1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5// By downloading, copying, installing or using the software you agree to this license.
6// If you do not agree to this license, do not download, install,
7// copy or use the software.
8//
9//
10// License Agreement
11// For Open Source Computer Vision Library
12//
13// Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
14// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
16// Copyright (C) 2015, Itseez Inc., all rights reserved.
17// Third party copyrights are property of their respective owners.
18//
19// Redistribution and use in source and binary forms, with or without modification,
20// are permitted provided that the following conditions are met:
21//
22// * Redistribution's of source code must retain the above copyright notice,
23// this list of conditions and the following disclaimer.
24//
25// * Redistribution's in binary form must reproduce the above copyright notice,
26// this list of conditions and the following disclaimer in the documentation
27// and/or other materials provided with the distribution.
28//
29// * The name of the copyright holders may not be used to endorse or promote products
30// derived from this software without specific prior written permission.
31//
32// This software is provided by the copyright holders and contributors "as is" and
33// any express or implied warranties, including, but not limited to, the implied
34// warranties of merchantability and fitness for a particular purpose are disclaimed.
35// In no event shall the Intel Corporation or contributors be liable for any direct,
36// indirect, incidental, special, exemplary, or consequential damages
37// (including, but not limited to, procurement of substitute goods or services;
38// loss of use, data, or profits; or business interruption) however caused
39// and on any theory of liability, whether in contract, strict liability,
40// or tort (including negligence or otherwise) arising in any way out of
41// the use of this software, even if advised of the possibility of such damage.
42//
43//M*/
44
45#ifndef OPENCV_CORE_HPP
46#define OPENCV_CORE_HPP
47
48#ifndef __cplusplus
49# error core.hpp header must be compiled as C++
50#endif
51
52#include "opencv2/core/cvdef.h"
53#include "opencv2/core/base.hpp"
54#include "opencv2/core/cvstd.hpp"
55#include "opencv2/core/traits.hpp"
56#include "opencv2/core/matx.hpp"
57#include "opencv2/core/types.hpp"
58#include "opencv2/core/mat.hpp"
59#include "opencv2/core/persistence.hpp"
60
61/**
62@defgroup core Core functionality
63
64The Core module is the backbone of OpenCV, offering fundamental data structures, matrix operations,
65and utility functions that other modules depend on. It’s essential for handling image data,
66performing mathematical computations, and managing memory efficiently within the OpenCV ecosystem.
67
68@{
69 @defgroup core_basic Basic structures
70 @defgroup core_array Operations on arrays
71 @defgroup core_async Asynchronous API
72 @defgroup core_xml XML/YAML/JSON Persistence
73 @defgroup core_cluster Clustering
74 @defgroup core_utils Utility and system functions and macros
75 @{
76 @defgroup core_logging Logging facilities
77 @defgroup core_utils_sse SSE utilities
78 @defgroup core_utils_neon NEON utilities
79 @defgroup core_utils_vsx VSX utilities
80 @defgroup core_utils_softfloat Softfloat support
81 @defgroup core_utils_samples Utility functions for OpenCV samples
82 @}
83 @defgroup core_opengl OpenGL interoperability
84 @defgroup core_optim Optimization Algorithms
85 @defgroup core_directx DirectX interoperability
86 @defgroup core_eigen Eigen support
87 @defgroup core_opencl OpenCL support
88 @defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability
89 @defgroup core_hal Hardware Acceleration Layer
90 @{
91 @defgroup core_hal_functions Functions
92 @defgroup core_hal_interface Interface
93 @defgroup core_hal_intrin Universal intrinsics
94 @{
95 @defgroup core_hal_intrin_impl Private implementation helpers
96 @}
97 @defgroup core_lowlevel_api Low-level API for external libraries / plugins
98 @}
99 @defgroup core_parallel Parallel Processing
100 @{
101 @defgroup core_parallel_backend Parallel backends API
102 @}
103 @defgroup core_quaternion Quaternion
104@}
105 */
106
107namespace cv {
108
109//! @addtogroup core_utils
110//! @{
111
112/*! @brief Class passed to an error.
113
114This class encapsulates all or almost all necessary
115information about the error happened in the program. The exception is
116usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
117@see error
118 */
119class CV_EXPORTS Exception : public std::exception
120{
121public:
122 /*!
123 Default constructor
124 */
125 Exception();
126 /*!
127 Full constructor. Normally the constructor is not called explicitly.
128 Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
129 */
130 Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
131 virtual ~Exception() CV_NOEXCEPT;
132
133 /*!
134 \return the error description and the context as a text string.
135 */
136 virtual const char *what() const CV_NOEXCEPT CV_OVERRIDE;
137 void formatMessage();
138
139 String msg; ///< the formatted error message
140
141 int code; ///< error code @see CVStatus
142 String err; ///< error description
143 String func; ///< function name. Available only when the compiler supports getting it
144 String file; ///< source file name where the error has occurred
145 int line; ///< line number in the source file where the error has occurred
146};
147
148/*! @brief Signals an error and raises the exception.
149
150By default the function prints information about the error to stderr,
151then it either stops if cv::setBreakOnError() had been called before or raises the exception.
152It is possible to alternate error processing by using #redirectError().
153@param exc the exception raisen.
154@deprecated drop this version
155 */
156CV_EXPORTS CV_NORETURN void error(const Exception& exc);
157
158enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently
159 SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
160 //!< independently; this flag and the previous one are
161 //!< mutually exclusive.
162 SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending
163 //!< order.
164 SORT_DESCENDING = 16 //!< each matrix row is sorted in the
165 //!< descending order; this flag and the previous one are also
166 //!< mutually exclusive.
167 };
168
169//! @} core_utils
170
171//! @addtogroup core_array
172//! @{
173
174//! Covariation flags
175enum CovarFlags {
176 /** The output covariance matrix is calculated as:
177 \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f]
178 The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
179 for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
180 face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
181 covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
182 the "scrambled" covariance matrix. */
183 COVAR_SCRAMBLED = 0,
184 /**The output covariance matrix is calculated as:
185 \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f]
186 covar will be a square matrix of the same size as the total number of elements in each input
187 vector. One and only one of #COVAR_SCRAMBLED and #COVAR_NORMAL must be specified.*/
188 COVAR_NORMAL = 1,
189 /** If the flag is specified, the function does not calculate mean from
190 the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
191 pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
192 this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
193 vector of the whole set.*/
194 COVAR_USE_AVG = 2,
195 /** If the flag is specified, the covariance matrix is scaled. In the
196 "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
197 total number of elements in each input vector. By default (if the flag is not specified), the
198 covariance matrix is not scaled ( scale=1 ).*/
199 COVAR_SCALE = 4,
200 /** If the flag is
201 specified, all the input vectors are stored as rows of the samples matrix. mean should be a
202 single-row vector in this case.*/
203 COVAR_ROWS = 8,
204 /** If the flag is
205 specified, all the input vectors are stored as columns of the samples matrix. mean should be a
206 single-column vector in this case.*/
207 COVAR_COLS = 16
208};
209
210enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
211 REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
212 REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
213 REDUCE_MIN = 3, //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
214 REDUCE_SUM2 = 4 //!< the output is the sum of all squared rows/columns of the matrix.
215 };
216
217/** @brief Swaps two matrices
218*/
219CV_EXPORTS void swap(Mat& a, Mat& b);
220/** @overload */
221CV_EXPORTS void swap( UMat& a, UMat& b );
222
223/** @brief Computes the source location of an extrapolated pixel.
224
225The function computes and returns the coordinate of a donor pixel corresponding to the specified
226extrapolated pixel when using the specified extrapolation border mode. For example, if you use
227cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
228want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img, it
229looks like:
230@code{.cpp}
231 float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
232 borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
233@endcode
234Normally, the function is not called directly. It is used inside filtering functions and also in
235copyMakeBorder.
236@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
237@param len Length of the array along the corresponding axis.
238@param borderType Border type, one of the #BorderTypes, except for #BORDER_TRANSPARENT and
239#BORDER_ISOLATED. When borderType==#BORDER_CONSTANT, the function always returns -1, regardless
240of p and len.
241
242@sa copyMakeBorder
243*/
244CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
245
246/** @example samples/cpp/tutorial_code/ImgTrans/copyMakeBorder_demo.cpp
247An example using copyMakeBorder function.
248Check @ref tutorial_copyMakeBorder "the corresponding tutorial" for more details
249*/
250
251/** @brief Forms a border around an image.
252
253The function copies the source image into the middle of the destination image. The areas to the
254left, to the right, above and below the copied source image will be filled with extrapolated
255pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
256what other more complex functions, including your own, may do to simplify image boundary handling.
257
258The function supports the mode when src is already in the middle of dst . In this case, the
259function does not copy src itself but simply constructs the border, for example:
260
261@code{.cpp}
262 // let border be the same in all directions
263 int border=2;
264 // constructs a larger image to fit both the image and the border
265 Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
266 // select the middle part of it w/o copying data
267 Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
268 // convert image from RGB to grayscale
269 cvtColor(rgb, gray, COLOR_RGB2GRAY);
270 // form a border in-place
271 copyMakeBorder(gray, gray_buf, border, border,
272 border, border, BORDER_REPLICATE);
273 // now do some custom filtering ...
274 ...
275@endcode
276@note When the source image is a part (ROI) of a bigger image, the function will try to use the
277pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
278if src was not a ROI, use borderType | #BORDER_ISOLATED.
279
280@param src Source image.
281@param dst Destination image of the same type as src and the size Size(src.cols+left+right,
282src.rows+top+bottom) .
283@param top the top pixels
284@param bottom the bottom pixels
285@param left the left pixels
286@param right Parameter specifying how many pixels in each direction from the source image rectangle
287to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
288to be built.
289@param borderType Border type. See borderInterpolate for details.
290@param value Border value if borderType==BORDER_CONSTANT .
291
292@sa borderInterpolate
293*/
294CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
295 int top, int bottom, int left, int right,
296 int borderType, const Scalar& value = Scalar() );
297
298/** @brief Calculates the per-element sum of two arrays or an array and a scalar.
299
300The function add calculates:
301- Sum of two arrays when both input arrays have the same size and the same number of channels:
302\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
303- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
304elements as `src1.channels()`:
305\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
306- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
307elements as `src2.channels()`:
308\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
309where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
310channel is processed independently.
311
312The first function in the list above can be replaced with matrix expressions:
313@code{.cpp}
314 dst = src1 + src2;
315 dst += src1; // equivalent to add(dst, src1, dst);
316@endcode
317The input arrays and the output array can all have the same or different depths. For example, you
318can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
319floating-point array. Depth of the output array is determined by the dtype parameter. In the second
320and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
321be set to the default -1. In this case, the output array will have the same depth as the input
322array, be it src1, src2 or both.
323@note Saturation is not applied when the output array has the depth CV_32S. You may even get
324result of an incorrect sign in the case of overflow.
325@note (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
326`add(src,X)` means `add(src,(X,X,X,X))`.
327`add(src,(X,))` means `add(src,(X,0,0,0))`.
328@param src1 first input array or a scalar.
329@param src2 second input array or a scalar.
330@param dst output array that has the same size and number of channels as the input array(s); the
331depth is defined by dtype or src1/src2.
332@param mask optional operation mask - 8-bit single channel array, that specifies elements of the
333output array to be changed.
334@param dtype optional depth of the output array (see the discussion below).
335@sa subtract, addWeighted, scaleAdd, Mat::convertTo
336*/
337CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
338 InputArray mask = noArray(), int dtype = -1);
339
340/** @brief Calculates the per-element difference between two arrays or array and a scalar.
341
342The function subtract calculates:
343- Difference between two arrays, when both input arrays have the same size and the same number of
344channels:
345 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
346- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
347number of elements as `src1.channels()`:
348 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
349- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
350number of elements as `src2.channels()`:
351 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
352- The reverse difference between a scalar and an array in the case of `SubRS`:
353 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
354where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
355channel is processed independently.
356
357The first function in the list above can be replaced with matrix expressions:
358@code{.cpp}
359 dst = src1 - src2;
360 dst -= src1; // equivalent to subtract(dst, src1, dst);
361@endcode
362The input arrays and the output array can all have the same or different depths. For example, you
363can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
364the output array is determined by dtype parameter. In the second and third cases above, as well as
365in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
366case the output array will have the same depth as the input array, be it src1, src2 or both.
367@note Saturation is not applied when the output array has the depth CV_32S. You may even get
368result of an incorrect sign in the case of overflow.
369@note (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
370`subtract(src,X)` means `subtract(src,(X,X,X,X))`.
371`subtract(src,(X,))` means `subtract(src,(X,0,0,0))`.
372@param src1 first input array or a scalar.
373@param src2 second input array or a scalar.
374@param dst output array of the same size and the same number of channels as the input array.
375@param mask optional operation mask; this is an 8-bit single channel array that specifies elements
376of the output array to be changed.
377@param dtype optional depth of the output array
378@sa add, addWeighted, scaleAdd, Mat::convertTo
379 */
380CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
381 InputArray mask = noArray(), int dtype = -1);
382
383
384/** @brief Calculates the per-element scaled product of two arrays.
385
386The function multiply calculates the per-element product of two arrays:
387
388\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
389
390There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
391
392For a not-per-element matrix product, see gemm .
393
394@note Saturation is not applied when the output array has the depth
395CV_32S. You may even get result of an incorrect sign in the case of
396overflow.
397@note (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
398`multiply(src,X)` means `multiply(src,(X,X,X,X))`.
399`multiply(src,(X,))` means `multiply(src,(X,0,0,0))`.
400@param src1 first input array.
401@param src2 second input array of the same size and the same type as src1.
402@param dst output array of the same size and type as src1.
403@param scale optional scale factor.
404@param dtype optional depth of the output array
405@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
406Mat::convertTo
407*/
408CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
409 OutputArray dst, double scale = 1, int dtype = -1);
410
411/** @brief Performs per-element division of two arrays or a scalar by an array.
412
413The function cv::divide divides one array by another:
414\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
415or a scalar by an array when there is no src1 :
416\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
417
418Different channels of multi-channel arrays are processed independently.
419
420For integer types when src2(I) is zero, dst(I) will also be zero.
421
422@note In case of floating point data there is no special defined behavior for zero src2(I) values.
423Regular floating-point division is used.
424Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
425
426@note Saturation is not applied when the output array has the depth CV_32S. You may even get
427result of an incorrect sign in the case of overflow.
428@note (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
429`divide(src,X)` means `divide(src,(X,X,X,X))`.
430`divide(src,(X,))` means `divide(src,(X,0,0,0))`.
431@param src1 first input array.
432@param src2 second input array of the same size and type as src1.
433@param scale scalar factor.
434@param dst output array of the same size and type as src2.
435@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
436case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
437@sa multiply, add, subtract
438*/
439CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
440 double scale = 1, int dtype = -1);
441
442/** @overload */
443CV_EXPORTS_W void divide(double scale, InputArray src2,
444 OutputArray dst, int dtype = -1);
445
446/** @brief Calculates the sum of a scaled array and another array.
447
448The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
449or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
450the sum of a scaled array and another array:
451\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f]
452The function can also be emulated with a matrix expression, for example:
453@code{.cpp}
454 Mat A(3, 3, CV_64F);
455 ...
456 A.row(0) = A.row(1)*2 + A.row(2);
457@endcode
458@param src1 first input array.
459@param alpha scale factor for the first array.
460@param src2 second input array of the same size and type as src1.
461@param dst output array of the same size and type as src1.
462@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
463*/
464CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
465
466/** @brief Calculates the weighted sum of two arrays.
467
468The function addWeighted calculates the weighted sum of two arrays as follows:
469\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f]
470where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
471channel is processed independently.
472The function can be replaced with a matrix expression:
473@code{.cpp}
474 dst = src1*alpha + src2*beta + gamma;
475@endcode
476@note Saturation is not applied when the output array has the depth CV_32S. You may even get
477result of an incorrect sign in the case of overflow.
478@param src1 first input array.
479@param alpha weight of the first array elements.
480@param src2 second input array of the same size and channel number as src1.
481@param beta weight of the second array elements.
482@param gamma scalar added to each sum.
483@param dst output array that has the same size and number of channels as the input arrays.
484@param dtype optional depth of the output array; when both input arrays have the same depth, dtype
485can be set to -1, which will be equivalent to src1.depth().
486@sa add, subtract, scaleAdd, Mat::convertTo
487*/
488CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
489 double beta, double gamma, OutputArray dst, int dtype = -1);
490
491/** @brief Scales, calculates absolute values, and converts the result to 8-bit.
492
493On each element of the input array, the function convertScaleAbs
494performs three operations sequentially: scaling, taking an absolute
495value, conversion to an unsigned 8-bit type:
496\f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f]
497In case of multi-channel arrays, the function processes each channel
498independently. When the output is not 8-bit, the operation can be
499emulated by calling the Mat::convertTo method (or by using matrix
500expressions) and then by calculating an absolute value of the result.
501For example:
502@code{.cpp}
503 Mat_<float> A(30,30);
504 randu(A, Scalar(-100), Scalar(100));
505 Mat_<float> B = A*5 + 3;
506 B = abs(B);
507 // Mat_<float> B = abs(A*5+3) will also do the job,
508 // but it will allocate a temporary matrix
509@endcode
510@param src input array.
511@param dst output array.
512@param alpha optional scale factor.
513@param beta optional delta added to the scaled values.
514@sa Mat::convertTo, cv::abs(const Mat&)
515*/
516CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
517 double alpha = 1, double beta = 0);
518
519/** @brief Converts an array to half precision floating number.
520
521This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). CV_16S format is used to represent FP16 data.
522There are two use modes (src -> dst): CV_32F -> CV_16S and CV_16S -> CV_32F. The input array has to have type of CV_32F or
523CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
524The format of half precision floating point is defined in IEEE 754-2008.
525
526@param src input array.
527@param dst output array.
528
529@deprecated Use Mat::convertTo with CV_16F instead.
530*/
531CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst);
532
533/** @example samples/cpp/tutorial_code/core/how_to_scan_images/how_to_scan_images.cpp
534Check @ref tutorial_how_to_scan_images "the corresponding tutorial" for more details
535*/
536
537/** @brief Performs a look-up table transform of an array.
538
539The function LUT fills the output array with values from the look-up table. Indices of the entries
540are taken from the input array. That is, the function processes each element of src as follows:
541\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f]
542where
543\f[d = \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f]
544@param src input array of 8-bit elements.
545@param lut look-up table of 256 elements; in case of multi-channel input array, the table should
546either have a single channel (in this case the same table is used for all channels) or the same
547number of channels as in the input array.
548@param dst output array of the same size and number of channels as src, and the same depth as lut.
549@sa convertScaleAbs, Mat::convertTo
550*/
551CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
552
553/** @brief Calculates the sum of array elements.
554
555The function cv::sum calculates and returns the sum of array elements,
556independently for each channel.
557@param src input array that must have from 1 to 4 channels.
558@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
559*/
560CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
561
562/** @brief Checks for the presence of at least one non-zero array element.
563
564The function returns whether there are non-zero elements in src
565
566The function do not work with multi-channel arrays. If you need to check non-zero array
567elements across all the channels, use Mat::reshape first to reinterpret the array as
568single-channel. Or you may extract the particular channel using either extractImageCOI, or
569mixChannels, or split.
570
571@note
572- If the location of non-zero array elements is important, @ref findNonZero is helpful.
573- If the count of non-zero array elements is important, @ref countNonZero is helpful.
574@param src single-channel array.
575@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
576@sa findNonZero, countNonZero
577*/
578CV_EXPORTS_W bool hasNonZero( InputArray src );
579
580/** @brief Counts non-zero array elements.
581
582The function returns the number of non-zero elements in src :
583\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
584
585The function do not work with multi-channel arrays. If you need to count non-zero array
586elements across all the channels, use Mat::reshape first to reinterpret the array as
587single-channel. Or you may extract the particular channel using either extractImageCOI, or
588mixChannels, or split.
589
590@note
591- If only whether there are non-zero elements is important, @ref hasNonZero is helpful.
592- If the location of non-zero array elements is important, @ref findNonZero is helpful.
593@param src single-channel array.
594@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
595@sa findNonZero, hasNonZero
596*/
597CV_EXPORTS_W int countNonZero( InputArray src );
598
599/** @brief Returns the list of locations of non-zero pixels
600
601Given a binary matrix (likely returned from an operation such
602as threshold(), compare(), >, ==, etc, return all of
603the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
604For example:
605@code{.cpp}
606 cv::Mat binaryImage; // input, binary image
607 cv::Mat locations; // output, locations of non-zero pixels
608 cv::findNonZero(binaryImage, locations);
609
610 // access pixel coordinates
611 Point pnt = locations.at<Point>(i);
612@endcode
613or
614@code{.cpp}
615 cv::Mat binaryImage; // input, binary image
616 vector<Point> locations; // output, locations of non-zero pixels
617 cv::findNonZero(binaryImage, locations);
618
619 // access pixel coordinates
620 Point pnt = locations[i];
621@endcode
622
623The function do not work with multi-channel arrays. If you need to find non-zero
624elements across all the channels, use Mat::reshape first to reinterpret the array as
625single-channel. Or you may extract the particular channel using either extractImageCOI, or
626mixChannels, or split.
627
628@note
629- If only count of non-zero array elements is important, @ref countNonZero is helpful.
630- If only whether there are non-zero elements is important, @ref hasNonZero is helpful.
631@param src single-channel array
632@param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
633@sa countNonZero, hasNonZero
634*/
635CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
636
637/** @brief Calculates an average (mean) of array elements.
638
639The function cv::mean calculates the mean value M of array elements,
640independently for each channel, and return it:
641\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
642When all the mask elements are 0's, the function returns Scalar::all(0)
643@param src input array that should have from 1 to 4 channels so that the result can be stored in
644Scalar_ .
645@param mask optional operation mask.
646@sa countNonZero, meanStdDev, norm, minMaxLoc
647*/
648CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
649
650/** Calculates a mean and standard deviation of array elements.
651
652The function cv::meanStdDev calculates the mean and the standard deviation M
653of array elements independently for each channel and returns it via the
654output parameters:
655\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f]
656When all the mask elements are 0's, the function returns
657mean=stddev=Scalar::all(0).
658@note The calculated standard deviation is only the diagonal of the
659complete normalized covariance matrix. If the full matrix is needed, you
660can reshape the multi-channel array M x N to the single-channel array
661M\*N x mtx.channels() (only possible when the matrix is continuous) and
662then pass the matrix to calcCovarMatrix .
663@param src input array that should have from 1 to 4 channels so that the results can be stored in
664Scalar_ 's.
665@param mean output parameter: calculated mean value.
666@param stddev output parameter: calculated standard deviation.
667@param mask optional operation mask.
668@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
669*/
670CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
671 InputArray mask=noArray());
672
673/** @brief Calculates the absolute norm of an array.
674
675This version of #norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.
676
677As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
678The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
679is calculated as follows
680\f{align*}
681 \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
682 \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
683 \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
684\f}
685and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
686\f{align*}
687 \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
688 \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
689 \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
690\f}
691The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
692It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
693![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
694
695When the mask parameter is specified and it is not empty, the norm is
696
697If normType is not specified, #NORM_L2 is used.
698calculated only over the region specified by the mask.
699
700Multi-channel input arrays are treated as single-channel arrays, that is,
701the results for all channels are combined.
702
703Hamming norms can only be calculated with CV_8U depth arrays.
704
705@param src1 first input array.
706@param normType type of the norm (see #NormTypes).
707@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
708*/
709CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
710
711/** @brief Calculates an absolute difference norm or a relative difference norm.
712
713This version of cv::norm calculates the absolute difference norm
714or the relative difference norm of arrays src1 and src2.
715The type of norm to calculate is specified using #NormTypes.
716
717@param src1 first input array.
718@param src2 second input array of the same size and the same type as src1.
719@param normType type of the norm (see #NormTypes).
720@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
721*/
722CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
723 int normType = NORM_L2, InputArray mask = noArray());
724/** @overload
725@param src first input array.
726@param normType type of the norm (see #NormTypes).
727*/
728CV_EXPORTS double norm( const SparseMat& src, int normType );
729
730/** @brief Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
731
732This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB),
733between two input arrays src1 and src2. The arrays must have the same type.
734
735The PSNR is calculated as follows:
736
737\f[
738\texttt{PSNR} = 10 \cdot \log_{10}{\left( \frac{R^2}{MSE} \right) }
739\f]
740
741where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data)
742and MSE is the mean squared error between the two arrays.
743
744@param src1 first input array.
745@param src2 second input array of the same size as src1.
746@param R the maximum pixel value (255 by default)
747
748 */
749CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2, double R=255.);
750
751/** @brief naive nearest neighbor finder
752
753see http://en.wikipedia.org/wiki/Nearest_neighbor_search
754@todo document
755 */
756CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
757 OutputArray dist, int dtype, OutputArray nidx,
758 int normType = NORM_L2, int K = 0,
759 InputArray mask = noArray(), int update = 0,
760 bool crosscheck = false);
761
762/** @brief Normalizes the norm or value range of an array.
763
764The function cv::normalize normalizes scale and shift the input array elements so that
765\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
766(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
767\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
768
769when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
770normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
771sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
772min-max but modify the whole array, you can use norm and Mat::convertTo.
773
774In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
775the range transformation for sparse matrices is not allowed since it can shift the zero level.
776
777Possible usage with some positive example data:
778@code{.cpp}
779 vector<double> positiveData = { 2.0, 8.0, 10.0 };
780 vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
781
782 // Norm to probability (total count)
783 // sum(numbers) = 20.0
784 // 2.0 0.1 (2.0/20.0)
785 // 8.0 0.4 (8.0/20.0)
786 // 10.0 0.5 (10.0/20.0)
787 normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
788
789 // Norm to unit vector: ||positiveData|| = 1.0
790 // 2.0 0.15
791 // 8.0 0.62
792 // 10.0 0.77
793 normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
794
795 // Norm to max element
796 // 2.0 0.2 (2.0/10.0)
797 // 8.0 0.8 (8.0/10.0)
798 // 10.0 1.0 (10.0/10.0)
799 normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
800
801 // Norm to range [0.0;1.0]
802 // 2.0 0.0 (shift to left border)
803 // 8.0 0.75 (6.0/8.0)
804 // 10.0 1.0 (shift to right border)
805 normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
806@endcode
807
808@param src input array.
809@param dst output array of the same size as src .
810@param alpha norm value to normalize to or the lower range boundary in case of the range
811normalization.
812@param beta upper range boundary in case of the range normalization; it is not used for the norm
813normalization.
814@param norm_type normalization type (see cv::NormTypes).
815@param dtype when negative, the output array has the same type as src; otherwise, it has the same
816number of channels as src and the depth =CV_MAT_DEPTH(dtype).
817@param mask optional operation mask.
818@sa norm, Mat::convertTo, SparseMat::convertTo
819*/
820CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
821 int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
822
823/** @overload
824@param src input array.
825@param dst output array of the same size as src .
826@param alpha norm value to normalize to or the lower range boundary in case of the range
827normalization.
828@param normType normalization type (see cv::NormTypes).
829*/
830CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
831
832/** @brief Finds the global minimum and maximum in an array.
833
834The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
835extrema are searched across the whole array or, if mask is not an empty array, in the specified
836array region.
837
838In C++, if the input is multi-channel, you should omit the minLoc, maxLoc, and mask arguments
839(i.e. leave them as NULL, NULL, and noArray() respectively). These arguments are not
840supported for multi-channel input arrays. If working with multi-channel input and you
841need the minLoc, maxLoc, or mask arguments, then use Mat::reshape first to reinterpret
842the array as single-channel. Alternatively, you can extract the particular channel using either
843extractImageCOI, mixChannels, or split.
844
845In Python, multi-channel input is not supported at all due to a limitation in the
846binding generation process (there is no way to set minLoc and maxLoc to NULL). A
847workaround is to operate on each channel individually or to use NumPy to achieve the same
848functionality.
849
850@param src input single-channel array.
851@param minVal pointer to the returned minimum value; NULL is used if not required.
852@param maxVal pointer to the returned maximum value; NULL is used if not required.
853@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
854@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
855@param mask optional mask used to select a sub-array.
856@sa max, min, reduceArgMin, reduceArgMax, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
857*/
858CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
859 CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
860 CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
861
862/**
863 * @brief Finds indices of min elements along provided axis
864 *
865 * @note
866 * - If input or output array is not continuous, this function will create an internal copy.
867 * - NaN handling is left unspecified, see patchNaNs().
868 * - The returned index is always in bounds of input matrix.
869 *
870 * @param src input single-channel array.
871 * @param dst output array of type CV_32SC1 with the same dimensionality as src,
872 * except for axis being reduced - it should be set to 1.
873 * @param lastIndex whether to get the index of first or last occurrence of min.
874 * @param axis axis to reduce along.
875 * @sa reduceArgMax, minMaxLoc, min, max, compare, reduce
876 */
877CV_EXPORTS_W void reduceArgMin(InputArray src, OutputArray dst, int axis, bool lastIndex = false);
878
879/**
880 * @brief Finds indices of max elements along provided axis
881 *
882 * @note
883 * - If input or output array is not continuous, this function will create an internal copy.
884 * - NaN handling is left unspecified, see patchNaNs().
885 * - The returned index is always in bounds of input matrix.
886 *
887 * @param src input single-channel array.
888 * @param dst output array of type CV_32SC1 with the same dimensionality as src,
889 * except for axis being reduced - it should be set to 1.
890 * @param lastIndex whether to get the index of first or last occurrence of max.
891 * @param axis axis to reduce along.
892 * @sa reduceArgMin, minMaxLoc, min, max, compare, reduce
893 */
894CV_EXPORTS_W void reduceArgMax(InputArray src, OutputArray dst, int axis, bool lastIndex = false);
895
896/** @brief Finds the global minimum and maximum in an array
897
898The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The
899extremums are searched across the whole array or, if mask is not an empty array, in the specified
900array region. In case of a sparse matrix, the minimum is found among non-zero elements
901only. Multi-channel input is supported without mask and extremums indexes (should be nullptr).
902@note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
903a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
904dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
905(i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
906(0,j1)/(0,j2)).
907@param src input single-channel array.
908@param minVal pointer to the returned minimum value; NULL is used if not required.
909@param maxVal pointer to the returned maximum value; NULL is used if not required.
910@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
911Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
912in each dimension are stored there sequentially.
913@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
914@param mask specified array region
915*/
916CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
917 int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
918
919/** @overload
920@param a input single-channel array.
921@param minVal pointer to the returned minimum value; NULL is used if not required.
922@param maxVal pointer to the returned maximum value; NULL is used if not required.
923@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
924Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
925in each dimension are stored there sequentially.
926@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
927*/
928CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
929 double* maxVal, int* minIdx = 0, int* maxIdx = 0);
930
931/** @brief Reduces a matrix to a vector.
932
933The function #reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
9341D vectors and performing the specified operation on the vectors until a single row/column is
935obtained. For example, the function can be used to compute horizontal and vertical projections of a
936raster image. In case of #REDUCE_MAX and #REDUCE_MIN, the output image should have the same type as the source one.
937In case of #REDUCE_SUM, #REDUCE_SUM2 and #REDUCE_AVG, the output may have a larger element bit-depth to preserve accuracy.
938And multi-channel arrays are also supported in these two reduction modes.
939
940The following code demonstrates its usage for a single channel matrix.
941@snippet snippets/core_reduce.cpp example
942
943And the following code demonstrates its usage for a two-channel matrix.
944@snippet snippets/core_reduce.cpp example2
945
946@param src input 2D matrix.
947@param dst output vector. Its size and type is defined by dim and dtype parameters.
948@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
949a single row. 1 means that the matrix is reduced to a single column.
950@param rtype reduction operation that could be one of #ReduceTypes
951@param dtype when negative, the output vector will have the same type as the input matrix,
952otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
953@sa repeat, reduceArgMin, reduceArgMax
954*/
955CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
956
957/** @brief Creates one multi-channel array out of several single-channel ones.
958
959The function cv::merge merges several arrays to make a single multi-channel array. That is, each
960element of the output array will be a concatenation of the elements of the input arrays, where
961elements of i-th input array are treated as mv[i].channels()-element vectors.
962
963The function cv::split does the reverse operation. If you need to shuffle channels in some other
964advanced way, use cv::mixChannels.
965
966The following example shows how to merge 3 single channel matrices into a single 3-channel matrix.
967@snippet snippets/core_merge.cpp example
968
969@param mv input array of matrices to be merged; all the matrices in mv must have the same
970size and the same depth.
971@param count number of input matrices when mv is a plain C array; it must be greater than zero.
972@param dst output array of the same size and the same depth as mv[0]; The number of channels will
973be equal to the parameter count.
974@sa mixChannels, split, Mat::reshape
975*/
976CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
977
978/** @overload
979@param mv input vector of matrices to be merged; all the matrices in mv must have the same
980size and the same depth.
981@param dst output array of the same size and the same depth as mv[0]; The number of channels will
982be the total number of channels in the matrix array.
983 */
984CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
985
986/** @brief Divides a multi-channel array into several single-channel arrays.
987
988The function cv::split splits a multi-channel array into separate single-channel arrays:
989\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
990If you need to extract a single channel or do some other sophisticated channel permutation, use
991mixChannels.
992
993The following example demonstrates how to split a 3-channel matrix into 3 single channel matrices.
994@snippet snippets/core_split.cpp example
995
996@param src input multi-channel array.
997@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
998reallocated, if needed.
999@sa merge, mixChannels, cvtColor
1000*/
1001CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
1002
1003/** @overload
1004@param m input multi-channel array.
1005@param mv output vector of arrays; the arrays themselves are reallocated, if needed.
1006*/
1007CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
1008
1009/** @brief Copies specified channels from input arrays to the specified channels of
1010output arrays.
1011
1012The function cv::mixChannels provides an advanced mechanism for shuffling image channels.
1013
1014cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels.
1015
1016In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R
1017channels swapped) and a separate alpha-channel image:
1018@code{.cpp}
1019 Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) );
1020 Mat bgr( bgra.rows, bgra.cols, CV_8UC3 );
1021 Mat alpha( bgra.rows, bgra.cols, CV_8UC1 );
1022
1023 // forming an array of matrices is a quite efficient operation,
1024 // because the matrix data is not copied, only the headers
1025 Mat out[] = { bgr, alpha };
1026 // bgra[0] -> bgr[2], bgra[1] -> bgr[1],
1027 // bgra[2] -> bgr[0], bgra[3] -> alpha[0]
1028 int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
1029 mixChannels( &bgra, 1, out, 2, from_to, 4 );
1030@endcode
1031@note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
1032Mat::create ), cv::mixChannels requires the output arrays to be pre-allocated before calling the
1033function.
1034@param src input array or vector of matrices; all of the matrices must have the same size and the
1035same depth.
1036@param nsrcs number of matrices in `src`.
1037@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
1038depth must be the same as in `src[0]`.
1039@param ndsts number of matrices in `dst`.
1040@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
1041a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
1042dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
1043src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
1044src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
1045channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
1046filled with zero .
1047@param npairs number of index pairs in `fromTo`.
1048@sa split, merge, extractChannel, insertChannel, cvtColor
1049*/
1050CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
1051 const int* fromTo, size_t npairs);
1052
1053/** @overload
1054@param src input array or vector of matrices; all of the matrices must have the same size and the
1055same depth.
1056@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
1057depth must be the same as in src[0].
1058@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
1059a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
1060dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
1061src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
1062src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
1063channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
1064filled with zero .
1065@param npairs number of index pairs in fromTo.
1066*/
1067CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
1068 const int* fromTo, size_t npairs);
1069
1070/** @overload
1071@param src input array or vector of matrices; all of the matrices must have the same size and the
1072same depth.
1073@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
1074depth must be the same as in src[0].
1075@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
1076a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
1077dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
1078src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
1079src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
1080channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
1081filled with zero .
1082*/
1083CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
1084 const std::vector<int>& fromTo);
1085
1086/** @brief Extracts a single channel from src (coi is 0-based index)
1087@param src input array
1088@param dst output array
1089@param coi index of channel to extract
1090@sa mixChannels, split
1091*/
1092CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
1093
1094/** @brief Inserts a single channel to dst (coi is 0-based index)
1095@param src input array
1096@param dst output array
1097@param coi index of channel for insertion
1098@sa mixChannels, merge
1099*/
1100CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
1101
1102/** @brief Flips a 2D array around vertical, horizontal, or both axes.
1103
1104The function cv::flip flips the array in one of three different ways (row
1105and column indices are 0-based):
1106\f[\texttt{dst} _{ij} =
1107\left\{
1108\begin{array}{l l}
1109\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
1110\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
1111\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
1112\end{array}
1113\right.\f]
1114The example scenarios of using the function are the following:
1115* Vertical flipping of the image (flipCode == 0) to switch between
1116 top-left and bottom-left image origin. This is a typical operation
1117 in video processing on Microsoft Windows\* OS.
1118* Horizontal flipping of the image with the subsequent horizontal
1119 shift and absolute difference calculation to check for a
1120 vertical-axis symmetry (flipCode \> 0).
1121* Simultaneous horizontal and vertical flipping of the image with
1122 the subsequent shift and absolute difference calculation to check
1123 for a central symmetry (flipCode \< 0).
1124* Reversing the order of point arrays (flipCode \> 0 or
1125 flipCode == 0).
1126@param src input array.
1127@param dst output array of the same size and type as src.
1128@param flipCode a flag to specify how to flip the array; 0 means
1129flipping around the x-axis and positive value (for example, 1) means
1130flipping around y-axis. Negative value (for example, -1) means flipping
1131around both axes.
1132@sa transpose, repeat, completeSymm
1133*/
1134CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
1135
1136/** @brief Flips a n-dimensional at given axis
1137 * @param src input array
1138 * @param dst output array that has the same shape of src
1139 * @param axis axis that performs a flip on. 0 <= axis < src.dims.
1140 */
1141CV_EXPORTS_W void flipND(InputArray src, OutputArray dst, int axis);
1142
1143/** @brief Broadcast the given Mat to the given shape.
1144 * @param src input array
1145 * @param shape target shape. Should be a list of CV_32S numbers. Note that negative values are not supported.
1146 * @param dst output array that has the given shape
1147 */
1148CV_EXPORTS_W void broadcast(InputArray src, InputArray shape, OutputArray dst);
1149
1150enum RotateFlags {
1151 ROTATE_90_CLOCKWISE = 0, //!<Rotate 90 degrees clockwise
1152 ROTATE_180 = 1, //!<Rotate 180 degrees clockwise
1153 ROTATE_90_COUNTERCLOCKWISE = 2, //!<Rotate 270 degrees clockwise
1154};
1155/** @brief Rotates a 2D array in multiples of 90 degrees.
1156The function cv::rotate rotates the array in one of three different ways:
1157* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE).
1158* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
1159* Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).
1160@param src input array.
1161@param dst output array of the same type as src. The size is the same with ROTATE_180,
1162and the rows and cols are switched for ROTATE_90_CLOCKWISE and ROTATE_90_COUNTERCLOCKWISE.
1163@param rotateCode an enum to specify how to rotate the array; see the enum #RotateFlags
1164@sa transpose, repeat, completeSymm, flip, RotateFlags
1165*/
1166CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
1167
1168/** @brief Fills the output array with repeated copies of the input array.
1169
1170The function cv::repeat duplicates the input array one or more times along each of the two axes:
1171\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
1172The second variant of the function is more convenient to use with @ref MatrixExpressions.
1173@param src input array to replicate.
1174@param ny Flag to specify how many times the `src` is repeated along the
1175vertical axis.
1176@param nx Flag to specify how many times the `src` is repeated along the
1177horizontal axis.
1178@param dst output array of the same type as `src`.
1179@sa cv::reduce
1180*/
1181CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
1182
1183/** @overload
1184@param src input array to replicate.
1185@param ny Flag to specify how many times the `src` is repeated along the
1186vertical axis.
1187@param nx Flag to specify how many times the `src` is repeated along the
1188horizontal axis.
1189 */
1190CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
1191
1192/** @brief Applies horizontal concatenation to given matrices.
1193
1194The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows).
1195@code{.cpp}
1196 cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
1197 cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
1198 cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
1199
1200 cv::Mat out;
1201 cv::hconcat( matArray, 3, out );
1202 //out:
1203 //[1, 2, 3;
1204 // 1, 2, 3;
1205 // 1, 2, 3;
1206 // 1, 2, 3]
1207@endcode
1208@param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
1209@param nsrc number of matrices in src.
1210@param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
1211@sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray)
1212*/
1213CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
1214/** @overload
1215 @code{.cpp}
1216 cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
1217 2, 5,
1218 3, 6);
1219 cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
1220 8, 11,
1221 9, 12);
1222
1223 cv::Mat C;
1224 cv::hconcat(A, B, C);
1225 //C:
1226 //[1, 4, 7, 10;
1227 // 2, 5, 8, 11;
1228 // 3, 6, 9, 12]
1229 @endcode
1230 @param src1 first input array to be considered for horizontal concatenation.
1231 @param src2 second input array to be considered for horizontal concatenation.
1232 @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
1233 */
1234CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
1235/** @overload
1236 @code{.cpp}
1237 std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
1238 cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
1239 cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
1240
1241 cv::Mat out;
1242 cv::hconcat( matrices, out );
1243 //out:
1244 //[1, 2, 3;
1245 // 1, 2, 3;
1246 // 1, 2, 3;
1247 // 1, 2, 3]
1248 @endcode
1249 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
1250 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
1251same depth.
1252 */
1253CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
1254
1255/** @brief Applies vertical concatenation to given matrices.
1256
1257The function vertically concatenates two or more cv::Mat matrices (with the same number of cols).
1258@code{.cpp}
1259 cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
1260 cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
1261 cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
1262
1263 cv::Mat out;
1264 cv::vconcat( matArray, 3, out );
1265 //out:
1266 //[1, 1, 1, 1;
1267 // 2, 2, 2, 2;
1268 // 3, 3, 3, 3]
1269@endcode
1270@param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.
1271@param nsrc number of matrices in src.
1272@param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
1273@sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray)
1274*/
1275CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
1276/** @overload
1277 @code{.cpp}
1278 cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
1279 2, 8,
1280 3, 9);
1281 cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
1282 5, 11,
1283 6, 12);
1284
1285 cv::Mat C;
1286 cv::vconcat(A, B, C);
1287 //C:
1288 //[1, 7;
1289 // 2, 8;
1290 // 3, 9;
1291 // 4, 10;
1292 // 5, 11;
1293 // 6, 12]
1294 @endcode
1295 @param src1 first input array to be considered for vertical concatenation.
1296 @param src2 second input array to be considered for vertical concatenation.
1297 @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
1298 */
1299CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
1300/** @overload
1301 @code{.cpp}
1302 std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
1303 cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
1304 cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
1305
1306 cv::Mat out;
1307 cv::vconcat( matrices, out );
1308 //out:
1309 //[1, 1, 1, 1;
1310 // 2, 2, 2, 2;
1311 // 3, 3, 3, 3]
1312 @endcode
1313 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
1314 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
1315same depth.
1316 */
1317CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
1318
1319/** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
1320Calculates the per-element bit-wise conjunction of two arrays or an
1321array and a scalar.
1322
1323The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
1324* Two arrays when src1 and src2 have the same size:
1325 \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1326* An array and a scalar when src2 is constructed from Scalar or has
1327 the same number of elements as `src1.channels()`:
1328 \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1329* A scalar and an array when src1 is constructed from Scalar or has
1330 the same number of elements as `src2.channels()`:
1331 \f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1332In case of floating-point arrays, their machine-specific bit
1333representations (usually IEEE754-compliant) are used for the operation.
1334In case of multi-channel arrays, each channel is processed
1335independently. In the second and third cases above, the scalar is first
1336converted to the array type.
1337@param src1 first input array or a scalar.
1338@param src2 second input array or a scalar.
1339@param dst output array that has the same size and type as the input
1340arrays.
1341@param mask optional operation mask, 8-bit single channel array, that
1342specifies elements of the output array to be changed.
1343*/
1344CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
1345 OutputArray dst, InputArray mask = noArray());
1346
1347/** @brief Calculates the per-element bit-wise disjunction of two arrays or an
1348array and a scalar.
1349
1350The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
1351* Two arrays when src1 and src2 have the same size:
1352 \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1353* An array and a scalar when src2 is constructed from Scalar or has
1354 the same number of elements as `src1.channels()`:
1355 \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1356* A scalar and an array when src1 is constructed from Scalar or has
1357 the same number of elements as `src2.channels()`:
1358 \f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1359In case of floating-point arrays, their machine-specific bit
1360representations (usually IEEE754-compliant) are used for the operation.
1361In case of multi-channel arrays, each channel is processed
1362independently. In the second and third cases above, the scalar is first
1363converted to the array type.
1364@param src1 first input array or a scalar.
1365@param src2 second input array or a scalar.
1366@param dst output array that has the same size and type as the input
1367arrays.
1368@param mask optional operation mask, 8-bit single channel array, that
1369specifies elements of the output array to be changed.
1370*/
1371CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
1372 OutputArray dst, InputArray mask = noArray());
1373
1374/** @brief Calculates the per-element bit-wise "exclusive or" operation on two
1375arrays or an array and a scalar.
1376
1377The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
1378operation for:
1379* Two arrays when src1 and src2 have the same size:
1380 \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1381* An array and a scalar when src2 is constructed from Scalar or has
1382 the same number of elements as `src1.channels()`:
1383 \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1384* A scalar and an array when src1 is constructed from Scalar or has
1385 the same number of elements as `src2.channels()`:
1386 \f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1387In case of floating-point arrays, their machine-specific bit
1388representations (usually IEEE754-compliant) are used for the operation.
1389In case of multi-channel arrays, each channel is processed
1390independently. In the 2nd and 3rd cases above, the scalar is first
1391converted to the array type.
1392@param src1 first input array or a scalar.
1393@param src2 second input array or a scalar.
1394@param dst output array that has the same size and type as the input
1395arrays.
1396@param mask optional operation mask, 8-bit single channel array, that
1397specifies elements of the output array to be changed.
1398*/
1399CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
1400 OutputArray dst, InputArray mask = noArray());
1401
1402/** @brief Inverts every bit of an array.
1403
1404The function cv::bitwise_not calculates per-element bit-wise inversion of the input
1405array:
1406\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
1407In case of a floating-point input array, its machine-specific bit
1408representation (usually IEEE754-compliant) is used for the operation. In
1409case of multi-channel arrays, each channel is processed independently.
1410@param src input array.
1411@param dst output array that has the same size and type as the input
1412array.
1413@param mask optional operation mask, 8-bit single channel array, that
1414specifies elements of the output array to be changed.
1415*/
1416CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
1417 InputArray mask = noArray());
1418
1419/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
1420
1421The function cv::absdiff calculates:
1422* Absolute difference between two arrays when they have the same
1423 size and type:
1424 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
1425* Absolute difference between an array and a scalar when the second
1426 array is constructed from Scalar or has as many elements as the
1427 number of channels in `src1`:
1428 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f]
1429* Absolute difference between a scalar and an array when the first
1430 array is constructed from Scalar or has as many elements as the
1431 number of channels in `src2`:
1432 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f]
1433 where I is a multi-dimensional index of array elements. In case of
1434 multi-channel arrays, each channel is processed independently.
1435@note Saturation is not applied when the arrays have the depth CV_32S.
1436You may even get a negative value in the case of overflow.
1437@note (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
1438`absdiff(src,X)` means `absdiff(src,(X,X,X,X))`.
1439`absdiff(src,(X,))` means `absdiff(src,(X,0,0,0))`.
1440@param src1 first input array or a scalar.
1441@param src2 second input array or a scalar.
1442@param dst output array that has the same size and type as input arrays.
1443@sa cv::abs(const Mat&)
1444*/
1445CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
1446
1447/** @brief This is an overloaded member function, provided for convenience (python)
1448Copies the matrix to another one.
1449When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.
1450@param src source matrix.
1451@param dst Destination matrix. If it does not have a proper size or type before the operation, it is
1452reallocated.
1453@param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
1454elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.
1455*/
1456
1457void CV_EXPORTS_W copyTo(InputArray src, OutputArray dst, InputArray mask);
1458/** @brief Checks if array elements lie between the elements of two other arrays.
1459
1460The function checks the range as follows:
1461- For every element of a single-channel input array:
1462 \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f]
1463- For two-channel arrays:
1464 \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f]
1465- and so forth.
1466
1467That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
1468specified 1D, 2D, 3D, ... box and 0 otherwise.
1469
1470When the lower and/or upper boundary parameters are scalars, the indexes
1471(I) at lowerb and upperb in the above formulas should be omitted.
1472@param src first input array.
1473@param lowerb inclusive lower boundary array or a scalar.
1474@param upperb inclusive upper boundary array or a scalar.
1475@param dst output array of the same size as src and CV_8U type.
1476*/
1477CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
1478 InputArray upperb, OutputArray dst);
1479
1480/** @brief Performs the per-element comparison of two arrays or an array and scalar value.
1481
1482The function compares:
1483* Elements of two arrays when src1 and src2 have the same size:
1484 \f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f]
1485* Elements of src1 with a scalar src2 when src2 is constructed from
1486 Scalar or has a single element:
1487 \f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f]
1488* src1 with elements of src2 when src1 is constructed from Scalar or
1489 has a single element:
1490 \f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f]
1491When the comparison result is true, the corresponding element of output
1492array is set to 255. The comparison operations can be replaced with the
1493equivalent matrix expressions:
1494@code{.cpp}
1495 Mat dst1 = src1 >= src2;
1496 Mat dst2 = src1 < 8;
1497 ...
1498@endcode
1499@param src1 first input array or a scalar; when it is an array, it must have a single channel.
1500@param src2 second input array or a scalar; when it is an array, it must have a single channel.
1501@param dst output array of type ref CV_8U that has the same size and the same number of channels as
1502 the input arrays.
1503@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
1504@sa checkRange, min, max, threshold
1505*/
1506CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
1507
1508/** @brief Calculates per-element minimum of two arrays or an array and a scalar.
1509
1510The function cv::min calculates the per-element minimum of two arrays:
1511\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
1512or array and a scalar:
1513\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
1514@param src1 first input array.
1515@param src2 second input array of the same size and type as src1.
1516@param dst output array of the same size and type as src1.
1517@sa max, compare, inRange, minMaxLoc
1518*/
1519CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
1520/** @overload
1521needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1522*/
1523CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
1524/** @overload
1525needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1526*/
1527CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
1528
1529/** @brief Calculates per-element maximum of two arrays or an array and a scalar.
1530
1531The function cv::max calculates the per-element maximum of two arrays:
1532\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
1533or array and a scalar:
1534\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
1535@param src1 first input array.
1536@param src2 second input array of the same size and type as src1 .
1537@param dst output array of the same size and type as src1.
1538@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions
1539*/
1540CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
1541/** @overload
1542needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1543*/
1544CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
1545/** @overload
1546needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1547*/
1548CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
1549
1550/** @brief Calculates a square root of array elements.
1551
1552The function cv::sqrt calculates a square root of each input array element.
1553In case of multi-channel arrays, each channel is processed
1554independently. The accuracy is approximately the same as of the built-in
1555std::sqrt .
1556@param src input floating-point array.
1557@param dst output array of the same size and type as src.
1558*/
1559CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
1560
1561/** @brief Raises every array element to a power.
1562
1563The function cv::pow raises every element of the input array to power :
1564\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
1565
1566So, for a non-integer power exponent, the absolute values of input array
1567elements are used. However, it is possible to get true values for
1568negative values using some extra operations. In the example below,
1569computing the 5th root of array src shows:
1570@code{.cpp}
1571 Mat mask = src < 0;
1572 pow(src, 1./5, dst);
1573 subtract(Scalar::all(0), dst, dst, mask);
1574@endcode
1575For some values of power, such as integer values, 0.5 and -0.5,
1576specialized faster algorithms are used.
1577
1578Special values (NaN, Inf) are not handled.
1579@param src input array.
1580@param power exponent of power.
1581@param dst output array of the same size and type as src.
1582@sa sqrt, exp, log, cartToPolar, polarToCart
1583*/
1584CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
1585
1586/** @brief Calculates the exponent of every array element.
1587
1588The function cv::exp calculates the exponent of every element of the input
1589array:
1590\f[\texttt{dst} [I] = e^{ src(I) }\f]
1591
1592The maximum relative error is about 7e-6 for single-precision input and
1593less than 1e-10 for double-precision input. Currently, the function
1594converts denormalized values to zeros on output. Special values (NaN,
1595Inf) are not handled.
1596@param src input array.
1597@param dst output array of the same size and type as src.
1598@sa log, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
1599*/
1600CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
1601
1602/** @brief Calculates the natural logarithm of every array element.
1603
1604The function cv::log calculates the natural logarithm of every element of the input array:
1605\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
1606
1607Output on zero, negative and special (NaN, Inf) values is undefined.
1608
1609@param src input array.
1610@param dst output array of the same size and type as src .
1611@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
1612*/
1613CV_EXPORTS_W void log(InputArray src, OutputArray dst);
1614
1615/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
1616
1617The function cv::polarToCart calculates the Cartesian coordinates of each 2D
1618vector represented by the corresponding elements of magnitude and angle:
1619\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
1620
1621The relative accuracy of the estimated coordinates is about 1e-6.
1622@param magnitude input floating-point array of magnitudes of 2D vectors;
1623it can be an empty matrix (=Mat()), in this case, the function assumes
1624that all the magnitudes are =1; if it is not empty, it must have the
1625same size and type as angle.
1626@param angle input floating-point array of angles of 2D vectors.
1627@param x output array of x-coordinates of 2D vectors; it has the same
1628size and type as angle.
1629@param y output array of y-coordinates of 2D vectors; it has the same
1630size and type as angle.
1631@param angleInDegrees when true, the input angles are measured in
1632degrees, otherwise, they are measured in radians.
1633@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
1634*/
1635CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
1636 OutputArray x, OutputArray y, bool angleInDegrees = false);
1637
1638/** @brief Calculates the magnitude and angle of 2D vectors.
1639
1640The function cv::cartToPolar calculates either the magnitude, angle, or both
1641for every 2D vector (x(I),y(I)):
1642\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
1643
1644The angles are calculated with accuracy about 0.3 degrees. For the point
1645(0,0), the angle is set to 0.
1646@param x array of x-coordinates; this must be a single-precision or
1647double-precision floating-point array.
1648@param y array of y-coordinates, that must have the same size and same type as x.
1649@param magnitude output array of magnitudes of the same size and type as x.
1650@param angle output array of angles that has the same size and type as
1651x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
1652@param angleInDegrees a flag, indicating whether the angles are measured
1653in radians (which is by default), or in degrees.
1654@sa Sobel, Scharr
1655*/
1656CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
1657 OutputArray magnitude, OutputArray angle,
1658 bool angleInDegrees = false);
1659
1660/** @brief Calculates the rotation angle of 2D vectors.
1661
1662The function cv::phase calculates the rotation angle of each 2D vector that
1663is formed from the corresponding elements of x and y :
1664\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
1665
1666The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
1667the corresponding angle(I) is set to 0.
1668@param x input floating-point array of x-coordinates of 2D vectors.
1669@param y input array of y-coordinates of 2D vectors; it must have the
1670same size and the same type as x.
1671@param angle output array of vector angles; it has the same size and
1672same type as x .
1673@param angleInDegrees when true, the function calculates the angle in
1674degrees, otherwise, they are measured in radians.
1675*/
1676CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
1677 bool angleInDegrees = false);
1678
1679/** @brief Calculates the magnitude of 2D vectors.
1680
1681The function cv::magnitude calculates the magnitude of 2D vectors formed
1682from the corresponding elements of x and y arrays:
1683\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
1684@param x floating-point array of x-coordinates of the vectors.
1685@param y floating-point array of y-coordinates of the vectors; it must
1686have the same size as x.
1687@param magnitude output array of the same size and type as x.
1688@sa cartToPolar, polarToCart, phase, sqrt
1689*/
1690CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
1691
1692/** @brief Checks every element of an input array for invalid values.
1693
1694The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
1695-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
1696maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
1697are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
1698function either returns false (when quiet=true) or throws an exception.
1699@param a input array.
1700@param quiet a flag, indicating whether the functions quietly return false when the array elements
1701are out of range or they throw an exception.
1702@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
1703elements.
1704@param minVal inclusive lower boundary of valid values range.
1705@param maxVal exclusive upper boundary of valid values range.
1706*/
1707CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
1708 double minVal = -DBL_MAX, double maxVal = DBL_MAX);
1709
1710/** @brief Replaces NaNs by given number
1711@param a input/output matrix (CV_32F type).
1712@param val value to convert the NaNs
1713*/
1714CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
1715
1716/** @brief Performs generalized matrix multiplication.
1717
1718The function cv::gemm performs generalized matrix multiplication similar to the
1719gemm functions in BLAS level 3. For example,
1720`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
1721corresponds to
1722\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
1723
1724In case of complex (two-channel) data, performed a complex matrix
1725multiplication.
1726
1727The function can be replaced with a matrix expression. For example, the
1728above call can be replaced with:
1729@code{.cpp}
1730 dst = alpha*src1.t()*src2 + beta*src3.t();
1731@endcode
1732@param src1 first multiplied input matrix that could be real(CV_32FC1,
1733CV_64FC1) or complex(CV_32FC2, CV_64FC2).
1734@param src2 second multiplied input matrix of the same type as src1.
1735@param alpha weight of the matrix product.
1736@param src3 third optional delta matrix added to the matrix product; it
1737should have the same type as src1 and src2.
1738@param beta weight of src3.
1739@param dst output matrix; it has the proper size and the same type as
1740input matrices.
1741@param flags operation flags (cv::GemmFlags)
1742@sa mulTransposed, transform
1743*/
1744CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
1745 InputArray src3, double beta, OutputArray dst, int flags = 0);
1746
1747/** @brief Calculates the product of a matrix and its transposition.
1748
1749The function cv::mulTransposed calculates the product of src and its
1750transposition:
1751\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
1752if aTa=true, and
1753\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
1754otherwise. The function is used to calculate the covariance matrix. With
1755zero delta, it can be used as a faster substitute for general matrix
1756product A\*B when B=A'
1757@param src input single-channel matrix. Note that unlike gemm, the
1758function can multiply not only floating-point matrices.
1759@param dst output square matrix.
1760@param aTa Flag specifying the multiplication ordering. See the
1761description below.
1762@param delta Optional delta matrix subtracted from src before the
1763multiplication. When the matrix is empty ( delta=noArray() ), it is
1764assumed to be zero, that is, nothing is subtracted. If it has the same
1765size as src, it is simply subtracted. Otherwise, it is "repeated" (see
1766repeat ) to cover the full src and then subtracted. Type of the delta
1767matrix, when it is not empty, must be the same as the type of created
1768output matrix. See the dtype parameter description below.
1769@param scale Optional scale factor for the matrix product.
1770@param dtype Optional type of the output matrix. When it is negative,
1771the output matrix will have the same type as src . Otherwise, it will be
1772type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
1773@sa calcCovarMatrix, gemm, repeat, reduce
1774*/
1775CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
1776 InputArray delta = noArray(),
1777 double scale = 1, int dtype = -1 );
1778
1779/** @brief Transposes a matrix.
1780
1781The function cv::transpose transposes the matrix src :
1782\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
1783@note No complex conjugation is done in case of a complex matrix. It
1784should be done separately if needed.
1785@param src input array.
1786@param dst output array of the same type as src.
1787*/
1788CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
1789
1790/** @brief Transpose for n-dimensional matrices.
1791 *
1792 * @note Input should be continuous single-channel matrix.
1793 * @param src input array.
1794 * @param order a permutation of [0,1,..,N-1] where N is the number of axes of src.
1795 * The i'th axis of dst will correspond to the axis numbered order[i] of the input.
1796 * @param dst output array of the same type as src.
1797 */
1798CV_EXPORTS_W void transposeND(InputArray src, const std::vector<int>& order, OutputArray dst);
1799
1800/** @brief Performs the matrix transformation of every array element.
1801
1802The function cv::transform performs the matrix transformation of every
1803element of the array src and stores the results in dst :
1804\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
1805(when m.cols=src.channels() ), or
1806\f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
1807(when m.cols=src.channels()+1 )
1808
1809Every element of the N -channel array src is interpreted as N -element
1810vector that is transformed using the M x N or M x (N+1) matrix m to
1811M-element vector - the corresponding element of the output array dst .
1812
1813The function may be used for geometrical transformation of
1814N -dimensional points, arbitrary linear color space transformation (such
1815as various kinds of RGB to YUV transforms), shuffling the image
1816channels, and so forth.
1817@param src input array that must have as many channels (1 to 4) as
1818m.cols or m.cols-1.
1819@param dst output array of the same size and depth as src; it has as
1820many channels as m.rows.
1821@param m transformation 2x2 or 2x3 floating-point matrix.
1822@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
1823*/
1824CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
1825
1826/** @brief Performs the perspective matrix transformation of vectors.
1827
1828The function cv::perspectiveTransform transforms every element of src by
1829treating it as a 2D or 3D vector, in the following way:
1830\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
1831where
1832\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f]
1833and
1834\f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
1835
1836Here a 3D vector transformation is shown. In case of a 2D vector
1837transformation, the z component is omitted.
1838
1839@note The function transforms a sparse set of 2D or 3D vectors. If you
1840want to transform an image using perspective transformation, use
1841warpPerspective . If you have an inverse problem, that is, you want to
1842compute the most probable perspective transformation out of several
1843pairs of corresponding points, you can use getPerspectiveTransform or
1844findHomography .
1845@param src input two-channel or three-channel floating-point array; each
1846element is a 2D/3D vector to be transformed.
1847@param dst output array of the same size and type as src.
1848@param m 3x3 or 4x4 floating-point transformation matrix.
1849@sa transform, warpPerspective, getPerspectiveTransform, findHomography
1850*/
1851CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
1852
1853/** @brief Copies the lower or the upper half of a square matrix to its another half.
1854
1855The function cv::completeSymm copies the lower or the upper half of a square matrix to
1856its another half. The matrix diagonal remains unchanged:
1857 - \f$\texttt{m}_{ij}=\texttt{m}_{ji}\f$ for \f$i > j\f$ if
1858 lowerToUpper=false
1859 - \f$\texttt{m}_{ij}=\texttt{m}_{ji}\f$ for \f$i < j\f$ if
1860 lowerToUpper=true
1861
1862@param m input-output floating-point square matrix.
1863@param lowerToUpper operation flag; if true, the lower half is copied to
1864the upper half. Otherwise, the upper half is copied to the lower half.
1865@sa flip, transpose
1866*/
1867CV_EXPORTS_W void completeSymm(InputOutputArray m, bool lowerToUpper = false);
1868
1869/** @brief Initializes a scaled identity matrix.
1870
1871The function cv::setIdentity initializes a scaled identity matrix:
1872\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
1873
1874The function can also be emulated using the matrix initializers and the
1875matrix expressions:
1876@code
1877 Mat A = Mat::eye(4, 3, CV_32F)*5;
1878 // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
1879@endcode
1880@param mtx matrix to initialize (not necessarily square).
1881@param s value to assign to diagonal elements.
1882@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
1883*/
1884CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
1885
1886/** @brief Returns the determinant of a square floating-point matrix.
1887
1888The function cv::determinant calculates and returns the determinant of the
1889specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
1890direct method is used. For larger matrices, the function uses LU
1891factorization with partial pivoting.
1892
1893For symmetric positively-determined matrices, it is also possible to use
1894eigen decomposition to calculate the determinant.
1895@param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
1896square size.
1897@sa trace, invert, solve, eigen, @ref MatrixExpressions
1898*/
1899CV_EXPORTS_W double determinant(InputArray mtx);
1900
1901/** @brief Returns the trace of a matrix.
1902
1903The function cv::trace returns the sum of the diagonal elements of the
1904matrix mtx .
1905\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f]
1906@param mtx input matrix.
1907*/
1908CV_EXPORTS_W Scalar trace(InputArray mtx);
1909
1910/** @brief Finds the inverse or pseudo-inverse of a matrix.
1911
1912The function cv::invert inverts the matrix src and stores the result in dst
1913. When the matrix src is singular or non-square, the function calculates
1914the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
1915minimal, where I is an identity matrix.
1916
1917In case of the #DECOMP_LU method, the function returns non-zero value if
1918the inverse has been successfully calculated and 0 if src is singular.
1919
1920In case of the #DECOMP_SVD method, the function returns the inverse
1921condition number of src (the ratio of the smallest singular value to the
1922largest singular value) and 0 if src is singular. The SVD method
1923calculates a pseudo-inverse matrix if src is singular.
1924
1925Similarly to #DECOMP_LU, the method #DECOMP_CHOLESKY works only with
1926non-singular square matrices that should also be symmetrical and
1927positively defined. In this case, the function stores the inverted
1928matrix in dst and returns non-zero. Otherwise, it returns 0.
1929
1930@param src input floating-point M x N matrix.
1931@param dst output matrix of N x M size and the same type as src.
1932@param flags inversion method (cv::DecompTypes)
1933@sa solve, SVD
1934*/
1935CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
1936
1937/** @brief Solves one or more linear systems or least-squares problems.
1938
1939The function cv::solve solves a linear system or least-squares problem (the
1940latter is possible with SVD or QR methods, or by specifying the flag
1941#DECOMP_NORMAL ):
1942\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
1943
1944If #DECOMP_LU or #DECOMP_CHOLESKY method is used, the function returns 1
1945if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
1946it returns 0. In the latter case, dst is not valid. Other methods find a
1947pseudo-solution in case of a singular left-hand side part.
1948
1949@note If you want to find a unity-norm solution of an under-defined
1950singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
1951will not do the work. Use SVD::solveZ instead.
1952
1953@param src1 input matrix on the left-hand side of the system.
1954@param src2 input matrix on the right-hand side of the system.
1955@param dst output solution.
1956@param flags solution (matrix inversion) method (#DecompTypes)
1957@sa invert, SVD, eigen
1958*/
1959CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
1960 OutputArray dst, int flags = DECOMP_LU);
1961
1962/** @brief Sorts each row or each column of a matrix.
1963
1964The function cv::sort sorts each matrix row or each matrix column in
1965ascending or descending order. So you should pass two operation flags to
1966get desired behaviour. If you want to sort matrix rows or columns
1967lexicographically, you can use STL std::sort generic function with the
1968proper comparison predicate.
1969
1970@param src input single-channel array.
1971@param dst output array of the same size and type as src.
1972@param flags operation flags, a combination of #SortFlags
1973@sa sortIdx, randShuffle
1974*/
1975CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
1976
1977/** @brief Sorts each row or each column of a matrix.
1978
1979The function cv::sortIdx sorts each matrix row or each matrix column in the
1980ascending or descending order. So you should pass two operation flags to
1981get desired behaviour. Instead of reordering the elements themselves, it
1982stores the indices of sorted elements in the output array. For example:
1983@code
1984 Mat A = Mat::eye(3,3,CV_32F), B;
1985 sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
1986 // B will probably contain
1987 // (because of equal elements in A some permutations are possible):
1988 // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
1989@endcode
1990@param src input single-channel array.
1991@param dst output integer array of the same size as src.
1992@param flags operation flags that could be a combination of cv::SortFlags
1993@sa sort, randShuffle
1994*/
1995CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
1996
1997/** @brief Finds the real roots of a cubic equation.
1998
1999The function solveCubic finds the real roots of a cubic equation:
2000- if coeffs is a 4-element vector:
2001\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f]
2002- if coeffs is a 3-element vector:
2003\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f]
2004
2005The roots are stored in the roots array.
2006@param coeffs equation coefficients, an array of 3 or 4 elements.
2007@param roots output array of real roots that has 1 or 3 elements.
2008@return number of real roots. It can be 0, 1 or 2.
2009*/
2010CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
2011
2012/** @brief Finds the real or complex roots of a polynomial equation.
2013
2014The function cv::solvePoly finds real and complex roots of a polynomial equation:
2015\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
2016@param coeffs array of polynomial coefficients.
2017@param roots output (complex) array of roots.
2018@param maxIters maximum number of iterations the algorithm does.
2019*/
2020CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
2021
2022/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
2023
2024The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
2025matrix src:
2026@code
2027 src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
2028@endcode
2029
2030@note Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
2031
2032@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
2033(src ^T^ == src).
2034@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
2035in the descending order.
2036@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
2037eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
2038eigenvalues.
2039@sa eigenNonSymmetric, completeSymm, PCA
2040*/
2041CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
2042 OutputArray eigenvectors = noArray());
2043
2044/** @brief Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
2045
2046@note Assumes real eigenvalues.
2047
2048The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
2049@code
2050 src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
2051@endcode
2052
2053@param src input matrix (CV_32FC1 or CV_64FC1 type).
2054@param eigenvalues output vector of eigenvalues (type is the same type as src).
2055@param eigenvectors output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
2056@sa eigen
2057*/
2058CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues,
2059 OutputArray eigenvectors);
2060
2061/** @brief Calculates the covariance matrix of a set of vectors.
2062
2063The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
2064the set of input vectors.
2065@param samples samples stored as separate matrices
2066@param nsamples number of samples
2067@param covar output covariance matrix of the type ctype and square size.
2068@param mean input or output (depending on the flags) array as the average value of the input vectors.
2069@param flags operation flags as a combination of #CovarFlags
2070@param ctype type of the matrixl; it equals 'CV_64F' by default.
2071@sa PCA, mulTransposed, Mahalanobis
2072@todo InputArrayOfArrays
2073*/
2074CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
2075 int flags, int ctype = CV_64F);
2076
2077/** @overload
2078@note use #COVAR_ROWS or #COVAR_COLS flag
2079@param samples samples stored as rows/columns of a single matrix.
2080@param covar output covariance matrix of the type ctype and square size.
2081@param mean input or output (depending on the flags) array as the average value of the input vectors.
2082@param flags operation flags as a combination of #CovarFlags
2083@param ctype type of the matrixl; it equals 'CV_64F' by default.
2084*/
2085CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
2086 InputOutputArray mean, int flags, int ctype = CV_64F);
2087
2088/** wrap PCA::operator() */
2089CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
2090 OutputArray eigenvectors, int maxComponents = 0);
2091
2092/** wrap PCA::operator() and add eigenvalues output parameter */
2093CV_EXPORTS_AS(PCACompute2) void PCACompute(InputArray data, InputOutputArray mean,
2094 OutputArray eigenvectors, OutputArray eigenvalues,
2095 int maxComponents = 0);
2096
2097/** wrap PCA::operator() */
2098CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
2099 OutputArray eigenvectors, double retainedVariance);
2100
2101/** wrap PCA::operator() and add eigenvalues output parameter */
2102CV_EXPORTS_AS(PCACompute2) void PCACompute(InputArray data, InputOutputArray mean,
2103 OutputArray eigenvectors, OutputArray eigenvalues,
2104 double retainedVariance);
2105
2106/** wrap PCA::project */
2107CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
2108 InputArray eigenvectors, OutputArray result);
2109
2110/** wrap PCA::backProject */
2111CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
2112 InputArray eigenvectors, OutputArray result);
2113
2114/** wrap SVD::compute */
2115CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
2116
2117/** wrap SVD::backSubst */
2118CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
2119 InputArray rhs, OutputArray dst );
2120
2121/** @brief Calculates the Mahalanobis distance between two vectors.
2122
2123The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
2124\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
2125The covariance matrix may be calculated using the #calcCovarMatrix function and then inverted using
2126the invert function (preferably using the #DECOMP_SVD method, as the most accurate).
2127@param v1 first 1D input vector.
2128@param v2 second 1D input vector.
2129@param icovar inverse covariance matrix.
2130*/
2131CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
2132
2133/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
2134
2135The function cv::dft performs one of the following:
2136- Forward the Fourier transform of a 1D vector of N elements:
2137 \f[Y = F^{(N)} \cdot X,\f]
2138 where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
2139- Inverse the Fourier transform of a 1D vector of N elements:
2140 \f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f]
2141 where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
2142- Forward the 2D Fourier transform of a M x N matrix:
2143 \f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f]
2144- Inverse the 2D Fourier transform of a M x N matrix:
2145 \f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f]
2146
2147In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
2148spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
2149(complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
2150is how 2D *CCS* spectrum looks:
2151\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
2152
2153In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
2154
2155So, the function chooses an operation mode depending on the flags and size of the input array:
2156- If #DFT_ROWS is set or the input array has a single row or single column, the function
2157 performs a 1D forward or inverse transform of each row of a matrix when #DFT_ROWS is set.
2158 Otherwise, it performs a 2D transform.
2159- If the input array is real and #DFT_INVERSE is not set, the function performs a forward 1D or
2160 2D transform:
2161 - When #DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
2162 input.
2163 - When #DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
2164 input. In case of 2D transform, it uses the packed format as shown above. In case of a
2165 single 1D transform, it looks like the first row of the matrix above. In case of
2166 multiple 1D transforms (when using the #DFT_ROWS flag), each row of the output matrix
2167 looks like the first row of the matrix above.
2168- If the input array is complex and either #DFT_INVERSE or #DFT_REAL_OUTPUT are not set, the
2169 output is a complex array of the same size as input. The function performs a forward or
2170 inverse 1D or 2D transform of the whole input array or each row of the input array
2171 independently, depending on the flags DFT_INVERSE and DFT_ROWS.
2172- When #DFT_INVERSE is set and the input array is real, or it is complex but #DFT_REAL_OUTPUT
2173 is set, the output is a real array of the same size as input. The function performs a 1D or 2D
2174 inverse transformation of the whole input array or each individual row, depending on the flags
2175 #DFT_INVERSE and #DFT_ROWS.
2176
2177If #DFT_SCALE is set, the scaling is done after the transformation.
2178
2179Unlike dct, the function supports arrays of arbitrary size. But only those arrays are processed
2180efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
2181current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
2182method.
2183
2184The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
2185@code
2186 void convolveDFT(InputArray A, InputArray B, OutputArray C)
2187 {
2188 // reallocate the output array if needed
2189 C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
2190 Size dftSize;
2191 // calculate the size of DFT transform
2192 dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
2193 dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
2194
2195 // allocate temporary buffers and initialize them with 0's
2196 Mat tempA(dftSize, A.type(), Scalar::all(0));
2197 Mat tempB(dftSize, B.type(), Scalar::all(0));
2198
2199 // copy A and B to the top-left corners of tempA and tempB, respectively
2200 Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
2201 A.copyTo(roiA);
2202 Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
2203 B.copyTo(roiB);
2204
2205 // now transform the padded A & B in-place;
2206 // use "nonzeroRows" hint for faster processing
2207 dft(tempA, tempA, 0, A.rows);
2208 dft(tempB, tempB, 0, B.rows);
2209
2210 // multiply the spectrums;
2211 // the function handles packed spectrum representations well
2212 mulSpectrums(tempA, tempB, tempA);
2213
2214 // transform the product back from the frequency domain.
2215 // Even though all the result rows will be non-zero,
2216 // you need only the first C.rows of them, and thus you
2217 // pass nonzeroRows == C.rows
2218 dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
2219
2220 // now copy the result back to C.
2221 tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
2222
2223 // all the temporary buffers will be deallocated automatically
2224 }
2225@endcode
2226To optimize this sample, consider the following approaches:
2227- Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
2228 the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
2229 tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
2230 rightmost columns of the matrices.
2231- This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
2232 is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
2233 To do this, you need to split the output array C into multiple tiles. For each tile, estimate
2234 which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
2235 too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
2236 each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
2237 algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
2238 there is also a slowdown because of bad cache locality. So, there is an optimal tile size
2239 somewhere in the middle.
2240- If different tiles in C can be calculated in parallel and, thus, the convolution is done by
2241 parts, the loop can be threaded.
2242
2243All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by
2244using them, you can get the performance even better than with the above theoretically optimal
2245implementation. Though, those two functions actually calculate cross-correlation, not convolution,
2246so you need to "flip" the second convolution operand B vertically and horizontally using flip .
2247@note
2248- An example using the discrete fourier transform can be found at
2249 opencv_source_code/samples/cpp/dft.cpp
2250- (Python) An example using the dft functionality to perform Wiener deconvolution can be found
2251 at opencv_source/samples/python/deconvolution.py
2252- (Python) An example rearranging the quadrants of a Fourier image can be found at
2253 opencv_source/samples/python/dft.py
2254@param src input array that could be real or complex.
2255@param dst output array whose size and type depends on the flags .
2256@param flags transformation flags, representing a combination of the #DftFlags
2257@param nonzeroRows when the parameter is not zero, the function assumes that only the first
2258nonzeroRows rows of the input array (#DFT_INVERSE is not set) or only the first nonzeroRows of the
2259output array (#DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
2260rows more efficiently and save some time; this technique is very useful for calculating array
2261cross-correlation or convolution using DFT.
2262@sa dct, getOptimalDFTSize, mulSpectrums, filter2D, matchTemplate, flip, cartToPolar,
2263magnitude, phase
2264*/
2265CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2266
2267/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
2268
2269idft(src, dst, flags) is equivalent to dft(src, dst, flags | #DFT_INVERSE) .
2270@note None of dft and idft scales the result by default. So, you should pass #DFT_SCALE to one of
2271dft or idft explicitly to make these transforms mutually inverse.
2272@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
2273@param src input floating-point real or complex array.
2274@param dst output array whose size and type depend on the flags.
2275@param flags operation flags (see dft and #DftFlags).
2276@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
2277the convolution sample in dft description.
2278*/
2279CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2280
2281/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
2282
2283The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
2284floating-point array:
2285- Forward Cosine transform of a 1D vector of N elements:
2286 \f[Y = C^{(N)} \cdot X\f]
2287 where
2288 \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
2289 and
2290 \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
2291- Inverse Cosine transform of a 1D vector of N elements:
2292 \f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f]
2293 (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
2294- Forward 2D Cosine transform of M x N matrix:
2295 \f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f]
2296- Inverse 2D Cosine transform of M x N matrix:
2297 \f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f]
2298
2299The function chooses the mode of operation by looking at the flags and size of the input array:
2300- If (flags & #DCT_INVERSE) == 0, the function does a forward 1D or 2D transform. Otherwise, it
2301 is an inverse 1D or 2D transform.
2302- If (flags & #DCT_ROWS) != 0, the function performs a 1D transform of each row.
2303- If the array is a single column or a single row, the function performs a 1D transform.
2304- If none of the above is true, the function performs a 2D transform.
2305
2306@note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
2307can pad the array when necessary.
2308Also, the function performance depends very much, and not monotonically, on the array size (see
2309getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
2310of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
2311@code
2312 size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
2313 N1 = getOptimalDCTSize(N);
2314@endcode
2315@param src input floating-point array.
2316@param dst output array of the same size and type as src .
2317@param flags transformation flags as a combination of cv::DftFlags (DCT_*)
2318@sa dft, getOptimalDFTSize, idct
2319*/
2320CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
2321
2322/** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
2323
2324idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
2325@param src input floating-point single-channel array.
2326@param dst output array of the same size and type as src.
2327@param flags operation flags.
2328@sa dct, dft, idft, getOptimalDFTSize
2329*/
2330CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
2331
2332/** @brief Performs the per-element multiplication of two Fourier spectrums.
2333
2334The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
2335matrices that are results of a real or complex Fourier transform.
2336
2337The function, together with dft and idft, may be used to calculate convolution (pass conjB=false )
2338or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
2339simply multiplied (per element) with an optional conjugation of the second-array elements. When the
2340arrays are real, they are assumed to be CCS-packed (see dft for details).
2341@param a first input array.
2342@param b second input array of the same size and type as src1 .
2343@param c output array of the same size and type as src1 .
2344@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
2345each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
2346@param conjB optional flag that conjugates the second input array before the multiplication (true)
2347or not (false).
2348*/
2349CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
2350 int flags, bool conjB = false);
2351
2352/** @brief Returns the optimal DFT size for a given vector size.
2353
2354DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
2355convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
2356pad the input data with zeros to get a bit larger array that can be transformed much faster than the
2357original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
2358Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
2359are also processed quite efficiently.
2360
2361The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
2362so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
2363= 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
2364
2365The function returns a negative number if vecsize is too large (very close to INT_MAX ).
2366
2367While the function cannot be used directly to estimate the optimal vector size for DCT transform
2368(since the current DCT implementation supports only even-size vectors), it can be easily processed
2369as getOptimalDFTSize((vecsize+1)/2)\*2.
2370@param vecsize vector size.
2371@sa dft, dct, idft, idct, mulSpectrums
2372*/
2373CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
2374
2375/** @brief Returns the default random number generator.
2376
2377The function cv::theRNG returns the default random number generator. For each thread, there is a
2378separate random number generator, so you can use the function safely in multi-thread environments.
2379If you just need to get a single random number using this generator or initialize an array, you can
2380use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
2381is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
2382@sa RNG, randu, randn
2383*/
2384CV_EXPORTS RNG& theRNG();
2385
2386/** @brief Sets state of default random number generator.
2387
2388The function cv::setRNGSeed sets state of default random number generator to custom value.
2389@param seed new state for default random number generator
2390@sa RNG, randu, randn
2391*/
2392CV_EXPORTS_W void setRNGSeed(int seed);
2393
2394/** @brief Generates a single uniformly-distributed random number or an array of random numbers.
2395
2396Non-template variant of the function fills the matrix dst with uniformly-distributed
2397random numbers from the specified range:
2398\f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f]
2399@param dst output array of random numbers; the array must be pre-allocated.
2400@param low inclusive lower boundary of the generated random numbers.
2401@param high exclusive upper boundary of the generated random numbers.
2402@sa RNG, randn, theRNG
2403*/
2404CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
2405
2406/** @brief Fills the array with normally distributed random numbers.
2407
2408The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
2409mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
2410value range of the output array data type.
2411@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
2412@param mean mean value (expectation) of the generated random numbers.
2413@param stddev standard deviation of the generated random numbers; it can be either a vector (in
2414which case a diagonal standard deviation matrix is assumed) or a square matrix.
2415@sa RNG, randu
2416*/
2417CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
2418
2419/** @brief Shuffles the array elements randomly.
2420
2421The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
2422swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
2423@param dst input/output numerical 1D array.
2424@param iterFactor scale factor that determines the number of random swap operations (see the details
2425below).
2426@param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
2427instead.
2428@sa RNG, sort
2429*/
2430CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
2431
2432/** @brief Principal Component Analysis
2433
2434The class is used to calculate a special basis for a set of vectors. The
2435basis will consist of eigenvectors of the covariance matrix calculated
2436from the input set of vectors. The class %PCA can also transform
2437vectors to/from the new coordinate space defined by the basis. Usually,
2438in this new coordinate system, each vector from the original set (and
2439any linear combination of such vectors) can be quite accurately
2440approximated by taking its first few components, corresponding to the
2441eigenvectors of the largest eigenvalues of the covariance matrix.
2442Geometrically it means that you calculate a projection of the vector to
2443a subspace formed by a few eigenvectors corresponding to the dominant
2444eigenvalues of the covariance matrix. And usually such a projection is
2445very close to the original vector. So, you can represent the original
2446vector from a high-dimensional space with a much shorter vector
2447consisting of the projected vector's coordinates in the subspace. Such a
2448transformation is also known as Karhunen-Loeve Transform, or KLT.
2449See http://en.wikipedia.org/wiki/Principal_component_analysis
2450
2451The sample below is the function that takes two matrices. The first
2452function stores a set of vectors (a row per vector) that is used to
2453calculate PCA. The second function stores another "test" set of vectors
2454(a row per vector). First, these vectors are compressed with PCA, then
2455reconstructed back, and then the reconstruction error norm is computed
2456and printed for each vector. :
2457
2458@code{.cpp}
2459using namespace cv;
2460
2461PCA compressPCA(const Mat& pcaset, int maxComponents,
2462 const Mat& testset, Mat& compressed)
2463{
2464 PCA pca(pcaset, // pass the data
2465 Mat(), // we do not have a pre-computed mean vector,
2466 // so let the PCA engine to compute it
2467 PCA::DATA_AS_ROW, // indicate that the vectors
2468 // are stored as matrix rows
2469 // (use PCA::DATA_AS_COL if the vectors are
2470 // the matrix columns)
2471 maxComponents // specify, how many principal components to retain
2472 );
2473 // if there is no test data, just return the computed basis, ready-to-use
2474 if( !testset.data )
2475 return pca;
2476 CV_Assert( testset.cols == pcaset.cols );
2477
2478 compressed.create(testset.rows, maxComponents, testset.type());
2479
2480 Mat reconstructed;
2481 for( int i = 0; i < testset.rows; i++ )
2482 {
2483 Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
2484 // compress the vector, the result will be stored
2485 // in the i-th row of the output matrix
2486 pca.project(vec, coeffs);
2487 // and then reconstruct it
2488 pca.backProject(coeffs, reconstructed);
2489 // and measure the error
2490 printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
2491 }
2492 return pca;
2493}
2494@endcode
2495@sa calcCovarMatrix, mulTransposed, SVD, dft, dct
2496*/
2497class CV_EXPORTS PCA
2498{
2499public:
2500 enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
2501 DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
2502 USE_AVG = 2 //!
2503 };
2504
2505 /** @brief default constructor
2506
2507 The default constructor initializes an empty %PCA structure. The other
2508 constructors initialize the structure and call PCA::operator()().
2509 */
2510 PCA();
2511
2512 /** @overload
2513 @param data input samples stored as matrix rows or matrix columns.
2514 @param mean optional mean value; if the matrix is empty (@c noArray()),
2515 the mean is computed from the data.
2516 @param flags operation flags; currently the parameter is only used to
2517 specify the data layout (PCA::Flags)
2518 @param maxComponents maximum number of components that %PCA should
2519 retain; by default, all the components are retained.
2520 */
2521 PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2522
2523 /** @overload
2524 @param data input samples stored as matrix rows or matrix columns.
2525 @param mean optional mean value; if the matrix is empty (noArray()),
2526 the mean is computed from the data.
2527 @param flags operation flags; currently the parameter is only used to
2528 specify the data layout (PCA::Flags)
2529 @param retainedVariance Percentage of variance that PCA should retain.
2530 Using this parameter will let the PCA decided how many components to
2531 retain but it will always keep at least 2.
2532 */
2533 PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
2534
2535 /** @brief performs %PCA
2536
2537 The operator performs %PCA of the supplied dataset. It is safe to reuse
2538 the same PCA structure for multiple datasets. That is, if the structure
2539 has been previously used with another dataset, the existing internal
2540 data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref
2541 mean are allocated and computed.
2542
2543 The computed @ref eigenvalues are sorted from the largest to the smallest and
2544 the corresponding @ref eigenvectors are stored as eigenvectors rows.
2545
2546 @param data input samples stored as the matrix rows or as the matrix
2547 columns.
2548 @param mean optional mean value; if the matrix is empty (noArray()),
2549 the mean is computed from the data.
2550 @param flags operation flags; currently the parameter is only used to
2551 specify the data layout. (Flags)
2552 @param maxComponents maximum number of components that PCA should
2553 retain; by default, all the components are retained.
2554 */
2555 PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2556
2557 /** @overload
2558 @param data input samples stored as the matrix rows or as the matrix
2559 columns.
2560 @param mean optional mean value; if the matrix is empty (noArray()),
2561 the mean is computed from the data.
2562 @param flags operation flags; currently the parameter is only used to
2563 specify the data layout. (PCA::Flags)
2564 @param retainedVariance Percentage of variance that %PCA should retain.
2565 Using this parameter will let the %PCA decided how many components to
2566 retain but it will always keep at least 2.
2567 */
2568 PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
2569
2570 /** @brief Projects vector(s) to the principal component subspace.
2571
2572 The methods project one or more vectors to the principal component
2573 subspace, where each vector projection is represented by coefficients in
2574 the principal component basis. The first form of the method returns the
2575 matrix that the second form writes to the result. So the first form can
2576 be used as a part of expression while the second form can be more
2577 efficient in a processing loop.
2578 @param vec input vector(s); must have the same dimensionality and the
2579 same layout as the input data used at %PCA phase, that is, if
2580 DATA_AS_ROW are specified, then `vec.cols==data.cols`
2581 (vector dimensionality) and `vec.rows` is the number of vectors to
2582 project, and the same is true for the PCA::DATA_AS_COL case.
2583 */
2584 Mat project(InputArray vec) const;
2585
2586 /** @overload
2587 @param vec input vector(s); must have the same dimensionality and the
2588 same layout as the input data used at PCA phase, that is, if
2589 DATA_AS_ROW are specified, then `vec.cols==data.cols`
2590 (vector dimensionality) and `vec.rows` is the number of vectors to
2591 project, and the same is true for the PCA::DATA_AS_COL case.
2592 @param result output vectors; in case of PCA::DATA_AS_COL, the
2593 output matrix has as many columns as the number of input vectors, this
2594 means that `result.cols==vec.cols` and the number of rows match the
2595 number of principal components (for example, `maxComponents` parameter
2596 passed to the constructor).
2597 */
2598 void project(InputArray vec, OutputArray result) const;
2599
2600 /** @brief Reconstructs vectors from their PC projections.
2601
2602 The methods are inverse operations to PCA::project. They take PC
2603 coordinates of projected vectors and reconstruct the original vectors.
2604 Unless all the principal components have been retained, the
2605 reconstructed vectors are different from the originals. But typically,
2606 the difference is small if the number of components is large enough (but
2607 still much smaller than the original vector dimensionality). As a
2608 result, PCA is used.
2609 @param vec coordinates of the vectors in the principal component
2610 subspace, the layout and size are the same as of PCA::project output
2611 vectors.
2612 */
2613 Mat backProject(InputArray vec) const;
2614
2615 /** @overload
2616 @param vec coordinates of the vectors in the principal component
2617 subspace, the layout and size are the same as of PCA::project output
2618 vectors.
2619 @param result reconstructed vectors; the layout and size are the same as
2620 of PCA::project input vectors.
2621 */
2622 void backProject(InputArray vec, OutputArray result) const;
2623
2624 /** @brief write PCA objects
2625
2626 Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage
2627 */
2628 void write(FileStorage& fs) const;
2629
2630 /** @brief load PCA objects
2631
2632 Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode
2633 */
2634 void read(const FileNode& fn);
2635
2636 Mat eigenvectors; //!< eigenvectors of the covariation matrix
2637 Mat eigenvalues; //!< eigenvalues of the covariation matrix
2638 Mat mean; //!< mean value subtracted before the projection and added after the back projection
2639};
2640
2641/** @example samples/cpp/pca.cpp
2642An example using %PCA for dimensionality reduction while maintaining an amount of variance
2643*/
2644
2645/** @example samples/cpp/tutorial_code/ml/introduction_to_pca/introduction_to_pca.cpp
2646Check @ref tutorial_introduction_to_pca "the corresponding tutorial" for more details
2647*/
2648
2649/**
2650@brief Linear Discriminant Analysis
2651@todo document this class
2652*/
2653class CV_EXPORTS LDA
2654{
2655public:
2656 /** @brief constructor
2657 Initializes a LDA with num_components (default 0).
2658 */
2659 explicit LDA(int num_components = 0);
2660
2661 /** Initializes and performs a Discriminant Analysis with Fisher's
2662 Optimization Criterion on given data in src and corresponding labels
2663 in labels. If 0 (or less) number of components are given, they are
2664 automatically determined for given data in computation.
2665 */
2666 LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
2667
2668 /** Serializes this object to a given filename.
2669 */
2670 void save(const String& filename) const;
2671
2672 /** Deserializes this object from a given filename.
2673 */
2674 void load(const String& filename);
2675
2676 /** Serializes this object to a given cv::FileStorage.
2677 */
2678 void save(FileStorage& fs) const;
2679
2680 /** Deserializes this object from a given cv::FileStorage.
2681 */
2682 void load(const FileStorage& node);
2683
2684 /** destructor
2685 */
2686 ~LDA();
2687
2688 /** Compute the discriminants for data in src (row aligned) and labels.
2689 */
2690 void compute(InputArrayOfArrays src, InputArray labels);
2691
2692 /** Projects samples into the LDA subspace.
2693 src may be one or more row aligned samples.
2694 */
2695 Mat project(InputArray src);
2696
2697 /** Reconstructs projections from the LDA subspace.
2698 src may be one or more row aligned projections.
2699 */
2700 Mat reconstruct(InputArray src);
2701
2702 /** Returns the eigenvectors of this LDA.
2703 */
2704 Mat eigenvectors() const { return _eigenvectors; }
2705
2706 /** Returns the eigenvalues of this LDA.
2707 */
2708 Mat eigenvalues() const { return _eigenvalues; }
2709
2710 static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
2711 static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
2712
2713protected:
2714 int _num_components;
2715 Mat _eigenvectors;
2716 Mat _eigenvalues;
2717 void lda(InputArrayOfArrays src, InputArray labels);
2718};
2719
2720/** @brief Singular Value Decomposition
2721
2722Class for computing Singular Value Decomposition of a floating-point
2723matrix. The Singular Value Decomposition is used to solve least-square
2724problems, under-determined linear systems, invert matrices, compute
2725condition numbers, and so on.
2726
2727If you want to compute a condition number of a matrix or an absolute value of
2728its determinant, you do not need `u` and `vt`. You can pass
2729flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
2730and vt must be computed, which is not necessary most of the time.
2731
2732@sa invert, solve, eigen, determinant
2733*/
2734class CV_EXPORTS SVD
2735{
2736public:
2737 enum Flags {
2738 /** allow the algorithm to modify the decomposed matrix; it can save space and speed up
2739 processing. currently ignored. */
2740 MODIFY_A = 1,
2741 /** indicates that only a vector of singular values `w` is to be processed, while u and vt
2742 will be set to empty matrices */
2743 NO_UV = 2,
2744 /** when the matrix is not square, by default the algorithm produces u and vt matrices of
2745 sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
2746 specified, u and vt will be full-size square orthogonal matrices.*/
2747 FULL_UV = 4
2748 };
2749
2750 /** @brief the default constructor
2751
2752 initializes an empty SVD structure
2753 */
2754 SVD();
2755
2756 /** @overload
2757 initializes an empty SVD structure and then calls SVD::operator()
2758 @param src decomposed matrix. The depth has to be CV_32F or CV_64F.
2759 @param flags operation flags (SVD::Flags)
2760 */
2761 SVD( InputArray src, int flags = 0 );
2762
2763 /** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
2764
2765 The operator performs the singular value decomposition of the supplied
2766 matrix. The u,`vt` , and the vector of singular values w are stored in
2767 the structure. The same SVD structure can be reused many times with
2768 different matrices. Each time, if needed, the previous u,`vt` , and w
2769 are reclaimed and the new matrices are created, which is all handled by
2770 Mat::create.
2771 @param src decomposed matrix. The depth has to be CV_32F or CV_64F.
2772 @param flags operation flags (SVD::Flags)
2773 */
2774 SVD& operator ()( InputArray src, int flags = 0 );
2775
2776 /** @brief decomposes matrix and stores the results to user-provided matrices
2777
2778 The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
2779 and SVD::operator(), they store the results to the user-provided
2780 matrices:
2781
2782 @code{.cpp}
2783 Mat A, w, u, vt;
2784 SVD::compute(A, w, u, vt);
2785 @endcode
2786
2787 @param src decomposed matrix. The depth has to be CV_32F or CV_64F.
2788 @param w calculated singular values
2789 @param u calculated left singular vectors
2790 @param vt transposed matrix of right singular vectors
2791 @param flags operation flags - see SVD::Flags.
2792 */
2793 static void compute( InputArray src, OutputArray w,
2794 OutputArray u, OutputArray vt, int flags = 0 );
2795
2796 /** @overload
2797 computes singular values of a matrix
2798 @param src decomposed matrix. The depth has to be CV_32F or CV_64F.
2799 @param w calculated singular values
2800 @param flags operation flags - see SVD::Flags.
2801 */
2802 static void compute( InputArray src, OutputArray w, int flags = 0 );
2803
2804 /** @brief performs back substitution
2805 */
2806 static void backSubst( InputArray w, InputArray u,
2807 InputArray vt, InputArray rhs,
2808 OutputArray dst );
2809
2810 /** @brief solves an under-determined singular linear system
2811
2812 The method finds a unit-length solution x of a singular linear system
2813 A\*x = 0. Depending on the rank of A, there can be no solutions, a
2814 single solution or an infinite number of solutions. In general, the
2815 algorithm solves the following problem:
2816 \f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f]
2817 @param src left-hand-side matrix.
2818 @param dst found solution.
2819 */
2820 static void solveZ( InputArray src, OutputArray dst );
2821
2822 /** @brief performs a singular value back substitution.
2823
2824 The method calculates a back substitution for the specified right-hand
2825 side:
2826
2827 \f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f]
2828
2829 Using this technique you can either get a very accurate solution of the
2830 convenient linear system, or the best (in the least-squares terms)
2831 pseudo-solution of an overdetermined linear system.
2832
2833 @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
2834 be solved, where A has been previously decomposed.
2835
2836 @param dst found solution of the system.
2837
2838 @note Explicit SVD with the further back substitution only makes sense
2839 if you need to solve many linear systems with the same left-hand side
2840 (for example, src ). If all you need is to solve a single system
2841 (possibly with multiple rhs immediately available), simply call solve
2842 add pass #DECOMP_SVD there. It does absolutely the same thing.
2843 */
2844 void backSubst( InputArray rhs, OutputArray dst ) const;
2845
2846 /** @todo document */
2847 template<typename _Tp, int m, int n, int nm> static
2848 void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
2849
2850 /** @todo document */
2851 template<typename _Tp, int m, int n, int nm> static
2852 void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
2853
2854 /** @todo document */
2855 template<typename _Tp, int m, int n, int nm, int nb> static
2856 void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
2857
2858 Mat u, w, vt;
2859};
2860
2861/** @brief Random Number Generator
2862
2863Random number generator. It encapsulates the state (currently, a 64-bit
2864integer) and has methods to return scalar random values and to fill
2865arrays with random values. Currently it supports uniform and Gaussian
2866(normal) distributions. The generator uses Multiply-With-Carry
2867algorithm, introduced by G. Marsaglia (
2868<http://en.wikipedia.org/wiki/Multiply-with-carry> ).
2869Gaussian-distribution random numbers are generated using the Ziggurat
2870algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
2871introduced by G. Marsaglia and W. W. Tsang.
2872*/
2873class CV_EXPORTS RNG
2874{
2875public:
2876 enum { UNIFORM = 0,
2877 NORMAL = 1
2878 };
2879
2880 /** @brief constructor
2881
2882 These are the RNG constructors. The first form sets the state to some
2883 pre-defined value, equal to 2\*\*32-1 in the current implementation. The
2884 second form sets the state to the specified value. If you passed state=0
2885 , the constructor uses the above default value instead to avoid the
2886 singular random number sequence, consisting of all zeros.
2887 */
2888 RNG();
2889 /** @overload
2890 @param state 64-bit value used to initialize the RNG.
2891 */
2892 RNG(uint64 state);
2893 /**The method updates the state using the MWC algorithm and returns the
2894 next 32-bit random number.*/
2895 unsigned next();
2896
2897 /**Each of the methods updates the state using the MWC algorithm and
2898 returns the next random number of the specified type. In case of integer
2899 types, the returned number is from the available value range for the
2900 specified type. In case of floating-point types, the returned value is
2901 from [0,1) range.
2902 */
2903 operator uchar();
2904 /** @overload */
2905 operator schar();
2906 /** @overload */
2907 operator ushort();
2908 /** @overload */
2909 operator short();
2910 /** @overload */
2911 operator unsigned();
2912 /** @overload */
2913 operator int();
2914 /** @overload */
2915 operator float();
2916 /** @overload */
2917 operator double();
2918
2919 /** @brief returns a random integer sampled uniformly from [0, N).
2920
2921 The methods transform the state using the MWC algorithm and return the
2922 next random number. The first form is equivalent to RNG::next . The
2923 second form returns the random number modulo N, which means that the
2924 result is in the range [0, N) .
2925 */
2926 unsigned operator ()();
2927 /** @overload
2928 @param N upper non-inclusive boundary of the returned random number.
2929 */
2930 unsigned operator ()(unsigned N);
2931
2932 /** @brief returns uniformly distributed integer random number from [a,b) range
2933
2934 The methods transform the state using the MWC algorithm and return the
2935 next uniformly-distributed random number of the specified type, deduced
2936 from the input parameter type, from the range [a, b) . There is a nuance
2937 illustrated by the following sample:
2938
2939 @code{.cpp}
2940 RNG rng;
2941
2942 // always produces 0
2943 double a = rng.uniform(0, 1);
2944
2945 // produces double from [0, 1)
2946 double a1 = rng.uniform((double)0, (double)1);
2947
2948 // produces float from [0, 1)
2949 float b = rng.uniform(0.f, 1.f);
2950
2951 // produces double from [0, 1)
2952 double c = rng.uniform(0., 1.);
2953
2954 // may cause compiler error because of ambiguity:
2955 // RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
2956 double d = rng.uniform(0, 0.999999);
2957 @endcode
2958
2959 The compiler does not take into account the type of the variable to
2960 which you assign the result of RNG::uniform . The only thing that
2961 matters to the compiler is the type of a and b parameters. So, if you
2962 want a floating-point random number, but the range boundaries are
2963 integer numbers, either put dots in the end, if they are constants, or
2964 use explicit type cast operators, as in the a1 initialization above.
2965 @param a lower inclusive boundary of the returned random number.
2966 @param b upper non-inclusive boundary of the returned random number.
2967 */
2968 int uniform(int a, int b);
2969 /** @overload */
2970 float uniform(float a, float b);
2971 /** @overload */
2972 double uniform(double a, double b);
2973
2974 /** @brief Fills arrays with random numbers.
2975
2976 @param mat 2D or N-dimensional matrix; currently matrices with more than
2977 4 channels are not supported by the methods, use Mat::reshape as a
2978 possible workaround.
2979 @param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
2980 @param a first distribution parameter; in case of the uniform
2981 distribution, this is an inclusive lower boundary, in case of the normal
2982 distribution, this is a mean value.
2983 @param b second distribution parameter; in case of the uniform
2984 distribution, this is a non-inclusive upper boundary, in case of the
2985 normal distribution, this is a standard deviation (diagonal of the
2986 standard deviation matrix or the full standard deviation matrix).
2987 @param saturateRange pre-saturation flag; for uniform distribution only;
2988 if true, the method will first convert a and b to the acceptable value
2989 range (according to the mat datatype) and then will generate uniformly
2990 distributed random numbers within the range [saturate(a), saturate(b)),
2991 if saturateRange=false, the method will generate uniformly distributed
2992 random numbers in the original range [a, b) and then will saturate them,
2993 it means, for example, that
2994 <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
2995 produce array mostly filled with 0's and 255's, since the range (0, 255)
2996 is significantly smaller than [-DBL_MAX, DBL_MAX).
2997
2998 Each of the methods fills the matrix with the random values from the
2999 specified distribution. As the new numbers are generated, the RNG state
3000 is updated accordingly. In case of multiple-channel images, every
3001 channel is filled independently, which means that RNG cannot generate
3002 samples from the multi-dimensional Gaussian distribution with
3003 non-diagonal covariance matrix directly. To do that, the method
3004 generates samples from multi-dimensional standard Gaussian distribution
3005 with zero mean and identity covariation matrix, and then transforms them
3006 using transform to get samples from the specified Gaussian distribution.
3007 */
3008 void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
3009
3010 /** @brief Returns the next random number sampled from the Gaussian distribution
3011 @param sigma standard deviation of the distribution.
3012
3013 The method transforms the state using the MWC algorithm and returns the
3014 next random number from the Gaussian distribution N(0,sigma) . That is,
3015 the mean value of the returned random numbers is zero and the standard
3016 deviation is the specified sigma .
3017 */
3018 double gaussian(double sigma);
3019
3020 uint64 state;
3021
3022 bool operator ==(const RNG& other) const;
3023};
3024
3025/** @brief Mersenne Twister random number generator
3026
3027Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
3028@todo document
3029*/
3030class CV_EXPORTS RNG_MT19937
3031{
3032public:
3033 RNG_MT19937();
3034 RNG_MT19937(unsigned s);
3035 void seed(unsigned s);
3036
3037 unsigned next();
3038
3039 operator int();
3040 operator unsigned();
3041 operator float();
3042 operator double();
3043
3044 unsigned operator ()(unsigned N);
3045 unsigned operator ()();
3046
3047 /** @brief returns uniformly distributed integer random number from [a,b) range*/
3048 int uniform(int a, int b);
3049 /** @brief returns uniformly distributed floating-point random number from [a,b) range*/
3050 float uniform(float a, float b);
3051 /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range*/
3052 double uniform(double a, double b);
3053
3054private:
3055 enum PeriodParameters {N = 624, M = 397};
3056 unsigned state[N];
3057 int mti;
3058};
3059
3060//! @} core_array
3061
3062//! @addtogroup core_cluster
3063//! @{
3064
3065//! k-means flags
3066enum KmeansFlags {
3067 /** Select random initial centers in each attempt.*/
3068 KMEANS_RANDOM_CENTERS = 0,
3069 /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
3070 KMEANS_PP_CENTERS = 2,
3071 /** During the first (and possibly the only) attempt, use the
3072 user-supplied labels instead of computing them from the initial centers. For the second and
3073 further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
3074 to specify the exact method.*/
3075 KMEANS_USE_INITIAL_LABELS = 1
3076};
3077
3078/** @example samples/cpp/kmeans.cpp
3079An example on k-means clustering
3080*/
3081
3082/** @brief Finds centers of clusters and groups input samples around the clusters.
3083
3084The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
3085and groups the input samples around the clusters. As an output, \f$\texttt{bestLabels}_i\f$ contains a
30860-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
3087
3088@note
3089- (Python) An example on k-means clustering can be found at
3090 opencv_source_code/samples/python/kmeans.py
3091@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
3092Examples of this array can be:
3093- Mat points(count, 2, CV_32F);
3094- Mat points(count, 1, CV_32FC2);
3095- Mat points(1, count, CV_32FC2);
3096- std::vector\<cv::Point2f\> points(sampleCount);
3097@param K Number of clusters to split the set by.
3098@param bestLabels Input/output integer array that stores the cluster indices for every sample.
3099@param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
3100the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
3101centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
3102@param attempts Flag to specify the number of times the algorithm is executed using different
3103initial labellings. The algorithm returns the labels that yield the best compactness (see the last
3104function parameter).
3105@param flags Flag that can take values of cv::KmeansFlags
3106@param centers Output matrix of the cluster centers, one row per each cluster center.
3107@return The function returns the compactness measure that is computed as
3108\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
3109after every attempt. The best (minimum) value is chosen and the corresponding labels and the
3110compactness value are returned by the function. Basically, you can use only the core of the
3111function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
3112pass them with the ( flags = #KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
3113(most-compact) clustering.
3114*/
3115CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
3116 TermCriteria criteria, int attempts,
3117 int flags, OutputArray centers = noArray() );
3118
3119//! @} core_cluster
3120
3121//! @addtogroup core_basic
3122//! @{
3123
3124/////////////////////////////// Formatted output of cv::Mat ///////////////////////////
3125
3126/** @todo document */
3127class CV_EXPORTS Formatted
3128{
3129public:
3130 virtual const char* next() = 0;
3131 virtual void reset() = 0;
3132 virtual ~Formatted();
3133};
3134
3135/** @todo document */
3136class CV_EXPORTS Formatter
3137{
3138public:
3139 enum FormatType {
3140 FMT_DEFAULT = 0,
3141 FMT_MATLAB = 1,
3142 FMT_CSV = 2,
3143 FMT_PYTHON = 3,
3144 FMT_NUMPY = 4,
3145 FMT_C = 5
3146 };
3147
3148 virtual ~Formatter();
3149
3150 virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
3151
3152 virtual void set16fPrecision(int p = 4) = 0;
3153 virtual void set32fPrecision(int p = 8) = 0;
3154 virtual void set64fPrecision(int p = 16) = 0;
3155 virtual void setMultiline(bool ml = true) = 0;
3156
3157 static Ptr<Formatter> get(Formatter::FormatType fmt = FMT_DEFAULT);
3158
3159};
3160
3161static inline
3162String& operator << (String& out, Ptr<Formatted> fmtd)
3163{
3164 fmtd->reset();
3165 for(const char* str = fmtd->next(); str; str = fmtd->next())
3166 out += cv::String(str);
3167 return out;
3168}
3169
3170static inline
3171String& operator << (String& out, const Mat& mtx)
3172{
3173 return out << Formatter::get()->format(mtx);
3174}
3175
3176//////////////////////////////////////// Algorithm ////////////////////////////////////
3177
3178class CV_EXPORTS Algorithm;
3179
3180template<typename _Tp, typename _EnumTp = void> struct ParamType {};
3181
3182
3183/** @brief This is a base class for all more or less complex algorithms in OpenCV
3184
3185especially for classes of algorithms, for which there can be multiple implementations. The examples
3186are stereo correspondence (for which there are algorithms like block matching, semi-global block
3187matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
3188models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
3189etc.).
3190
3191Here is example of SimpleBlobDetector use in your application via Algorithm interface:
3192@snippet snippets/core_various.cpp Algorithm
3193*/
3194class CV_EXPORTS_W Algorithm
3195{
3196public:
3197 Algorithm();
3198 virtual ~Algorithm();
3199
3200 /** @brief Clears the algorithm state
3201 */
3202 CV_WRAP virtual void clear() {}
3203
3204 /** @brief Stores algorithm parameters in a file storage
3205 */
3206 CV_WRAP virtual void write(FileStorage& fs) const { CV_UNUSED(fs); }
3207
3208 /**
3209 * @overload
3210 */
3211 CV_WRAP void write(FileStorage& fs, const String& name) const;
3212#if CV_VERSION_MAJOR < 5
3213 /** @deprecated */
3214 void write(const Ptr<FileStorage>& fs, const String& name = String()) const;
3215#endif
3216
3217 /** @brief Reads algorithm parameters from a file storage
3218 */
3219 CV_WRAP virtual void read(const FileNode& fn) { CV_UNUSED(fn); }
3220
3221 /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
3222 */
3223 CV_WRAP virtual bool empty() const { return false; }
3224
3225 /** @brief Reads algorithm from the file node
3226
3227 This is static template method of Algorithm. It's usage is following (in the case of SVM):
3228 @code
3229 cv::FileStorage fsRead("example.xml", FileStorage::READ);
3230 Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
3231 @endcode
3232 In order to make this method work, the derived class must overwrite Algorithm::read(const
3233 FileNode& fn) and also have static create() method without parameters
3234 (or with all the optional parameters)
3235 */
3236 template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
3237 {
3238 Ptr<_Tp> obj = _Tp::create();
3239 obj->read(fn);
3240 return !obj->empty() ? obj : Ptr<_Tp>();
3241 }
3242
3243 /** @brief Loads algorithm from the file
3244
3245 @param filename Name of the file to read.
3246 @param objname The optional name of the node to read (if empty, the first top-level node will be used)
3247
3248 This is static template method of Algorithm. It's usage is following (in the case of SVM):
3249 @code
3250 Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
3251 @endcode
3252 In order to make this method work, the derived class must overwrite Algorithm::read(const
3253 FileNode& fn).
3254 */
3255 template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
3256 {
3257 FileStorage fs(filename, FileStorage::READ);
3258 CV_Assert(fs.isOpened());
3259 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
3260 if (fn.empty()) return Ptr<_Tp>();
3261 Ptr<_Tp> obj = _Tp::create();
3262 obj->read(fn);
3263 return !obj->empty() ? obj : Ptr<_Tp>();
3264 }
3265
3266 /** @brief Loads algorithm from a String
3267
3268 @param strModel The string variable containing the model you want to load.
3269 @param objname The optional name of the node to read (if empty, the first top-level node will be used)
3270
3271 This is static template method of Algorithm. It's usage is following (in the case of SVM):
3272 @code
3273 Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
3274 @endcode
3275 */
3276 template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
3277 {
3278 FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
3279 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
3280 Ptr<_Tp> obj = _Tp::create();
3281 obj->read(fn);
3282 return !obj->empty() ? obj : Ptr<_Tp>();
3283 }
3284
3285 /** Saves the algorithm to a file.
3286 In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */
3287 CV_WRAP virtual void save(const String& filename) const;
3288
3289 /** Returns the algorithm string identifier.
3290 This string is used as top level xml/yml node tag when the object is saved to a file or string. */
3291 CV_WRAP virtual String getDefaultName() const;
3292
3293protected:
3294 void writeFormat(FileStorage& fs) const;
3295};
3296
3297enum struct Param {
3298 INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
3299 UNSIGNED_INT=8, UINT64=9, UCHAR=11, SCALAR=12
3300};
3301
3302
3303
3304template<> struct ParamType<bool>
3305{
3306 typedef bool const_param_type;
3307 typedef bool member_type;
3308
3309 static const Param type = Param::BOOLEAN;
3310};
3311
3312template<> struct ParamType<int>
3313{
3314 typedef int const_param_type;
3315 typedef int member_type;
3316
3317 static const Param type = Param::INT;
3318};
3319
3320template<> struct ParamType<double>
3321{
3322 typedef double const_param_type;
3323 typedef double member_type;
3324
3325 static const Param type = Param::REAL;
3326};
3327
3328template<> struct ParamType<String>
3329{
3330 typedef const String& const_param_type;
3331 typedef String member_type;
3332
3333 static const Param type = Param::STRING;
3334};
3335
3336template<> struct ParamType<Mat>
3337{
3338 typedef const Mat& const_param_type;
3339 typedef Mat member_type;
3340
3341 static const Param type = Param::MAT;
3342};
3343
3344template<> struct ParamType<std::vector<Mat> >
3345{
3346 typedef const std::vector<Mat>& const_param_type;
3347 typedef std::vector<Mat> member_type;
3348
3349 static const Param type = Param::MAT_VECTOR;
3350};
3351
3352template<> struct ParamType<Algorithm>
3353{
3354 typedef const Ptr<Algorithm>& const_param_type;
3355 typedef Ptr<Algorithm> member_type;
3356
3357 static const Param type = Param::ALGORITHM;
3358};
3359
3360template<> struct ParamType<float>
3361{
3362 typedef float const_param_type;
3363 typedef float member_type;
3364
3365 static const Param type = Param::FLOAT;
3366};
3367
3368template<> struct ParamType<unsigned>
3369{
3370 typedef unsigned const_param_type;
3371 typedef unsigned member_type;
3372
3373 static const Param type = Param::UNSIGNED_INT;
3374};
3375
3376template<> struct ParamType<uint64>
3377{
3378 typedef uint64 const_param_type;
3379 typedef uint64 member_type;
3380
3381 static const Param type = Param::UINT64;
3382};
3383
3384template<> struct ParamType<uchar>
3385{
3386 typedef uchar const_param_type;
3387 typedef uchar member_type;
3388
3389 static const Param type = Param::UCHAR;
3390};
3391
3392template<> struct ParamType<Scalar>
3393{
3394 typedef const Scalar& const_param_type;
3395 typedef Scalar member_type;
3396
3397 static const Param type = Param::SCALAR;
3398};
3399
3400template<typename _Tp>
3401struct ParamType<_Tp, typename std::enable_if< std::is_enum<_Tp>::value >::type>
3402{
3403 typedef typename std::underlying_type<_Tp>::type const_param_type;
3404 typedef typename std::underlying_type<_Tp>::type member_type;
3405
3406 static const Param type = Param::INT;
3407};
3408
3409//! @} core_basic
3410
3411} //namespace cv
3412
3413#include "opencv2/core/operations.hpp"
3414#include "opencv2/core/cvstd.inl.hpp"
3415#include "opencv2/core/utility.hpp"
3416#include "opencv2/core/optim.hpp"
3417#include "opencv2/core/ovx.hpp"
3418
3419#endif /*OPENCV_CORE_HPP*/
3420

source code of opencv/modules/core/include/opencv2/core.hpp