1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5// By downloading, copying, installing or using the software you agree to this license.
6// If you do not agree to this license, do not download, install,
7// copy or use the software.
8//
9//
10// License Agreement
11// For Open Source Computer Vision Library
12//
13// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16// Third party copyrights are property of their respective owners.
17//
18// Redistribution and use in source and binary forms, with or without modification,
19// are permitted provided that the following conditions are met:
20//
21// * Redistribution's of source code must retain the above copyright notice,
22// this list of conditions and the following disclaimer.
23//
24// * Redistribution's in binary form must reproduce the above copyright notice,
25// this list of conditions and the following disclaimer in the documentation
26// and/or other materials provided with the distribution.
27//
28// * The name of the copyright holders may not be used to endorse or promote products
29// derived from this software without specific prior written permission.
30//
31// This software is provided by the copyright holders and contributors "as is" and
32// any express or implied warranties, including, but not limited to, the implied
33// warranties of merchantability and fitness for a particular purpose are disclaimed.
34// In no event shall the Intel Corporation or contributors be liable for any direct,
35// indirect, incidental, special, exemplary, or consequential damages
36// (including, but not limited to, procurement of substitute goods or services;
37// loss of use, data, or profits; or business interruption) however caused
38// and on any theory of liability, whether in contract, strict liability,
39// or tort (including negligence or otherwise) arising in any way out of
40// the use of this software, even if advised of the possibility of such damage.
41//
42//M*/
43
44#ifndef OPENCV_CALIB3D_HPP
45#define OPENCV_CALIB3D_HPP
46
47#include "opencv2/core.hpp"
48#include "opencv2/core/types.hpp"
49#include "opencv2/features2d.hpp"
50#include "opencv2/core/affine.hpp"
51#include "opencv2/core/utils/logger.hpp"
52
53/**
54 @defgroup calib3d Camera Calibration and 3D Reconstruction
55
56The functions in this section use a so-called pinhole camera model. The view of a scene
57is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective
58transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are
59represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
60find a brief introduction to projective geometry, homogeneous vectors and homogeneous
61transformations at the end of this section's introduction. For more succinct notation, we often drop
62the 'homogeneous' and say vector instead of homogeneous vector.
63
64The distortion-free projective transformation given by a pinhole camera model is shown below.
65
66\f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f]
67
68where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system,
69\f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix,
70\f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from
71world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's
72arbitrary scaling and not part of the camera model.
73
74The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated
75as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
76
77\f[p = A P_c.\f]
78
79The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are
80expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the
81image center:
82
83\f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f]
84
85and thus
86
87\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f]
88
89The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
90be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
91camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
92respectively) by the same factor.
93
94The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective
95transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
96represented in camera coordinates to 2D points in the image plane and represented in normalized
97camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$:
98
99\f[Z_c \begin{bmatrix}
100x' \\
101y' \\
1021
103\end{bmatrix} = \begin{bmatrix}
1041 & 0 & 0 & 0 \\
1050 & 1 & 0 & 0 \\
1060 & 0 & 1 & 0
107\end{bmatrix}
108\begin{bmatrix}
109X_c \\
110Y_c \\
111Z_c \\
1121
113\end{bmatrix}.\f]
114
115The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and
116represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem
117\f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we
118obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by
119
120\f[P_c = \begin{bmatrix}
121R & t \\
1220 & 1
123\end{bmatrix} P_w,\f]
124
125This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a
1263-by-1 translation vector:
127
128\f[\begin{bmatrix}
129R & t \\
1300 & 1
131\end{bmatrix} = \begin{bmatrix}
132r_{11} & r_{12} & r_{13} & t_x \\
133r_{21} & r_{22} & r_{23} & t_y \\
134r_{31} & r_{32} & r_{33} & t_z \\
1350 & 0 & 0 & 1
136\end{bmatrix},
137\f]
138
139and therefore
140
141\f[\begin{bmatrix}
142X_c \\
143Y_c \\
144Z_c \\
1451
146\end{bmatrix} = \begin{bmatrix}
147r_{11} & r_{12} & r_{13} & t_x \\
148r_{21} & r_{22} & r_{23} & t_y \\
149r_{31} & r_{32} & r_{33} & t_z \\
1500 & 0 & 0 & 1
151\end{bmatrix}
152\begin{bmatrix}
153X_w \\
154Y_w \\
155Z_w \\
1561
157\end{bmatrix}.\f]
158
159Combining the projective transformation and the homogeneous transformation, we obtain the projective
160transformation that maps 3D points in world coordinates into 2D points in the image plane and in
161normalized camera coordinates:
162
163\f[Z_c \begin{bmatrix}
164x' \\
165y' \\
1661
167\end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix}
168X_w \\
169Y_w \\
170Z_w \\
1711
172\end{bmatrix} = \begin{bmatrix}
173r_{11} & r_{12} & r_{13} & t_x \\
174r_{21} & r_{22} & r_{23} & t_y \\
175r_{31} & r_{32} & r_{33} & t_z
176\end{bmatrix}
177\begin{bmatrix}
178X_w \\
179Y_w \\
180Z_w \\
1811
182\end{bmatrix},\f]
183
184with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out
185\f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as
186
187\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
188\begin{bmatrix}
189r_{11} & r_{12} & r_{13} & t_x \\
190r_{21} & r_{22} & r_{23} & t_y \\
191r_{31} & r_{32} & r_{33} & t_z
192\end{bmatrix}
193\begin{bmatrix}
194X_w \\
195Y_w \\
196Z_w \\
1971
198\end{bmatrix}.\f]
199
200If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following,
201
202\f[\begin{bmatrix}
203u \\
204v
205\end{bmatrix} = \begin{bmatrix}
206f_x X_c/Z_c + c_x \\
207f_y Y_c/Z_c + c_y
208\end{bmatrix}\f]
209
210with
211
212\f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix}
213R|t
214\end{bmatrix} \begin{bmatrix}
215X_w \\
216Y_w \\
217Z_w \\
2181
219\end{bmatrix}.\f]
220
221The following figure illustrates the pinhole camera model.
222
223![Pinhole camera model](pics/pinhole_camera_model.png)
224
225Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
226So, the above model is extended as:
227
228\f[\begin{bmatrix}
229u \\
230v
231\end{bmatrix} = \begin{bmatrix}
232f_x x'' + c_x \\
233f_y y'' + c_y
234\end{bmatrix}\f]
235
236where
237
238\f[\begin{bmatrix}
239x'' \\
240y''
241\end{bmatrix} = \begin{bmatrix}
242x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
243y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
244\end{bmatrix}\f]
245
246with
247
248\f[r^2 = x'^2 + y'^2\f]
249
250and
251
252\f[\begin{bmatrix}
253x'\\
254y'
255\end{bmatrix} = \begin{bmatrix}
256X_c/Z_c \\
257Y_c/Z_c
258\end{bmatrix},\f]
259
260if \f$Z_c \ne 0\f$.
261
262The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$
263,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$,
264are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
265
266The next figures show two common types of radial distortion: barrel distortion
267(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing)
268and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing).
269Radial distortion is always monotonic for real lenses,
270and if the estimator produces a non-monotonic result,
271this should be considered a calibration failure.
272More generally, radial distortion must be monotonic and the distortion function must be bijective.
273A failed estimation result may look deceptively good near the image center
274but will work poorly in e.g. AR/SFM applications.
275The optimization method used in OpenCV camera calibration does not include these constraints as
276the framework does not support the required integer programming and polynomial inequalities.
277See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
278
279![](pics/distortion_examples.png)
280![](pics/distortion_examples2.png)
281
282In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
283camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
284triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
285\f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07.
286
287\f[\begin{bmatrix}
288u \\
289v
290\end{bmatrix} = \begin{bmatrix}
291f_x x''' + c_x \\
292f_y y''' + c_y
293\end{bmatrix},\f]
294
295where
296
297\f[s\vecthree{x'''}{y'''}{1} =
298\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
299{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
300{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f]
301
302and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter
303\f$\tau_x\f$ and \f$\tau_y\f$, respectively,
304
305\f[
306R(\tau_x, \tau_y) =
307\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
308\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
309\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
310{0}{\cos(\tau_x)}{\sin(\tau_x)}
311{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
312\f]
313
314In the functions below the coefficients are passed or returned as
315
316\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
317
318vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
319coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
320parameters. And they remain the same regardless of the captured image resolution. If, for example, a
321camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
322coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$,
323\f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately.
324
325The functions below use the above model to do the following:
326
327- Project 3D points to the image plane given intrinsic and extrinsic parameters.
328- Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
329projections.
330- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
331pattern (every view is described by several 3D-2D point correspondences).
332- Estimate the relative position and orientation of the stereo camera "heads" and compute the
333*rectification* transformation that makes the camera optical axes parallel.
334
335<B> Homogeneous Coordinates </B><br>
336Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
337allows to represent points at infinity by finite coordinates and simplifies formulas when compared
338to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
339expressed as linear homogeneous transformation.
340
341One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian
342vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is:
343
344\f[\begin{bmatrix}
345X \\
346Y \\
347Z
348\end{bmatrix} \rightarrow \begin{bmatrix}
349X \\
350Y \\
351Z \\
3521
353\end{bmatrix}.\f]
354
355For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector
356by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
357
358\f[\begin{bmatrix}
359X \\
360Y \\
361W
362\end{bmatrix} \rightarrow \begin{bmatrix}
363X / W \\
364Y / W
365\end{bmatrix},\f]
366
367if \f$W \ne 0\f$.
368
369Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent
370the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective
371transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical
372observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
373projected to the same image point, e.g. all points along the red ray in the image of the pinhole
374camera model above would be mapped to the same image coordinate. This property is also the source
375for the scale ambiguity s in the equation of the pinhole camera model.
376
377As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
378\f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system
3790 to coordinate system 1 becomes:
380
381\f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix}
382R & t \\
3830 & 1
384\end{bmatrix} P_{h_0}.\f]
385
386@note
387 - Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
388 functions assume the same structure of this parameter, they may name it differently. The
389 parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
390 shown above is required.
391 - A calibration sample for 3 cameras in a horizontal position can be found at
392 opencv_source_code/samples/cpp/3calibration.cpp
393 - A calibration sample based on a sequence of images can be found at
394 opencv_source_code/samples/cpp/calibration.cpp
395 - A calibration sample in order to do 3D reconstruction can be found at
396 opencv_source_code/samples/cpp/build3dmodel.cpp
397 - A calibration example on stereo calibration can be found at
398 opencv_source_code/samples/cpp/stereo_calib.cpp
399 - A calibration example on stereo matching can be found at
400 opencv_source_code/samples/cpp/stereo_match.cpp
401 - (Python) A camera calibration sample can be found at
402 opencv_source_code/samples/python/calibrate.py
403
404 @{
405 @defgroup calib3d_fisheye Fisheye camera model
406
407 Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
408 matrix X) The coordinate vector of P in the camera reference frame is:
409
410 \f[Xc = R X + T\f]
411
412 where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
413 and z the 3 coordinates of Xc:
414
415 \f[\begin{array}{l} x = Xc_1 \\ y = Xc_2 \\ z = Xc_3 \end{array} \f]
416
417 The pinhole projection coordinates of P is [a; b] where
418
419 \f[\begin{array}{l} a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r) \end{array} \f]
420
421 Fisheye distortion:
422
423 \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
424
425 The distorted point coordinates are [x'; y'] where
426
427 \f[\begin{array}{l} x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \end{array} \f]
428
429 Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
430
431 \f[\begin{array}{l} u = f_x (x' + \alpha y') + c_x \\
432 v = f_y y' + c_y \end{array} \f]
433
434 Summary:
435 Generic camera model @cite Kannala2006 with perspective projection and without distortion correction
436
437 @}
438 */
439
440namespace cv
441{
442
443//! @addtogroup calib3d
444//! @{
445
446//! type of the robust estimation algorithm
447enum { LMEDS = 4, //!< least-median of squares algorithm
448 RANSAC = 8, //!< RANSAC algorithm
449 RHO = 16, //!< RHO algorithm
450 USAC_DEFAULT = 32, //!< USAC algorithm, default settings
451 USAC_PARALLEL = 33, //!< USAC, parallel version
452 USAC_FM_8PTS = 34, //!< USAC, fundamental matrix 8 points
453 USAC_FAST = 35, //!< USAC, fast settings
454 USAC_ACCURATE = 36, //!< USAC, accurate settings
455 USAC_PROSAC = 37, //!< USAC, sorted points, runs PROSAC
456 USAC_MAGSAC = 38 //!< USAC, runs MAGSAC++
457 };
458
459enum SolvePnPMethod {
460 SOLVEPNP_ITERATIVE = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n
461 //!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n
462 //!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
463 SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
464 SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
465 SOLVEPNP_DLS = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
466 //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
467 SOLVEPNP_UPNP = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
468 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
469 SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
470 SOLVEPNP_IPPE = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
471 //!< Object points must be coplanar.
472 SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
473 //!< This is a special case suitable for marker pose estimation.\n
474 //!< 4 coplanar object points must be defined in the following order:
475 //!< - point 0: [-squareLength / 2, squareLength / 2, 0]
476 //!< - point 1: [ squareLength / 2, squareLength / 2, 0]
477 //!< - point 2: [ squareLength / 2, -squareLength / 2, 0]
478 //!< - point 3: [-squareLength / 2, -squareLength / 2, 0]
479 SOLVEPNP_SQPNP = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
480#ifndef CV_DOXYGEN
481 SOLVEPNP_MAX_COUNT //!< Used for count
482#endif
483};
484
485enum { CALIB_CB_ADAPTIVE_THRESH = 1,
486 CALIB_CB_NORMALIZE_IMAGE = 2,
487 CALIB_CB_FILTER_QUADS = 4,
488 CALIB_CB_FAST_CHECK = 8,
489 CALIB_CB_EXHAUSTIVE = 16,
490 CALIB_CB_ACCURACY = 32,
491 CALIB_CB_LARGER = 64,
492 CALIB_CB_MARKER = 128,
493 CALIB_CB_PLAIN = 256
494 };
495
496enum { CALIB_CB_SYMMETRIC_GRID = 1,
497 CALIB_CB_ASYMMETRIC_GRID = 2,
498 CALIB_CB_CLUSTERING = 4
499 };
500
501enum { CALIB_NINTRINSIC = 18,
502 CALIB_USE_INTRINSIC_GUESS = 0x00001,
503 CALIB_FIX_ASPECT_RATIO = 0x00002,
504 CALIB_FIX_PRINCIPAL_POINT = 0x00004,
505 CALIB_ZERO_TANGENT_DIST = 0x00008,
506 CALIB_FIX_FOCAL_LENGTH = 0x00010,
507 CALIB_FIX_K1 = 0x00020,
508 CALIB_FIX_K2 = 0x00040,
509 CALIB_FIX_K3 = 0x00080,
510 CALIB_FIX_K4 = 0x00800,
511 CALIB_FIX_K5 = 0x01000,
512 CALIB_FIX_K6 = 0x02000,
513 CALIB_RATIONAL_MODEL = 0x04000,
514 CALIB_THIN_PRISM_MODEL = 0x08000,
515 CALIB_FIX_S1_S2_S3_S4 = 0x10000,
516 CALIB_TILTED_MODEL = 0x40000,
517 CALIB_FIX_TAUX_TAUY = 0x80000,
518 CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
519 CALIB_FIX_TANGENT_DIST = 0x200000,
520 // only for stereo
521 CALIB_FIX_INTRINSIC = 0x00100,
522 CALIB_SAME_FOCAL_LENGTH = 0x00200,
523 // for stereo rectification
524 CALIB_ZERO_DISPARITY = 0x00400,
525 CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
526 CALIB_USE_EXTRINSIC_GUESS = (1 << 22) //!< for stereoCalibrate
527 };
528
529//! the algorithm for finding fundamental matrix
530enum { FM_7POINT = 1, //!< 7-point algorithm
531 FM_8POINT = 2, //!< 8-point algorithm
532 FM_LMEDS = 4, //!< least-median algorithm. 7-point algorithm is used.
533 FM_RANSAC = 8 //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
534 };
535
536enum HandEyeCalibrationMethod
537{
538 CALIB_HAND_EYE_TSAI = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
539 CALIB_HAND_EYE_PARK = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
540 CALIB_HAND_EYE_HORAUD = 2, //!< Hand-eye Calibration @cite Horaud95
541 CALIB_HAND_EYE_ANDREFF = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
542 CALIB_HAND_EYE_DANIILIDIS = 4 //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
543};
544
545enum RobotWorldHandEyeCalibrationMethod
546{
547 CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
548 CALIB_ROBOT_WORLD_HAND_EYE_LI = 1 //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
549};
550
551enum SamplingMethod { SAMPLING_UNIFORM=0, SAMPLING_PROGRESSIVE_NAPSAC=1, SAMPLING_NAPSAC=2,
552 SAMPLING_PROSAC=3 };
553enum LocalOptimMethod {LOCAL_OPTIM_NULL=0, LOCAL_OPTIM_INNER_LO=1, LOCAL_OPTIM_INNER_AND_ITER_LO=2,
554 LOCAL_OPTIM_GC=3, LOCAL_OPTIM_SIGMA=4};
555enum ScoreMethod {SCORE_METHOD_RANSAC=0, SCORE_METHOD_MSAC=1, SCORE_METHOD_MAGSAC=2, SCORE_METHOD_LMEDS=3};
556enum NeighborSearchMethod { NEIGH_FLANN_KNN=0, NEIGH_GRID=1, NEIGH_FLANN_RADIUS=2 };
557enum PolishingMethod { NONE_POLISHER=0, LSQ_POLISHER=1, MAGSAC=2, COV_POLISHER=3 };
558
559struct CV_EXPORTS_W_SIMPLE UsacParams
560{ // in alphabetical order
561 CV_WRAP UsacParams();
562 CV_PROP_RW double confidence;
563 CV_PROP_RW bool isParallel;
564 CV_PROP_RW int loIterations;
565 CV_PROP_RW LocalOptimMethod loMethod;
566 CV_PROP_RW int loSampleSize;
567 CV_PROP_RW int maxIterations;
568 CV_PROP_RW NeighborSearchMethod neighborsSearch;
569 CV_PROP_RW int randomGeneratorState;
570 CV_PROP_RW SamplingMethod sampler;
571 CV_PROP_RW ScoreMethod score;
572 CV_PROP_RW double threshold;
573 CV_PROP_RW PolishingMethod final_polisher;
574 CV_PROP_RW int final_polisher_iterations;
575};
576
577/** @brief Converts a rotation matrix to a rotation vector or vice versa.
578
579@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
580@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
581@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
582derivatives of the output array components with respect to the input array components.
583
584\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta} ) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
585
586Inverse transformation can be also done easily, since
587
588\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
589
590A rotation vector is a convenient and most compact representation of a rotation matrix (since any
591rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
592optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
593
594@note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
595can be found in:
596 - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF
597
598@note Useful information on SE(3) and Lie Groups can be found in:
599 - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
600 - Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
601 - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML
602 */
603CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
604
605
606
607/** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
608 optimizes the target vector criteria "err"
609 (finds local minima of each target vector component absolute value).
610
611 When needed, it calls user-provided callback.
612*/
613class CV_EXPORTS LMSolver : public Algorithm
614{
615public:
616 class CV_EXPORTS Callback
617 {
618 public:
619 virtual ~Callback() {}
620 /**
621 computes error and Jacobian for the specified vector of parameters
622
623 @param param the current vector of parameters
624 @param err output vector of errors: err_i = actual_f_i - ideal_f_i
625 @param J output Jacobian: J_ij = d(ideal_f_i)/d(param_j)
626
627 when J=noArray(), it means that it does not need to be computed.
628 Dimensionality of error vector and param vector can be different.
629 The callback should explicitly allocate (with "create" method) each output array
630 (unless it's noArray()).
631 */
632 virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
633 };
634
635 /**
636 Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
637 The final vector of parameters (whether the algorithm converged or not) is stored at the same
638 vector. The method returns the number of iterations used. If it's equal to the previously specified
639 maxIters, there is a big chance the algorithm did not converge.
640
641 @param param initial/final vector of parameters.
642
643 Note that the dimensionality of parameter space is defined by the size of param vector,
644 and the dimensionality of optimized criteria is defined by the size of err vector
645 computed by the callback.
646 */
647 virtual int run(InputOutputArray param) const = 0;
648
649 /**
650 Sets the maximum number of iterations
651 @param maxIters the number of iterations
652 */
653 virtual void setMaxIters(int maxIters) = 0;
654 /**
655 Retrieves the current maximum number of iterations
656 */
657 virtual int getMaxIters() const = 0;
658
659 /**
660 Creates Levenberg-Marquard solver
661
662 @param cb callback
663 @param maxIters maximum number of iterations that can be further
664 modified using setMaxIters() method.
665 */
666 static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
667 static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps);
668};
669
670
671
672/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
673An example program about pose estimation from coplanar points
674
675Check @ref tutorial_homography "the corresponding tutorial" for more details
676*/
677
678/** @brief Finds a perspective transformation between two planes.
679
680@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
681or vector\<Point2f\> .
682@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
683a vector\<Point2f\> .
684@param method Method used to compute a homography matrix. The following methods are possible:
685- **0** - a regular method using all the points, i.e., the least squares method
686- @ref RANSAC - RANSAC-based robust method
687- @ref LMEDS - Least-Median robust method
688- @ref RHO - PROSAC-based robust method
689@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
690(used in the RANSAC and RHO methods only). That is, if
691\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f]
692then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
693it usually makes sense to set this parameter somewhere in the range of 1 to 10.
694@param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
695mask values are ignored.
696@param maxIters The maximum number of RANSAC iterations.
697@param confidence Confidence level, between 0 and 1.
698
699The function finds and returns the perspective transformation \f$H\f$ between the source and the
700destination planes:
701
702\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
703
704so that the back-projection error
705
706\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
707
708is minimized. If the parameter method is set to the default value 0, the function uses all the point
709pairs to compute an initial homography estimate with a simple least-squares scheme.
710
711However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
712transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
713you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
714random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
715using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
716computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
717LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
718the mask of inliers/outliers.
719
720Regardless of the method, robust or not, the computed homography matrix is refined further (using
721inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
722re-projection error even more.
723
724The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
725distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
726correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
727noise is rather small, use the default method (method=0).
728
729The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
730determined up to a scale. If \f$h_{33}\f$ is non-zero, the matrix is normalized so that \f$h_{33}=1\f$.
731@note Whenever an \f$H\f$ matrix cannot be estimated, an empty one will be returned.
732
733@sa
734getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
735perspectiveTransform
736 */
737CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
738 int method = 0, double ransacReprojThreshold = 3,
739 OutputArray mask=noArray(), const int maxIters = 2000,
740 const double confidence = 0.995);
741
742/** @overload */
743CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
744 OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
745
746
747CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask,
748 const UsacParams &params);
749
750/** @brief Computes an RQ decomposition of 3x3 matrices.
751
752@param src 3x3 input matrix.
753@param mtxR Output 3x3 upper-triangular matrix.
754@param mtxQ Output 3x3 orthogonal matrix.
755@param Qx Optional output 3x3 rotation matrix around x-axis.
756@param Qy Optional output 3x3 rotation matrix around y-axis.
757@param Qz Optional output 3x3 rotation matrix around z-axis.
758
759The function computes a RQ decomposition using the given rotations. This function is used in
760#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
761and a rotation matrix.
762
763It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
764degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
765sequence of rotations about the three principal axes that results in the same orientation of an
766object, e.g. see @cite Slabaugh . Returned three rotation matrices and corresponding three Euler angles
767are only one of the possible solutions.
768 */
769CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
770 OutputArray Qx = noArray(),
771 OutputArray Qy = noArray(),
772 OutputArray Qz = noArray());
773
774/** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
775
776@param projMatrix 3x4 input projection matrix P.
777@param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.
778@param rotMatrix Output 3x3 external rotation matrix R.
779@param transVect Output 4x1 translation vector T.
780@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
781@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
782@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
783@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
784degrees.
785
786The function computes a decomposition of a projection matrix into a calibration and a rotation
787matrix and the position of a camera.
788
789It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
790be used in OpenGL. Note, there is always more than one sequence of rotations about the three
791principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
792three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
793
794The function is based on #RQDecomp3x3 .
795 */
796CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
797 OutputArray rotMatrix, OutputArray transVect,
798 OutputArray rotMatrixX = noArray(),
799 OutputArray rotMatrixY = noArray(),
800 OutputArray rotMatrixZ = noArray(),
801 OutputArray eulerAngles =noArray() );
802
803/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
804
805@param A First multiplied matrix.
806@param B Second multiplied matrix.
807@param dABdA First output derivative matrix d(A\*B)/dA of size
808\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
809@param dABdB Second output derivative matrix d(A\*B)/dB of size
810\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
811
812The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
813the elements of each of the two input matrices. The function is used to compute the Jacobian
814matrices in #stereoCalibrate but can also be used in any other similar optimization function.
815 */
816CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
817
818/** @brief Combines two rotation-and-shift transformations.
819
820@param rvec1 First rotation vector.
821@param tvec1 First translation vector.
822@param rvec2 Second rotation vector.
823@param tvec2 Second translation vector.
824@param rvec3 Output rotation vector of the superposition.
825@param tvec3 Output translation vector of the superposition.
826@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1
827@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1
828@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2
829@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2
830@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1
831@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1
832@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2
833@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2
834
835The functions compute:
836
837\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f]
838
839where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
840\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
841
842Also, the functions can compute the derivatives of the output vectors with regards to the input
843vectors (see #matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
844your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
845function that contains a matrix multiplication.
846 */
847CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
848 InputArray rvec2, InputArray tvec2,
849 OutputArray rvec3, OutputArray tvec3,
850 OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
851 OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
852 OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
853 OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
854
855/** @brief Projects 3D points to an image plane.
856
857@param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
8581-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
859@param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
860basis from world to camera coordinate system, see @ref calibrateCamera for details.
861@param tvec The translation vector, see parameter description above.
862@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
863@param distCoeffs Input vector of distortion coefficients
864\f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed.
865@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or
866vector\<Point2f\> .
867@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
868points with respect to components of the rotation vector, translation vector, focal lengths,
869coordinates of the principal point and the distortion coefficients. In the old interface different
870components of the jacobian are returned via different output parameters.
871@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
872function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
873jacobian matrix.
874
875The function computes the 2D projections of 3D points to the image plane, given intrinsic and
876extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
877derivatives of image points coordinates (as functions of all the input parameters) with respect to
878the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
879optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
880can also be used to compute a re-projection error, given the current intrinsic and extrinsic
881parameters.
882
883@note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
884or by passing zero distortion coefficients, one can get various useful partial cases of the
885function. This means, one can compute the distorted coordinates for a sparse set of points or apply
886a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
887 */
888CV_EXPORTS_W void projectPoints( InputArray objectPoints,
889 InputArray rvec, InputArray tvec,
890 InputArray cameraMatrix, InputArray distCoeffs,
891 OutputArray imagePoints,
892 OutputArray jacobian = noArray(),
893 double aspectRatio = 0 );
894
895/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
896An example program about homography from the camera displacement
897
898Check @ref tutorial_homography "the corresponding tutorial" for more details
899*/
900
901/** @brief Finds an object pose from 3D-2D point correspondences.
902
903@see @ref calib3d_solvePnP
904
905This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
906coordinate frame to the camera coordinate frame, using different methods:
907- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
908- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
909- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
910Number of input points must be 4. Object points must be defined in the following order:
911 - point 0: [-squareLength / 2, squareLength / 2, 0]
912 - point 1: [ squareLength / 2, squareLength / 2, 0]
913 - point 2: [ squareLength / 2, -squareLength / 2, 0]
914 - point 3: [-squareLength / 2, -squareLength / 2, 0]
915- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
916
917@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
9181xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
919@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
920where N is the number of points. vector\<Point2d\> can be also passed here.
921@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
922@param distCoeffs Input vector of distortion coefficients
923\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
924assumed.
925@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
926the model coordinate system to the camera coordinate system.
927@param tvec Output translation vector.
928@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
929the provided rvec and tvec values as initial approximations of the rotation and translation
930vectors, respectively, and further optimizes them.
931@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
932
933More information about Perspective-n-Points is described in @ref calib3d_solvePnP
934
935@note
936 - An example of how to use solvePnP for planar augmented reality can be found at
937 opencv_source_code/samples/python/plane_ar.py
938 - If you are using Python:
939 - Numpy array slices won't work as input because solvePnP requires contiguous
940 arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
941 modules/calib3d/src/solvepnp.cpp version 2.4.9)
942 - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
943 to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
944 which requires 2-channel information.
945 - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
946 it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
947 np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
948 - The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
949 unstable and sometimes give completely wrong results. If you pass one of these two
950 flags, @ref SOLVEPNP_EPNP method will be used instead.
951 - The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
952 methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
953 of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
954 - With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
955 are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
956 global solution to converge.
957 - With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
958 - With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
959 Number of input points must be 4. Object points must be defined in the following order:
960 - point 0: [-squareLength / 2, squareLength / 2, 0]
961 - point 1: [ squareLength / 2, squareLength / 2, 0]
962 - point 2: [ squareLength / 2, -squareLength / 2, 0]
963 - point 3: [-squareLength / 2, -squareLength / 2, 0]
964 - With @ref SOLVEPNP_SQPNP input points must be >= 3
965 */
966CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
967 InputArray cameraMatrix, InputArray distCoeffs,
968 OutputArray rvec, OutputArray tvec,
969 bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
970
971/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
972
973@see @ref calib3d_solvePnP
974
975@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
9761xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
977@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
978where N is the number of points. vector\<Point2d\> can be also passed here.
979@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
980@param distCoeffs Input vector of distortion coefficients
981\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
982assumed.
983@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
984the model coordinate system to the camera coordinate system.
985@param tvec Output translation vector.
986@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
987the provided rvec and tvec values as initial approximations of the rotation and translation
988vectors, respectively, and further optimizes them.
989@param iterationsCount Number of iterations.
990@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
991is the maximum allowed distance between the observed and computed point projections to consider it
992an inlier.
993@param confidence The probability that the algorithm produces a useful result.
994@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
995@param flags Method for solving a PnP problem (see @ref solvePnP ).
996
997The function estimates an object pose given a set of object points, their corresponding image
998projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
999a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
1000projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
1001makes the function resistant to outliers.
1002
1003@note
1004 - An example of how to use solvePNPRansac for object detection can be found at
1005 opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
1006 - The default method used to estimate the camera pose for the Minimal Sample Sets step
1007 is #SOLVEPNP_EPNP. Exceptions are:
1008 - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
1009 - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
1010 - The method used to estimate the camera pose using all the inliers is defined by the
1011 flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
1012 the method #SOLVEPNP_EPNP will be used instead.
1013 */
1014CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1015 InputArray cameraMatrix, InputArray distCoeffs,
1016 OutputArray rvec, OutputArray tvec,
1017 bool useExtrinsicGuess = false, int iterationsCount = 100,
1018 float reprojectionError = 8.0, double confidence = 0.99,
1019 OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
1020
1021
1022/*
1023Finds rotation and translation vector.
1024If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too.
1025*/
1026CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1027 InputOutputArray cameraMatrix, InputArray distCoeffs,
1028 OutputArray rvec, OutputArray tvec, OutputArray inliers,
1029 const UsacParams &params=UsacParams());
1030
1031/** @brief Finds an object pose from 3 3D-2D point correspondences.
1032
1033@see @ref calib3d_solvePnP
1034
1035@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
10361x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
1037@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
1038 vector\<Point2f\> can be also passed here.
1039@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1040@param distCoeffs Input vector of distortion coefficients
1041\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1042assumed.
1043@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1044the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
1045@param tvecs Output translation vectors.
1046@param flags Method for solving a P3P problem:
1047- @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
1048"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
1049- @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
1050"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
1051
1052The function estimates the object pose given 3 object points, their corresponding image
1053projections, as well as the camera intrinsic matrix and the distortion coefficients.
1054
1055@note
1056The solutions are sorted by reprojection errors (lowest to highest).
1057 */
1058CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
1059 InputArray cameraMatrix, InputArray distCoeffs,
1060 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1061 int flags );
1062
1063/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1064to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1065
1066@see @ref calib3d_solvePnP
1067
1068@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1069where N is the number of points. vector\<Point3d\> can also be passed here.
1070@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1071where N is the number of points. vector\<Point2d\> can also be passed here.
1072@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1073@param distCoeffs Input vector of distortion coefficients
1074\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1075assumed.
1076@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1077the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1078@param tvec Input/Output translation vector. Input values are used as an initial solution.
1079@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1080
1081The function refines the object pose given at least 3 object points, their corresponding image
1082projections, an initial solution for the rotation and translation vector,
1083as well as the camera intrinsic matrix and the distortion coefficients.
1084The function minimizes the projection error with respect to the rotation and the translation vectors, according
1085to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
1086 */
1087CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints,
1088 InputArray cameraMatrix, InputArray distCoeffs,
1089 InputOutputArray rvec, InputOutputArray tvec,
1090 TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON));
1091
1092/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1093to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1094
1095@see @ref calib3d_solvePnP
1096
1097@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1098where N is the number of points. vector\<Point3d\> can also be passed here.
1099@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1100where N is the number of points. vector\<Point2d\> can also be passed here.
1101@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1102@param distCoeffs Input vector of distortion coefficients
1103\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1104assumed.
1105@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1106the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1107@param tvec Input/Output translation vector. Input values are used as an initial solution.
1108@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1109@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
1110gain in the Damped Gauss-Newton formulation.
1111
1112The function refines the object pose given at least 3 object points, their corresponding image
1113projections, an initial solution for the rotation and translation vector,
1114as well as the camera intrinsic matrix and the distortion coefficients.
1115The function minimizes the projection error with respect to the rotation and the translation vectors, using a
1116virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
1117 */
1118CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints,
1119 InputArray cameraMatrix, InputArray distCoeffs,
1120 InputOutputArray rvec, InputOutputArray tvec,
1121 TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON),
1122 double VVSlambda = 1);
1123
1124/** @brief Finds an object pose from 3D-2D point correspondences.
1125
1126@see @ref calib3d_solvePnP
1127
1128This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
1129couple), depending on the number of input points and the chosen method:
1130- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
1131- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
1132- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1133Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
1134 - point 0: [-squareLength / 2, squareLength / 2, 0]
1135 - point 1: [ squareLength / 2, squareLength / 2, 0]
1136 - point 2: [ squareLength / 2, -squareLength / 2, 0]
1137 - point 3: [-squareLength / 2, -squareLength / 2, 0]
1138- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1139Only 1 solution is returned.
1140
1141@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
11421xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1143@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1144where N is the number of points. vector\<Point2d\> can be also passed here.
1145@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1146@param distCoeffs Input vector of distortion coefficients
1147\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1148assumed.
1149@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1150the model coordinate system to the camera coordinate system.
1151@param tvecs Vector of output translation vectors.
1152@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1153the provided rvec and tvec values as initial approximations of the rotation and translation
1154vectors, respectively, and further optimizes them.
1155@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1156@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1157and useExtrinsicGuess is set to true.
1158@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1159and useExtrinsicGuess is set to true.
1160@param reprojectionError Optional vector of reprojection error, that is the RMS error
1161(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
1162and the 3D object points projected with the estimated pose.
1163
1164More information is described in @ref calib3d_solvePnP
1165
1166@note
1167 - An example of how to use solvePnP for planar augmented reality can be found at
1168 opencv_source_code/samples/python/plane_ar.py
1169 - If you are using Python:
1170 - Numpy array slices won't work as input because solvePnP requires contiguous
1171 arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1172 modules/calib3d/src/solvepnp.cpp version 2.4.9)
1173 - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1174 to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1175 which requires 2-channel information.
1176 - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1177 it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1178 np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1179 - The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1180 unstable and sometimes give completely wrong results. If you pass one of these two
1181 flags, @ref SOLVEPNP_EPNP method will be used instead.
1182 - The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1183 methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1184 of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1185 - With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1186 are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1187 global solution to converge.
1188 - With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1189 - With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1190 Number of input points must be 4. Object points must be defined in the following order:
1191 - point 0: [-squareLength / 2, squareLength / 2, 0]
1192 - point 1: [ squareLength / 2, squareLength / 2, 0]
1193 - point 2: [ squareLength / 2, -squareLength / 2, 0]
1194 - point 3: [-squareLength / 2, -squareLength / 2, 0]
1195 */
1196CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints,
1197 InputArray cameraMatrix, InputArray distCoeffs,
1198 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1199 bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE,
1200 InputArray rvec = noArray(), InputArray tvec = noArray(),
1201 OutputArray reprojectionError = noArray() );
1202
1203/** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
1204
1205@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
1206coordinate space. In the old interface all the per-view vectors are concatenated. See
1207#calibrateCamera for details.
1208@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
1209old interface all the per-view vectors are concatenated.
1210@param imageSize Image size in pixels used to initialize the principal point.
1211@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
1212Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$ .
1213
1214The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
1215Currently, the function only supports planar calibration patterns, which are patterns where each
1216object point has z-coordinate =0.
1217 */
1218CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
1219 InputArrayOfArrays imagePoints,
1220 Size imageSize, double aspectRatio = 1.0 );
1221
1222/** @brief Finds the positions of internal corners of the chessboard.
1223
1224@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1225@param patternSize Number of inner corners per a chessboard row and column
1226( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1227@param corners Output array of detected corners.
1228@param flags Various operation flags that can be zero or a combination of the following values:
1229- @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
1230and white, rather than a fixed threshold level (computed from the average image brightness).
1231- @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
1232applying fixed or adaptive thresholding.
1233- @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
1234square-like shape) to filter out false quads extracted at the contour retrieval stage.
1235- @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
1236and shortcut the call if none is found. This can drastically speed up the call in the
1237degenerate condition when no chessboard is observed.
1238- @ref CALIB_CB_PLAIN All other flags are ignored. The input image is taken as is.
1239No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
1240execution of the function but could lead to not recognizing the checkerboard if the image
1241is not previously binarized in the appropriate manner.
1242
1243The function attempts to determine whether the input image is a view of the chessboard pattern and
1244locate the internal chessboard corners. The function returns a non-zero value if all of the corners
1245are found and they are placed in a certain order (row by row, left to right in every row).
1246Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
1247a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
1248squares touch each other. The detected coordinates are approximate, and to determine their positions
1249more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
1250different parameters if returned coordinates are not accurate enough.
1251
1252Sample usage of detecting and drawing chessboard corners: :
1253@code
1254 Size patternsize(8,6); //interior number of corners
1255 Mat gray = ....; //source image
1256 vector<Point2f> corners; //this will be filled by the detected corners
1257
1258 //CALIB_CB_FAST_CHECK saves a lot of time on images
1259 //that do not contain any chessboard corners
1260 bool patternfound = findChessboardCorners(gray, patternsize, corners,
1261 CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
1262 + CALIB_CB_FAST_CHECK);
1263
1264 if(patternfound)
1265 cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
1266 TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
1267
1268 drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
1269@endcode
1270@note The function requires white space (like a square-thick border, the wider the better) around
1271the board to make the detection more robust in various environments. Otherwise, if there is no
1272border and the background is dark, the outer black squares cannot be segmented properly and so the
1273square grouping and ordering algorithm fails.
1274
1275Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
1276 */
1277CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
1278 int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
1279
1280/*
1281 Checks whether the image contains chessboard of the specific size or not.
1282 If yes, nonzero value is returned.
1283*/
1284CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
1285
1286/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
1287
1288@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1289@param patternSize Number of inner corners per a chessboard row and column
1290( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1291@param corners Output array of detected corners.
1292@param flags Various operation flags that can be zero or a combination of the following values:
1293- @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
1294- @ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
1295- @ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
1296- @ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
1297- @ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
1298This should be used if an accurate camera calibration is required.
1299@param meta Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
1300Each entry stands for one corner of the pattern and can have one of the following values:
1301- 0 = no meta data attached
1302- 1 = left-top corner of a black cell
1303- 2 = left-top corner of a white cell
1304- 3 = left-top corner of a black cell with a white marker dot
1305- 4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
1306
1307The function is analog to #findChessboardCorners but uses a localized radon
1308transformation approximated by box filters being more robust to all sort of
1309noise, faster on larger images and is able to directly return the sub-pixel
1310position of the internal chessboard corners. The Method is based on the paper
1311@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
1312Calibration" demonstrating that the returned sub-pixel positions are more
1313accurate than the one returned by cornerSubPix allowing a precise camera
1314calibration for demanding applications.
1315
1316In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
1317the result can be recovered from the optional meta array. Both flags are
1318helpful to use calibration patterns exceeding the field of view of the camera.
1319These oversized patterns allow more accurate calibrations as corners can be
1320utilized, which are as close as possible to the image borders. For a
1321consistent coordinate system across all images, the optional marker (see image
1322below) can be used to move the origin of the board to the location where the
1323black circle is located.
1324
1325@note The function requires a white boarder with roughly the same width as one
1326of the checkerboard fields around the whole board to improve the detection in
1327various environments. In addition, because of the localized radon
1328transformation it is beneficial to use round corners for the field corners
1329which are located on the outside of the board. The following figure illustrates
1330a sample checkerboard optimized for the detection. However, any other checkerboard
1331can be used as well.
1332
1333Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
1334![Checkerboard](pics/checkerboard_radon.png)
1335 */
1336CV_EXPORTS_AS(findChessboardCornersSBWithMeta)
1337bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,
1338 int flags,OutputArray meta);
1339/** @overload */
1340CV_EXPORTS_W inline
1341bool findChessboardCornersSB(InputArray image, Size patternSize, OutputArray corners,
1342 int flags = 0)
1343{
1344 return findChessboardCornersSB(image, patternSize, corners, flags, meta: noArray());
1345}
1346
1347/** @brief Estimates the sharpness of a detected chessboard.
1348
1349Image sharpness, as well as brightness, are a critical parameter for accuracte
1350camera calibration. For accessing these parameters for filtering out
1351problematic calibraiton images, this method calculates edge profiles by traveling from
1352black to white chessboard cell centers. Based on this, the number of pixels is
1353calculated required to transit from black to white. This width of the
1354transition area is a good indication of how sharp the chessboard is imaged
1355and should be below ~3.0 pixels.
1356
1357@param image Gray image used to find chessboard corners
1358@param patternSize Size of a found chessboard pattern
1359@param corners Corners found by #findChessboardCornersSB
1360@param rise_distance Rise distance 0.8 means 10% ... 90% of the final signal strength
1361@param vertical By default edge responses for horizontal lines are calculated
1362@param sharpness Optional output array with a sharpness value for calculated edge responses (see description)
1363
1364The optional sharpness array is of type CV_32FC1 and has for each calculated
1365profile one row with the following five entries:
1366* 0 = x coordinate of the underlying edge in the image
1367* 1 = y coordinate of the underlying edge in the image
1368* 2 = width of the transition area (sharpness)
1369* 3 = signal strength in the black cell (min brightness)
1370* 4 = signal strength in the white cell (max brightness)
1371
1372@return Scalar(average sharpness, average min brightness, average max brightness,0)
1373*/
1374CV_EXPORTS_W Scalar estimateChessboardSharpness(InputArray image, Size patternSize, InputArray corners,
1375 float rise_distance=0.8F,bool vertical=false,
1376 OutputArray sharpness=noArray());
1377
1378
1379//! finds subpixel-accurate positions of the chessboard corners
1380CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
1381
1382/** @brief Renders the detected chessboard corners.
1383
1384@param image Destination image. It must be an 8-bit color image.
1385@param patternSize Number of inner corners per a chessboard row and column
1386(patternSize = cv::Size(points_per_row,points_per_column)).
1387@param corners Array of detected corners, the output of #findChessboardCorners.
1388@param patternWasFound Parameter indicating whether the complete board was found or not. The
1389return value of #findChessboardCorners should be passed here.
1390
1391The function draws individual chessboard corners detected either as red circles if the board was not
1392found, or as colored corners connected with lines if the board was found.
1393 */
1394CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
1395 InputArray corners, bool patternWasFound );
1396
1397/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
1398
1399@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
1400@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
1401\f$\cameramatrix{A}\f$
1402@param distCoeffs Input vector of distortion coefficients
1403\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.
1404@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1405the model coordinate system to the camera coordinate system.
1406@param tvec Translation vector.
1407@param length Length of the painted axes in the same unit than tvec (usually in meters).
1408@param thickness Line thickness of the painted axes.
1409
1410This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
1411OX is drawn in red, OY in green and OZ in blue.
1412 */
1413CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
1414 InputArray rvec, InputArray tvec, float length, int thickness=3);
1415
1416struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
1417{
1418 CV_WRAP CirclesGridFinderParameters();
1419 CV_PROP_RW cv::Size2f densityNeighborhoodSize;
1420 CV_PROP_RW float minDensity;
1421 CV_PROP_RW int kmeansAttempts;
1422 CV_PROP_RW int minDistanceToAddKeypoint;
1423 CV_PROP_RW int keypointScale;
1424 CV_PROP_RW float minGraphConfidence;
1425 CV_PROP_RW float vertexGain;
1426 CV_PROP_RW float vertexPenalty;
1427 CV_PROP_RW float existingVertexGain;
1428 CV_PROP_RW float edgeGain;
1429 CV_PROP_RW float edgePenalty;
1430 CV_PROP_RW float convexHullFactor;
1431 CV_PROP_RW float minRNGEdgeSwitchDist;
1432
1433 enum GridType
1434 {
1435 SYMMETRIC_GRID, ASYMMETRIC_GRID
1436 };
1437 GridType gridType;
1438
1439 CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
1440 CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
1441};
1442
1443#ifndef DISABLE_OPENCV_3_COMPATIBILITY
1444typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
1445#endif
1446
1447/** @brief Finds centers in the grid of circles.
1448
1449@param image grid view of input circles; it must be an 8-bit grayscale or color image.
1450@param patternSize number of circles per row and column
1451( patternSize = Size(points_per_row, points_per_colum) ).
1452@param centers output array of detected centers.
1453@param flags various operation flags that can be one of the following values:
1454- @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
1455- @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
1456- @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
1457perspective distortions but much more sensitive to background clutter.
1458@param blobDetector feature detector that finds blobs like dark circles on light background.
1459 If `blobDetector` is NULL then `image` represents Point2f array of candidates.
1460@param parameters struct for finding circles in a grid pattern.
1461
1462The function attempts to determine whether the input image contains a grid of circles. If it is, the
1463function locates centers of the circles. The function returns a non-zero value if all of the centers
1464have been found and they have been placed in a certain order (row by row, left to right in every
1465row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
1466
1467Sample usage of detecting and drawing the centers of circles: :
1468@code
1469 Size patternsize(7,7); //number of centers
1470 Mat gray = ...; //source image
1471 vector<Point2f> centers; //this will be filled by the detected centers
1472
1473 bool patternfound = findCirclesGrid(gray, patternsize, centers);
1474
1475 drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
1476@endcode
1477@note The function requires white space (like a square-thick border, the wider the better) around
1478the board to make the detection more robust in various environments.
1479 */
1480CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1481 OutputArray centers, int flags,
1482 const Ptr<FeatureDetector> &blobDetector,
1483 const CirclesGridFinderParameters& parameters);
1484
1485/** @overload */
1486CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1487 OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
1488 const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
1489
1490/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration
1491pattern.
1492
1493@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
1494the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
1495vector contains as many elements as the number of pattern views. If the same calibration pattern
1496is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
1497possible to use partially occluded patterns or even different patterns in different views. Then,
1498the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
1499XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
1500In the old interface all the vectors of object points from different views are concatenated
1501together.
1502@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
1503pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
1504objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
1505respectively. In the old interface all the vectors of object points from different views are
1506concatenated together.
1507@param imageSize Size of the image used only to initialize the camera intrinsic matrix.
1508@param cameraMatrix Input/output 3x3 floating-point camera intrinsic matrix
1509\f$\cameramatrix{A}\f$ . If @ref CALIB_USE_INTRINSIC_GUESS
1510and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
1511are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
1512@param distCoeffs Input/output vector of distortion coefficients
1513\f$\distcoeffs\f$.
1514@param rvecs Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
1515(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
1516i-th translation vector (see the next output parameter description) brings the calibration pattern
1517from the object coordinate space (in which object points are specified) to the camera coordinate
1518space. In more technical terms, the tuple of the i-th rotation and translation vector performs
1519a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
1520tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
1521space.
1522@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter
1523describtion above.
1524@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic
1525parameters. Order of deviations values:
1526\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
1527 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
1528@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic
1529parameters. Order of deviations values: \f$(R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\f$ where M is
1530the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.
1531 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1532@param flags Different flags that may be zero or a combination of the following values:
1533- @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
1534fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1535center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1536Note, that if intrinsic parameters are known, there is no need to use this function just to
1537estimate extrinsic parameters. Use @ref solvePnP instead.
1538- @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
1539optimization. It stays at the center or at a different location specified when
1540 @ref CALIB_USE_INTRINSIC_GUESS is set too.
1541- @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
1542ratio fx/fy stays the same as in the input cameraMatrix . When
1543 @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
1544ignored, only their ratio is computed and used further.
1545- @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
1546to zeros and stay zero.
1547- @ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
1548 @ref CALIB_USE_INTRINSIC_GUESS is set.
1549- @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
1550coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
1551set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1552- @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
1553backward compatibility, this extra flag should be explicitly specified to make the
1554calibration function use the rational model and return 8 coefficients or more.
1555- @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1556backward compatibility, this extra flag should be explicitly specified to make the
1557calibration function use the thin prism model and return 12 coefficients or more.
1558- @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1559the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1560supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1561- @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1562backward compatibility, this extra flag should be explicitly specified to make the
1563calibration function use the tilted sensor model and return 14 coefficients.
1564- @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1565the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1566supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1567@param criteria Termination criteria for the iterative optimization algorithm.
1568
1569@return the overall RMS re-projection error.
1570
1571The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1572views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
1573points and their corresponding 2D projections in each view must be specified. That may be achieved
1574by using an object with known geometry and easily detectable feature points. Such an object is
1575called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
1576a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
1577parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
1578patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
1579be used as long as initial cameraMatrix is provided.
1580
1581The algorithm performs the following steps:
1582
1583- Compute the initial intrinsic parameters (the option only available for planar calibration
1584 patterns) or read them from the input parameters. The distortion coefficients are all set to
1585 zeros initially unless some of CALIB_FIX_K? are specified.
1586
1587- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
1588 done using @ref solvePnP .
1589
1590- Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
1591 that is, the total sum of squared distances between the observed feature points imagePoints and
1592 the projected (using the current estimates for camera parameters and the poses) object points
1593 objectPoints. See @ref projectPoints for details.
1594
1595@note
1596 If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
1597 and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
1598 \f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
1599 \f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
1600 instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
1601
1602@note
1603 The function may throw exceptions, if unsupported combination of parameters is provided or
1604 the system is underconstrained.
1605
1606@sa
1607 calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
1608 undistort
1609 */
1610CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
1611 InputArrayOfArrays imagePoints, Size imageSize,
1612 InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1613 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1614 OutputArray stdDeviationsIntrinsics,
1615 OutputArray stdDeviationsExtrinsics,
1616 OutputArray perViewErrors,
1617 int flags = 0, TermCriteria criteria = TermCriteria(
1618 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1619
1620/** @overload */
1621CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
1622 InputArrayOfArrays imagePoints, Size imageSize,
1623 InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1624 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1625 int flags = 0, TermCriteria criteria = TermCriteria(
1626 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1627
1628/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
1629
1630This function is an extension of #calibrateCamera with the method of releasing object which was
1631proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
1632targets (calibration plates), this method can dramatically improve the precision of the estimated
1633camera parameters. Both the object-releasing method and standard method are supported by this
1634function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
1635#calibrateCamera is a wrapper for this function.
1636
1637@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
1638coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
1639the identical calibration board must be used in each view and it must be fully visible, and all
1640objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
1641target has to be rigid, or at least static if the camera (rather than the calibration target) is
1642shifted for grabbing images.**
1643@param imagePoints Vector of vectors of the projections of calibration pattern points. See
1644#calibrateCamera for details.
1645@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
1646@param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
1647a switch for calibration method selection. If object-releasing method to be used, pass in the
1648parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
1649make standard calibration method selected. Usually the top-right corner point of the calibration
1650board grid is recommended to be fixed when object-releasing method being utilized. According to
1651\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
1652and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
1653newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
1654@param cameraMatrix Output 3x3 floating-point camera matrix. See #calibrateCamera for details.
1655@param distCoeffs Output vector of distortion coefficients. See #calibrateCamera for details.
1656@param rvecs Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
1657for details.
1658@param tvecs Output vector of translation vectors estimated for each pattern view.
1659@param newObjPoints The updated output vector of calibration pattern points. The coordinates might
1660be scaled based on three fixed points. The returned coordinates are accurate only if the above
1661mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
1662is ignored with standard calibration method.
1663@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
1664See #calibrateCamera for details.
1665@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
1666See #calibrateCamera for details.
1667@param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
1668of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
1669parameter is ignored with standard calibration method.
1670 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1671@param flags Different flags that may be zero or a combination of some predefined values. See
1672#calibrateCamera for details. If the method of releasing object is used, the calibration time may
1673be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
1674less precise and less stable in some rare cases.
1675@param criteria Termination criteria for the iterative optimization algorithm.
1676
1677@return the overall RMS re-projection error.
1678
1679The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1680views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
1681#calibrateCamera for other detailed explanations.
1682@sa
1683 calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
1684 */
1685CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
1686 InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1687 InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1688 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1689 OutputArray newObjPoints,
1690 OutputArray stdDeviationsIntrinsics,
1691 OutputArray stdDeviationsExtrinsics,
1692 OutputArray stdDeviationsObjPoints,
1693 OutputArray perViewErrors,
1694 int flags = 0, TermCriteria criteria = TermCriteria(
1695 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1696
1697/** @overload */
1698CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
1699 InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1700 InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1701 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1702 OutputArray newObjPoints,
1703 int flags = 0, TermCriteria criteria = TermCriteria(
1704 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1705
1706/** @brief Computes useful camera characteristics from the camera intrinsic matrix.
1707
1708@param cameraMatrix Input camera intrinsic matrix that can be estimated by #calibrateCamera or
1709#stereoCalibrate .
1710@param imageSize Input image size in pixels.
1711@param apertureWidth Physical width in mm of the sensor.
1712@param apertureHeight Physical height in mm of the sensor.
1713@param fovx Output field of view in degrees along the horizontal sensor axis.
1714@param fovy Output field of view in degrees along the vertical sensor axis.
1715@param focalLength Focal length of the lens in mm.
1716@param principalPoint Principal point in mm.
1717@param aspectRatio \f$f_y/f_x\f$
1718
1719The function computes various useful camera characteristics from the previously estimated camera
1720matrix.
1721
1722@note
1723 Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
1724 the chessboard pitch (it can thus be any value).
1725 */
1726CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
1727 double apertureWidth, double apertureHeight,
1728 CV_OUT double& fovx, CV_OUT double& fovy,
1729 CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
1730 CV_OUT double& aspectRatio );
1731
1732/** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters
1733for each of the two cameras and the extrinsic parameters between the two cameras.
1734
1735@param objectPoints Vector of vectors of the calibration pattern points. The same structure as
1736in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
1737points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
1738equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
1739be equal for each i.
1740@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1741observed by the first camera. The same structure as in @ref calibrateCamera.
1742@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1743observed by the second camera. The same structure as in @ref calibrateCamera.
1744@param cameraMatrix1 Input/output camera intrinsic matrix for the first camera, the same as in
1745@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
1746@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
1747@ref calibrateCamera.
1748@param cameraMatrix2 Input/output second camera intrinsic matrix for the second camera. See description for
1749cameraMatrix1.
1750@param distCoeffs2 Input/output lens distortion coefficients for the second camera. See
1751description for distCoeffs1.
1752@param imageSize Size of the image used only to initialize the camera intrinsic matrices.
1753@param R Output rotation matrix. Together with the translation vector T, this matrix brings
1754points given in the first camera's coordinate system to points in the second camera's
1755coordinate system. In more technical terms, the tuple of R and T performs a change of basis
1756from the first camera's coordinate system to the second camera's coordinate system. Due to its
1757duality, this tuple is equivalent to the position of the first camera with respect to the
1758second camera coordinate system.
1759@param T Output translation vector, see description above.
1760@param E Output essential matrix.
1761@param F Output fundamental matrix.
1762@param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
1763coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
1764i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
1765description) brings the calibration pattern from the object coordinate space (in which object points are
1766specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
1767the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
1768to camera coordinate space of the first camera of the stereo pair.
1769@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
1770of previous output parameter ( rvecs ).
1771@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1772@param flags Different flags that may be zero or a combination of the following values:
1773- @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
1774matrices are estimated.
1775- @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
1776according to the specified flags. Initial values are provided by the user.
1777- @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
1778Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
1779- @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
1780- @ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
1781- @ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
1782.
1783- @ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
1784- @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
1785zeros and fix there.
1786- @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
1787distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
1788the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1789- @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
1790compatibility, this extra flag should be explicitly specified to make the calibration
1791function use the rational model and return 8 coefficients. If the flag is not set, the
1792function computes and returns only 5 distortion coefficients.
1793- @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1794backward compatibility, this extra flag should be explicitly specified to make the
1795calibration function use the thin prism model and return 12 coefficients. If the flag is not
1796set, the function computes and returns only 5 distortion coefficients.
1797- @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1798the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1799supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1800- @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1801backward compatibility, this extra flag should be explicitly specified to make the
1802calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1803set, the function computes and returns only 5 distortion coefficients.
1804- @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1805the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1806supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1807@param criteria Termination criteria for the iterative optimization algorithm.
1808
1809The function estimates the transformation between two cameras making a stereo pair. If one computes
1810the poses of an object relative to the first camera and to the second camera,
1811( \f$R_1\f$,\f$T_1\f$ ) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
1812relative position and orientation between the two cameras are fixed, then those poses definitely
1813relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
1814two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
1815given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
1816
1817\f[R_2=R R_1\f]
1818\f[T_2=R T_1 + T.\f]
1819
1820Therefore, one can compute the coordinate representation of a 3D point for the second camera's
1821coordinate system when given the point's coordinate representation in the first camera's coordinate
1822system:
1823
1824\f[\begin{bmatrix}
1825X_2 \\
1826Y_2 \\
1827Z_2 \\
18281
1829\end{bmatrix} = \begin{bmatrix}
1830R & T \\
18310 & 1
1832\end{bmatrix} \begin{bmatrix}
1833X_1 \\
1834Y_1 \\
1835Z_1 \\
18361
1837\end{bmatrix}.\f]
1838
1839
1840Optionally, it computes the essential matrix E:
1841
1842\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
1843
1844where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ .
1845And the function can also compute the fundamental matrix F:
1846
1847\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
1848
1849Besides the stereo-related information, the function can also perform a full calibration of each of
1850the two cameras. However, due to the high dimensionality of the parameter space and noise in the
1851input data, the function can diverge from the correct solution. If the intrinsic parameters can be
1852estimated with high accuracy for each of the cameras individually (for example, using
1853#calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
1854function along with the computed intrinsic parameters. Otherwise, if all the parameters are
1855estimated at once, it makes sense to restrict some parameters, for example, pass
1856 @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
1857reasonable assumption.
1858
1859Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
1860points in all the available views from both cameras. The function returns the final value of the
1861re-projection error.
1862 */
1863CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
1864 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1865 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1866 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1867 Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1868 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1869 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1870
1871/// @overload
1872CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1873 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1874 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1875 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1876 Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
1877 int flags = CALIB_FIX_INTRINSIC,
1878 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1879
1880/// @overload
1881CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1882 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1883 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1884 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1885 Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1886 OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1887 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1888
1889/** @brief Computes rectification transforms for each head of a calibrated stereo camera.
1890
1891@param cameraMatrix1 First camera intrinsic matrix.
1892@param distCoeffs1 First camera distortion parameters.
1893@param cameraMatrix2 Second camera intrinsic matrix.
1894@param distCoeffs2 Second camera distortion parameters.
1895@param imageSize Size of the image used for stereo calibration.
1896@param R Rotation matrix from the coordinate system of the first camera to the second camera,
1897see @ref stereoCalibrate.
1898@param T Translation vector from the coordinate system of the first camera to the second camera,
1899see @ref stereoCalibrate.
1900@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
1901brings points given in the unrectified first camera's coordinate system to points in the rectified
1902first camera's coordinate system. In more technical terms, it performs a change of basis from the
1903unrectified first camera's coordinate system to the rectified first camera's coordinate system.
1904@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
1905brings points given in the unrectified second camera's coordinate system to points in the rectified
1906second camera's coordinate system. In more technical terms, it performs a change of basis from the
1907unrectified second camera's coordinate system to the rectified second camera's coordinate system.
1908@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
1909camera, i.e. it projects points given in the rectified first camera coordinate system into the
1910rectified first camera's image.
1911@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
1912camera, i.e. it projects points given in the rectified first camera coordinate system into the
1913rectified second camera's image.
1914@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).
1915@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
1916the function makes the principal points of each camera have the same pixel coordinates in the
1917rectified views. And if the flag is not set, the function may still shift the images in the
1918horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
1919useful image area.
1920@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
1921scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
1922images are zoomed and shifted so that only valid pixels are visible (no black areas after
1923rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
1924pixels from the original images from the cameras are retained in the rectified images (no source
1925image pixels are lost). Any intermediate value yields an intermediate result between
1926those two extreme cases.
1927@param newImageSize New image resolution after rectification. The same size should be passed to
1928#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
1929is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
1930preserve details in the original image, especially when there is a big radial distortion.
1931@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
1932are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
1933(see the picture below).
1934@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
1935are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
1936(see the picture below).
1937
1938The function computes the rotation matrices for each camera that (virtually) make both camera image
1939planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
1940the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
1941as input. As output, it provides two rotation matrices and also two projection matrices in the new
1942coordinates. The function distinguishes the following two cases:
1943
1944- **Horizontal stereo**: the first and the second camera views are shifted relative to each other
1945 mainly along the x-axis (with possible small vertical shift). In the rectified images, the
1946 corresponding epipolar lines in the left and right cameras are horizontal and have the same
1947 y-coordinate. P1 and P2 look like:
1948
1949 \f[\texttt{P1} = \begin{bmatrix}
1950 f & 0 & cx_1 & 0 \\
1951 0 & f & cy & 0 \\
1952 0 & 0 & 1 & 0
1953 \end{bmatrix}\f]
1954
1955 \f[\texttt{P2} = \begin{bmatrix}
1956 f & 0 & cx_2 & T_x \cdot f \\
1957 0 & f & cy & 0 \\
1958 0 & 0 & 1 & 0
1959 \end{bmatrix} ,\f]
1960
1961 \f[\texttt{Q} = \begin{bmatrix}
1962 1 & 0 & 0 & -cx_1 \\
1963 0 & 1 & 0 & -cy \\
1964 0 & 0 & 0 & f \\
1965 0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
1966 \end{bmatrix} \f]
1967
1968 where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
1969 @ref CALIB_ZERO_DISPARITY is set.
1970
1971- **Vertical stereo**: the first and the second camera views are shifted relative to each other
1972 mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
1973 lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
1974
1975 \f[\texttt{P1} = \begin{bmatrix}
1976 f & 0 & cx & 0 \\
1977 0 & f & cy_1 & 0 \\
1978 0 & 0 & 1 & 0
1979 \end{bmatrix}\f]
1980
1981 \f[\texttt{P2} = \begin{bmatrix}
1982 f & 0 & cx & 0 \\
1983 0 & f & cy_2 & T_y \cdot f \\
1984 0 & 0 & 1 & 0
1985 \end{bmatrix},\f]
1986
1987 \f[\texttt{Q} = \begin{bmatrix}
1988 1 & 0 & 0 & -cx \\
1989 0 & 1 & 0 & -cy_1 \\
1990 0 & 0 & 0 & f \\
1991 0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
1992 \end{bmatrix} \f]
1993
1994 where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
1995 @ref CALIB_ZERO_DISPARITY is set.
1996
1997As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
1998matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
1999initialize the rectification map for each camera.
2000
2001See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
2002the corresponding image regions. This means that the images are well rectified, which is what most
2003stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
2004their interiors are all valid pixels.
2005
2006![image](pics/stereo_undistort.jpg)
2007 */
2008CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
2009 InputArray cameraMatrix2, InputArray distCoeffs2,
2010 Size imageSize, InputArray R, InputArray T,
2011 OutputArray R1, OutputArray R2,
2012 OutputArray P1, OutputArray P2,
2013 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
2014 double alpha = -1, Size newImageSize = Size(),
2015 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
2016
2017/** @brief Computes a rectification transform for an uncalibrated stereo camera.
2018
2019@param points1 Array of feature points in the first image.
2020@param points2 The corresponding points in the second image. The same formats as in
2021#findFundamentalMat are supported.
2022@param F Input fundamental matrix. It can be computed from the same set of point pairs using
2023#findFundamentalMat .
2024@param imgSize Size of the image.
2025@param H1 Output rectification homography matrix for the first image.
2026@param H2 Output rectification homography matrix for the second image.
2027@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
2028than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
2029for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$ )
2030are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
2031
2032The function computes the rectification transformations without knowing intrinsic parameters of the
2033cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
2034related difference from #stereoRectify is that the function outputs not the rectification
2035transformations in the object (3D) space, but the planar perspective transformations encoded by the
2036homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
2037
2038@note
2039 While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
2040 depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
2041 it would be better to correct it before computing the fundamental matrix and calling this
2042 function. For example, distortion coefficients can be estimated for each head of stereo camera
2043 separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
2044 just the point coordinates can be corrected with #undistortPoints .
2045 */
2046CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
2047 InputArray F, Size imgSize,
2048 OutputArray H1, OutputArray H2,
2049 double threshold = 5 );
2050
2051//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
2052CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
2053 InputArray cameraMatrix2, InputArray distCoeffs2,
2054 InputArray cameraMatrix3, InputArray distCoeffs3,
2055 InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
2056 Size imageSize, InputArray R12, InputArray T12,
2057 InputArray R13, InputArray T13,
2058 OutputArray R1, OutputArray R2, OutputArray R3,
2059 OutputArray P1, OutputArray P2, OutputArray P3,
2060 OutputArray Q, double alpha, Size newImgSize,
2061 CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
2062
2063/** @brief Returns the new camera intrinsic matrix based on the free scaling parameter.
2064
2065@param cameraMatrix Input camera intrinsic matrix.
2066@param distCoeffs Input vector of distortion coefficients
2067\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
2068assumed.
2069@param imageSize Original image size.
2070@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
2071valid) and 1 (when all the source image pixels are retained in the undistorted image). See
2072#stereoRectify for details.
2073@param newImgSize Image size after rectification. By default, it is set to imageSize .
2074@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
2075undistorted image. See roi1, roi2 description in #stereoRectify .
2076@param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the
2077principal point should be at the image center or not. By default, the principal point is chosen to
2078best fit a subset of the source image (determined by alpha) to the corrected image.
2079@return new_camera_matrix Output new camera intrinsic matrix.
2080
2081The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
2082By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
2083image pixels if there is valuable information in the corners alpha=1 , or get something in between.
2084When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
2085"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
2086coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
2087#initUndistortRectifyMap to produce the maps for #remap .
2088 */
2089CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
2090 Size imageSize, double alpha, Size newImgSize = Size(),
2091 CV_OUT Rect* validPixROI = 0,
2092 bool centerPrincipalPoint = false);
2093
2094/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
2095
2096@param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
2097expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2098This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2099for all the transformations from gripper frame to robot base frame.
2100@param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
2101expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2102This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2103from gripper frame to robot base frame.
2104@param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2105expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2106This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2107for all the transformations from calibration target frame to camera frame.
2108@param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2109expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2110This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2111from calibration target frame to camera frame.
2112@param[out] R_cam2gripper Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2113expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2114@param[out] t_cam2gripper Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2115expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2116@param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
2117
2118The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
2119rotation then the translation (separable solutions) and the following methods are implemented:
2120 - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
2121 - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
2122 - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
2123
2124Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2125with the following implemented methods:
2126 - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
2127 - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
2128
2129The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
2130mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
2131
2132The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
2133end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
2134the suitable transformations to the function, see below.
2135
2136![](pics/hand-eye_figure.png)
2137
2138The calibration procedure is the following:
2139 - a static calibration pattern is used to estimate the transformation between the target frame
2140 and the camera frame
2141 - the robot gripper is moved in order to acquire several poses
2142 - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2143 instance the robot kinematics
2144\f[
2145 \begin{bmatrix}
2146 X_b\\
2147 Y_b\\
2148 Z_b\\
2149 1
2150 \end{bmatrix}
2151 =
2152 \begin{bmatrix}
2153 _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
2154 0_{1 \times 3} & 1
2155 \end{bmatrix}
2156 \begin{bmatrix}
2157 X_g\\
2158 Y_g\\
2159 Z_g\\
2160 1
2161 \end{bmatrix}
2162\f]
2163 - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
2164 for instance a pose estimation method (PnP) from 2D-3D point correspondences
2165\f[
2166 \begin{bmatrix}
2167 X_c\\
2168 Y_c\\
2169 Z_c\\
2170 1
2171 \end{bmatrix}
2172 =
2173 \begin{bmatrix}
2174 _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
2175 0_{1 \times 3} & 1
2176 \end{bmatrix}
2177 \begin{bmatrix}
2178 X_t\\
2179 Y_t\\
2180 Z_t\\
2181 1
2182 \end{bmatrix}
2183\f]
2184
2185The Hand-Eye calibration procedure returns the following homogeneous transformation
2186\f[
2187 \begin{bmatrix}
2188 X_g\\
2189 Y_g\\
2190 Z_g\\
2191 1
2192 \end{bmatrix}
2193 =
2194 \begin{bmatrix}
2195 _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
2196 0_{1 \times 3} & 1
2197 \end{bmatrix}
2198 \begin{bmatrix}
2199 X_c\\
2200 Y_c\\
2201 Z_c\\
2202 1
2203 \end{bmatrix}
2204\f]
2205
2206This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
2207 - for an eye-in-hand configuration
2208\f[
2209 \begin{align*}
2210 ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2211 \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2212
2213 (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
2214 \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2215
2216 \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2217 \end{align*}
2218\f]
2219
2220 - for an eye-to-hand configuration
2221\f[
2222 \begin{align*}
2223 ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2224 \hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2225
2226 (^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
2227 \hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2228
2229 \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2230 \end{align*}
2231\f]
2232
2233\note
2234Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
2235\note
2236A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
2237So at least 3 different poses are required, but it is strongly recommended to use many more poses.
2238
2239 */
2240CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
2241 InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
2242 OutputArray R_cam2gripper, OutputArray t_cam2gripper,
2243 HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
2244
2245/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
2246
2247@param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
2248expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2249This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2250for all the transformations from world frame to the camera frame.
2251@param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
2252expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2253This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2254from world frame to the camera frame.
2255@param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2256expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2257This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2258for all the transformations from robot base frame to the gripper frame.
2259@param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2260expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2261This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2262from robot base frame to the gripper frame.
2263@param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2264expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2265@param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2266expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2267@param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2268expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2269@param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2270expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2271@param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
2272
2273The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
2274rotation then the translation (separable solutions):
2275 - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
2276
2277Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2278with the following implemented method:
2279 - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
2280
2281The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
2282and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
2283
2284![](pics/robot-world_hand-eye_figure.png)
2285
2286The calibration procedure is the following:
2287 - a static calibration pattern is used to estimate the transformation between the target frame
2288 and the camera frame
2289 - the robot gripper is moved in order to acquire several poses
2290 - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2291 instance the robot kinematics
2292\f[
2293 \begin{bmatrix}
2294 X_g\\
2295 Y_g\\
2296 Z_g\\
2297 1
2298 \end{bmatrix}
2299 =
2300 \begin{bmatrix}
2301 _{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
2302 0_{1 \times 3} & 1
2303 \end{bmatrix}
2304 \begin{bmatrix}
2305 X_b\\
2306 Y_b\\
2307 Z_b\\
2308 1
2309 \end{bmatrix}
2310\f]
2311 - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
2312 for instance a pose estimation method (PnP) from 2D-3D point correspondences
2313\f[
2314 \begin{bmatrix}
2315 X_c\\
2316 Y_c\\
2317 Z_c\\
2318 1
2319 \end{bmatrix}
2320 =
2321 \begin{bmatrix}
2322 _{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
2323 0_{1 \times 3} & 1
2324 \end{bmatrix}
2325 \begin{bmatrix}
2326 X_w\\
2327 Y_w\\
2328 Z_w\\
2329 1
2330 \end{bmatrix}
2331\f]
2332
2333The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
2334\f[
2335 \begin{bmatrix}
2336 X_w\\
2337 Y_w\\
2338 Z_w\\
2339 1
2340 \end{bmatrix}
2341 =
2342 \begin{bmatrix}
2343 _{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
2344 0_{1 \times 3} & 1
2345 \end{bmatrix}
2346 \begin{bmatrix}
2347 X_b\\
2348 Y_b\\
2349 Z_b\\
2350 1
2351 \end{bmatrix}
2352\f]
2353\f[
2354 \begin{bmatrix}
2355 X_c\\
2356 Y_c\\
2357 Z_c\\
2358 1
2359 \end{bmatrix}
2360 =
2361 \begin{bmatrix}
2362 _{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
2363 0_{1 \times 3} & 1
2364 \end{bmatrix}
2365 \begin{bmatrix}
2366 X_g\\
2367 Y_g\\
2368 Z_g\\
2369 1
2370 \end{bmatrix}
2371\f]
2372
2373This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
2374 - \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
2375 - \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
2376 - \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
2377 - \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$
2378
2379\note
2380At least 3 measurements are required (input vectors size must be greater or equal to 3).
2381
2382 */
2383CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
2384 InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
2385 OutputArray R_base2world, OutputArray t_base2world,
2386 OutputArray R_gripper2cam, OutputArray t_gripper2cam,
2387 RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH );
2388
2389/** @brief Converts points from Euclidean to homogeneous space.
2390
2391@param src Input vector of N-dimensional points.
2392@param dst Output vector of N+1-dimensional points.
2393
2394The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
2395point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
2396 */
2397CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
2398
2399/** @brief Converts points from homogeneous to Euclidean space.
2400
2401@param src Input vector of N-dimensional points.
2402@param dst Output vector of N-1-dimensional points.
2403
2404The function converts points homogeneous to Euclidean space using perspective projection. That is,
2405each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
2406output point coordinates will be (0,0,0,...).
2407 */
2408CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
2409
2410/** @brief Converts points to/from homogeneous coordinates.
2411
2412@param src Input array or vector of 2D, 3D, or 4D points.
2413@param dst Output vector of 2D, 3D, or 4D points.
2414
2415The function converts 2D or 3D points from/to homogeneous coordinates by calling either
2416#convertPointsToHomogeneous or #convertPointsFromHomogeneous.
2417
2418@note The function is obsolete. Use one of the previous two functions instead.
2419 */
2420CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
2421
2422/** @brief Calculates a fundamental matrix from the corresponding points in two images.
2423
2424@param points1 Array of N points from the first image. The point coordinates should be
2425floating-point (single or double precision).
2426@param points2 Array of the second image points of the same size and format as points1 .
2427@param method Method for computing a fundamental matrix.
2428- @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
2429- @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
2430- @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
2431- @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$
2432@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
2433line in pixels, beyond which the point is considered an outlier and is not used for computing the
2434final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2435point localization, image resolution, and the image noise.
2436@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
2437of confidence (probability) that the estimated matrix is correct.
2438@param[out] mask optional output mask
2439@param maxIters The maximum number of robust method iterations.
2440
2441The epipolar geometry is described by the following equation:
2442
2443\f[[p_2; 1]^T F [p_1; 1] = 0\f]
2444
2445where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2446second images, respectively.
2447
2448The function calculates the fundamental matrix using one of four methods listed above and returns
2449the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
2450algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
2451matrices sequentially).
2452
2453The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
2454epipolar lines corresponding to the specified points. It can also be passed to
2455#stereoRectifyUncalibrated to compute the rectification transformation. :
2456@code
2457 // Example. Estimation of fundamental matrix using the RANSAC algorithm
2458 int point_count = 100;
2459 vector<Point2f> points1(point_count);
2460 vector<Point2f> points2(point_count);
2461
2462 // initialize the points here ...
2463 for( int i = 0; i < point_count; i++ )
2464 {
2465 points1[i] = ...;
2466 points2[i] = ...;
2467 }
2468
2469 Mat fundamental_matrix =
2470 findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
2471@endcode
2472 */
2473CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2474 int method, double ransacReprojThreshold, double confidence,
2475 int maxIters, OutputArray mask = noArray() );
2476
2477/** @overload */
2478CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2479 int method = FM_RANSAC,
2480 double ransacReprojThreshold = 3., double confidence = 0.99,
2481 OutputArray mask = noArray() );
2482
2483/** @overload */
2484CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
2485 OutputArray mask, int method = FM_RANSAC,
2486 double ransacReprojThreshold = 3., double confidence = 0.99 );
2487
2488
2489CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2490 OutputArray mask, const UsacParams &params);
2491
2492/** @brief Calculates an essential matrix from the corresponding points in two images.
2493
2494@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2495be floating-point (single or double precision).
2496@param points2 Array of the second image points of the same size and format as points1.
2497@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2498Note that this function assumes that points1 and points2 are feature points from cameras with the
2499same camera intrinsic matrix. If this assumption does not hold for your use case, use another
2500function overload or #undistortPoints with `P = cv::NoArray()` for both cameras to transform image
2501points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
2502When passing these coordinates, pass the identity matrix for this parameter.
2503@param method Method for computing an essential matrix.
2504- @ref RANSAC for the RANSAC algorithm.
2505- @ref LMEDS for the LMedS algorithm.
2506@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2507confidence (probability) that the estimated matrix is correct.
2508@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2509line in pixels, beyond which the point is considered an outlier and is not used for computing the
2510final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2511point localization, image resolution, and the image noise.
2512@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2513for the other points. The array is computed only in the RANSAC and LMedS methods.
2514@param maxIters The maximum number of robust method iterations.
2515
2516This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2517@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2518
2519\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2520
2521where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2522second images, respectively. The result of this function may be passed further to
2523#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
2524 */
2525CV_EXPORTS_W
2526Mat findEssentialMat(
2527 InputArray points1, InputArray points2,
2528 InputArray cameraMatrix, int method = RANSAC,
2529 double prob = 0.999, double threshold = 1.0,
2530 int maxIters = 1000, OutputArray mask = noArray()
2531);
2532
2533/** @overload */
2534CV_EXPORTS
2535Mat findEssentialMat(
2536 InputArray points1, InputArray points2,
2537 InputArray cameraMatrix, int method,
2538 double prob, double threshold,
2539 OutputArray mask
2540); // TODO remove from OpenCV 5.0
2541
2542/** @overload
2543@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2544be floating-point (single or double precision).
2545@param points2 Array of the second image points of the same size and format as points1 .
2546@param focal focal length of the camera. Note that this function assumes that points1 and points2
2547are feature points from cameras with same focal length and principal point.
2548@param pp principal point of the camera.
2549@param method Method for computing a fundamental matrix.
2550- @ref RANSAC for the RANSAC algorithm.
2551- @ref LMEDS for the LMedS algorithm.
2552@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2553line in pixels, beyond which the point is considered an outlier and is not used for computing the
2554final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2555point localization, image resolution, and the image noise.
2556@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2557confidence (probability) that the estimated matrix is correct.
2558@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2559for the other points. The array is computed only in the RANSAC and LMedS methods.
2560@param maxIters The maximum number of robust method iterations.
2561
2562This function differs from the one above that it computes camera intrinsic matrix from focal length and
2563principal point:
2564
2565\f[A =
2566\begin{bmatrix}
2567f & 0 & x_{pp} \\
25680 & f & y_{pp} \\
25690 & 0 & 1
2570\end{bmatrix}\f]
2571 */
2572CV_EXPORTS_W
2573Mat findEssentialMat(
2574 InputArray points1, InputArray points2,
2575 double focal = 1.0, Point2d pp = Point2d(0, 0),
2576 int method = RANSAC, double prob = 0.999,
2577 double threshold = 1.0, int maxIters = 1000,
2578 OutputArray mask = noArray()
2579);
2580
2581/** @overload */
2582CV_EXPORTS
2583Mat findEssentialMat(
2584 InputArray points1, InputArray points2,
2585 double focal, Point2d pp,
2586 int method, double prob,
2587 double threshold, OutputArray mask
2588); // TODO remove from OpenCV 5.0
2589
2590/** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
2591
2592@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2593be floating-point (single or double precision).
2594@param points2 Array of the second image points of the same size and format as points1.
2595@param cameraMatrix1 Camera matrix for the first camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2596@param cameraMatrix2 Camera matrix for the second camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2597@param distCoeffs1 Input vector of distortion coefficients for the first camera
2598\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2599of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2600@param distCoeffs2 Input vector of distortion coefficients for the second camera
2601\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2602of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2603@param method Method for computing an essential matrix.
2604- @ref RANSAC for the RANSAC algorithm.
2605- @ref LMEDS for the LMedS algorithm.
2606@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2607confidence (probability) that the estimated matrix is correct.
2608@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2609line in pixels, beyond which the point is considered an outlier and is not used for computing the
2610final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2611point localization, image resolution, and the image noise.
2612@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2613for the other points. The array is computed only in the RANSAC and LMedS methods.
2614
2615This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2616@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2617
2618\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2619
2620where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2621second images, respectively. The result of this function may be passed further to
2622#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
2623 */
2624CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2625 InputArray cameraMatrix1, InputArray distCoeffs1,
2626 InputArray cameraMatrix2, InputArray distCoeffs2,
2627 int method = RANSAC,
2628 double prob = 0.999, double threshold = 1.0,
2629 OutputArray mask = noArray() );
2630
2631
2632CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2633 InputArray cameraMatrix1, InputArray cameraMatrix2,
2634 InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask,
2635 const UsacParams &params);
2636
2637/** @brief Decompose an essential matrix to possible rotations and translation.
2638
2639@param E The input essential matrix.
2640@param R1 One possible rotation matrix.
2641@param R2 Another possible rotation matrix.
2642@param t One possible translation.
2643
2644This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
2645general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
2646\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
2647
2648If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
2649points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
2650\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
2651camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
2652can only get the direction of the translation. For this reason, the translation t is returned with
2653unit length.
2654 */
2655CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
2656
2657/** @brief Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
2658inliers that pass the check.
2659
2660@param points1 Array of N 2D points from the first image. The point coordinates should be
2661floating-point (single or double precision).
2662@param points2 Array of the second image points of the same size and format as points1 .
2663@param cameraMatrix1 Input/output camera matrix for the first camera, the same as in
2664@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2665@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
2666@ref calibrateCamera.
2667@param cameraMatrix2 Input/output camera matrix for the first camera, the same as in
2668@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2669@param distCoeffs2 Input/output vector of distortion coefficients, the same as in
2670@ref calibrateCamera.
2671@param E The output essential matrix.
2672@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2673that performs a change of basis from the first camera's coordinate system to the second camera's
2674coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2675described below.
2676@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2677therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2678length.
2679@param method Method for computing an essential matrix.
2680- @ref RANSAC for the RANSAC algorithm.
2681- @ref LMEDS for the LMedS algorithm.
2682@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2683confidence (probability) that the estimated matrix is correct.
2684@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2685line in pixels, beyond which the point is considered an outlier and is not used for computing the
2686final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2687point localization, image resolution, and the image noise.
2688@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2689inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
2690recover pose. In the output mask only inliers which pass the cheirality check.
2691
2692This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2693possible pose hypotheses by doing cheirality check. The cheirality check means that the
2694triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2695
2696This function can be used to process the output E and mask from @ref findEssentialMat. In this
2697scenario, points1 and points2 are the same input for findEssentialMat.:
2698@code
2699 // Example. Estimation of fundamental matrix using the RANSAC algorithm
2700 int point_count = 100;
2701 vector<Point2f> points1(point_count);
2702 vector<Point2f> points2(point_count);
2703
2704 // initialize the points here ...
2705 for( int i = 0; i < point_count; i++ )
2706 {
2707 points1[i] = ...;
2708 points2[i] = ...;
2709 }
2710
2711 // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
2712 Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
2713
2714 // Output: Essential matrix, relative rotation and relative translation.
2715 Mat E, R, t, mask;
2716
2717 recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
2718@endcode
2719 */
2720CV_EXPORTS_W int recoverPose( InputArray points1, InputArray points2,
2721 InputArray cameraMatrix1, InputArray distCoeffs1,
2722 InputArray cameraMatrix2, InputArray distCoeffs2,
2723 OutputArray E, OutputArray R, OutputArray t,
2724 int method = cv::RANSAC, double prob = 0.999, double threshold = 1.0,
2725 InputOutputArray mask = noArray());
2726
2727/** @brief Recovers the relative camera rotation and the translation from an estimated essential
2728matrix and the corresponding points in two images, using chirality check. Returns the number of
2729inliers that pass the check.
2730
2731@param E The input essential matrix.
2732@param points1 Array of N 2D points from the first image. The point coordinates should be
2733floating-point (single or double precision).
2734@param points2 Array of the second image points of the same size and format as points1 .
2735@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2736Note that this function assumes that points1 and points2 are feature points from cameras with the
2737same camera intrinsic matrix.
2738@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2739that performs a change of basis from the first camera's coordinate system to the second camera's
2740coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2741described below.
2742@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2743therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2744length.
2745@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2746inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2747recover pose. In the output mask only inliers which pass the chirality check.
2748
2749This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2750possible pose hypotheses by doing chirality check. The chirality check means that the
2751triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2752
2753This function can be used to process the output E and mask from @ref findEssentialMat. In this
2754scenario, points1 and points2 are the same input for #findEssentialMat :
2755@code
2756 // Example. Estimation of fundamental matrix using the RANSAC algorithm
2757 int point_count = 100;
2758 vector<Point2f> points1(point_count);
2759 vector<Point2f> points2(point_count);
2760
2761 // initialize the points here ...
2762 for( int i = 0; i < point_count; i++ )
2763 {
2764 points1[i] = ...;
2765 points2[i] = ...;
2766 }
2767
2768 // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
2769 Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
2770
2771 Mat E, R, t, mask;
2772
2773 E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
2774 recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
2775@endcode
2776 */
2777CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2778 InputArray cameraMatrix, OutputArray R, OutputArray t,
2779 InputOutputArray mask = noArray() );
2780
2781/** @overload
2782@param E The input essential matrix.
2783@param points1 Array of N 2D points from the first image. The point coordinates should be
2784floating-point (single or double precision).
2785@param points2 Array of the second image points of the same size and format as points1 .
2786@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2787that performs a change of basis from the first camera's coordinate system to the second camera's
2788coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2789description below.
2790@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2791therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2792length.
2793@param focal Focal length of the camera. Note that this function assumes that points1 and points2
2794are feature points from cameras with same focal length and principal point.
2795@param pp principal point of the camera.
2796@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2797inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2798recover pose. In the output mask only inliers which pass the chirality check.
2799
2800This function differs from the one above that it computes camera intrinsic matrix from focal length and
2801principal point:
2802
2803\f[A =
2804\begin{bmatrix}
2805f & 0 & x_{pp} \\
28060 & f & y_{pp} \\
28070 & 0 & 1
2808\end{bmatrix}\f]
2809 */
2810CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2811 OutputArray R, OutputArray t,
2812 double focal = 1.0, Point2d pp = Point2d(0, 0),
2813 InputOutputArray mask = noArray() );
2814
2815/** @overload
2816@param E The input essential matrix.
2817@param points1 Array of N 2D points from the first image. The point coordinates should be
2818floating-point (single or double precision).
2819@param points2 Array of the second image points of the same size and format as points1.
2820@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2821Note that this function assumes that points1 and points2 are feature points from cameras with the
2822same camera intrinsic matrix.
2823@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2824that performs a change of basis from the first camera's coordinate system to the second camera's
2825coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2826description below.
2827@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2828therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2829length.
2830@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite
2831points).
2832@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2833inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2834recover pose. In the output mask only inliers which pass the chirality check.
2835@param triangulatedPoints 3D points which were reconstructed by triangulation.
2836
2837This function differs from the one above that it outputs the triangulated 3D point that are used for
2838the chirality check.
2839 */
2840CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2841 InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
2842 OutputArray triangulatedPoints = noArray());
2843
2844/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
2845
2846@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
2847vector\<Point2f\> .
2848@param whichImage Index of the image (1 or 2) that contains the points .
2849@param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .
2850@param lines Output vector of the epipolar lines corresponding to the points in the other image.
2851Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
2852
2853For every point in one of the two images of a stereo pair, the function finds the equation of the
2854corresponding epipolar line in the other image.
2855
2856From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
2857image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
2858
2859\f[l^{(2)}_i = F p^{(1)}_i\f]
2860
2861And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
2862
2863\f[l^{(1)}_i = F^T p^{(2)}_i\f]
2864
2865Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
2866 */
2867CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
2868 InputArray F, OutputArray lines );
2869
2870/** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
2871their observations with a stereo camera.
2872
2873@param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
2874given in the world's coordinate system into the first image.
2875@param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
2876given in the world's coordinate system into the second image.
2877@param projPoints1 2xN array of feature points in the first image. In the case of the c++ version,
2878it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2879@param projPoints2 2xN array of corresponding points in the second image. In the case of the c++
2880version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2881@param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are
2882returned in the world's coordinate system.
2883
2884@note
2885 Keep in mind that all input data should be of float type in order for this function to work.
2886
2887@note
2888 If the projection matrices from @ref stereoRectify are used, then the returned points are
2889 represented in the first camera's rectified coordinate system.
2890
2891@sa
2892 reprojectImageTo3D
2893 */
2894CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
2895 InputArray projPoints1, InputArray projPoints2,
2896 OutputArray points4D );
2897
2898/** @brief Refines coordinates of corresponding points.
2899
2900@param F 3x3 fundamental matrix.
2901@param points1 1xN array containing the first set of points.
2902@param points2 1xN array containing the second set of points.
2903@param newPoints1 The optimized points1.
2904@param newPoints2 The optimized points2.
2905
2906The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
2907For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
2908computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
2909error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
2910geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
2911\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$ .
2912 */
2913CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
2914 OutputArray newPoints1, OutputArray newPoints2 );
2915
2916/** @brief Filters off small noise blobs (speckles) in the disparity map
2917
2918@param img The input 16-bit signed disparity image
2919@param newVal The disparity value used to paint-off the speckles
2920@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
2921affected by the algorithm
2922@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
2923blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
2924disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
2925account when specifying this parameter value.
2926@param buf The optional temporary buffer to avoid memory allocation within the function.
2927 */
2928CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
2929 int maxSpeckleSize, double maxDiff,
2930 InputOutputArray buf = noArray() );
2931
2932//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify)
2933CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
2934 int minDisparity, int numberOfDisparities,
2935 int blockSize );
2936
2937//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
2938CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
2939 int minDisparity, int numberOfDisparities,
2940 int disp12MaxDisp = 1 );
2941
2942/** @brief Reprojects a disparity image to 3D space.
2943
2944@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
2945floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
2946fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or
2947@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
2948being used here.
2949@param _3dImage Output 3-channel floating-point image of the same size as disparity. Each element of
2950_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
2951uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
2952camera's rectified coordinate system.
2953@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with
2954@ref stereoRectify.
2955@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
2956points where the disparity was not computed). If handleMissingValues=true, then pixels with the
2957minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
2958to 3D points with a very large Z value (currently set to 10000).
2959@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
2960depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
2961
2962The function transforms a single-channel disparity map to a 3-channel image representing a 3D
2963surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
2964computes:
2965
2966\f[\begin{bmatrix}
2967X \\
2968Y \\
2969Z \\
2970W
2971\end{bmatrix} = Q \begin{bmatrix}
2972x \\
2973y \\
2974\texttt{disparity} (x,y) \\
29751
2976\end{bmatrix}.\f]
2977
2978@sa
2979 To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
2980 */
2981CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
2982 OutputArray _3dImage, InputArray Q,
2983 bool handleMissingValues = false,
2984 int ddepth = -1 );
2985
2986/** @brief Calculates the Sampson Distance between two points.
2987
2988The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
2989\f[
2990sd( \texttt{pt1} , \texttt{pt2} )=
2991\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
2992{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
2993((\texttt{F} \cdot \texttt{pt1})(1))^2 +
2994((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
2995((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
2996\f]
2997The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
2998@param pt1 first homogeneous 2d point
2999@param pt2 second homogeneous 2d point
3000@param F fundamental matrix
3001@return The computed Sampson distance.
3002*/
3003CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
3004
3005/** @brief Computes an optimal affine transformation between two 3D point sets.
3006
3007It computes
3008\f[
3009\begin{bmatrix}
3010x\\
3011y\\
3012z\\
3013\end{bmatrix}
3014=
3015\begin{bmatrix}
3016a_{11} & a_{12} & a_{13}\\
3017a_{21} & a_{22} & a_{23}\\
3018a_{31} & a_{32} & a_{33}\\
3019\end{bmatrix}
3020\begin{bmatrix}
3021X\\
3022Y\\
3023Z\\
3024\end{bmatrix}
3025+
3026\begin{bmatrix}
3027b_1\\
3028b_2\\
3029b_3\\
3030\end{bmatrix}
3031\f]
3032
3033@param src First input 3D point set containing \f$(X,Y,Z)\f$.
3034@param dst Second input 3D point set containing \f$(x,y,z)\f$.
3035@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
3036\f[
3037\begin{bmatrix}
3038a_{11} & a_{12} & a_{13} & b_1\\
3039a_{21} & a_{22} & a_{23} & b_2\\
3040a_{31} & a_{32} & a_{33} & b_3\\
3041\end{bmatrix}
3042\f]
3043@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3044@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3045an inlier.
3046@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3047between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3048significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3049
3050The function estimates an optimal 3D affine transformation between two 3D point sets using the
3051RANSAC algorithm.
3052 */
3053CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
3054 OutputArray out, OutputArray inliers,
3055 double ransacThreshold = 3, double confidence = 0.99);
3056
3057/** @brief Computes an optimal affine transformation between two 3D point sets.
3058
3059It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
3060where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
3061scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
3062The estimated affine transform has a homogeneous scale which is a subclass of affine
3063transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
3064points each.
3065
3066@param src First input 3D point set.
3067@param dst Second input 3D point set.
3068@param scale If null is passed, the scale parameter c will be assumed to be 1.0.
3069Else the pointed-to variable will be set to the optimal scale.
3070@param force_rotation If true, the returned rotation will never be a reflection.
3071This might be unwanted, e.g. when optimizing a transform between a right- and a
3072left-handed coordinate system.
3073@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
3074\f[T =
3075\begin{bmatrix}
3076R & t\\
3077\end{bmatrix}
3078\f]
3079
3080 */
3081CV_EXPORTS_W cv::Mat estimateAffine3D(InputArray src, InputArray dst,
3082 CV_OUT double* scale = nullptr, bool force_rotation = true);
3083
3084/** @brief Computes an optimal translation between two 3D point sets.
3085 *
3086 * It computes
3087 * \f[
3088 * \begin{bmatrix}
3089 * x\\
3090 * y\\
3091 * z\\
3092 * \end{bmatrix}
3093 * =
3094 * \begin{bmatrix}
3095 * X\\
3096 * Y\\
3097 * Z\\
3098 * \end{bmatrix}
3099 * +
3100 * \begin{bmatrix}
3101 * b_1\\
3102 * b_2\\
3103 * b_3\\
3104 * \end{bmatrix}
3105 * \f]
3106 *
3107 * @param src First input 3D point set containing \f$(X,Y,Z)\f$.
3108 * @param dst Second input 3D point set containing \f$(x,y,z)\f$.
3109 * @param out Output 3D translation vector \f$3 \times 1\f$ of the form
3110 * \f[
3111 * \begin{bmatrix}
3112 * b_1 \\
3113 * b_2 \\
3114 * b_3 \\
3115 * \end{bmatrix}
3116 * \f]
3117 * @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3118 * @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3119 * an inlier.
3120 * @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3121 * between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3122 * significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3123 *
3124 * The function estimates an optimal 3D translation between two 3D point sets using the
3125 * RANSAC algorithm.
3126 * */
3127CV_EXPORTS_W int estimateTranslation3D(InputArray src, InputArray dst,
3128 OutputArray out, OutputArray inliers,
3129 double ransacThreshold = 3, double confidence = 0.99);
3130
3131/** @brief Computes an optimal affine transformation between two 2D point sets.
3132
3133It computes
3134\f[
3135\begin{bmatrix}
3136x\\
3137y\\
3138\end{bmatrix}
3139=
3140\begin{bmatrix}
3141a_{11} & a_{12}\\
3142a_{21} & a_{22}\\
3143\end{bmatrix}
3144\begin{bmatrix}
3145X\\
3146Y\\
3147\end{bmatrix}
3148+
3149\begin{bmatrix}
3150b_1\\
3151b_2\\
3152\end{bmatrix}
3153\f]
3154
3155@param from First input 2D point set containing \f$(X,Y)\f$.
3156@param to Second input 2D point set containing \f$(x,y)\f$.
3157@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3158@param method Robust method used to compute transformation. The following methods are possible:
3159- @ref RANSAC - RANSAC-based robust method
3160- @ref LMEDS - Least-Median robust method
3161RANSAC is the default method.
3162@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3163a point as an inlier. Applies only to RANSAC.
3164@param maxIters The maximum number of robust method iterations.
3165@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3166between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3167significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3168@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3169Passing 0 will disable refining, so the output matrix will be output of robust method.
3170
3171@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
3172could not be estimated. The returned matrix has the following form:
3173\f[
3174\begin{bmatrix}
3175a_{11} & a_{12} & b_1\\
3176a_{21} & a_{22} & b_2\\
3177\end{bmatrix}
3178\f]
3179
3180The function estimates an optimal 2D affine transformation between two 2D point sets using the
3181selected robust algorithm.
3182
3183The computed transformation is then refined further (using only inliers) with the
3184Levenberg-Marquardt method to reduce the re-projection error even more.
3185
3186@note
3187The RANSAC method can handle practically any ratio of outliers but needs a threshold to
3188distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3189correctly only when there are more than 50% of inliers.
3190
3191@sa estimateAffinePartial2D, getAffineTransform
3192*/
3193CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3194 int method = RANSAC, double ransacReprojThreshold = 3,
3195 size_t maxIters = 2000, double confidence = 0.99,
3196 size_t refineIters = 10);
3197
3198
3199CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers,
3200 const UsacParams &params);
3201
3202/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
3203two 2D point sets.
3204
3205@param from First input 2D point set.
3206@param to Second input 2D point set.
3207@param inliers Output vector indicating which points are inliers.
3208@param method Robust method used to compute transformation. The following methods are possible:
3209- @ref RANSAC - RANSAC-based robust method
3210- @ref LMEDS - Least-Median robust method
3211RANSAC is the default method.
3212@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3213a point as an inlier. Applies only to RANSAC.
3214@param maxIters The maximum number of robust method iterations.
3215@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3216between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3217significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3218@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3219Passing 0 will disable refining, so the output matrix will be output of robust method.
3220
3221@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
3222empty matrix if transformation could not be estimated.
3223
3224The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
3225combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
3226estimation.
3227
3228The computed transformation is then refined further (using only inliers) with the
3229Levenberg-Marquardt method to reduce the re-projection error even more.
3230
3231Estimated transformation matrix is:
3232\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
3233 \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
3234\end{bmatrix} \f]
3235Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
3236translations in \f$ x, y \f$ axes respectively.
3237
3238@note
3239The RANSAC method can handle practically any ratio of outliers but need a threshold to
3240distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3241correctly only when there are more than 50% of inliers.
3242
3243@sa estimateAffine2D, getAffineTransform
3244*/
3245CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3246 int method = RANSAC, double ransacReprojThreshold = 3,
3247 size_t maxIters = 2000, double confidence = 0.99,
3248 size_t refineIters = 10);
3249
3250/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
3251An example program with homography decomposition.
3252
3253Check @ref tutorial_homography "the corresponding tutorial" for more details.
3254*/
3255
3256/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
3257
3258@param H The input homography matrix between two images.
3259@param K The input camera intrinsic matrix.
3260@param rotations Array of rotation matrices.
3261@param translations Array of translation matrices.
3262@param normals Array of plane normal matrices.
3263
3264This function extracts relative camera motion between two views of a planar object and returns up to
3265four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
3266the homography matrix H is described in detail in @cite Malis2007.
3267
3268If the homography H, induced by the plane, gives the constraint
3269\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
3270\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
3271translations[k] is a change of basis from the source camera's coordinate system to the destination
3272camera's coordinate system. However, by decomposing H, one can only get the translation normalized
3273by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
3274
3275If point correspondences are available, at least two solutions may further be invalidated, by
3276applying positive depth constraint, i.e. all points must be in front of the camera.
3277 */
3278CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
3279 InputArray K,
3280 OutputArrayOfArrays rotations,
3281 OutputArrayOfArrays translations,
3282 OutputArrayOfArrays normals);
3283
3284/** @brief Filters homography decompositions based on additional information.
3285
3286@param rotations Vector of rotation matrices.
3287@param normals Vector of plane normal matrices.
3288@param beforePoints Vector of (rectified) visible reference points before the homography is applied
3289@param afterPoints Vector of (rectified) visible reference points after the homography is applied
3290@param possibleSolutions Vector of int indices representing the viable solution set after filtering
3291@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function
3292
3293This function is intended to filter the output of the #decomposeHomographyMat based on additional
3294information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
3295returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
3296sets of points visible in the camera frame before and after the homography transformation is applied,
3297we can determine which are the true potential solutions and which are the opposites by verifying which
3298homographies are consistent with all visible reference points being in front of the camera. The inputs
3299are left unchanged; the filtered solution set is returned as indices into the existing one.
3300
3301*/
3302CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
3303 InputArrayOfArrays normals,
3304 InputArray beforePoints,
3305 InputArray afterPoints,
3306 OutputArray possibleSolutions,
3307 InputArray pointsMask = noArray());
3308
3309/** @brief The base class for stereo correspondence algorithms.
3310 */
3311class CV_EXPORTS_W StereoMatcher : public Algorithm
3312{
3313public:
3314 enum { DISP_SHIFT = 4,
3315 DISP_SCALE = (1 << DISP_SHIFT)
3316 };
3317
3318 /** @brief Computes disparity map for the specified stereo pair
3319
3320 @param left Left 8-bit single-channel image.
3321 @param right Right image of the same size and the same type as the left one.
3322 @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
3323 like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
3324 has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
3325 */
3326 CV_WRAP virtual void compute( InputArray left, InputArray right,
3327 OutputArray disparity ) = 0;
3328
3329 CV_WRAP virtual int getMinDisparity() const = 0;
3330 CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
3331
3332 CV_WRAP virtual int getNumDisparities() const = 0;
3333 CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
3334
3335 CV_WRAP virtual int getBlockSize() const = 0;
3336 CV_WRAP virtual void setBlockSize(int blockSize) = 0;
3337
3338 CV_WRAP virtual int getSpeckleWindowSize() const = 0;
3339 CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
3340
3341 CV_WRAP virtual int getSpeckleRange() const = 0;
3342 CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
3343
3344 CV_WRAP virtual int getDisp12MaxDiff() const = 0;
3345 CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
3346};
3347
3348
3349/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
3350contributed to OpenCV by K. Konolige.
3351 */
3352class CV_EXPORTS_W StereoBM : public StereoMatcher
3353{
3354public:
3355 enum { PREFILTER_NORMALIZED_RESPONSE = 0,
3356 PREFILTER_XSOBEL = 1
3357 };
3358
3359 CV_WRAP virtual int getPreFilterType() const = 0;
3360 CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
3361
3362 CV_WRAP virtual int getPreFilterSize() const = 0;
3363 CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
3364
3365 CV_WRAP virtual int getPreFilterCap() const = 0;
3366 CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3367
3368 CV_WRAP virtual int getTextureThreshold() const = 0;
3369 CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
3370
3371 CV_WRAP virtual int getUniquenessRatio() const = 0;
3372 CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3373
3374 CV_WRAP virtual int getSmallerBlockSize() const = 0;
3375 CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
3376
3377 CV_WRAP virtual Rect getROI1() const = 0;
3378 CV_WRAP virtual void setROI1(Rect roi1) = 0;
3379
3380 CV_WRAP virtual Rect getROI2() const = 0;
3381 CV_WRAP virtual void setROI2(Rect roi2) = 0;
3382
3383 /** @brief Creates StereoBM object
3384
3385 @param numDisparities the disparity search range. For each pixel algorithm will find the best
3386 disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
3387 shifted by changing the minimum disparity.
3388 @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
3389 (as the block is centered at the current pixel). Larger block size implies smoother, though less
3390 accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
3391 chance for algorithm to find a wrong correspondence.
3392
3393 The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
3394 a specific stereo pair.
3395 */
3396 CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
3397};
3398
3399/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
3400one as follows:
3401
3402- By default, the algorithm is single-pass, which means that you consider only 5 directions
3403instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
3404algorithm but beware that it may consume a lot of memory.
3405- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
3406blocks to single pixels.
3407- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
3408sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
3409- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
3410example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
3411check, quadratic interpolation and speckle filtering).
3412
3413@note
3414 - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
3415 at opencv_source_code/samples/python/stereo_match.py
3416 */
3417class CV_EXPORTS_W StereoSGBM : public StereoMatcher
3418{
3419public:
3420 enum
3421 {
3422 MODE_SGBM = 0,
3423 MODE_HH = 1,
3424 MODE_SGBM_3WAY = 2,
3425 MODE_HH4 = 3
3426 };
3427
3428 CV_WRAP virtual int getPreFilterCap() const = 0;
3429 CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3430
3431 CV_WRAP virtual int getUniquenessRatio() const = 0;
3432 CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3433
3434 CV_WRAP virtual int getP1() const = 0;
3435 CV_WRAP virtual void setP1(int P1) = 0;
3436
3437 CV_WRAP virtual int getP2() const = 0;
3438 CV_WRAP virtual void setP2(int P2) = 0;
3439
3440 CV_WRAP virtual int getMode() const = 0;
3441 CV_WRAP virtual void setMode(int mode) = 0;
3442
3443 /** @brief Creates StereoSGBM object
3444
3445 @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
3446 rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
3447 @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
3448 zero. In the current implementation, this parameter must be divisible by 16.
3449 @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
3450 somewhere in the 3..11 range.
3451 @param P1 The first parameter controlling the disparity smoothness. See below.
3452 @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
3453 the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
3454 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
3455 pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
3456 P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
3457 32\*number_of_image_channels\*blockSize\*blockSize , respectively).
3458 @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
3459 disparity check. Set it to a non-positive value to disable the check.
3460 @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
3461 computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
3462 The result values are passed to the Birchfield-Tomasi pixel cost function.
3463 @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
3464 value should "win" the second best value to consider the found match correct. Normally, a value
3465 within the 5-15 range is good enough.
3466 @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
3467 and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
3468 50-200 range.
3469 @param speckleRange Maximum disparity variation within each connected component. If you do speckle
3470 filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
3471 Normally, 1 or 2 is good enough.
3472 @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
3473 algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
3474 huge for HD-size pictures. By default, it is set to false .
3475
3476 The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
3477 set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
3478 to a custom value.
3479 */
3480 CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
3481 int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
3482 int preFilterCap = 0, int uniquenessRatio = 0,
3483 int speckleWindowSize = 0, int speckleRange = 0,
3484 int mode = StereoSGBM::MODE_SGBM);
3485};
3486
3487
3488//! cv::undistort mode
3489enum UndistortTypes
3490{
3491 PROJ_SPHERICAL_ORTHO = 0,
3492 PROJ_SPHERICAL_EQRECT = 1
3493};
3494
3495/** @brief Transforms an image to compensate for lens distortion.
3496
3497The function transforms an image to compensate radial and tangential lens distortion.
3498
3499The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
3500(with bilinear interpolation). See the former function for details of the transformation being
3501performed.
3502
3503Those pixels in the destination image, for which there is no correspondent pixels in the source
3504image, are filled with zeros (black color).
3505
3506A particular subset of the source image that will be visible in the corrected image can be regulated
3507by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
3508newCameraMatrix depending on your requirements.
3509
3510The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
3511the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
3512f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
3513the same.
3514
3515@param src Input (distorted) image.
3516@param dst Output (corrected) image that has the same size and type as src .
3517@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3518@param distCoeffs Input vector of distortion coefficients
3519\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3520of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3521@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
3522cameraMatrix but you may additionally scale and shift the result by using a different matrix.
3523 */
3524CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
3525 InputArray cameraMatrix,
3526 InputArray distCoeffs,
3527 InputArray newCameraMatrix = noArray() );
3528
3529/** @brief Computes the undistortion and rectification transformation map.
3530
3531The function computes the joint undistortion and rectification transformation and represents the
3532result in the form of maps for #remap. The undistorted image looks like original, as if it is
3533captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
3534monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
3535#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
3536newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3537
3538Also, this new camera is oriented differently in the coordinate space, according to R. That, for
3539example, helps to align two heads of a stereo camera so that the epipolar lines on both images
3540become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
3541
3542The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
3543is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
3544computes the corresponding coordinates in the source image (that is, in the original image from
3545camera). The following process is applied:
3546\f[
3547\begin{array}{l}
3548x \leftarrow (u - {c'}_x)/{f'}_x \\
3549y \leftarrow (v - {c'}_y)/{f'}_y \\
3550{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
3551x' \leftarrow X/W \\
3552y' \leftarrow Y/W \\
3553r^2 \leftarrow x'^2 + y'^2 \\
3554x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3555+ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
3556y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3557+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
3558s\vecthree{x'''}{y'''}{1} =
3559\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
3560{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
3561{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
3562map_x(u,v) \leftarrow x''' f_x + c_x \\
3563map_y(u,v) \leftarrow y''' f_y + c_y
3564\end{array}
3565\f]
3566where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3567are the distortion coefficients.
3568
3569In case of a stereo camera, this function is called twice: once for each camera head, after
3570#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
3571was not calibrated, it is still possible to compute the rectification transformations directly from
3572the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
3573homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3574space. R can be computed from H as
3575\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3576where cameraMatrix can be chosen arbitrarily.
3577
3578@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3579@param distCoeffs Input vector of distortion coefficients
3580\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3581of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3582@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
3583computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3584is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.
3585@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3586@param size Undistorted image size.
3587@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3588@param map1 The first output map.
3589@param map2 The second output map.
3590 */
3591CV_EXPORTS_W
3592void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
3593 InputArray R, InputArray newCameraMatrix,
3594 Size size, int m1type, OutputArray map1, OutputArray map2);
3595
3596/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
3597#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
3598
3599The function computes the joint projection and inverse rectification transformation and represents the
3600result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
3601once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
3602is usually equal to cameraMatrix, or it can be computed by
3603#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
3604newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3605
3606The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
3607this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
3608allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
3609
3610The function builds the maps for the inverse mapping algorithm that is used by #remap. That
3611is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
3612computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
3613
3614\f[
3615\begin{array}{l}
3616\text{newCameraMatrix}\\
3617x \leftarrow (u - {c'}_x)/{f'}_x \\
3618y \leftarrow (v - {c'}_y)/{f'}_y \\
3619
3620\\\text{Undistortion}
3621\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
3622r^2 \leftarrow x^2 + y^2 \\
3623\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
3624x' \leftarrow \frac{x}{\theta} \\
3625y' \leftarrow \frac{y}{\theta} \\
3626
3627\\\text{Rectification}\\
3628{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
3629x'' \leftarrow X/W \\
3630y'' \leftarrow Y/W \\
3631
3632\\\text{cameraMatrix}\\
3633map_x(u,v) \leftarrow x'' f_x + c_x \\
3634map_y(u,v) \leftarrow y'' f_y + c_y
3635\end{array}
3636\f]
3637where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3638are the distortion coefficients vector distCoeffs.
3639
3640In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
3641This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
3642is not calibrated, it is still possible to compute the rectification transformations directly from
3643the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
3644homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3645space. R can be computed from H as
3646\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3647where cameraMatrix can be chosen arbitrarily.
3648
3649@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3650@param distCoeffs Input vector of distortion coefficients
3651\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3652of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3653@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
3654computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3655is assumed.
3656@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3657@param size Distorted image size.
3658@param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3659@param map1 The first output map for #remap.
3660@param map2 The second output map for #remap.
3661 */
3662CV_EXPORTS_W
3663void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs,
3664 InputArray R, InputArray newCameraMatrix,
3665 const Size& size, int m1type, OutputArray map1, OutputArray map2 );
3666
3667//! initializes maps for #remap for wide-angle
3668CV_EXPORTS
3669float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3670 Size imageSize, int destImageWidth,
3671 int m1type, OutputArray map1, OutputArray map2,
3672 enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
3673static inline
3674float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3675 Size imageSize, int destImageWidth,
3676 int m1type, OutputArray map1, OutputArray map2,
3677 int projType, double alpha = 0)
3678{
3679 return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
3680 m1type, map1, map2, projType: (UndistortTypes)projType, alpha);
3681}
3682
3683/** @brief Returns the default new camera matrix.
3684
3685The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
3686centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
3687
3688In the latter case, the new camera matrix will be:
3689
3690\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
3691
3692where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
3693
3694By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
3695move the principal point. However, when you work with stereo, it is important to move the principal
3696points in both views to the same y-coordinate (which is required by most of stereo correspondence
3697algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
3698each view where the principal points are located at the center.
3699
3700@param cameraMatrix Input camera matrix.
3701@param imgsize Camera view image size in pixels.
3702@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
3703parameter indicates whether this location should be at the image center or not.
3704 */
3705CV_EXPORTS_W
3706Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
3707 bool centerPrincipalPoint = false);
3708
3709/** @brief Computes the ideal point coordinates from the observed point coordinates.
3710
3711The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
3712sparse set of points instead of a raster image. Also the function performs a reverse transformation
3713to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
3714planar object, it does, up to a translation vector, if the proper R is specified.
3715
3716For each observed point coordinate \f$(u, v)\f$ the function computes:
3717\f[
3718\begin{array}{l}
3719x^{"} \leftarrow (u - c_x)/f_x \\
3720y^{"} \leftarrow (v - c_y)/f_y \\
3721(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
3722{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
3723x \leftarrow X/W \\
3724y \leftarrow Y/W \\
3725\text{only performed if P is specified:} \\
3726u' \leftarrow x {f'}_x + {c'}_x \\
3727v' \leftarrow y {f'}_y + {c'}_y
3728\end{array}
3729\f]
3730
3731where *undistort* is an approximate iterative algorithm that estimates the normalized original
3732point coordinates out of the normalized distorted point coordinates ("normalized" means that the
3733coordinates do not depend on the camera matrix).
3734
3735The function can be used for both a stereo camera head or a monocular camera (when R is empty).
3736@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
3737vector\<Point2f\> ).
3738@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
3739transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
3740@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3741@param distCoeffs Input vector of distortion coefficients
3742\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3743of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3744@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
3745#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
3746@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
3747#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
3748 */
3749CV_EXPORTS_W
3750void undistortPoints(InputArray src, OutputArray dst,
3751 InputArray cameraMatrix, InputArray distCoeffs,
3752 InputArray R = noArray(), InputArray P = noArray());
3753/** @overload
3754 @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
3755 */
3756CV_EXPORTS_AS(undistortPointsIter)
3757void undistortPoints(InputArray src, OutputArray dst,
3758 InputArray cameraMatrix, InputArray distCoeffs,
3759 InputArray R, InputArray P, TermCriteria criteria);
3760
3761/**
3762 * @brief Compute undistorted image points position
3763 *
3764 * @param src Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
3765CV_64FC2) (or vector\<Point2f\> ).
3766 * @param dst Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
3767 * @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3768 * @param distCoeffs Distortion coefficients
3769 */
3770CV_EXPORTS_W
3771void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix,
3772 InputArray distCoeffs,
3773 TermCriteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5,
3774 0.01));
3775
3776//! @} calib3d
3777
3778/** @brief The methods in this namespace use a so-called fisheye camera model.
3779 @ingroup calib3d_fisheye
3780*/
3781namespace fisheye
3782{
3783//! @addtogroup calib3d_fisheye
3784//! @{
3785
3786 enum{
3787 CALIB_USE_INTRINSIC_GUESS = 1 << 0,
3788 CALIB_RECOMPUTE_EXTRINSIC = 1 << 1,
3789 CALIB_CHECK_COND = 1 << 2,
3790 CALIB_FIX_SKEW = 1 << 3,
3791 CALIB_FIX_K1 = 1 << 4,
3792 CALIB_FIX_K2 = 1 << 5,
3793 CALIB_FIX_K3 = 1 << 6,
3794 CALIB_FIX_K4 = 1 << 7,
3795 CALIB_FIX_INTRINSIC = 1 << 8,
3796 CALIB_FIX_PRINCIPAL_POINT = 1 << 9,
3797 CALIB_ZERO_DISPARITY = 1 << 10,
3798 CALIB_FIX_FOCAL_LENGTH = 1 << 11
3799 };
3800
3801 /** @brief Projects points using fisheye model
3802
3803 @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
3804 the number of points in the view.
3805 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
3806 vector\<Point2f\>.
3807 @param affine
3808 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3809 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3810 @param alpha The skew coefficient.
3811 @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
3812 to components of the focal lengths, coordinates of the principal point, distortion coefficients,
3813 rotation vector, translation vector, and the skew. In the old interface different components of
3814 the jacobian are returned via different output parameters.
3815
3816 The function computes projections of 3D points to the image plane given intrinsic and extrinsic
3817 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
3818 image points coordinates (as functions of all the input parameters) with respect to the particular
3819 parameters, intrinsic and/or extrinsic.
3820 */
3821 CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
3822 InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
3823
3824 /** @overload */
3825 CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
3826 InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
3827
3828 /** @brief Distorts 2D points using fisheye model.
3829
3830 @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
3831 the number of points in the view.
3832 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3833 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3834 @param alpha The skew coefficient.
3835 @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
3836
3837 Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
3838 This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$ or
3839 use another function overload.
3840 */
3841 CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
3842
3843 /** @overload
3844 Overload of distortPoints function to handle cases when undistorted points are obtained with non-identity
3845 camera matrix, e.g. output of #estimateNewCameraMatrixForUndistortRectify.
3846 @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
3847 the number of points in the view.
3848 @param Kundistorted Camera intrinsic matrix used as new camera matrix for undistortion.
3849 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3850 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3851 @param alpha The skew coefficient.
3852 @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
3853 @sa estimateNewCameraMatrixForUndistortRectify
3854 */
3855 CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray Kundistorted, InputArray K, InputArray D, double alpha = 0);
3856
3857 /** @brief Undistorts 2D points using fisheye model
3858
3859 @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
3860 number of points in the view.
3861 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3862 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3863 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
3864 1-channel or 1x1 3-channel
3865 @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
3866 @param criteria Termination criteria
3867 @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
3868 */
3869 CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
3870 InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray(),
3871 TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
3872
3873 /** @brief Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
3874 distortion is used, if R or P is empty identity matrixes are used.
3875
3876 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3877 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3878 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
3879 1-channel or 1x1 3-channel
3880 @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
3881 @param size Undistorted image size.
3882 @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
3883 for details.
3884 @param map1 The first output map.
3885 @param map2 The second output map.
3886 */
3887 CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
3888 const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
3889
3890 /** @brief Transforms an image to compensate for fisheye lens distortion.
3891
3892 @param distorted image with fisheye lens distortion.
3893 @param undistorted Output image with compensated fisheye lens distortion.
3894 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3895 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3896 @param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
3897 may additionally scale and shift the result by using a different matrix.
3898 @param new_size the new size
3899
3900 The function transforms an image to compensate radial and tangential lens distortion.
3901
3902 The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
3903 (with bilinear interpolation). See the former function for details of the transformation being
3904 performed.
3905
3906 See below the results of undistortImage.
3907 - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
3908 k_4, k_5, k_6) of distortion were optimized under calibration)
3909 - b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
3910 k_3, k_4) of fisheye distortion were optimized under calibration)
3911 - c\) original image was captured with fisheye lens
3912
3913 Pictures a) and b) almost the same. But if we consider points of image located far from the center
3914 of image, we can notice that on image a) these points are distorted.
3915
3916 ![image](pics/fisheye_undistorted.jpg)
3917 */
3918 CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
3919 InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
3920
3921 /** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
3922
3923 @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3924 @param image_size Size of the image
3925 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3926 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
3927 1-channel or 1x1 3-channel
3928 @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
3929 @param balance Sets the new focal length in range between the min focal length and the max focal
3930 length. Balance is in range of [0, 1].
3931 @param new_size the new size
3932 @param fov_scale Divisor for new focal length.
3933 */
3934 CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
3935 OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
3936
3937 /** @brief Performs camera calibration
3938
3939 @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
3940 coordinate space.
3941 @param imagePoints vector of vectors of the projections of calibration pattern points.
3942 imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
3943 objectPoints[i].size() for each i.
3944 @param image_size Size of the image used only to initialize the camera intrinsic matrix.
3945 @param K Output 3x3 floating-point camera intrinsic matrix
3946 \f$\cameramatrix{A}\f$ . If
3947 @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
3948 initialized before calling the function.
3949 @param D Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3950 @param rvecs Output vector of rotation vectors (see @ref Rodrigues ) estimated for each pattern view.
3951 That is, each k-th rotation vector together with the corresponding k-th translation vector (see
3952 the next output parameter description) brings the calibration pattern from the model coordinate
3953 space (in which object points are specified) to the world coordinate space, that is, a real
3954 position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
3955 @param tvecs Output vector of translation vectors estimated for each pattern view.
3956 @param flags Different flags that may be zero or a combination of the following values:
3957 - @ref fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
3958 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
3959 center ( imageSize is used), and focal distances are computed in a least-squares fashion.
3960 - @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
3961 of intrinsic optimization.
3962 - @ref fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
3963 - @ref fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
3964 - @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
3965 are set to zeros and stay zero.
3966 - @ref fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
3967optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
3968 - @ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
3969optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
3970 @param criteria Termination criteria for the iterative optimization algorithm.
3971 */
3972 CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
3973 InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
3974 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
3975
3976 /** @brief Stereo rectification for fisheye camera model
3977
3978 @param K1 First camera intrinsic matrix.
3979 @param D1 First camera distortion parameters.
3980 @param K2 Second camera intrinsic matrix.
3981 @param D2 Second camera distortion parameters.
3982 @param imageSize Size of the image used for stereo calibration.
3983 @param R Rotation matrix between the coordinate systems of the first and the second
3984 cameras.
3985 @param tvec Translation vector between coordinate systems of the cameras.
3986 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
3987 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
3988 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
3989 camera.
3990 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
3991 camera.
3992 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D ).
3993 @param flags Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
3994 the function makes the principal points of each camera have the same pixel coordinates in the
3995 rectified views. And if the flag is not set, the function may still shift the images in the
3996 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
3997 useful image area.
3998 @param newImageSize New image resolution after rectification. The same size should be passed to
3999 #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
4000 is passed (default), it is set to the original imageSize . Setting it to larger value can help you
4001 preserve details in the original image, especially when there is a big radial distortion.
4002 @param balance Sets the new focal length in range between the min focal length and the max focal
4003 length. Balance is in range of [0, 1].
4004 @param fov_scale Divisor for new focal length.
4005 */
4006 CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
4007 OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
4008 double balance = 0.0, double fov_scale = 1.0);
4009
4010 /** @brief Performs stereo calibration
4011
4012 @param objectPoints Vector of vectors of the calibration pattern points.
4013 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
4014 observed by the first camera.
4015 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
4016 observed by the second camera.
4017 @param K1 Input/output first camera intrinsic matrix:
4018 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
4019 any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified,
4020 some or all of the matrix components must be initialized.
4021 @param D1 Input/output vector of distortion coefficients \f$\distcoeffsfisheye\f$ of 4 elements.
4022 @param K2 Input/output second camera intrinsic matrix. The parameter is similar to K1 .
4023 @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
4024 similar to D1 .
4025 @param imageSize Size of the image used only to initialize camera intrinsic matrix.
4026 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
4027 @param T Output translation vector between the coordinate systems of the cameras.
4028 @param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
4029 coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
4030 i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
4031 description) brings the calibration pattern from the object coordinate space (in which object points are
4032 specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
4033 the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
4034 to camera coordinate space of the first camera of the stereo pair.
4035 @param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
4036 of previous output parameter ( rvecs ).
4037 @param flags Different flags that may be zero or a combination of the following values:
4038 - @ref fisheye::CALIB_FIX_INTRINSIC Fix K1, K2? and D1, D2? so that only R, T matrices
4039 are estimated.
4040 - @ref fisheye::CALIB_USE_INTRINSIC_GUESS K1, K2 contains valid initial values of
4041 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4042 center (imageSize is used), and focal distances are computed in a least-squares fashion.
4043 - @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
4044 of intrinsic optimization.
4045 - @ref fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
4046 - @ref fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
4047 - @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
4048 zero.
4049 @param criteria Termination criteria for the iterative optimization algorithm.
4050 */
4051 CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4052 InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4053 OutputArray R, OutputArray T, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = fisheye::CALIB_FIX_INTRINSIC,
4054 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4055
4056 /// @overload
4057 CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4058 InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4059 OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
4060 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4061
4062 /**
4063 @brief Finds an object pose from 3D-2D point correspondences for fisheye camera moodel.
4064
4065 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4066 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
4067 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4068 where N is the number of points. vector\<Point2d\> can be also passed here.
4069 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4070 @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4071 @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4072 the model coordinate system to the camera coordinate system.
4073 @param tvec Output translation vector.
4074 @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4075 the provided rvec and tvec values as initial approximations of the rotation and translation
4076 vectors, respectively, and further optimizes them.
4077 @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4078 This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
4079 coordinate frame to the camera coordinate frame, using different methods:
4080 - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
4081 - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
4082 - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
4083 Number of input points must be 4. Object points must be defined in the following order:
4084 - point 0: [-squareLength / 2, squareLength / 2, 0]
4085 - point 1: [ squareLength / 2, squareLength / 2, 0]
4086 - point 2: [ squareLength / 2, -squareLength / 2, 0]
4087 - point 3: [-squareLength / 2, -squareLength / 2, 0]
4088 - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
4089 @param criteria Termination criteria for internal undistortPoints call.
4090 The function interally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4091 thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4092 for more information.
4093 */
4094 CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
4095 InputArray cameraMatrix, InputArray distCoeffs,
4096 OutputArray rvec, OutputArray tvec,
4097 bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE,
4098 TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4099 );
4100
4101//! @} calib3d_fisheye
4102} // end namespace fisheye
4103
4104} //end namespace cv
4105
4106#if 0 //def __cplusplus
4107//////////////////////////////////////////////////////////////////////////////////////////
4108class CV_EXPORTS CvLevMarq
4109{
4110public:
4111 CvLevMarq();
4112 CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
4113 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4114 bool completeSymmFlag=false );
4115 ~CvLevMarq();
4116 void init( int nparams, int nerrs, CvTermCriteria criteria=
4117 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4118 bool completeSymmFlag=false );
4119 bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
4120 bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
4121
4122 void clear();
4123 void step();
4124 enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
4125
4126 cv::Ptr<CvMat> mask;
4127 cv::Ptr<CvMat> prevParam;
4128 cv::Ptr<CvMat> param;
4129 cv::Ptr<CvMat> J;
4130 cv::Ptr<CvMat> err;
4131 cv::Ptr<CvMat> JtJ;
4132 cv::Ptr<CvMat> JtJN;
4133 cv::Ptr<CvMat> JtErr;
4134 cv::Ptr<CvMat> JtJV;
4135 cv::Ptr<CvMat> JtJW;
4136 double prevErrNorm, errNorm;
4137 int lambdaLg10;
4138 CvTermCriteria criteria;
4139 int state;
4140 int iters;
4141 bool completeSymmFlag;
4142 int solveMethod;
4143};
4144#endif
4145
4146#endif
4147

source code of opencv/modules/calib3d/include/opencv2/calib3d.hpp