| 1 | /* |
| 2 | --------------------------------------------------------------------------- |
| 3 | Open Asset Import Library (assimp) |
| 4 | --------------------------------------------------------------------------- |
| 5 | |
| 6 | Copyright (c) 2006-2019, assimp team |
| 7 | |
| 8 | |
| 9 | |
| 10 | All rights reserved. |
| 11 | |
| 12 | Redistribution and use of this software in source and binary forms, |
| 13 | with or without modification, are permitted provided that the following |
| 14 | conditions are met: |
| 15 | |
| 16 | * Redistributions of source code must retain the above |
| 17 | copyright notice, this list of conditions and the |
| 18 | following disclaimer. |
| 19 | |
| 20 | * Redistributions in binary form must reproduce the above |
| 21 | copyright notice, this list of conditions and the |
| 22 | following disclaimer in the documentation and/or other |
| 23 | materials provided with the distribution. |
| 24 | |
| 25 | * Neither the name of the assimp team, nor the names of its |
| 26 | contributors may be used to endorse or promote products |
| 27 | derived from this software without specific prior |
| 28 | written permission of the assimp team. |
| 29 | |
| 30 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 31 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 32 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 33 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 34 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 35 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 36 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 37 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 38 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 39 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 40 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 41 | --------------------------------------------------------------------------- |
| 42 | */ |
| 43 | |
| 44 | /** @file quaternion.inl |
| 45 | * @brief Inline implementation of aiQuaterniont<TReal> operators |
| 46 | */ |
| 47 | #pragma once |
| 48 | #ifndef AI_QUATERNION_INL_INC |
| 49 | #define AI_QUATERNION_INL_INC |
| 50 | |
| 51 | #ifdef __cplusplus |
| 52 | #include "quaternion.h" |
| 53 | |
| 54 | #include <cmath> |
| 55 | |
| 56 | // --------------------------------------------------------------------------- |
| 57 | template<typename TReal> |
| 58 | bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const |
| 59 | { |
| 60 | return x == o.x && y == o.y && z == o.z && w == o.w; |
| 61 | } |
| 62 | |
| 63 | // --------------------------------------------------------------------------- |
| 64 | template<typename TReal> |
| 65 | bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const |
| 66 | { |
| 67 | return !(*this == o); |
| 68 | } |
| 69 | |
| 70 | // --------------------------------------------------------------------------- |
| 71 | template<typename TReal> |
| 72 | inline bool aiQuaterniont<TReal>::Equal(const aiQuaterniont& o, TReal epsilon) const { |
| 73 | return |
| 74 | std::abs(x - o.x) <= epsilon && |
| 75 | std::abs(y - o.y) <= epsilon && |
| 76 | std::abs(z - o.z) <= epsilon && |
| 77 | std::abs(w - o.w) <= epsilon; |
| 78 | } |
| 79 | |
| 80 | // --------------------------------------------------------------------------- |
| 81 | // Constructs a quaternion from a rotation matrix |
| 82 | template<typename TReal> |
| 83 | inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix) |
| 84 | { |
| 85 | TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3; |
| 86 | |
| 87 | // large enough |
| 88 | if( t > static_cast<TReal>(0)) |
| 89 | { |
| 90 | TReal s = std::sqrt(1 + t) * static_cast<TReal>(2.0); |
| 91 | x = (pRotMatrix.c2 - pRotMatrix.b3) / s; |
| 92 | y = (pRotMatrix.a3 - pRotMatrix.c1) / s; |
| 93 | z = (pRotMatrix.b1 - pRotMatrix.a2) / s; |
| 94 | w = static_cast<TReal>(0.25) * s; |
| 95 | } // else we have to check several cases |
| 96 | else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 ) |
| 97 | { |
| 98 | // Column 0: |
| 99 | TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0); |
| 100 | x = static_cast<TReal>(0.25) * s; |
| 101 | y = (pRotMatrix.b1 + pRotMatrix.a2) / s; |
| 102 | z = (pRotMatrix.a3 + pRotMatrix.c1) / s; |
| 103 | w = (pRotMatrix.c2 - pRotMatrix.b3) / s; |
| 104 | } |
| 105 | else if( pRotMatrix.b2 > pRotMatrix.c3) |
| 106 | { |
| 107 | // Column 1: |
| 108 | TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0); |
| 109 | x = (pRotMatrix.b1 + pRotMatrix.a2) / s; |
| 110 | y = static_cast<TReal>(0.25) * s; |
| 111 | z = (pRotMatrix.c2 + pRotMatrix.b3) / s; |
| 112 | w = (pRotMatrix.a3 - pRotMatrix.c1) / s; |
| 113 | } else |
| 114 | { |
| 115 | // Column 2: |
| 116 | TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0); |
| 117 | x = (pRotMatrix.a3 + pRotMatrix.c1) / s; |
| 118 | y = (pRotMatrix.c2 + pRotMatrix.b3) / s; |
| 119 | z = static_cast<TReal>(0.25) * s; |
| 120 | w = (pRotMatrix.b1 - pRotMatrix.a2) / s; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | // --------------------------------------------------------------------------- |
| 125 | // Construction from euler angles |
| 126 | template<typename TReal> |
| 127 | inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll ) |
| 128 | { |
| 129 | const TReal fSinPitch(std::sin(fPitch*static_cast<TReal>(0.5))); |
| 130 | const TReal fCosPitch(std::cos(fPitch*static_cast<TReal>(0.5))); |
| 131 | const TReal fSinYaw(std::sin(fYaw*static_cast<TReal>(0.5))); |
| 132 | const TReal fCosYaw(std::cos(fYaw*static_cast<TReal>(0.5))); |
| 133 | const TReal fSinRoll(std::sin(fRoll*static_cast<TReal>(0.5))); |
| 134 | const TReal fCosRoll(std::cos(fRoll*static_cast<TReal>(0.5))); |
| 135 | const TReal fCosPitchCosYaw(fCosPitch*fCosYaw); |
| 136 | const TReal fSinPitchSinYaw(fSinPitch*fSinYaw); |
| 137 | x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw; |
| 138 | y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw; |
| 139 | z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw; |
| 140 | w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw; |
| 141 | } |
| 142 | |
| 143 | // --------------------------------------------------------------------------- |
| 144 | // Returns a matrix representation of the quaternion |
| 145 | template<typename TReal> |
| 146 | inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const |
| 147 | { |
| 148 | aiMatrix3x3t<TReal> resMatrix; |
| 149 | resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z); |
| 150 | resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w); |
| 151 | resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w); |
| 152 | resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w); |
| 153 | resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z); |
| 154 | resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w); |
| 155 | resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w); |
| 156 | resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w); |
| 157 | resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y); |
| 158 | |
| 159 | return resMatrix; |
| 160 | } |
| 161 | |
| 162 | // --------------------------------------------------------------------------- |
| 163 | // Construction from an axis-angle pair |
| 164 | template<typename TReal> |
| 165 | inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle) |
| 166 | { |
| 167 | axis.Normalize(); |
| 168 | |
| 169 | const TReal sin_a = std::sin( angle / 2 ); |
| 170 | const TReal cos_a = std::cos( angle / 2 ); |
| 171 | x = axis.x * sin_a; |
| 172 | y = axis.y * sin_a; |
| 173 | z = axis.z * sin_a; |
| 174 | w = cos_a; |
| 175 | } |
| 176 | // --------------------------------------------------------------------------- |
| 177 | // Construction from am existing, normalized quaternion |
| 178 | template<typename TReal> |
| 179 | inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized) |
| 180 | { |
| 181 | x = normalized.x; |
| 182 | y = normalized.y; |
| 183 | z = normalized.z; |
| 184 | |
| 185 | const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z); |
| 186 | |
| 187 | if (t < static_cast<TReal>(0.0)) { |
| 188 | w = static_cast<TReal>(0.0); |
| 189 | } |
| 190 | else w = std::sqrt (t); |
| 191 | } |
| 192 | |
| 193 | // --------------------------------------------------------------------------- |
| 194 | // Performs a spherical interpolation between two quaternions |
| 195 | // Implementation adopted from the gmtl project. All others I found on the net fail in some cases. |
| 196 | // Congrats, gmtl! |
| 197 | template<typename TReal> |
| 198 | inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor) |
| 199 | { |
| 200 | // calc cosine theta |
| 201 | TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w; |
| 202 | |
| 203 | // adjust signs (if necessary) |
| 204 | aiQuaterniont end = pEnd; |
| 205 | if( cosom < static_cast<TReal>(0.0)) |
| 206 | { |
| 207 | cosom = -cosom; |
| 208 | end.x = -end.x; // Reverse all signs |
| 209 | end.y = -end.y; |
| 210 | end.z = -end.z; |
| 211 | end.w = -end.w; |
| 212 | } |
| 213 | |
| 214 | // Calculate coefficients |
| 215 | TReal sclp, sclq; |
| 216 | if( (static_cast<TReal>(1.0) - cosom) > static_cast<TReal>(0.0001)) // 0.0001 -> some epsillon |
| 217 | { |
| 218 | // Standard case (slerp) |
| 219 | TReal omega, sinom; |
| 220 | omega = std::acos( cosom); // extract theta from dot product's cos theta |
| 221 | sinom = std::sin( omega); |
| 222 | sclp = std::sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom; |
| 223 | sclq = std::sin( pFactor * omega) / sinom; |
| 224 | } else |
| 225 | { |
| 226 | // Very close, do linear interp (because it's faster) |
| 227 | sclp = static_cast<TReal>(1.0) - pFactor; |
| 228 | sclq = pFactor; |
| 229 | } |
| 230 | |
| 231 | pOut.x = sclp * pStart.x + sclq * end.x; |
| 232 | pOut.y = sclp * pStart.y + sclq * end.y; |
| 233 | pOut.z = sclp * pStart.z + sclq * end.z; |
| 234 | pOut.w = sclp * pStart.w + sclq * end.w; |
| 235 | } |
| 236 | |
| 237 | // --------------------------------------------------------------------------- |
| 238 | template<typename TReal> |
| 239 | inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize() |
| 240 | { |
| 241 | // compute the magnitude and divide through it |
| 242 | const TReal mag = std::sqrt(x*x + y*y + z*z + w*w); |
| 243 | if (mag) |
| 244 | { |
| 245 | const TReal invMag = static_cast<TReal>(1.0)/mag; |
| 246 | x *= invMag; |
| 247 | y *= invMag; |
| 248 | z *= invMag; |
| 249 | w *= invMag; |
| 250 | } |
| 251 | return *this; |
| 252 | } |
| 253 | |
| 254 | // --------------------------------------------------------------------------- |
| 255 | template<typename TReal> |
| 256 | inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const |
| 257 | { |
| 258 | return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z, |
| 259 | w*t.x + x*t.w + y*t.z - z*t.y, |
| 260 | w*t.y + y*t.w + z*t.x - x*t.z, |
| 261 | w*t.z + z*t.w + x*t.y - y*t.x); |
| 262 | } |
| 263 | |
| 264 | // --------------------------------------------------------------------------- |
| 265 | template<typename TReal> |
| 266 | inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate () |
| 267 | { |
| 268 | x = -x; |
| 269 | y = -y; |
| 270 | z = -z; |
| 271 | return *this; |
| 272 | } |
| 273 | |
| 274 | // --------------------------------------------------------------------------- |
| 275 | template<typename TReal> |
| 276 | inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v) |
| 277 | { |
| 278 | aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q; |
| 279 | qinv.Conjugate(); |
| 280 | |
| 281 | q = q*q2*qinv; |
| 282 | return aiVector3t<TReal>(q.x,q.y,q.z); |
| 283 | } |
| 284 | |
| 285 | #endif |
| 286 | #endif // AI_QUATERNION_INL_INC |
| 287 | |