647template <class X, class Y>
648inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
649hasa(Y &&MD) {
650 assert(MD && "Null pointer sent into hasa");
651 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
652 return isa<X>(V->getValue());
653 return false;
654}
655template <class X, class Y>
656inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
657hasa(Y &MD) {
658 return hasa(&MD);
659}
660
661/// Extract a Value from Metadata.
662///
663/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
664template <class X, class Y>
665inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
666extract(Y &&MD) {
667 return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
668}
669template <class X, class Y>
670inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
671extract(Y &MD) {
672 return extract(&MD);
673}
674
675/// Extract a Value from Metadata, allowing null.
676///
677/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
678/// from \c MD, allowing \c MD to be null.
679template <class X, class Y>
680inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
681extract_or_null(Y &&MD) {
682 if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
683 return cast<X>(V->getValue());
684 return nullptr;
685}
686
687/// Extract a Value from Metadata, if any.
688///
689/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
690/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
691/// Value it does contain is of the wrong subclass.
692template <class X, class Y>
693inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
694dyn_extract(Y &&MD) {
695 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
696 return dyn_cast<X>(V->getValue());
697 return nullptr;
698}
699
700/// Extract a Value from Metadata, if any, allowing null.
701///
702/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
703/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
704/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
705template <class X, class Y>
706inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
707dyn_extract_or_null(Y &&MD) {
708 if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
709 return dyn_cast<X>(V->getValue());
710 return nullptr;
711}
712
713} // end namespace mdconst
714
715//===----------------------------------------------------------------------===//
716/// A single uniqued string.
717///
718/// These are used to efficiently contain a byte sequence for metadata.
719/// MDString is always unnamed.
720class MDString : public Metadata {
721 friend class StringMapEntryStorage<MDString>;
722
723 StringMapEntry<MDString> *Entry = nullptr;
724
725 MDString() : Metadata(MDStringKind, Uniqued) {}
726
727public:
728 MDString(const MDString &) = delete;
729 MDString &operator=(MDString &&) = delete;
730 MDString &operator=(const MDString &) = delete;
731
732 static MDString *get(LLVMContext &Context, StringRef Str);
733 static MDString *get(LLVMContext &Context, const char *Str) {
734 return get(Context, Str: Str ? StringRef(Str) : StringRef());
735 }
736
737 StringRef getString() const;
738
739 unsigned getLength() const { return (unsigned)getString().size(); }
740
741 using iterator = StringRef::iterator;
742
743 /// Pointer to the first byte of the string.
744 iterator begin() const { return getString().begin(); }
745
746 /// Pointer to one byte past the end of the string.
747 iterator end() const { return getString().end(); }
748
749 const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
750 const unsigned char *bytes_end() const { return getString().bytes_end(); }
751
752 /// Methods for support type inquiry through isa, cast, and dyn_cast.
753 static bool classof(const Metadata *MD) {
754 return MD->getMetadataID() == MDStringKind;
755 }
756};
757
758/// A collection of metadata nodes that might be associated with a
759/// memory access used by the alias-analysis infrastructure.
760struct AAMDNodes {
761 explicit AAMDNodes() = default;
762 explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
763 : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
764
765 bool operator==(const AAMDNodes &A) const {
766 return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
767 NoAlias == A.NoAlias;
768 }
769
770 bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
771
772 explicit operator bool() const {
773 return TBAA || TBAAStruct || Scope || NoAlias;
774 }
775
776 /// The tag for type-based alias analysis.
777 MDNode *TBAA = nullptr;
778
779 /// The tag for type-based alias analysis (tbaa struct).
780 MDNode *TBAAStruct = nullptr;
781
782 /// The tag for alias scope specification (used with noalias).
783 MDNode *Scope = nullptr;
784
785 /// The tag specifying the noalias scope.
786 MDNode *NoAlias = nullptr;
787
788 // Shift tbaa Metadata node to start off bytes later
789 static MDNode *shiftTBAA(MDNode *M, size_t off);
790
791 // Shift tbaa.struct Metadata node to start off bytes later
792 static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
793
794 // Extend tbaa Metadata node to apply to a series of bytes of length len.
795 // A size of -1 denotes an unknown size.
796 static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
797
798 /// Given two sets of AAMDNodes that apply to the same pointer,
799 /// give the best AAMDNodes that are compatible with both (i.e. a set of
800 /// nodes whose allowable aliasing conclusions are a subset of those
801 /// allowable by both of the inputs). However, for efficiency
802 /// reasons, do not create any new MDNodes.
803 AAMDNodes intersect(const AAMDNodes &Other) const {
804 AAMDNodes Result;
805 Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
806 Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
807 Result.Scope = Other.Scope == Scope ? Scope : nullptr;
808 Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
809 return Result;
810 }
811
812 /// Create a new AAMDNode that describes this AAMDNode after applying a
813 /// constant offset to the start of the pointer.
814 AAMDNodes shift(size_t Offset) const {
815 AAMDNodes Result;
816 Result.TBAA = TBAA ? shiftTBAA(M: TBAA, off: Offset) : nullptr;
817 Result.TBAAStruct =
818 TBAAStruct ? shiftTBAAStruct(M: TBAAStruct, off: Offset) : nullptr;
819 Result.Scope = Scope;
820 Result.NoAlias = NoAlias;
821 return Result;
822 }
823
824 /// Create a new AAMDNode that describes this AAMDNode after extending it to
825 /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
826 /// size.
827 AAMDNodes extendTo(ssize_t Len) const {
828 AAMDNodes Result;
829 Result.TBAA = TBAA ? extendToTBAA(TBAA, len: Len) : nullptr;
830 // tbaa.struct contains (offset, size, type) triples. Extending the length
831 // of the tbaa.struct doesn't require changing this (though more information
832 // could be provided by adding more triples at subsequent lengths).
833 Result.TBAAStruct = TBAAStruct;
834 Result.Scope = Scope;
835 Result.NoAlias = NoAlias;
836 return Result;
837 }
838
839 /// Given two sets of AAMDNodes applying to potentially different locations,
840 /// determine the best AAMDNodes that apply to both.
841 AAMDNodes merge(const AAMDNodes &Other) const;
842
843 /// Determine the best AAMDNodes after concatenating two different locations
844 /// together. Different from `merge`, where different locations should
845 /// overlap each other, `concat` puts non-overlapping locations together.
846 AAMDNodes concat(const AAMDNodes &Other) const;
847
848 /// Create a new AAMDNode for accessing \p AccessSize bytes of this AAMDNode.
849 /// If his AAMDNode has !tbaa.struct and \p AccessSize matches the size of the
850 /// field at offset 0, get the TBAA tag describing the accessed field.
851 AAMDNodes adjustForAccess(unsigned AccessSize);
852};
853
854// Specialize DenseMapInfo for AAMDNodes.
855template<>
856struct DenseMapInfo<AAMDNodes> {
857 static inline AAMDNodes getEmptyKey() {
858 return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
859 nullptr, nullptr, nullptr);
860 }
861
862 static inline AAMDNodes getTombstoneKey() {
863 return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
864 nullptr, nullptr, nullptr);
865 }
866
867 static unsigned getHashValue(const AAMDNodes &Val) {
868 return DenseMapInfo<MDNode *>::getHashValue(PtrVal: Val.TBAA) ^
869 DenseMapInfo<MDNode *>::getHashValue(PtrVal: Val.TBAAStruct) ^
870 DenseMapInfo<MDNode *>::getHashValue(PtrVal: Val.Scope) ^
871 DenseMapInfo<MDNode *>::getHashValue(PtrVal: Val.NoAlias);
872 }
873
874 static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
875 return LHS == RHS;
876 }
877};
878
879/// Tracking metadata reference owned by Metadata.
880///
881/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
882/// of \a Metadata, which has the option of registering itself for callbacks to
883/// re-unique itself.
884///
885/// In particular, this is used by \a MDNode.
886class MDOperand {
887 Metadata *MD = nullptr;
888
889public:
890 MDOperand() = default;
891 MDOperand(const MDOperand &) = delete;
892 MDOperand(MDOperand &&Op) {
893 MD = Op.MD;
894 if (MD)
895 (void)MetadataTracking::retrack(MD&: Op.MD, New&: MD);
896 Op.MD = nullptr;
897 }
898 MDOperand &operator=(const MDOperand &) = delete;
899 MDOperand &operator=(MDOperand &&Op) {
900 MD = Op.MD;
901 if (MD)
902 (void)MetadataTracking::retrack(MD&: Op.MD, New&: MD);
903 Op.MD = nullptr;
904 return *this;
905 }
906
907 // Check if MDOperand is of type MDString and equals `Str`.
908 bool equalsStr(StringRef Str) const {
909 return isa<MDString>(Val: this->get()) &&
910 cast<MDString>(Val: this->get())->getString() == Str;
911 }
912
913 ~MDOperand() { untrack(); }
914
915 Metadata *get() const { return MD; }
916 operator Metadata *() const { return get(); }
917 Metadata *operator->() const { return get(); }
918 Metadata &operator*() const { return *get(); }
919
920 void reset() {
921 untrack();
922 MD = nullptr;
923 }
924 void reset(Metadata *MD, Metadata *Owner) {
925 untrack();
926 this->MD = MD;
927 track(Owner);
928 }
929
930private:
931 void track(Metadata *Owner) {
932 if (MD) {
933 if (Owner)
934 MetadataTracking::track(Ref: this, MD&: *MD, Owner&: *Owner);
935 else
936 MetadataTracking::track(MD);
937 }
938 }
939
940 void untrack() {
941 assert(static_cast<void *>(this) == &MD && "Expected same address");
942 if (MD)
943 MetadataTracking::untrack(MD);
944 }
945};
946
947template <> struct simplify_type<MDOperand> {
948 using SimpleType = Metadata *;
949
950 static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
951};
952
953template <> struct simplify_type<const MDOperand> {
954 using SimpleType = Metadata *;
955
956 static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
957};
958
959/// Pointer to the context, with optional RAUW support.
960///
961/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
962/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
963class ContextAndReplaceableUses {
964 PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
965
966public:
967 ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
968 ContextAndReplaceableUses(
969 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
970 : Ptr(ReplaceableUses.release()) {
971 assert(getReplaceableUses() && "Expected non-null replaceable uses");
972 }
973 ContextAndReplaceableUses() = delete;
974 ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
975 ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
976 ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
977 ContextAndReplaceableUses &
978 operator=(const ContextAndReplaceableUses &) = delete;
979 ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
980
981 operator LLVMContext &() { return getContext(); }
982
983 /// Whether this contains RAUW support.
984 bool hasReplaceableUses() const {
985 return isa<ReplaceableMetadataImpl *>(Val: Ptr);
986 }
987
988 LLVMContext &getContext() const {
989 if (hasReplaceableUses())
990 return getReplaceableUses()->getContext();
991 return *cast<LLVMContext *>(Val: Ptr);
992 }
993
994 ReplaceableMetadataImpl *getReplaceableUses() const {
995 if (hasReplaceableUses())
996 return cast<ReplaceableMetadataImpl *>(Val: Ptr);
997 return nullptr;
998 }
999
1000 /// Ensure that this has RAUW support, and then return it.
1001 ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
1002 if (!hasReplaceableUses())
1003 makeReplaceable(ReplaceableUses: std::make_unique<ReplaceableMetadataImpl>(args&: getContext()));
1004 return getReplaceableUses();
1005 }
1006
1007 /// Assign RAUW support to this.
1008 ///
1009 /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
1010 /// not be null).
1011 void
1012 makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
1013 assert(ReplaceableUses && "Expected non-null replaceable uses");
1014 assert(&ReplaceableUses->getContext() == &getContext() &&
1015 "Expected same context");
1016 delete getReplaceableUses();
1017 Ptr = ReplaceableUses.release();
1018 }
1019
1020 /// Drop RAUW support.
1021 ///
1022 /// Cede ownership of RAUW support, returning it.
1023 std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
1024 assert(hasReplaceableUses() && "Expected to own replaceable uses");
1025 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
1026 getReplaceableUses());
1027 Ptr = &ReplaceableUses->getContext();
1028 return ReplaceableUses;
1029 }
1030};
1031
1032struct TempMDNodeDeleter {
1033 inline void operator()(MDNode *Node) const;
1034};
1035
1036#define HANDLE_MDNODE_LEAF(CLASS) \
1037 using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
1038#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
1039#include "llvm/IR/Metadata.def"
1040
1041/// Metadata node.
1042///
1043/// Metadata nodes can be uniqued, like constants, or distinct. Temporary
1044/// metadata nodes (with full support for RAUW) can be used to delay uniquing
1045/// until forward references are known. The basic metadata node is an \a
1046/// MDTuple.
1047///
1048/// There is limited support for RAUW at construction time. At construction
1049/// time, if any operand is a temporary node (or an unresolved uniqued node,
1050/// which indicates a transitive temporary operand), the node itself will be
1051/// unresolved. As soon as all operands become resolved, it will drop RAUW
1052/// support permanently.
1053///
1054/// If an unresolved node is part of a cycle, \a resolveCycles() needs
1055/// to be called on some member of the cycle once all temporary nodes have been
1056/// replaced.
1057///
1058/// MDNodes can be large or small, as well as resizable or non-resizable.
1059/// Large MDNodes' operands are allocated in a separate storage vector,
1060/// whereas small MDNodes' operands are co-allocated. Distinct and temporary
1061/// MDnodes are resizable, but only MDTuples support this capability.
1062///
1063/// Clients can add operands to resizable MDNodes using push_back().
1064class MDNode : public Metadata {
1065 friend class ReplaceableMetadataImpl;
1066 friend class LLVMContextImpl;
1067 friend class DIAssignID;
1068
1069 /// The header that is coallocated with an MDNode along with its "small"
1070 /// operands. It is located immediately before the main body of the node.
1071 /// The operands are in turn located immediately before the header.
1072 /// For resizable MDNodes, the space for the storage vector is also allocated
1073 /// immediately before the header, overlapping with the operands.
1074 /// Explicity set alignment because bitfields by default have an
1075 /// alignment of 1 on z/OS.
1076 struct alignas(alignof(size_t)) Header {
1077 bool IsResizable : 1;
1078 bool IsLarge : 1;
1079 size_t SmallSize : 4;
1080 size_t SmallNumOps : 4;
1081 size_t : sizeof(size_t) * CHAR_BIT - 10;
1082
1083 unsigned NumUnresolved = 0;
1084 using LargeStorageVector = SmallVector<MDOperand, 0>;
1085
1086 static constexpr size_t NumOpsFitInVector =
1087 sizeof(LargeStorageVector) / sizeof(MDOperand);
1088 static_assert(
1089 NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
1090 "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
1091
1092 static constexpr size_t MaxSmallSize = 15;
1093
1094 static constexpr size_t getOpSize(unsigned NumOps) {
1095 return sizeof(MDOperand) * NumOps;
1096 }
1097 /// Returns the number of operands the node has space for based on its
1098 /// allocation characteristics.
1099 static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
1100 return IsLarge ? NumOpsFitInVector
1101 : std::max(a: NumOps, b: NumOpsFitInVector * IsResizable);
1102 }
1103 /// Returns the number of bytes allocated for operands and header.
1104 static size_t getAllocSize(StorageType Storage, size_t NumOps) {
1105 return getOpSize(
1106 NumOps: getSmallSize(NumOps, IsResizable: isResizable(Storage), IsLarge: isLarge(NumOps))) +
1107 sizeof(Header);
1108 }
1109
1110 /// Only temporary and distinct nodes are resizable.
1111 static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
1112 static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
1113
1114 size_t getAllocSize() const {
1115 return getOpSize(NumOps: SmallSize) + sizeof(Header);
1116 }
1117 void *getAllocation() {
1118 return reinterpret_cast<char *>(this + 1) -
1119 alignTo(Value: getAllocSize(), Align: alignof(uint64_t));
1120 }
1121
1122 void *getLargePtr() const {
1123 static_assert(alignof(LargeStorageVector) <= alignof(Header),
1124 "LargeStorageVector too strongly aligned");
1125 return reinterpret_cast<char *>(const_cast<Header *>(this)) -
1126 sizeof(LargeStorageVector);
1127 }
1128
1129 void *getSmallPtr();
1130
1131 LargeStorageVector &getLarge() {
1132 assert(IsLarge);
1133 return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1134 }
1135
1136 const LargeStorageVector &getLarge() const {
1137 assert(IsLarge);
1138 return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1139 }
1140
1141 void resizeSmall(size_t NumOps);
1142 void resizeSmallToLarge(size_t NumOps);
1143 void resize(size_t NumOps);
1144
1145 explicit Header(size_t NumOps, StorageType Storage);
1146 ~Header();
1147
1148 MutableArrayRef<MDOperand> operands() {
1149 if (IsLarge)
1150 return getLarge();
1151 return MutableArrayRef(
1152 reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1153 }
1154
1155 ArrayRef<MDOperand> operands() const {
1156 if (IsLarge)
1157 return getLarge();
1158 return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1159 SmallNumOps);
1160 }
1161
1162 unsigned getNumOperands() const {
1163 if (!IsLarge)
1164 return SmallNumOps;
1165 return getLarge().size();
1166 }
1167 };
1168
1169 Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1170
1171 const Header &getHeader() const {
1172 return *(reinterpret_cast<const Header *>(this) - 1);
1173 }
1174
1175 ContextAndReplaceableUses Context;
1176
1177protected:
1178 MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1179 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
1180 ~MDNode() = default;
1181
1182 void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1183 void operator delete(void *Mem);
1184
1185 /// Required by std, but never called.
1186 void operator delete(void *, unsigned) {
1187 llvm_unreachable("Constructor throws?");
1188 }
1189
1190 /// Required by std, but never called.
1191 void operator delete(void *, unsigned, bool) {
1192 llvm_unreachable("Constructor throws?");
1193 }
1194
1195 void dropAllReferences();
1196
1197 MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1198 MDOperand *mutable_end() { return getHeader().operands().end(); }
1199
1200 using mutable_op_range = iterator_range<MDOperand *>;
1201
1202 mutable_op_range mutable_operands() {
1203 return mutable_op_range(mutable_begin(), mutable_end());
1204 }
1205
1206public:
1207 MDNode(const MDNode &) = delete;
1208 void operator=(const MDNode &) = delete;
1209 void *operator new(size_t) = delete;
1210
1211 static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1212 static inline MDTuple *getIfExists(LLVMContext &Context,
1213 ArrayRef<Metadata *> MDs);
1214 static inline MDTuple *getDistinct(LLVMContext &Context,
1215 ArrayRef<Metadata *> MDs);
1216 static inline TempMDTuple getTemporary(LLVMContext &Context,
1217 ArrayRef<Metadata *> MDs);
1218
1219 /// Create a (temporary) clone of this.
1220 TempMDNode clone() const;
1221
1222 /// Deallocate a node created by getTemporary.
1223 ///
1224 /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1225 /// references will be reset.
1226 static void deleteTemporary(MDNode *N);
1227
1228 LLVMContext &getContext() const { return Context.getContext(); }
1229
1230 /// Replace a specific operand.
1231 void replaceOperandWith(unsigned I, Metadata *New);
1232
1233 /// Check if node is fully resolved.
1234 ///
1235 /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1236 /// this always returns \c true.
1237 ///
1238 /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1239 /// support (because all operands are resolved).
1240 ///
1241 /// As forward declarations are resolved, their containers should get
1242 /// resolved automatically. However, if this (or one of its operands) is
1243 /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1244 bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1245
1246 bool isUniqued() const { return Storage == Uniqued; }
1247 bool isDistinct() const { return Storage == Distinct; }
1248 bool isTemporary() const { return Storage == Temporary; }
1249
1250 bool isReplaceable() const { return isTemporary() || isAlwaysReplaceable(); }
1251 bool isAlwaysReplaceable() const { return getMetadataID() == DIAssignIDKind; }
1252
1253 unsigned getNumTemporaryUses() const {
1254 assert(isTemporary() && "Only for temporaries");
1255 return Context.getReplaceableUses()->getNumUses();
1256 }
1257
1258 /// RAUW a temporary.
1259 ///
1260 /// \pre \a isTemporary() must be \c true.
1261 void replaceAllUsesWith(Metadata *MD) {
1262 assert(isReplaceable() && "Expected temporary/replaceable node");
1263 if (Context.hasReplaceableUses())
1264 Context.getReplaceableUses()->replaceAllUsesWith(MD);
1265 }
1266
1267 /// Resolve cycles.
1268 ///
1269 /// Once all forward declarations have been resolved, force cycles to be
1270 /// resolved.
1271 ///
1272 /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1273 void resolveCycles();
1274
1275 /// Resolve a unique, unresolved node.
1276 void resolve();
1277
1278 /// Replace a temporary node with a permanent one.
1279 ///
1280 /// Try to create a uniqued version of \c N -- in place, if possible -- and
1281 /// return it. If \c N cannot be uniqued, return a distinct node instead.
1282 template <class T>
1283 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1284 replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1285 return cast<T>(N.release()->replaceWithPermanentImpl());
1286 }
1287
1288 /// Replace a temporary node with a uniqued one.
1289 ///
1290 /// Create a uniqued version of \c N -- in place, if possible -- and return
1291 /// it. Takes ownership of the temporary node.
1292 ///
1293 /// \pre N does not self-reference.
1294 template <class T>
1295 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1296 replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1297 return cast<T>(N.release()->replaceWithUniquedImpl());
1298 }
1299
1300 /// Replace a temporary node with a distinct one.
1301 ///
1302 /// Create a distinct version of \c N -- in place, if possible -- and return
1303 /// it. Takes ownership of the temporary node.
1304 template <class T>
1305 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1306 replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1307 return cast<T>(N.release()->replaceWithDistinctImpl());
1308 }
1309
1310 /// Print in tree shape.
1311 ///
1312 /// Prints definition of \c this in tree shape.
1313 ///
1314 /// If \c M is provided, metadata nodes will be numbered canonically;
1315 /// otherwise, pointer addresses are substituted.
1316 /// @{
1317 void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1318 void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1319 const Module *M = nullptr) const;
1320 /// @}
1321
1322 /// User-friendly dump in tree shape.
1323 ///
1324 /// If \c M is provided, metadata nodes will be numbered canonically;
1325 /// otherwise, pointer addresses are substituted.
1326 ///
1327 /// Note: this uses an explicit overload instead of default arguments so that
1328 /// the nullptr version is easy to call from a debugger.
1329 ///
1330 /// @{
1331 void dumpTree() const;
1332 void dumpTree(const Module *M) const;
1333 /// @}
1334
1335private:
1336 MDNode *replaceWithPermanentImpl();
1337 MDNode *replaceWithUniquedImpl();
1338 MDNode *replaceWithDistinctImpl();
1339
1340protected:
1341 /// Set an operand.
1342 ///
1343 /// Sets the operand directly, without worrying about uniquing.
1344 void setOperand(unsigned I, Metadata *New);
1345
1346 unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1347
1348 void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1349 void storeDistinctInContext();
1350 template <class T, class StoreT>
1351 static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1352 template <class T> static T *storeImpl(T *N, StorageType Storage);
1353
1354 /// Resize the node to hold \a NumOps operands.
1355 ///
1356 /// \pre \a isTemporary() or \a isDistinct()
1357 /// \pre MetadataID == MDTupleKind
1358 void resize(size_t NumOps) {
1359 assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1360 assert(getMetadataID() == MDTupleKind &&
1361 "Resizing is not supported for this node kind");
1362 getHeader().resize(NumOps);
1363 }
1364
1365private:
1366 void handleChangedOperand(void *Ref, Metadata *New);
1367
1368 /// Drop RAUW support, if any.
1369 void dropReplaceableUses();
1370
1371 void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1372 void decrementUnresolvedOperandCount();
1373 void countUnresolvedOperands();
1374
1375 /// Mutate this to be "uniqued".
1376 ///
1377 /// Mutate this so that \a isUniqued().
1378 /// \pre \a isTemporary().
1379 /// \pre already added to uniquing set.
1380 void makeUniqued();
1381
1382 /// Mutate this to be "distinct".
1383 ///
1384 /// Mutate this so that \a isDistinct().
1385 /// \pre \a isTemporary().
1386 void makeDistinct();
1387
1388 void deleteAsSubclass();
1389 MDNode *uniquify();
1390 void eraseFromStore();
1391
1392 template <class NodeTy> struct HasCachedHash;
1393 template <class NodeTy>
1394 static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1395 N->recalculateHash();
1396 }
1397 template <class NodeTy>
1398 static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1399 template <class NodeTy>
1400 static void dispatchResetHash(NodeTy *N, std::true_type) {
1401 N->setHash(0);
1402 }
1403 template <class NodeTy>
1404 static void dispatchResetHash(NodeTy *, std::false_type) {}
1405
1406 /// Merge branch weights from two direct callsites.
1407 static MDNode *mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
1408 const Instruction *AInstr,
1409 const Instruction *BInstr);
1410
1411public:
1412 using op_iterator = const MDOperand *;
1413 using op_range = iterator_range<op_iterator>;
1414
1415 op_iterator op_begin() const {
1416 return const_cast<MDNode *>(this)->mutable_begin();
1417 }
1418
1419 op_iterator op_end() const {
1420 return const_cast<MDNode *>(this)->mutable_end();
1421 }
1422
1423 ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
1424
1425 const MDOperand &getOperand(unsigned I) const {
1426 assert(I < getNumOperands() && "Out of range");
1427 return getHeader().operands()[I];
1428 }
1429
1430 /// Return number of MDNode operands.
1431 unsigned getNumOperands() const { return getHeader().getNumOperands(); }
1432
1433 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1434 static bool classof(const Metadata *MD) {
1435 switch (MD->getMetadataID()) {
1436 default:
1437 return false;
1438#define HANDLE_MDNODE_LEAF(CLASS) \
1439 case CLASS##Kind: \
1440 return true;
1441#include "llvm/IR/Metadata.def"
1442 }
1443 }
1444
1445 /// Check whether MDNode is a vtable access.
1446 bool isTBAAVtableAccess() const;
1447
1448 /// Methods for metadata merging.
1449 static MDNode *concatenate(MDNode *A, MDNode *B);
1450 static MDNode *intersect(MDNode *A, MDNode *B);
1451 static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1452 static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1453 static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1454 static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1455 static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1456 /// Merge !prof metadata from two instructions.
1457 /// Currently only implemented with direct callsites with branch weights.
1458 static MDNode *getMergedProfMetadata(MDNode *A, MDNode *B,
1459 const Instruction *AInstr,
1460 const Instruction *BInstr);
1461};
1462
1463/// Tuple of metadata.
1464///
1465/// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
1466/// default based on their operands.
1467class MDTuple : public MDNode {
1468 friend class LLVMContextImpl;
1469 friend class MDNode;
1470
1471 MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1472 ArrayRef<Metadata *> Vals)
1473 : MDNode(C, MDTupleKind, Storage, Vals) {
1474 setHash(Hash);
1475 }
1476
1477 ~MDTuple() { dropAllReferences(); }
1478
1479 void setHash(unsigned Hash) { SubclassData32 = Hash; }
1480 void recalculateHash();
1481
1482 static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1483 StorageType Storage, bool ShouldCreate = true);
1484
1485 TempMDTuple cloneImpl() const {
1486 ArrayRef<MDOperand> Operands = operands();
1487 return getTemporary(Context&: getContext(), MDs: SmallVector<Metadata *, 4>(
1488 Operands.begin(), Operands.end()));
1489 }
1490
1491public:
1492 /// Get the hash, if any.
1493 unsigned getHash() const { return SubclassData32; }
1494
1495 static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1496 return getImpl(Context, MDs, Storage: Uniqued);
1497 }
1498
1499 static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1500 return getImpl(Context, MDs, Storage: Uniqued, /* ShouldCreate */ ShouldCreate: false);
1501 }
1502
1503 /// Return a distinct node.
1504 ///
1505 /// Return a distinct node -- i.e., a node that is not uniqued.
1506 static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1507 return getImpl(Context, MDs, Storage: Distinct);
1508 }
1509
1510 /// Return a temporary node.
1511 ///
1512 /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1513 /// not uniqued, may be RAUW'd, and must be manually deleted with
1514 /// deleteTemporary.
1515 static TempMDTuple getTemporary(LLVMContext &Context,
1516 ArrayRef<Metadata *> MDs) {
1517 return TempMDTuple(getImpl(Context, MDs, Storage: Temporary));
1518 }
1519
1520 /// Return a (temporary) clone of this.
1521 TempMDTuple clone() const { return cloneImpl(); }
1522
1523 /// Append an element to the tuple. This will resize the node.
1524 void push_back(Metadata *MD) {
1525 size_t NumOps = getNumOperands();
1526 resize(NumOps: NumOps + 1);
1527 setOperand(I: NumOps, New: MD);
1528 }
1529
1530 /// Shrink the operands by 1.
1531 void pop_back() { resize(NumOps: getNumOperands() - 1); }
1532
1533 static bool classof(const Metadata *MD) {
1534 return MD->getMetadataID() == MDTupleKind;
1535 }
1536};
1537
1538MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1539 return MDTuple::get(Context, MDs);
1540}
1541
1542MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1543 return MDTuple::getIfExists(Context, MDs);
1544}
1545
1546MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1547 return MDTuple::getDistinct(Context, MDs);
1548}
1549
1550TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1551 ArrayRef<Metadata *> MDs) {
1552 return MDTuple::getTemporary(Context, MDs);
1553}
1554
1555void TempMDNodeDeleter::operator()(MDNode *Node) const {
1556 MDNode::deleteTemporary(N: Node);
1557}
1558
1559/// This is a simple wrapper around an MDNode which provides a higher-level
1560/// interface by hiding the details of how alias analysis information is encoded
1561/// in its operands.
1562class AliasScopeNode {
1563 const MDNode *Node = nullptr;
1564
1565public:
1566 AliasScopeNode() = default;
1567 explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1568
1569 /// Get the MDNode for this AliasScopeNode.
1570 const MDNode *getNode() const { return Node; }
1571
1572 /// Get the MDNode for this AliasScopeNode's domain.
1573 const MDNode *getDomain() const {
1574 if (Node->getNumOperands() < 2)
1575 return nullptr;
1576 return dyn_cast_or_null<MDNode>(Val: Node->getOperand(I: 1));
1577 }
1578 StringRef getName() const {
1579 if (Node->getNumOperands() > 2)
1580 if (MDString *N = dyn_cast_or_null<MDString>(Val: Node->getOperand(I: 2)))
1581 return N->getString();
1582 return StringRef();
1583 }
1584};
1585
1586/// Typed iterator through MDNode operands.
1587///
1588/// An iterator that transforms an \a MDNode::iterator into an iterator over a
1589/// particular Metadata subclass.
1590template <class T> class TypedMDOperandIterator {
1591 MDNode::op_iterator I = nullptr;
1592
1593public:
1594 using iterator_category = std::input_iterator_tag;
1595 using value_type = T *;
1596 using difference_type = std::ptrdiff_t;
1597 using pointer = void;
1598 using reference = T *;
1599
1600 TypedMDOperandIterator() = default;
1601 explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1602
1603 T *operator*() const { return cast_or_null<T>(*I); }
1604
1605 TypedMDOperandIterator &operator++() {
1606 ++I;
1607 return *this;
1608 }
1609
1610 TypedMDOperandIterator operator++(int) {
1611 TypedMDOperandIterator Temp(*this);
1612 ++I;
1613 return Temp;
1614 }
1615
1616 bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1617 bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1618};
1619
1620/// Typed, array-like tuple of metadata.
1621///
1622/// This is a wrapper for \a MDTuple that makes it act like an array holding a
1623/// particular type of metadata.
1624template <class T> class MDTupleTypedArrayWrapper {
1625 const MDTuple *N = nullptr;
1626
1627public:
1628 MDTupleTypedArrayWrapper() = default;
1629 MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1630
1631 template <class U>
1632 MDTupleTypedArrayWrapper(
1633 const MDTupleTypedArrayWrapper<U> &Other,
1634 std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1635 : N(Other.get()) {}
1636
1637 template <class U>
1638 explicit MDTupleTypedArrayWrapper(
1639 const MDTupleTypedArrayWrapper<U> &Other,
1640 std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1641 : N(Other.get()) {}
1642
1643 explicit operator bool() const { return get(); }
1644 explicit operator MDTuple *() const { return get(); }
1645
1646 MDTuple *get() const { return const_cast<MDTuple *>(N); }
1647 MDTuple *operator->() const { return get(); }
1648 MDTuple &operator*() const { return *get(); }
1649
1650 // FIXME: Fix callers and remove condition on N.
1651 unsigned size() const { return N ? N->getNumOperands() : 0u; }
1652 bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1653 T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1654
1655 // FIXME: Fix callers and remove condition on N.
1656 using iterator = TypedMDOperandIterator<T>;
1657
1658 iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1659 iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1660};
1661
1662#define HANDLE_METADATA(CLASS) \
1663 using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1664#include "llvm/IR/Metadata.def"
1665
1666/// Placeholder metadata for operands of distinct MDNodes.
1667///
1668/// This is a lightweight placeholder for an operand of a distinct node. It's
1669/// purpose is to help track forward references when creating a distinct node.
1670/// This allows distinct nodes involved in a cycle to be constructed before
1671/// their operands without requiring a heavyweight temporary node with
1672/// full-blown RAUW support.
1673///
1674/// Each placeholder supports only a single MDNode user. Clients should pass
1675/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1676/// should be replaced with.
1677///
1678/// While it would be possible to implement move operators, they would be
1679/// fairly expensive. Leave them unimplemented to discourage their use
1680/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1681class DistinctMDOperandPlaceholder : public Metadata {
1682 friend class MetadataTracking;
1683
1684 Metadata **Use = nullptr;
1685
1686public:
1687 explicit DistinctMDOperandPlaceholder(unsigned ID)
1688 : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1689 SubclassData32 = ID;
1690 }
1691
1692 DistinctMDOperandPlaceholder() = delete;
1693 DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1694 DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1695
1696 ~DistinctMDOperandPlaceholder() {
1697 if (Use)
1698 *Use = nullptr;
1699 }
1700
1701 unsigned getID() const { return SubclassData32; }
1702
1703 /// Replace the use of this with MD.
1704 void replaceUseWith(Metadata *MD) {
1705 if (!Use)
1706 return;
1707 *Use = MD;
1708
1709 if (*Use)
1710 MetadataTracking::track(MD&: *Use);
1711
1712 Metadata *T = cast<Metadata>(Val: this);
1713 MetadataTracking::untrack(MD&: T);
1714 assert(!Use && "Use is still being tracked despite being untracked!");
1715 }
1716};
1717
1718//===----------------------------------------------------------------------===//
1719/// A tuple of MDNodes.
1720///
1721/// Despite its name, a NamedMDNode isn't itself an MDNode.
1722///
1723/// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1724///
1725/// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1726class NamedMDNode : public ilist_node<NamedMDNode> {
1727 friend class LLVMContextImpl;
1728 friend class Module;
1729
1730 std::string Name;
1731 Module *Parent = nullptr;
1732 void *Operands; // SmallVector<TrackingMDRef, 4>
1733
1734 void setParent(Module *M) { Parent = M; }
1735
1736 explicit NamedMDNode(const Twine &N);
1737
1738 template <class T1> class op_iterator_impl {
1739 friend class NamedMDNode;
1740
1741 const NamedMDNode *Node = nullptr;
1742 unsigned Idx = 0;
1743
1744 op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1745
1746 public:
1747 using iterator_category = std::bidirectional_iterator_tag;
1748 using value_type = T1;
1749 using difference_type = std::ptrdiff_t;
1750 using pointer = value_type *;
1751 using reference = value_type;
1752
1753 op_iterator_impl() = default;
1754
1755 bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1756 bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1757
1758 op_iterator_impl &operator++() {
1759 ++Idx;
1760 return *this;
1761 }
1762
1763 op_iterator_impl operator++(int) {
1764 op_iterator_impl tmp(*this);
1765 operator++();
1766 return tmp;
1767 }
1768
1769 op_iterator_impl &operator--() {
1770 --Idx;
1771 return *this;
1772 }
1773
1774 op_iterator_impl operator--(int) {
1775 op_iterator_impl tmp(*this);
1776 operator--();
1777 return tmp;
1778 }
1779
1780 T1 operator*() const { return Node->getOperand(i: Idx); }
1781 };
1782
1783public:
1784 NamedMDNode(const NamedMDNode &) = delete;
1785 ~NamedMDNode();
1786
1787 /// Drop all references and remove the node from parent module.
1788 void eraseFromParent();
1789
1790 /// Remove all uses and clear node vector.
1791 void dropAllReferences() { clearOperands(); }
1792 /// Drop all references to this node's operands.
1793 void clearOperands();
1794
1795 /// Get the module that holds this named metadata collection.
1796 inline Module *getParent() { return Parent; }
1797 inline const Module *getParent() const { return Parent; }
1798
1799 MDNode *getOperand(unsigned i) const;
1800 unsigned getNumOperands() const;
1801 void addOperand(MDNode *M);
1802 void setOperand(unsigned I, MDNode *New);
1803 StringRef getName() const;
1804 void print(raw_ostream &ROS, bool IsForDebug = false) const;
1805 void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1806 bool IsForDebug = false) const;
1807 void dump() const;
1808
1809 // ---------------------------------------------------------------------------
1810 // Operand Iterator interface...
1811 //
1812 using op_iterator = op_iterator_impl<MDNode *>;
1813
1814 op_iterator op_begin() { return op_iterator(this, 0); }
1815 op_iterator op_end() { return op_iterator(this, getNumOperands()); }
1816
1817 using const_op_iterator = op_iterator_impl<const MDNode *>;
1818
1819 const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1820 const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
1821
1822 inline iterator_range<op_iterator> operands() {
1823 return make_range(x: op_begin(), y: op_end());
1824 }
1825 inline iterator_range<const_op_iterator> operands() const {
1826 return make_range(x: op_begin(), y: op_end());
1827 }
1828};
1829
1830// Create wrappers for C Binding types (see CBindingWrapping.h).
1831DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1832
1833} // end namespace llvm
1834
1835#endif // LLVM_IR_METADATA_H
1836

source code of llvm/include/llvm/IR/Metadata.h