1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the primary stateless implementation of the
10// Alias Analysis interface that implements identities (two different
11// globals cannot alias, etc), but does no stateful analysis.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/BasicAliasAnalysis.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ScopeExit.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/CFG.h"
24#include "llvm/Analysis/CaptureTracking.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/MemoryLocation.h"
27#include "llvm/Analysis/TargetLibraryInfo.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/IR/Argument.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/ConstantRange.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GetElementPtrTypeIterator.h"
39#include "llvm/IR/GlobalAlias.h"
40#include "llvm/IR/GlobalVariable.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/IR/Type.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/InitializePasses.h"
51#include "llvm/Pass.h"
52#include "llvm/Support/Casting.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/KnownBits.h"
56#include "llvm/Support/SaveAndRestore.h"
57#include <cassert>
58#include <cstdint>
59#include <cstdlib>
60#include <optional>
61#include <utility>
62
63#define DEBUG_TYPE "basicaa"
64
65using namespace llvm;
66
67/// Enable analysis of recursive PHI nodes.
68static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69 cl::init(Val: true));
70
71static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage",
72 cl::Hidden, cl::init(Val: true));
73
74/// SearchLimitReached / SearchTimes shows how often the limit of
75/// to decompose GEPs is reached. It will affect the precision
76/// of basic alias analysis.
77STATISTIC(SearchLimitReached, "Number of times the limit to "
78 "decompose GEPs is reached");
79STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
80
81// The max limit of the search depth in DecomposeGEPExpression() and
82// getUnderlyingObject().
83static const unsigned MaxLookupSearchDepth = 6;
84
85bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
86 FunctionAnalysisManager::Invalidator &Inv) {
87 // We don't care if this analysis itself is preserved, it has no state. But
88 // we need to check that the analyses it depends on have been. Note that we
89 // may be created without handles to some analyses and in that case don't
90 // depend on them.
91 if (Inv.invalidate<AssumptionAnalysis>(IR&: Fn, PA) ||
92 (DT_ && Inv.invalidate<DominatorTreeAnalysis>(IR&: Fn, PA)))
93 return true;
94
95 // Otherwise this analysis result remains valid.
96 return false;
97}
98
99//===----------------------------------------------------------------------===//
100// Useful predicates
101//===----------------------------------------------------------------------===//
102
103/// Returns the size of the object specified by V or UnknownSize if unknown.
104static std::optional<TypeSize> getObjectSize(const Value *V,
105 const DataLayout &DL,
106 const TargetLibraryInfo &TLI,
107 bool NullIsValidLoc,
108 bool RoundToAlign = false) {
109 uint64_t Size;
110 ObjectSizeOpts Opts;
111 Opts.RoundToAlign = RoundToAlign;
112 Opts.NullIsUnknownSize = NullIsValidLoc;
113 if (getObjectSize(Ptr: V, Size, DL, TLI: &TLI, Opts))
114 return TypeSize::getFixed(ExactSize: Size);
115 return std::nullopt;
116}
117
118/// Returns true if we can prove that the object specified by V is smaller than
119/// Size.
120static bool isObjectSmallerThan(const Value *V, TypeSize Size,
121 const DataLayout &DL,
122 const TargetLibraryInfo &TLI,
123 bool NullIsValidLoc) {
124 // Note that the meanings of the "object" are slightly different in the
125 // following contexts:
126 // c1: llvm::getObjectSize()
127 // c2: llvm.objectsize() intrinsic
128 // c3: isObjectSmallerThan()
129 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
130 // refers to the "entire object".
131 //
132 // Consider this example:
133 // char *p = (char*)malloc(100)
134 // char *q = p+80;
135 //
136 // In the context of c1 and c2, the "object" pointed by q refers to the
137 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
138 //
139 // However, in the context of c3, the "object" refers to the chunk of memory
140 // being allocated. So, the "object" has 100 bytes, and q points to the middle
141 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
142 // parameter, before the llvm::getObjectSize() is called to get the size of
143 // entire object, we should:
144 // - either rewind the pointer q to the base-address of the object in
145 // question (in this case rewind to p), or
146 // - just give up. It is up to caller to make sure the pointer is pointing
147 // to the base address the object.
148 //
149 // We go for 2nd option for simplicity.
150 if (!isIdentifiedObject(V))
151 return false;
152
153 // This function needs to use the aligned object size because we allow
154 // reads a bit past the end given sufficient alignment.
155 std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
156 /*RoundToAlign*/ true);
157
158 return ObjectSize && TypeSize::isKnownLT(LHS: *ObjectSize, RHS: Size);
159}
160
161/// Return the minimal extent from \p V to the end of the underlying object,
162/// assuming the result is used in an aliasing query. E.g., we do use the query
163/// location size and the fact that null pointers cannot alias here.
164static TypeSize getMinimalExtentFrom(const Value &V,
165 const LocationSize &LocSize,
166 const DataLayout &DL,
167 bool NullIsValidLoc) {
168 // If we have dereferenceability information we know a lower bound for the
169 // extent as accesses for a lower offset would be valid. We need to exclude
170 // the "or null" part if null is a valid pointer. We can ignore frees, as an
171 // access after free would be undefined behavior.
172 bool CanBeNull, CanBeFreed;
173 uint64_t DerefBytes =
174 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
175 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
176 // If queried with a precise location size, we assume that location size to be
177 // accessed, thus valid.
178 if (LocSize.isPrecise())
179 DerefBytes = std::max(a: DerefBytes, b: LocSize.getValue().getKnownMinValue());
180 return TypeSize::getFixed(ExactSize: DerefBytes);
181}
182
183/// Returns true if we can prove that the object specified by V has size Size.
184static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL,
185 const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
186 std::optional<TypeSize> ObjectSize =
187 getObjectSize(V, DL, TLI, NullIsValidLoc);
188 return ObjectSize && *ObjectSize == Size;
189}
190
191/// Return true if both V1 and V2 are VScale
192static bool areBothVScale(const Value *V1, const Value *V2) {
193 return PatternMatch::match(V: V1, P: PatternMatch::m_VScale()) &&
194 PatternMatch::match(V: V2, P: PatternMatch::m_VScale());
195}
196
197//===----------------------------------------------------------------------===//
198// CaptureInfo implementations
199//===----------------------------------------------------------------------===//
200
201CaptureInfo::~CaptureInfo() = default;
202
203bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object,
204 const Instruction *I, bool OrAt) {
205 return isNonEscapingLocalObject(V: Object, IsCapturedCache: &IsCapturedCache);
206}
207
208static bool isNotInCycle(const Instruction *I, const DominatorTree *DT,
209 const LoopInfo *LI) {
210 BasicBlock *BB = const_cast<BasicBlock *>(I->getParent());
211 SmallVector<BasicBlock *> Succs(successors(BB));
212 return Succs.empty() ||
213 !isPotentiallyReachableFromMany(Worklist&: Succs, StopBB: BB, ExclusionSet: nullptr, DT, LI);
214}
215
216bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object,
217 const Instruction *I, bool OrAt) {
218 if (!isIdentifiedFunctionLocal(V: Object))
219 return false;
220
221 auto Iter = EarliestEscapes.insert(KV: {Object, nullptr});
222 if (Iter.second) {
223 Instruction *EarliestCapture = FindEarliestCapture(
224 V: Object, F&: *const_cast<Function *>(DT.getRoot()->getParent()),
225 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
226 if (EarliestCapture) {
227 auto Ins = Inst2Obj.insert(KV: {EarliestCapture, {}});
228 Ins.first->second.push_back(NewVal: Object);
229 }
230 Iter.first->second = EarliestCapture;
231 }
232
233 // No capturing instruction.
234 if (!Iter.first->second)
235 return true;
236
237 // No context instruction means any use is capturing.
238 if (!I)
239 return false;
240
241 if (I == Iter.first->second) {
242 if (OrAt)
243 return false;
244 return isNotInCycle(I, DT: &DT, LI);
245 }
246
247 return !isPotentiallyReachable(From: Iter.first->second, To: I, ExclusionSet: nullptr, DT: &DT, LI);
248}
249
250void EarliestEscapeInfo::removeInstruction(Instruction *I) {
251 auto Iter = Inst2Obj.find(Val: I);
252 if (Iter != Inst2Obj.end()) {
253 for (const Value *Obj : Iter->second)
254 EarliestEscapes.erase(Val: Obj);
255 Inst2Obj.erase(Val: I);
256 }
257}
258
259//===----------------------------------------------------------------------===//
260// GetElementPtr Instruction Decomposition and Analysis
261//===----------------------------------------------------------------------===//
262
263namespace {
264/// Represents zext(sext(trunc(V))).
265struct CastedValue {
266 const Value *V;
267 unsigned ZExtBits = 0;
268 unsigned SExtBits = 0;
269 unsigned TruncBits = 0;
270
271 explicit CastedValue(const Value *V) : V(V) {}
272 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
273 unsigned TruncBits)
274 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {}
275
276 unsigned getBitWidth() const {
277 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
278 SExtBits;
279 }
280
281 CastedValue withValue(const Value *NewV) const {
282 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits);
283 }
284
285 /// Replace V with zext(NewV)
286 CastedValue withZExtOfValue(const Value *NewV) const {
287 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
288 NewV->getType()->getPrimitiveSizeInBits();
289 if (ExtendBy <= TruncBits)
290 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
291
292 // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
293 ExtendBy -= TruncBits;
294 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0);
295 }
296
297 /// Replace V with sext(NewV)
298 CastedValue withSExtOfValue(const Value *NewV) const {
299 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
300 NewV->getType()->getPrimitiveSizeInBits();
301 if (ExtendBy <= TruncBits)
302 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
303
304 // zext(sext(sext(NewV)))
305 ExtendBy -= TruncBits;
306 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0);
307 }
308
309 APInt evaluateWith(APInt N) const {
310 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
311 "Incompatible bit width");
312 if (TruncBits) N = N.trunc(width: N.getBitWidth() - TruncBits);
313 if (SExtBits) N = N.sext(width: N.getBitWidth() + SExtBits);
314 if (ZExtBits) N = N.zext(width: N.getBitWidth() + ZExtBits);
315 return N;
316 }
317
318 ConstantRange evaluateWith(ConstantRange N) const {
319 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
320 "Incompatible bit width");
321 if (TruncBits) N = N.truncate(BitWidth: N.getBitWidth() - TruncBits);
322 if (SExtBits) N = N.signExtend(BitWidth: N.getBitWidth() + SExtBits);
323 if (ZExtBits) N = N.zeroExtend(BitWidth: N.getBitWidth() + ZExtBits);
324 return N;
325 }
326
327 bool canDistributeOver(bool NUW, bool NSW) const {
328 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
329 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
330 // trunc(x op y) == trunc(x) op trunc(y)
331 return (!ZExtBits || NUW) && (!SExtBits || NSW);
332 }
333
334 bool hasSameCastsAs(const CastedValue &Other) const {
335 return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
336 TruncBits == Other.TruncBits;
337 }
338};
339
340/// Represents zext(sext(trunc(V))) * Scale + Offset.
341struct LinearExpression {
342 CastedValue Val;
343 APInt Scale;
344 APInt Offset;
345
346 /// True if all operations in this expression are NSW.
347 bool IsNSW;
348
349 LinearExpression(const CastedValue &Val, const APInt &Scale,
350 const APInt &Offset, bool IsNSW)
351 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
352
353 LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
354 unsigned BitWidth = Val.getBitWidth();
355 Scale = APInt(BitWidth, 1);
356 Offset = APInt(BitWidth, 0);
357 }
358
359 LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
360 // The check for zero offset is necessary, because generally
361 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
362 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
363 return LinearExpression(Val, Scale * Other, Offset * Other, NSW);
364 }
365};
366}
367
368/// Analyzes the specified value as a linear expression: "A*V + B", where A and
369/// B are constant integers.
370static LinearExpression GetLinearExpression(
371 const CastedValue &Val, const DataLayout &DL, unsigned Depth,
372 AssumptionCache *AC, DominatorTree *DT) {
373 // Limit our recursion depth.
374 if (Depth == 6)
375 return Val;
376
377 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val: Val.V))
378 return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
379 Val.evaluateWith(N: Const->getValue()), true);
380
381 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: Val.V)) {
382 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Val: BOp->getOperand(i_nocapture: 1))) {
383 APInt RHS = Val.evaluateWith(N: RHSC->getValue());
384 // The only non-OBO case we deal with is or, and only limited to the
385 // case where it is both nuw and nsw.
386 bool NUW = true, NSW = true;
387 if (isa<OverflowingBinaryOperator>(Val: BOp)) {
388 NUW &= BOp->hasNoUnsignedWrap();
389 NSW &= BOp->hasNoSignedWrap();
390 }
391 if (!Val.canDistributeOver(NUW, NSW))
392 return Val;
393
394 // While we can distribute over trunc, we cannot preserve nowrap flags
395 // in that case.
396 if (Val.TruncBits)
397 NUW = NSW = false;
398
399 LinearExpression E(Val);
400 switch (BOp->getOpcode()) {
401 default:
402 // We don't understand this instruction, so we can't decompose it any
403 // further.
404 return Val;
405 case Instruction::Or:
406 // X|C == X+C if it is disjoint. Otherwise we can't analyze it.
407 if (!cast<PossiblyDisjointInst>(Val: BOp)->isDisjoint())
408 return Val;
409
410 [[fallthrough]];
411 case Instruction::Add: {
412 E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0)), DL,
413 Depth: Depth + 1, AC, DT);
414 E.Offset += RHS;
415 E.IsNSW &= NSW;
416 break;
417 }
418 case Instruction::Sub: {
419 E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0)), DL,
420 Depth: Depth + 1, AC, DT);
421 E.Offset -= RHS;
422 E.IsNSW &= NSW;
423 break;
424 }
425 case Instruction::Mul:
426 E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0)), DL,
427 Depth: Depth + 1, AC, DT)
428 .mul(Other: RHS, MulIsNSW: NSW);
429 break;
430 case Instruction::Shl:
431 // We're trying to linearize an expression of the kind:
432 // shl i8 -128, 36
433 // where the shift count exceeds the bitwidth of the type.
434 // We can't decompose this further (the expression would return
435 // a poison value).
436 if (RHS.getLimitedValue() > Val.getBitWidth())
437 return Val;
438
439 E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0)), DL,
440 Depth: Depth + 1, AC, DT);
441 E.Offset <<= RHS.getLimitedValue();
442 E.Scale <<= RHS.getLimitedValue();
443 E.IsNSW &= NSW;
444 break;
445 }
446 return E;
447 }
448 }
449
450 if (isa<ZExtInst>(Val: Val.V))
451 return GetLinearExpression(
452 Val: Val.withZExtOfValue(NewV: cast<CastInst>(Val: Val.V)->getOperand(i_nocapture: 0)),
453 DL, Depth: Depth + 1, AC, DT);
454
455 if (isa<SExtInst>(Val: Val.V))
456 return GetLinearExpression(
457 Val: Val.withSExtOfValue(NewV: cast<CastInst>(Val: Val.V)->getOperand(i_nocapture: 0)),
458 DL, Depth: Depth + 1, AC, DT);
459
460 return Val;
461}
462
463/// To ensure a pointer offset fits in an integer of size IndexSize
464/// (in bits) when that size is smaller than the maximum index size. This is
465/// an issue, for example, in particular for 32b pointers with negative indices
466/// that rely on two's complement wrap-arounds for precise alias information
467/// where the maximum index size is 64b.
468static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) {
469 assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!");
470 unsigned ShiftBits = Offset.getBitWidth() - IndexSize;
471 if (ShiftBits != 0) {
472 Offset <<= ShiftBits;
473 Offset.ashrInPlace(ShiftAmt: ShiftBits);
474 }
475}
476
477namespace {
478// A linear transformation of a Value; this class represents
479// ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
480struct VariableGEPIndex {
481 CastedValue Val;
482 APInt Scale;
483
484 // Context instruction to use when querying information about this index.
485 const Instruction *CxtI;
486
487 /// True if all operations in this expression are NSW.
488 bool IsNSW;
489
490 /// True if the index should be subtracted rather than added. We don't simply
491 /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be
492 /// non-wrapping, while X + INT_MIN*(-1) wraps.
493 bool IsNegated;
494
495 bool hasNegatedScaleOf(const VariableGEPIndex &Other) const {
496 if (IsNegated == Other.IsNegated)
497 return Scale == -Other.Scale;
498 return Scale == Other.Scale;
499 }
500
501 void dump() const {
502 print(OS&: dbgs());
503 dbgs() << "\n";
504 }
505 void print(raw_ostream &OS) const {
506 OS << "(V=" << Val.V->getName()
507 << ", zextbits=" << Val.ZExtBits
508 << ", sextbits=" << Val.SExtBits
509 << ", truncbits=" << Val.TruncBits
510 << ", scale=" << Scale
511 << ", nsw=" << IsNSW
512 << ", negated=" << IsNegated << ")";
513 }
514};
515}
516
517// Represents the internal structure of a GEP, decomposed into a base pointer,
518// constant offsets, and variable scaled indices.
519struct BasicAAResult::DecomposedGEP {
520 // Base pointer of the GEP
521 const Value *Base;
522 // Total constant offset from base.
523 APInt Offset;
524 // Scaled variable (non-constant) indices.
525 SmallVector<VariableGEPIndex, 4> VarIndices;
526 // Are all operations inbounds GEPs or non-indexing operations?
527 // (std::nullopt iff expression doesn't involve any geps)
528 std::optional<bool> InBounds;
529
530 void dump() const {
531 print(OS&: dbgs());
532 dbgs() << "\n";
533 }
534 void print(raw_ostream &OS) const {
535 OS << "(DecomposedGEP Base=" << Base->getName()
536 << ", Offset=" << Offset
537 << ", VarIndices=[";
538 for (size_t i = 0; i < VarIndices.size(); i++) {
539 if (i != 0)
540 OS << ", ";
541 VarIndices[i].print(OS);
542 }
543 OS << "])";
544 }
545};
546
547
548/// If V is a symbolic pointer expression, decompose it into a base pointer
549/// with a constant offset and a number of scaled symbolic offsets.
550///
551/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
552/// in the VarIndices vector) are Value*'s that are known to be scaled by the
553/// specified amount, but which may have other unrepresented high bits. As
554/// such, the gep cannot necessarily be reconstructed from its decomposed form.
555BasicAAResult::DecomposedGEP
556BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
557 AssumptionCache *AC, DominatorTree *DT) {
558 // Limit recursion depth to limit compile time in crazy cases.
559 unsigned MaxLookup = MaxLookupSearchDepth;
560 SearchTimes++;
561 const Instruction *CxtI = dyn_cast<Instruction>(Val: V);
562
563 unsigned MaxIndexSize = DL.getMaxIndexSizeInBits();
564 DecomposedGEP Decomposed;
565 Decomposed.Offset = APInt(MaxIndexSize, 0);
566 do {
567 // See if this is a bitcast or GEP.
568 const Operator *Op = dyn_cast<Operator>(Val: V);
569 if (!Op) {
570 // The only non-operator case we can handle are GlobalAliases.
571 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Val: V)) {
572 if (!GA->isInterposable()) {
573 V = GA->getAliasee();
574 continue;
575 }
576 }
577 Decomposed.Base = V;
578 return Decomposed;
579 }
580
581 if (Op->getOpcode() == Instruction::BitCast ||
582 Op->getOpcode() == Instruction::AddrSpaceCast) {
583 V = Op->getOperand(i: 0);
584 continue;
585 }
586
587 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Val: Op);
588 if (!GEPOp) {
589 if (const auto *PHI = dyn_cast<PHINode>(Val: V)) {
590 // Look through single-arg phi nodes created by LCSSA.
591 if (PHI->getNumIncomingValues() == 1) {
592 V = PHI->getIncomingValue(i: 0);
593 continue;
594 }
595 } else if (const auto *Call = dyn_cast<CallBase>(Val: V)) {
596 // CaptureTracking can know about special capturing properties of some
597 // intrinsics like launder.invariant.group, that can't be expressed with
598 // the attributes, but have properties like returning aliasing pointer.
599 // Because some analysis may assume that nocaptured pointer is not
600 // returned from some special intrinsic (because function would have to
601 // be marked with returns attribute), it is crucial to use this function
602 // because it should be in sync with CaptureTracking. Not using it may
603 // cause weird miscompilations where 2 aliasing pointers are assumed to
604 // noalias.
605 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, MustPreserveNullness: false)) {
606 V = RP;
607 continue;
608 }
609 }
610
611 Decomposed.Base = V;
612 return Decomposed;
613 }
614
615 // Track whether we've seen at least one in bounds gep, and if so, whether
616 // all geps parsed were in bounds.
617 if (Decomposed.InBounds == std::nullopt)
618 Decomposed.InBounds = GEPOp->isInBounds();
619 else if (!GEPOp->isInBounds())
620 Decomposed.InBounds = false;
621
622 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
623
624 unsigned AS = GEPOp->getPointerAddressSpace();
625 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
626 gep_type_iterator GTI = gep_type_begin(GEP: GEPOp);
627 unsigned IndexSize = DL.getIndexSizeInBits(AS);
628 // Assume all GEP operands are constants until proven otherwise.
629 bool GepHasConstantOffset = true;
630 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
631 I != E; ++I, ++GTI) {
632 const Value *Index = *I;
633 // Compute the (potentially symbolic) offset in bytes for this index.
634 if (StructType *STy = GTI.getStructTypeOrNull()) {
635 // For a struct, add the member offset.
636 unsigned FieldNo = cast<ConstantInt>(Val: Index)->getZExtValue();
637 if (FieldNo == 0)
638 continue;
639
640 Decomposed.Offset += DL.getStructLayout(Ty: STy)->getElementOffset(Idx: FieldNo);
641 continue;
642 }
643
644 // For an array/pointer, add the element offset, explicitly scaled.
645 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Val: Index)) {
646 if (CIdx->isZero())
647 continue;
648
649 // Don't attempt to analyze GEPs if the scalable index is not zero.
650 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
651 if (AllocTypeSize.isScalable()) {
652 Decomposed.Base = V;
653 return Decomposed;
654 }
655
656 Decomposed.Offset += AllocTypeSize.getFixedValue() *
657 CIdx->getValue().sextOrTrunc(width: MaxIndexSize);
658 continue;
659 }
660
661 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
662 if (AllocTypeSize.isScalable()) {
663 Decomposed.Base = V;
664 return Decomposed;
665 }
666
667 GepHasConstantOffset = false;
668
669 // If the integer type is smaller than the index size, it is implicitly
670 // sign extended or truncated to index size.
671 unsigned Width = Index->getType()->getIntegerBitWidth();
672 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
673 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
674 LinearExpression LE = GetLinearExpression(
675 Val: CastedValue(Index, 0, SExtBits, TruncBits), DL, Depth: 0, AC, DT);
676
677 // Scale by the type size.
678 unsigned TypeSize = AllocTypeSize.getFixedValue();
679 LE = LE.mul(Other: APInt(IndexSize, TypeSize), MulIsNSW: GEPOp->isInBounds());
680 Decomposed.Offset += LE.Offset.sext(width: MaxIndexSize);
681 APInt Scale = LE.Scale.sext(width: MaxIndexSize);
682
683 // If we already had an occurrence of this index variable, merge this
684 // scale into it. For example, we want to handle:
685 // A[x][x] -> x*16 + x*4 -> x*20
686 // This also ensures that 'x' only appears in the index list once.
687 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
688 if ((Decomposed.VarIndices[i].Val.V == LE.Val.V ||
689 areBothVScale(V1: Decomposed.VarIndices[i].Val.V, V2: LE.Val.V)) &&
690 Decomposed.VarIndices[i].Val.hasSameCastsAs(Other: LE.Val)) {
691 Scale += Decomposed.VarIndices[i].Scale;
692 LE.IsNSW = false; // We cannot guarantee nsw for the merge.
693 Decomposed.VarIndices.erase(CI: Decomposed.VarIndices.begin() + i);
694 break;
695 }
696 }
697
698 // Make sure that we have a scale that makes sense for this target's
699 // index size.
700 adjustToIndexSize(Offset&: Scale, IndexSize);
701
702 if (!!Scale) {
703 VariableGEPIndex Entry = {.Val: LE.Val, .Scale: Scale, .CxtI: CxtI, .IsNSW: LE.IsNSW,
704 /* IsNegated */ false};
705 Decomposed.VarIndices.push_back(Elt: Entry);
706 }
707 }
708
709 // Take care of wrap-arounds
710 if (GepHasConstantOffset)
711 adjustToIndexSize(Offset&: Decomposed.Offset, IndexSize);
712
713 // Analyze the base pointer next.
714 V = GEPOp->getOperand(i_nocapture: 0);
715 } while (--MaxLookup);
716
717 // If the chain of expressions is too deep, just return early.
718 Decomposed.Base = V;
719 SearchLimitReached++;
720 return Decomposed;
721}
722
723ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc,
724 AAQueryInfo &AAQI,
725 bool IgnoreLocals) {
726 assert(Visited.empty() && "Visited must be cleared after use!");
727 auto _ = make_scope_exit(F: [&] { Visited.clear(); });
728
729 unsigned MaxLookup = 8;
730 SmallVector<const Value *, 16> Worklist;
731 Worklist.push_back(Elt: Loc.Ptr);
732 ModRefInfo Result = ModRefInfo::NoModRef;
733
734 do {
735 const Value *V = getUnderlyingObject(V: Worklist.pop_back_val());
736 if (!Visited.insert(Ptr: V).second)
737 continue;
738
739 // Ignore allocas if we were instructed to do so.
740 if (IgnoreLocals && isa<AllocaInst>(Val: V))
741 continue;
742
743 // If the location points to memory that is known to be invariant for
744 // the life of the underlying SSA value, then we can exclude Mod from
745 // the set of valid memory effects.
746 //
747 // An argument that is marked readonly and noalias is known to be
748 // invariant while that function is executing.
749 if (const Argument *Arg = dyn_cast<Argument>(Val: V)) {
750 if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) {
751 Result |= ModRefInfo::Ref;
752 continue;
753 }
754 }
755
756 // A global constant can't be mutated.
757 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: V)) {
758 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
759 // global to be marked constant in some modules and non-constant in
760 // others. GV may even be a declaration, not a definition.
761 if (!GV->isConstant())
762 return ModRefInfo::ModRef;
763 continue;
764 }
765
766 // If both select values point to local memory, then so does the select.
767 if (const SelectInst *SI = dyn_cast<SelectInst>(Val: V)) {
768 Worklist.push_back(Elt: SI->getTrueValue());
769 Worklist.push_back(Elt: SI->getFalseValue());
770 continue;
771 }
772
773 // If all values incoming to a phi node point to local memory, then so does
774 // the phi.
775 if (const PHINode *PN = dyn_cast<PHINode>(Val: V)) {
776 // Don't bother inspecting phi nodes with many operands.
777 if (PN->getNumIncomingValues() > MaxLookup)
778 return ModRefInfo::ModRef;
779 append_range(C&: Worklist, R: PN->incoming_values());
780 continue;
781 }
782
783 // Otherwise be conservative.
784 return ModRefInfo::ModRef;
785 } while (!Worklist.empty() && --MaxLookup);
786
787 // If we hit the maximum number of instructions to examine, be conservative.
788 if (!Worklist.empty())
789 return ModRefInfo::ModRef;
790
791 return Result;
792}
793
794static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
795 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Call);
796 return II && II->getIntrinsicID() == IID;
797}
798
799/// Returns the behavior when calling the given call site.
800MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call,
801 AAQueryInfo &AAQI) {
802 MemoryEffects Min = Call->getAttributes().getMemoryEffects();
803
804 if (const Function *F = dyn_cast<Function>(Val: Call->getCalledOperand())) {
805 MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F);
806 // Operand bundles on the call may also read or write memory, in addition
807 // to the behavior of the called function.
808 if (Call->hasReadingOperandBundles())
809 FuncME |= MemoryEffects::readOnly();
810 if (Call->hasClobberingOperandBundles())
811 FuncME |= MemoryEffects::writeOnly();
812 Min &= FuncME;
813 }
814
815 return Min;
816}
817
818/// Returns the behavior when calling the given function. For use when the call
819/// site is not known.
820MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) {
821 switch (F->getIntrinsicID()) {
822 case Intrinsic::experimental_guard:
823 case Intrinsic::experimental_deoptimize:
824 // These intrinsics can read arbitrary memory, and additionally modref
825 // inaccessible memory to model control dependence.
826 return MemoryEffects::readOnly() |
827 MemoryEffects::inaccessibleMemOnly(MR: ModRefInfo::ModRef);
828 }
829
830 return F->getMemoryEffects();
831}
832
833ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
834 unsigned ArgIdx) {
835 if (Call->paramHasAttr(ArgNo: ArgIdx, Attribute::Kind: WriteOnly))
836 return ModRefInfo::Mod;
837
838 if (Call->paramHasAttr(ArgNo: ArgIdx, Attribute::Kind: ReadOnly))
839 return ModRefInfo::Ref;
840
841 if (Call->paramHasAttr(ArgNo: ArgIdx, Attribute::Kind: ReadNone))
842 return ModRefInfo::NoModRef;
843
844 return ModRefInfo::ModRef;
845}
846
847#ifndef NDEBUG
848static const Function *getParent(const Value *V) {
849 if (const Instruction *inst = dyn_cast<Instruction>(Val: V)) {
850 if (!inst->getParent())
851 return nullptr;
852 return inst->getParent()->getParent();
853 }
854
855 if (const Argument *arg = dyn_cast<Argument>(Val: V))
856 return arg->getParent();
857
858 return nullptr;
859}
860
861static bool notDifferentParent(const Value *O1, const Value *O2) {
862
863 const Function *F1 = getParent(V: O1);
864 const Function *F2 = getParent(V: O2);
865
866 return !F1 || !F2 || F1 == F2;
867}
868#endif
869
870AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
871 const MemoryLocation &LocB, AAQueryInfo &AAQI,
872 const Instruction *CtxI) {
873 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
874 "BasicAliasAnalysis doesn't support interprocedural queries.");
875 return aliasCheck(V1: LocA.Ptr, V1Size: LocA.Size, V2: LocB.Ptr, V2Size: LocB.Size, AAQI, CtxI);
876}
877
878/// Checks to see if the specified callsite can clobber the specified memory
879/// object.
880///
881/// Since we only look at local properties of this function, we really can't
882/// say much about this query. We do, however, use simple "address taken"
883/// analysis on local objects.
884ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
885 const MemoryLocation &Loc,
886 AAQueryInfo &AAQI) {
887 assert(notDifferentParent(Call, Loc.Ptr) &&
888 "AliasAnalysis query involving multiple functions!");
889
890 const Value *Object = getUnderlyingObject(V: Loc.Ptr);
891
892 // Calls marked 'tail' cannot read or write allocas from the current frame
893 // because the current frame might be destroyed by the time they run. However,
894 // a tail call may use an alloca with byval. Calling with byval copies the
895 // contents of the alloca into argument registers or stack slots, so there is
896 // no lifetime issue.
897 if (isa<AllocaInst>(Val: Object))
898 if (const CallInst *CI = dyn_cast<CallInst>(Val: Call))
899 if (CI->isTailCall() &&
900 !CI->getAttributes().hasAttrSomewhere(Attribute::Kind: ByVal))
901 return ModRefInfo::NoModRef;
902
903 // Stack restore is able to modify unescaped dynamic allocas. Assume it may
904 // modify them even though the alloca is not escaped.
905 if (auto *AI = dyn_cast<AllocaInst>(Val: Object))
906 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
907 return ModRefInfo::Mod;
908
909 // A call can access a locally allocated object either because it is passed as
910 // an argument to the call, or because it has escaped prior to the call.
911 //
912 // Make sure the object has not escaped here, and then check that none of the
913 // call arguments alias the object below.
914 if (!isa<Constant>(Val: Object) && Call != Object &&
915 AAQI.CI->isNotCapturedBefore(Object, I: Call, /*OrAt*/ false)) {
916
917 // Optimistically assume that call doesn't touch Object and check this
918 // assumption in the following loop.
919 ModRefInfo Result = ModRefInfo::NoModRef;
920
921 unsigned OperandNo = 0;
922 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
923 CI != CE; ++CI, ++OperandNo) {
924 if (!(*CI)->getType()->isPointerTy())
925 continue;
926
927 // Call doesn't access memory through this operand, so we don't care
928 // if it aliases with Object.
929 if (Call->doesNotAccessMemory(OpNo: OperandNo))
930 continue;
931
932 // If this is a no-capture pointer argument, see if we can tell that it
933 // is impossible to alias the pointer we're checking.
934 AliasResult AR =
935 AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: *CI),
936 LocB: MemoryLocation::getBeforeOrAfter(Ptr: Object), AAQI);
937 // Operand doesn't alias 'Object', continue looking for other aliases
938 if (AR == AliasResult::NoAlias)
939 continue;
940 // Operand aliases 'Object', but call doesn't modify it. Strengthen
941 // initial assumption and keep looking in case if there are more aliases.
942 if (Call->onlyReadsMemory(OpNo: OperandNo)) {
943 Result |= ModRefInfo::Ref;
944 continue;
945 }
946 // Operand aliases 'Object' but call only writes into it.
947 if (Call->onlyWritesMemory(OpNo: OperandNo)) {
948 Result |= ModRefInfo::Mod;
949 continue;
950 }
951 // This operand aliases 'Object' and call reads and writes into it.
952 // Setting ModRef will not yield an early return below, MustAlias is not
953 // used further.
954 Result = ModRefInfo::ModRef;
955 break;
956 }
957
958 // Early return if we improved mod ref information
959 if (!isModAndRefSet(MRI: Result))
960 return Result;
961 }
962
963 // If the call is malloc/calloc like, we can assume that it doesn't
964 // modify any IR visible value. This is only valid because we assume these
965 // routines do not read values visible in the IR. TODO: Consider special
966 // casing realloc and strdup routines which access only their arguments as
967 // well. Or alternatively, replace all of this with inaccessiblememonly once
968 // that's implemented fully.
969 if (isMallocOrCallocLikeFn(V: Call, TLI: &TLI)) {
970 // Be conservative if the accessed pointer may alias the allocation -
971 // fallback to the generic handling below.
972 if (AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: Call), LocB: Loc, AAQI) ==
973 AliasResult::NoAlias)
974 return ModRefInfo::NoModRef;
975 }
976
977 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
978 // writing so that proper control dependencies are maintained but they never
979 // mod any particular memory location visible to the IR.
980 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
981 // intrinsic is now modeled as reading memory. This prevents hoisting the
982 // invariant.start intrinsic over stores. Consider:
983 // *ptr = 40;
984 // *ptr = 50;
985 // invariant_start(ptr)
986 // int val = *ptr;
987 // print(val);
988 //
989 // This cannot be transformed to:
990 //
991 // *ptr = 40;
992 // invariant_start(ptr)
993 // *ptr = 50;
994 // int val = *ptr;
995 // print(val);
996 //
997 // The transformation will cause the second store to be ignored (based on
998 // rules of invariant.start) and print 40, while the first program always
999 // prints 50.
1000 if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1001 return ModRefInfo::Ref;
1002
1003 // Be conservative.
1004 return ModRefInfo::ModRef;
1005}
1006
1007ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1008 const CallBase *Call2,
1009 AAQueryInfo &AAQI) {
1010 // Guard intrinsics are marked as arbitrarily writing so that proper control
1011 // dependencies are maintained but they never mods any particular memory
1012 // location.
1013 //
1014 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1015 // heap state at the point the guard is issued needs to be consistent in case
1016 // the guard invokes the "deopt" continuation.
1017
1018 // NB! This function is *not* commutative, so we special case two
1019 // possibilities for guard intrinsics.
1020
1021 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1022 return isModSet(MRI: getMemoryEffects(Call: Call2, AAQI).getModRef())
1023 ? ModRefInfo::Ref
1024 : ModRefInfo::NoModRef;
1025
1026 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1027 return isModSet(MRI: getMemoryEffects(Call: Call1, AAQI).getModRef())
1028 ? ModRefInfo::Mod
1029 : ModRefInfo::NoModRef;
1030
1031 // Be conservative.
1032 return ModRefInfo::ModRef;
1033}
1034
1035/// Return true if we know V to the base address of the corresponding memory
1036/// object. This implies that any address less than V must be out of bounds
1037/// for the underlying object. Note that just being isIdentifiedObject() is
1038/// not enough - For example, a negative offset from a noalias argument or call
1039/// can be inbounds w.r.t the actual underlying object.
1040static bool isBaseOfObject(const Value *V) {
1041 // TODO: We can handle other cases here
1042 // 1) For GC languages, arguments to functions are often required to be
1043 // base pointers.
1044 // 2) Result of allocation routines are often base pointers. Leverage TLI.
1045 return (isa<AllocaInst>(Val: V) || isa<GlobalVariable>(Val: V));
1046}
1047
1048/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1049/// another pointer.
1050///
1051/// We know that V1 is a GEP, but we don't know anything about V2.
1052/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1053/// V2.
1054AliasResult BasicAAResult::aliasGEP(
1055 const GEPOperator *GEP1, LocationSize V1Size,
1056 const Value *V2, LocationSize V2Size,
1057 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1058 if (!V1Size.hasValue() && !V2Size.hasValue()) {
1059 // TODO: This limitation exists for compile-time reasons. Relax it if we
1060 // can avoid exponential pathological cases.
1061 if (!isa<GEPOperator>(Val: V2))
1062 return AliasResult::MayAlias;
1063
1064 // If both accesses have unknown size, we can only check whether the base
1065 // objects don't alias.
1066 AliasResult BaseAlias =
1067 AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: UnderlyingV1),
1068 LocB: MemoryLocation::getBeforeOrAfter(Ptr: UnderlyingV2), AAQI);
1069 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1070 : AliasResult::MayAlias;
1071 }
1072
1073 DominatorTree *DT = getDT(AAQI);
1074 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(V: GEP1, DL, AC: &AC, DT);
1075 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V: V2, DL, AC: &AC, DT);
1076
1077 // Bail if we were not able to decompose anything.
1078 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1079 return AliasResult::MayAlias;
1080
1081 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1082 // symbolic difference.
1083 subtractDecomposedGEPs(DestGEP&: DecompGEP1, SrcGEP: DecompGEP2, AAQI);
1084
1085 // If an inbounds GEP would have to start from an out of bounds address
1086 // for the two to alias, then we can assume noalias.
1087 // TODO: Remove !isScalable() once BasicAA fully support scalable location
1088 // size
1089 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1090 V2Size.hasValue() && !V2Size.isScalable() &&
1091 DecompGEP1.Offset.sge(RHS: V2Size.getValue()) &&
1092 isBaseOfObject(V: DecompGEP2.Base))
1093 return AliasResult::NoAlias;
1094
1095 if (isa<GEPOperator>(Val: V2)) {
1096 // Symmetric case to above.
1097 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1098 V1Size.hasValue() && !V1Size.isScalable() &&
1099 DecompGEP1.Offset.sle(RHS: -V1Size.getValue()) &&
1100 isBaseOfObject(V: DecompGEP1.Base))
1101 return AliasResult::NoAlias;
1102 }
1103
1104 // For GEPs with identical offsets, we can preserve the size and AAInfo
1105 // when performing the alias check on the underlying objects.
1106 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1107 return AAQI.AAR.alias(LocA: MemoryLocation(DecompGEP1.Base, V1Size),
1108 LocB: MemoryLocation(DecompGEP2.Base, V2Size), AAQI);
1109
1110 // Do the base pointers alias?
1111 AliasResult BaseAlias =
1112 AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: DecompGEP1.Base),
1113 LocB: MemoryLocation::getBeforeOrAfter(Ptr: DecompGEP2.Base), AAQI);
1114
1115 // If we get a No or May, then return it immediately, no amount of analysis
1116 // will improve this situation.
1117 if (BaseAlias != AliasResult::MustAlias) {
1118 assert(BaseAlias == AliasResult::NoAlias ||
1119 BaseAlias == AliasResult::MayAlias);
1120 return BaseAlias;
1121 }
1122
1123 // If there is a constant difference between the pointers, but the difference
1124 // is less than the size of the associated memory object, then we know
1125 // that the objects are partially overlapping. If the difference is
1126 // greater, we know they do not overlap.
1127 if (DecompGEP1.VarIndices.empty()) {
1128 APInt &Off = DecompGEP1.Offset;
1129
1130 // Initialize for Off >= 0 (V2 <= GEP1) case.
1131 const Value *LeftPtr = V2;
1132 const Value *RightPtr = GEP1;
1133 LocationSize VLeftSize = V2Size;
1134 LocationSize VRightSize = V1Size;
1135 const bool Swapped = Off.isNegative();
1136
1137 if (Swapped) {
1138 // Swap if we have the situation where:
1139 // + +
1140 // | BaseOffset |
1141 // ---------------->|
1142 // |-->V1Size |-------> V2Size
1143 // GEP1 V2
1144 std::swap(a&: LeftPtr, b&: RightPtr);
1145 std::swap(a&: VLeftSize, b&: VRightSize);
1146 Off = -Off;
1147 }
1148
1149 if (!VLeftSize.hasValue())
1150 return AliasResult::MayAlias;
1151
1152 const TypeSize LSize = VLeftSize.getValue();
1153 if (!LSize.isScalable()) {
1154 if (Off.ult(RHS: LSize)) {
1155 // Conservatively drop processing if a phi was visited and/or offset is
1156 // too big.
1157 AliasResult AR = AliasResult::PartialAlias;
1158 if (VRightSize.hasValue() && !VRightSize.isScalable() &&
1159 Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(RHS: LSize)) {
1160 // Memory referenced by right pointer is nested. Save the offset in
1161 // cache. Note that originally offset estimated as GEP1-V2, but
1162 // AliasResult contains the shift that represents GEP1+Offset=V2.
1163 AR.setOffset(-Off.getSExtValue());
1164 AR.swap(DoSwap: Swapped);
1165 }
1166 return AR;
1167 }
1168 return AliasResult::NoAlias;
1169 } else {
1170 // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize).
1171 ConstantRange CR = getVScaleRange(F: &F, BitWidth: Off.getBitWidth());
1172 bool Overflow;
1173 APInt UpperRange = CR.getUnsignedMax().umul_ov(
1174 RHS: APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow);
1175 if (!Overflow && Off.uge(RHS: UpperRange))
1176 return AliasResult::NoAlias;
1177 }
1178 }
1179
1180 // VScale Alias Analysis - Given one scalable offset between accesses and a
1181 // scalable typesize, we can divide each side by vscale, treating both values
1182 // as a constant. We prove that Offset/vscale >= TypeSize/vscale.
1183 if (DecompGEP1.VarIndices.size() == 1 &&
1184 DecompGEP1.VarIndices[0].Val.TruncBits == 0 &&
1185 DecompGEP1.Offset.isZero() &&
1186 PatternMatch::match(V: DecompGEP1.VarIndices[0].Val.V,
1187 P: PatternMatch::m_VScale())) {
1188 const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0];
1189 APInt Scale =
1190 ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale;
1191 LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size;
1192
1193 // Check if the offset is known to not overflow, if it does then attempt to
1194 // prove it with the known values of vscale_range.
1195 bool Overflows = !DecompGEP1.VarIndices[0].IsNSW;
1196 if (Overflows) {
1197 ConstantRange CR = getVScaleRange(F: &F, BitWidth: Scale.getBitWidth());
1198 (void)CR.getSignedMax().smul_ov(RHS: Scale, Overflow&: Overflows);
1199 }
1200
1201 if (!Overflows) {
1202 // Note that we do not check that the typesize is scalable, as vscale >= 1
1203 // so noalias still holds so long as the dependency distance is at least
1204 // as big as the typesize.
1205 if (VLeftSize.hasValue() &&
1206 Scale.abs().uge(RHS: VLeftSize.getValue().getKnownMinValue()))
1207 return AliasResult::NoAlias;
1208 }
1209 }
1210
1211 // Bail on analysing scalable LocationSize
1212 if (V1Size.isScalable() || V2Size.isScalable())
1213 return AliasResult::MayAlias;
1214
1215 // We need to know both acess sizes for all the following heuristics.
1216 if (!V1Size.hasValue() || !V2Size.hasValue())
1217 return AliasResult::MayAlias;
1218
1219 APInt GCD;
1220 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
1221 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1222 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1223 const APInt &Scale = Index.Scale;
1224 APInt ScaleForGCD = Scale;
1225 if (!Index.IsNSW)
1226 ScaleForGCD =
1227 APInt::getOneBitSet(numBits: Scale.getBitWidth(), BitNo: Scale.countr_zero());
1228
1229 if (i == 0)
1230 GCD = ScaleForGCD.abs();
1231 else
1232 GCD = APIntOps::GreatestCommonDivisor(A: GCD, B: ScaleForGCD.abs());
1233
1234 ConstantRange CR = computeConstantRange(V: Index.Val.V, /* ForSigned */ false,
1235 UseInstrInfo: true, AC: &AC, CtxI: Index.CxtI);
1236 KnownBits Known =
1237 computeKnownBits(V: Index.Val.V, DL, Depth: 0, AC: &AC, CxtI: Index.CxtI, DT);
1238 CR = CR.intersectWith(
1239 CR: ConstantRange::fromKnownBits(Known, /* Signed */ IsSigned: true),
1240 Type: ConstantRange::Signed);
1241 CR = Index.Val.evaluateWith(N: CR).sextOrTrunc(BitWidth: OffsetRange.getBitWidth());
1242
1243 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
1244 "Bit widths are normalized to MaxIndexSize");
1245 if (Index.IsNSW)
1246 CR = CR.smul_sat(Other: ConstantRange(Scale));
1247 else
1248 CR = CR.smul_fast(Other: ConstantRange(Scale));
1249
1250 if (Index.IsNegated)
1251 OffsetRange = OffsetRange.sub(Other: CR);
1252 else
1253 OffsetRange = OffsetRange.add(Other: CR);
1254 }
1255
1256 // We now have accesses at two offsets from the same base:
1257 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size
1258 // 2. 0 with size V2Size
1259 // Using arithmetic modulo GCD, the accesses are at
1260 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1261 // into the range [V2Size..GCD), then we know they cannot overlap.
1262 APInt ModOffset = DecompGEP1.Offset.srem(RHS: GCD);
1263 if (ModOffset.isNegative())
1264 ModOffset += GCD; // We want mod, not rem.
1265 if (ModOffset.uge(RHS: V2Size.getValue()) &&
1266 (GCD - ModOffset).uge(RHS: V1Size.getValue()))
1267 return AliasResult::NoAlias;
1268
1269 // Compute ranges of potentially accessed bytes for both accesses. If the
1270 // interseciton is empty, there can be no overlap.
1271 unsigned BW = OffsetRange.getBitWidth();
1272 ConstantRange Range1 = OffsetRange.add(
1273 Other: ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
1274 ConstantRange Range2 =
1275 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
1276 if (Range1.intersectWith(CR: Range2).isEmptySet())
1277 return AliasResult::NoAlias;
1278
1279 // Try to determine the range of values for VarIndex such that
1280 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
1281 std::optional<APInt> MinAbsVarIndex;
1282 if (DecompGEP1.VarIndices.size() == 1) {
1283 // VarIndex = Scale*V.
1284 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1285 if (Var.Val.TruncBits == 0 &&
1286 isKnownNonZero(V: Var.Val.V, DL, Depth: 0, AC: &AC, CxtI: Var.CxtI, DT)) {
1287 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of
1288 // potentially wrapping math.
1289 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) {
1290 if (Var.IsNSW)
1291 return true;
1292
1293 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits();
1294 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds.
1295 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a
1296 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap.
1297 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW;
1298 if (MaxScaleValueBW <= 0)
1299 return false;
1300 return Var.Scale.ule(
1301 RHS: APInt::getMaxValue(numBits: MaxScaleValueBW).zext(width: Var.Scale.getBitWidth()));
1302 };
1303 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the
1304 // presence of potentially wrapping math.
1305 if (MultiplyByScaleNoWrap(Var)) {
1306 // If V != 0 then abs(VarIndex) >= abs(Scale).
1307 MinAbsVarIndex = Var.Scale.abs();
1308 }
1309 }
1310 } else if (DecompGEP1.VarIndices.size() == 2) {
1311 // VarIndex = Scale*V0 + (-Scale)*V1.
1312 // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1313 // Check that MayBeCrossIteration is false, to avoid reasoning about
1314 // inequality of values across loop iterations.
1315 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1316 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1317 if (Var0.hasNegatedScaleOf(Other: Var1) && Var0.Val.TruncBits == 0 &&
1318 Var0.Val.hasSameCastsAs(Other: Var1.Val) && !AAQI.MayBeCrossIteration &&
1319 isKnownNonEqual(V1: Var0.Val.V, V2: Var1.Val.V, DL, AC: &AC, /* CxtI */ nullptr,
1320 DT))
1321 MinAbsVarIndex = Var0.Scale.abs();
1322 }
1323
1324 if (MinAbsVarIndex) {
1325 // The constant offset will have added at least +/-MinAbsVarIndex to it.
1326 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1327 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1328 // We know that Offset <= OffsetLo || Offset >= OffsetHi
1329 if (OffsetLo.isNegative() && (-OffsetLo).uge(RHS: V1Size.getValue()) &&
1330 OffsetHi.isNonNegative() && OffsetHi.uge(RHS: V2Size.getValue()))
1331 return AliasResult::NoAlias;
1332 }
1333
1334 if (constantOffsetHeuristic(GEP: DecompGEP1, V1Size, V2Size, AC: &AC, DT, AAQI))
1335 return AliasResult::NoAlias;
1336
1337 // Statically, we can see that the base objects are the same, but the
1338 // pointers have dynamic offsets which we can't resolve. And none of our
1339 // little tricks above worked.
1340 return AliasResult::MayAlias;
1341}
1342
1343static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1344 // If the results agree, take it.
1345 if (A == B)
1346 return A;
1347 // A mix of PartialAlias and MustAlias is PartialAlias.
1348 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1349 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1350 return AliasResult::PartialAlias;
1351 // Otherwise, we don't know anything.
1352 return AliasResult::MayAlias;
1353}
1354
1355/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1356/// against another.
1357AliasResult
1358BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1359 const Value *V2, LocationSize V2Size,
1360 AAQueryInfo &AAQI) {
1361 // If the values are Selects with the same condition, we can do a more precise
1362 // check: just check for aliases between the values on corresponding arms.
1363 if (const SelectInst *SI2 = dyn_cast<SelectInst>(Val: V2))
1364 if (isValueEqualInPotentialCycles(V1: SI->getCondition(), V2: SI2->getCondition(),
1365 AAQI)) {
1366 AliasResult Alias =
1367 AAQI.AAR.alias(LocA: MemoryLocation(SI->getTrueValue(), SISize),
1368 LocB: MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1369 if (Alias == AliasResult::MayAlias)
1370 return AliasResult::MayAlias;
1371 AliasResult ThisAlias =
1372 AAQI.AAR.alias(LocA: MemoryLocation(SI->getFalseValue(), SISize),
1373 LocB: MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1374 return MergeAliasResults(A: ThisAlias, B: Alias);
1375 }
1376
1377 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1378 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1379 AliasResult Alias = AAQI.AAR.alias(LocA: MemoryLocation(SI->getTrueValue(), SISize),
1380 LocB: MemoryLocation(V2, V2Size), AAQI);
1381 if (Alias == AliasResult::MayAlias)
1382 return AliasResult::MayAlias;
1383
1384 AliasResult ThisAlias =
1385 AAQI.AAR.alias(LocA: MemoryLocation(SI->getFalseValue(), SISize),
1386 LocB: MemoryLocation(V2, V2Size), AAQI);
1387 return MergeAliasResults(A: ThisAlias, B: Alias);
1388}
1389
1390/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1391/// another.
1392AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1393 const Value *V2, LocationSize V2Size,
1394 AAQueryInfo &AAQI) {
1395 if (!PN->getNumIncomingValues())
1396 return AliasResult::NoAlias;
1397 // If the values are PHIs in the same block, we can do a more precise
1398 // as well as efficient check: just check for aliases between the values
1399 // on corresponding edges.
1400 if (const PHINode *PN2 = dyn_cast<PHINode>(Val: V2))
1401 if (PN2->getParent() == PN->getParent()) {
1402 std::optional<AliasResult> Alias;
1403 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1404 AliasResult ThisAlias = AAQI.AAR.alias(
1405 LocA: MemoryLocation(PN->getIncomingValue(i), PNSize),
1406 LocB: MemoryLocation(
1407 PN2->getIncomingValueForBlock(BB: PN->getIncomingBlock(i)), V2Size),
1408 AAQI);
1409 if (Alias)
1410 *Alias = MergeAliasResults(A: *Alias, B: ThisAlias);
1411 else
1412 Alias = ThisAlias;
1413 if (*Alias == AliasResult::MayAlias)
1414 break;
1415 }
1416 return *Alias;
1417 }
1418
1419 SmallVector<Value *, 4> V1Srcs;
1420 // If a phi operand recurses back to the phi, we can still determine NoAlias
1421 // if we don't alias the underlying objects of the other phi operands, as we
1422 // know that the recursive phi needs to be based on them in some way.
1423 bool isRecursive = false;
1424 auto CheckForRecPhi = [&](Value *PV) {
1425 if (!EnableRecPhiAnalysis)
1426 return false;
1427 if (getUnderlyingObject(V: PV) == PN) {
1428 isRecursive = true;
1429 return true;
1430 }
1431 return false;
1432 };
1433
1434 SmallPtrSet<Value *, 4> UniqueSrc;
1435 Value *OnePhi = nullptr;
1436 for (Value *PV1 : PN->incoming_values()) {
1437 // Skip the phi itself being the incoming value.
1438 if (PV1 == PN)
1439 continue;
1440
1441 if (isa<PHINode>(Val: PV1)) {
1442 if (OnePhi && OnePhi != PV1) {
1443 // To control potential compile time explosion, we choose to be
1444 // conserviate when we have more than one Phi input. It is important
1445 // that we handle the single phi case as that lets us handle LCSSA
1446 // phi nodes and (combined with the recursive phi handling) simple
1447 // pointer induction variable patterns.
1448 return AliasResult::MayAlias;
1449 }
1450 OnePhi = PV1;
1451 }
1452
1453 if (CheckForRecPhi(PV1))
1454 continue;
1455
1456 if (UniqueSrc.insert(Ptr: PV1).second)
1457 V1Srcs.push_back(Elt: PV1);
1458 }
1459
1460 if (OnePhi && UniqueSrc.size() > 1)
1461 // Out of an abundance of caution, allow only the trivial lcssa and
1462 // recursive phi cases.
1463 return AliasResult::MayAlias;
1464
1465 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1466 // value. This should only be possible in blocks unreachable from the entry
1467 // block, but return MayAlias just in case.
1468 if (V1Srcs.empty())
1469 return AliasResult::MayAlias;
1470
1471 // If this PHI node is recursive, indicate that the pointer may be moved
1472 // across iterations. We can only prove NoAlias if different underlying
1473 // objects are involved.
1474 if (isRecursive)
1475 PNSize = LocationSize::beforeOrAfterPointer();
1476
1477 // In the recursive alias queries below, we may compare values from two
1478 // different loop iterations.
1479 SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true);
1480
1481 AliasResult Alias = AAQI.AAR.alias(LocA: MemoryLocation(V1Srcs[0], PNSize),
1482 LocB: MemoryLocation(V2, V2Size), AAQI);
1483
1484 // Early exit if the check of the first PHI source against V2 is MayAlias.
1485 // Other results are not possible.
1486 if (Alias == AliasResult::MayAlias)
1487 return AliasResult::MayAlias;
1488 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1489 // remain valid to all elements and needs to conservatively return MayAlias.
1490 if (isRecursive && Alias != AliasResult::NoAlias)
1491 return AliasResult::MayAlias;
1492
1493 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1494 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1495 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1496 Value *V = V1Srcs[i];
1497
1498 AliasResult ThisAlias = AAQI.AAR.alias(
1499 LocA: MemoryLocation(V, PNSize), LocB: MemoryLocation(V2, V2Size), AAQI);
1500 Alias = MergeAliasResults(A: ThisAlias, B: Alias);
1501 if (Alias == AliasResult::MayAlias)
1502 break;
1503 }
1504
1505 return Alias;
1506}
1507
1508/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1509/// array references.
1510AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1511 const Value *V2, LocationSize V2Size,
1512 AAQueryInfo &AAQI,
1513 const Instruction *CtxI) {
1514 // If either of the memory references is empty, it doesn't matter what the
1515 // pointer values are.
1516 if (V1Size.isZero() || V2Size.isZero())
1517 return AliasResult::NoAlias;
1518
1519 // Strip off any casts if they exist.
1520 V1 = V1->stripPointerCastsForAliasAnalysis();
1521 V2 = V2->stripPointerCastsForAliasAnalysis();
1522
1523 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1524 // value for undef that aliases nothing in the program.
1525 if (isa<UndefValue>(Val: V1) || isa<UndefValue>(Val: V2))
1526 return AliasResult::NoAlias;
1527
1528 // Are we checking for alias of the same value?
1529 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1530 // different iterations. We must therefore make sure that this is not the
1531 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1532 // happen by looking at the visited phi nodes and making sure they cannot
1533 // reach the value.
1534 if (isValueEqualInPotentialCycles(V1, V2, AAQI))
1535 return AliasResult::MustAlias;
1536
1537 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1538 return AliasResult::NoAlias; // Scalars cannot alias each other
1539
1540 // Figure out what objects these things are pointing to if we can.
1541 const Value *O1 = getUnderlyingObject(V: V1, MaxLookup: MaxLookupSearchDepth);
1542 const Value *O2 = getUnderlyingObject(V: V2, MaxLookup: MaxLookupSearchDepth);
1543
1544 // Null values in the default address space don't point to any object, so they
1545 // don't alias any other pointer.
1546 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(Val: O1))
1547 if (!NullPointerIsDefined(F: &F, AS: CPN->getType()->getAddressSpace()))
1548 return AliasResult::NoAlias;
1549 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(Val: O2))
1550 if (!NullPointerIsDefined(F: &F, AS: CPN->getType()->getAddressSpace()))
1551 return AliasResult::NoAlias;
1552
1553 if (O1 != O2) {
1554 // If V1/V2 point to two different objects, we know that we have no alias.
1555 if (isIdentifiedObject(V: O1) && isIdentifiedObject(V: O2))
1556 return AliasResult::NoAlias;
1557
1558 // Function arguments can't alias with things that are known to be
1559 // unambigously identified at the function level.
1560 if ((isa<Argument>(Val: O1) && isIdentifiedFunctionLocal(V: O2)) ||
1561 (isa<Argument>(Val: O2) && isIdentifiedFunctionLocal(V: O1)))
1562 return AliasResult::NoAlias;
1563
1564 // If one pointer is the result of a call/invoke or load and the other is a
1565 // non-escaping local object within the same function, then we know the
1566 // object couldn't escape to a point where the call could return it.
1567 //
1568 // Note that if the pointers are in different functions, there are a
1569 // variety of complications. A call with a nocapture argument may still
1570 // temporary store the nocapture argument's value in a temporary memory
1571 // location if that memory location doesn't escape. Or it may pass a
1572 // nocapture value to other functions as long as they don't capture it.
1573 if (isEscapeSource(V: O1) && AAQI.CI->isNotCapturedBefore(
1574 Object: O2, I: dyn_cast<Instruction>(Val: O1), /*OrAt*/ true))
1575 return AliasResult::NoAlias;
1576 if (isEscapeSource(V: O2) && AAQI.CI->isNotCapturedBefore(
1577 Object: O1, I: dyn_cast<Instruction>(Val: O2), /*OrAt*/ true))
1578 return AliasResult::NoAlias;
1579 }
1580
1581 // If the size of one access is larger than the entire object on the other
1582 // side, then we know such behavior is undefined and can assume no alias.
1583 bool NullIsValidLocation = NullPointerIsDefined(F: &F);
1584 if ((isObjectSmallerThan(
1585 V: O2, Size: getMinimalExtentFrom(V: *V1, LocSize: V1Size, DL, NullIsValidLoc: NullIsValidLocation), DL,
1586 TLI, NullIsValidLoc: NullIsValidLocation)) ||
1587 (isObjectSmallerThan(
1588 V: O1, Size: getMinimalExtentFrom(V: *V2, LocSize: V2Size, DL, NullIsValidLoc: NullIsValidLocation), DL,
1589 TLI, NullIsValidLoc: NullIsValidLocation)))
1590 return AliasResult::NoAlias;
1591
1592 if (EnableSeparateStorageAnalysis) {
1593 for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(V: O1)) {
1594 if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx)
1595 continue;
1596
1597 AssumeInst *Assume = cast<AssumeInst>(Val&: Elem);
1598 OperandBundleUse OBU = Assume->getOperandBundleAt(Index: Elem.Index);
1599 if (OBU.getTagName() == "separate_storage") {
1600 assert(OBU.Inputs.size() == 2);
1601 const Value *Hint1 = OBU.Inputs[0].get();
1602 const Value *Hint2 = OBU.Inputs[1].get();
1603 // This is often a no-op; instcombine rewrites this for us. No-op
1604 // getUnderlyingObject calls are fast, though.
1605 const Value *HintO1 = getUnderlyingObject(V: Hint1);
1606 const Value *HintO2 = getUnderlyingObject(V: Hint2);
1607
1608 DominatorTree *DT = getDT(AAQI);
1609 auto ValidAssumeForPtrContext = [&](const Value *Ptr) {
1610 if (const Instruction *PtrI = dyn_cast<Instruction>(Val: Ptr)) {
1611 return isValidAssumeForContext(I: Assume, CxtI: PtrI, DT,
1612 /* AllowEphemerals */ true);
1613 }
1614 if (const Argument *PtrA = dyn_cast<Argument>(Val: Ptr)) {
1615 const Instruction *FirstI =
1616 &*PtrA->getParent()->getEntryBlock().begin();
1617 return isValidAssumeForContext(I: Assume, CxtI: FirstI, DT,
1618 /* AllowEphemerals */ true);
1619 }
1620 return false;
1621 };
1622
1623 if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) {
1624 // Note that we go back to V1 and V2 for the
1625 // ValidAssumeForPtrContext checks; they're dominated by O1 and O2,
1626 // so strictly more assumptions are valid for them.
1627 if ((CtxI && isValidAssumeForContext(I: Assume, CxtI: CtxI, DT,
1628 /* AllowEphemerals */ true)) ||
1629 ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) {
1630 return AliasResult::NoAlias;
1631 }
1632 }
1633 }
1634 }
1635 }
1636
1637 // If one the accesses may be before the accessed pointer, canonicalize this
1638 // by using unknown after-pointer sizes for both accesses. This is
1639 // equivalent, because regardless of which pointer is lower, one of them
1640 // will always came after the other, as long as the underlying objects aren't
1641 // disjoint. We do this so that the rest of BasicAA does not have to deal
1642 // with accesses before the base pointer, and to improve cache utilization by
1643 // merging equivalent states.
1644 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1645 V1Size = LocationSize::afterPointer();
1646 V2Size = LocationSize::afterPointer();
1647 }
1648
1649 // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1650 // for recursive queries. For this reason, this limit is chosen to be large
1651 // enough to be very rarely hit, while still being small enough to avoid
1652 // stack overflows.
1653 if (AAQI.Depth >= 512)
1654 return AliasResult::MayAlias;
1655
1656 // Check the cache before climbing up use-def chains. This also terminates
1657 // otherwise infinitely recursive queries. Include MayBeCrossIteration in the
1658 // cache key, because some cases where MayBeCrossIteration==false returns
1659 // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true.
1660 AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration},
1661 {V2, V2Size, AAQI.MayBeCrossIteration});
1662 const bool Swapped = V1 > V2;
1663 if (Swapped)
1664 std::swap(a&: Locs.first, b&: Locs.second);
1665 const auto &Pair = AAQI.AliasCache.try_emplace(
1666 Key: Locs, Args: AAQueryInfo::CacheEntry{.Result: AliasResult::NoAlias, .NumAssumptionUses: 0});
1667 if (!Pair.second) {
1668 auto &Entry = Pair.first->second;
1669 if (!Entry.isDefinitive()) {
1670 // Remember that we used an assumption.
1671 ++Entry.NumAssumptionUses;
1672 ++AAQI.NumAssumptionUses;
1673 }
1674 // Cache contains sorted {V1,V2} pairs but we should return original order.
1675 auto Result = Entry.Result;
1676 Result.swap(DoSwap: Swapped);
1677 return Result;
1678 }
1679
1680 int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1681 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1682 AliasResult Result =
1683 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1684
1685 auto It = AAQI.AliasCache.find(Val: Locs);
1686 assert(It != AAQI.AliasCache.end() && "Must be in cache");
1687 auto &Entry = It->second;
1688
1689 // Check whether a NoAlias assumption has been used, but disproven.
1690 bool AssumptionDisproven =
1691 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1692 if (AssumptionDisproven)
1693 Result = AliasResult::MayAlias;
1694
1695 // This is a definitive result now, when considered as a root query.
1696 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1697 Entry.Result = Result;
1698 // Cache contains sorted {V1,V2} pairs.
1699 Entry.Result.swap(DoSwap: Swapped);
1700 Entry.NumAssumptionUses = -1;
1701
1702 // If the assumption has been disproven, remove any results that may have
1703 // been based on this assumption. Do this after the Entry updates above to
1704 // avoid iterator invalidation.
1705 if (AssumptionDisproven)
1706 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1707 AAQI.AliasCache.erase(Val: AAQI.AssumptionBasedResults.pop_back_val());
1708
1709 // The result may still be based on assumptions higher up in the chain.
1710 // Remember it, so it can be purged from the cache later.
1711 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1712 Result != AliasResult::MayAlias)
1713 AAQI.AssumptionBasedResults.push_back(Elt: Locs);
1714 return Result;
1715}
1716
1717AliasResult BasicAAResult::aliasCheckRecursive(
1718 const Value *V1, LocationSize V1Size,
1719 const Value *V2, LocationSize V2Size,
1720 AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1721 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(Val: V1)) {
1722 AliasResult Result = aliasGEP(GEP1: GV1, V1Size, V2, V2Size, UnderlyingV1: O1, UnderlyingV2: O2, AAQI);
1723 if (Result != AliasResult::MayAlias)
1724 return Result;
1725 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(Val: V2)) {
1726 AliasResult Result = aliasGEP(GEP1: GV2, V1Size: V2Size, V2: V1, V2Size: V1Size, UnderlyingV1: O2, UnderlyingV2: O1, AAQI);
1727 Result.swap();
1728 if (Result != AliasResult::MayAlias)
1729 return Result;
1730 }
1731
1732 if (const PHINode *PN = dyn_cast<PHINode>(Val: V1)) {
1733 AliasResult Result = aliasPHI(PN, PNSize: V1Size, V2, V2Size, AAQI);
1734 if (Result != AliasResult::MayAlias)
1735 return Result;
1736 } else if (const PHINode *PN = dyn_cast<PHINode>(Val: V2)) {
1737 AliasResult Result = aliasPHI(PN, PNSize: V2Size, V2: V1, V2Size: V1Size, AAQI);
1738 Result.swap();
1739 if (Result != AliasResult::MayAlias)
1740 return Result;
1741 }
1742
1743 if (const SelectInst *S1 = dyn_cast<SelectInst>(Val: V1)) {
1744 AliasResult Result = aliasSelect(SI: S1, SISize: V1Size, V2, V2Size, AAQI);
1745 if (Result != AliasResult::MayAlias)
1746 return Result;
1747 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(Val: V2)) {
1748 AliasResult Result = aliasSelect(SI: S2, SISize: V2Size, V2: V1, V2Size: V1Size, AAQI);
1749 Result.swap();
1750 if (Result != AliasResult::MayAlias)
1751 return Result;
1752 }
1753
1754 // If both pointers are pointing into the same object and one of them
1755 // accesses the entire object, then the accesses must overlap in some way.
1756 if (O1 == O2) {
1757 bool NullIsValidLocation = NullPointerIsDefined(F: &F);
1758 if (V1Size.isPrecise() && V2Size.isPrecise() &&
1759 (isObjectSize(V: O1, Size: V1Size.getValue(), DL, TLI, NullIsValidLoc: NullIsValidLocation) ||
1760 isObjectSize(V: O2, Size: V2Size.getValue(), DL, TLI, NullIsValidLoc: NullIsValidLocation)))
1761 return AliasResult::PartialAlias;
1762 }
1763
1764 return AliasResult::MayAlias;
1765}
1766
1767/// Check whether two Values can be considered equivalent.
1768///
1769/// If the values may come from different cycle iterations, this will also
1770/// check that the values are not part of cycle. We have to do this because we
1771/// are looking through phi nodes, that is we say
1772/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1773bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1774 const Value *V2,
1775 const AAQueryInfo &AAQI) {
1776 if (V != V2)
1777 return false;
1778
1779 if (!AAQI.MayBeCrossIteration)
1780 return true;
1781
1782 // Non-instructions and instructions in the entry block cannot be part of
1783 // a loop.
1784 const Instruction *Inst = dyn_cast<Instruction>(Val: V);
1785 if (!Inst || Inst->getParent()->isEntryBlock())
1786 return true;
1787
1788 return isNotInCycle(I: Inst, DT: getDT(AAQI), /*LI*/ nullptr);
1789}
1790
1791/// Computes the symbolic difference between two de-composed GEPs.
1792void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1793 const DecomposedGEP &SrcGEP,
1794 const AAQueryInfo &AAQI) {
1795 DestGEP.Offset -= SrcGEP.Offset;
1796 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1797 // Find V in Dest. This is N^2, but pointer indices almost never have more
1798 // than a few variable indexes.
1799 bool Found = false;
1800 for (auto I : enumerate(First&: DestGEP.VarIndices)) {
1801 VariableGEPIndex &Dest = I.value();
1802 if ((!isValueEqualInPotentialCycles(V: Dest.Val.V, V2: Src.Val.V, AAQI) &&
1803 !areBothVScale(V1: Dest.Val.V, V2: Src.Val.V)) ||
1804 !Dest.Val.hasSameCastsAs(Other: Src.Val))
1805 continue;
1806
1807 // Normalize IsNegated if we're going to lose the NSW flag anyway.
1808 if (Dest.IsNegated) {
1809 Dest.Scale = -Dest.Scale;
1810 Dest.IsNegated = false;
1811 Dest.IsNSW = false;
1812 }
1813
1814 // If we found it, subtract off Scale V's from the entry in Dest. If it
1815 // goes to zero, remove the entry.
1816 if (Dest.Scale != Src.Scale) {
1817 Dest.Scale -= Src.Scale;
1818 Dest.IsNSW = false;
1819 } else {
1820 DestGEP.VarIndices.erase(CI: DestGEP.VarIndices.begin() + I.index());
1821 }
1822 Found = true;
1823 break;
1824 }
1825
1826 // If we didn't consume this entry, add it to the end of the Dest list.
1827 if (!Found) {
1828 VariableGEPIndex Entry = {.Val: Src.Val, .Scale: Src.Scale, .CxtI: Src.CxtI, .IsNSW: Src.IsNSW,
1829 /* IsNegated */ true};
1830 DestGEP.VarIndices.push_back(Elt: Entry);
1831 }
1832 }
1833}
1834
1835bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP,
1836 LocationSize MaybeV1Size,
1837 LocationSize MaybeV2Size,
1838 AssumptionCache *AC,
1839 DominatorTree *DT,
1840 const AAQueryInfo &AAQI) {
1841 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1842 !MaybeV2Size.hasValue())
1843 return false;
1844
1845 const uint64_t V1Size = MaybeV1Size.getValue();
1846 const uint64_t V2Size = MaybeV2Size.getValue();
1847
1848 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1849
1850 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Other: Var1.Val) ||
1851 !Var0.hasNegatedScaleOf(Other: Var1) ||
1852 Var0.Val.V->getType() != Var1.Val.V->getType())
1853 return false;
1854
1855 // We'll strip off the Extensions of Var0 and Var1 and do another round
1856 // of GetLinearExpression decomposition. In the example above, if Var0
1857 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1858
1859 LinearExpression E0 =
1860 GetLinearExpression(Val: CastedValue(Var0.Val.V), DL, Depth: 0, AC, DT);
1861 LinearExpression E1 =
1862 GetLinearExpression(Val: CastedValue(Var1.Val.V), DL, Depth: 0, AC, DT);
1863 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(Other: E1.Val) ||
1864 !isValueEqualInPotentialCycles(V: E0.Val.V, V2: E1.Val.V, AAQI))
1865 return false;
1866
1867 // We have a hit - Var0 and Var1 only differ by a constant offset!
1868
1869 // If we've been sext'ed then zext'd the maximum difference between Var0 and
1870 // Var1 is possible to calculate, but we're just interested in the absolute
1871 // minimum difference between the two. The minimum distance may occur due to
1872 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1873 // the minimum distance between %i and %i + 5 is 3.
1874 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1875 MinDiff = APIntOps::umin(A: MinDiff, B: Wrapped);
1876 APInt MinDiffBytes =
1877 MinDiff.zextOrTrunc(width: Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1878
1879 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1880 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1881 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1882 // V2Size can fit in the MinDiffBytes gap.
1883 return MinDiffBytes.uge(RHS: V1Size + GEP.Offset.abs()) &&
1884 MinDiffBytes.uge(RHS: V2Size + GEP.Offset.abs());
1885}
1886
1887//===----------------------------------------------------------------------===//
1888// BasicAliasAnalysis Pass
1889//===----------------------------------------------------------------------===//
1890
1891AnalysisKey BasicAA::Key;
1892
1893BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1894 auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F);
1895 auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F);
1896 auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F);
1897 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT);
1898}
1899
1900BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1901 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1902}
1903
1904char BasicAAWrapperPass::ID = 0;
1905
1906void BasicAAWrapperPass::anchor() {}
1907
1908INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1909 "Basic Alias Analysis (stateless AA impl)", true, true)
1910INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1911INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1912INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1913INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1914 "Basic Alias Analysis (stateless AA impl)", true, true)
1915
1916FunctionPass *llvm::createBasicAAWrapperPass() {
1917 return new BasicAAWrapperPass();
1918}
1919
1920bool BasicAAWrapperPass::runOnFunction(Function &F) {
1921 auto &ACT = getAnalysis<AssumptionCacheTracker>();
1922 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1923 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1924
1925 Result.reset(p: new BasicAAResult(F.getParent()->getDataLayout(), F,
1926 TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1927 &DTWP.getDomTree()));
1928
1929 return false;
1930}
1931
1932void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1933 AU.setPreservesAll();
1934 AU.addRequiredTransitive<AssumptionCacheTracker>();
1935 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1936 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1937}
1938

source code of llvm/lib/Analysis/BasicAliasAnalysis.cpp