| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2014 Michal Kaut |
| 5 | |
| 6 | This file is part of QuantLib, a free-software/open-source library |
| 7 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 8 | |
| 9 | QuantLib is free software: you can redistribute it and/or modify it |
| 10 | under the terms of the QuantLib license. You should have received a |
| 11 | copy of the license along with this program; if not, please email |
| 12 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 13 | <http://quantlib.org/license.shtml>. |
| 14 | |
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 17 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 18 | */ |
| 19 | |
| 20 | #include <ql/math/distributions/bivariatestudenttdistribution.hpp> |
| 21 | |
| 22 | namespace QuantLib { |
| 23 | |
| 24 | namespace { |
| 25 | |
| 26 | Real epsilon = 1.0e-8; |
| 27 | |
| 28 | Real sign(Real val) { |
| 29 | return val == 0.0 ? 0.0 |
| 30 | : (val < 0.0 ? -1.0 : 1.0); |
| 31 | } |
| 32 | |
| 33 | /* unlike the atan2 function in C++ that gives results in |
| 34 | [-pi,pi], this returns a value in [0, 2*pi] |
| 35 | */ |
| 36 | Real arctan(Real x, Real y) { |
| 37 | Real res = std::atan2(y: x, x: y); |
| 38 | return res >= 0.0 ? res : res + 2 * M_PI; |
| 39 | } |
| 40 | |
| 41 | // function x(m,h,k) defined on top of page 155 |
| 42 | Real f_x(Real m, Real h, Real k, Real rho) { |
| 43 | Real unCor = 1 - rho*rho; |
| 44 | Real sub = std::pow(x: h - rho * k, y: 2); |
| 45 | Real denom = sub + unCor * (m + k*k); |
| 46 | if (denom < epsilon) |
| 47 | return 0.0; // limit case for rho = +/-1.0 |
| 48 | return sub / (sub + unCor * (m + k*k)); |
| 49 | } |
| 50 | |
| 51 | // this calculates the cdf |
| 52 | Real P_n(Real h, Real k, Natural n, Real rho) { |
| 53 | Real unCor = 1.0 - rho*rho; |
| 54 | |
| 55 | Real div = 4 * std::sqrt(x: n * M_PI); |
| 56 | Real xHK = f_x(m: n, h, k, rho); |
| 57 | Real xKH = f_x(m: n, h: k, k: h, rho); |
| 58 | Real divH = 1 + h*h / n; |
| 59 | Real divK = 1 + k*k / n; |
| 60 | Real sgnHK = sign(val: h - rho * k); |
| 61 | Real sgnKH = sign(val: k - rho * h); |
| 62 | |
| 63 | if (n % 2 == 0) { // n is even, equation (10) |
| 64 | // first line of (10) |
| 65 | Real res = arctan(x: std::sqrt(x: unCor), y: -rho) / M_TWOPI; |
| 66 | |
| 67 | // second line of (10) |
| 68 | Real dgM = 2 * (1 - xHK); // multiplier for dgj |
| 69 | Real gjM = sgnHK * 2 / M_PI; // multiplier for g_j |
| 70 | // initializations for j = 1: |
| 71 | Real f_j = std::sqrt(M_PI / divK); |
| 72 | Real g_j = 1 + gjM * arctan(x: std::sqrt(x: xHK), y: std::sqrt(x: 1 - xHK)); |
| 73 | Real sum = f_j * g_j; |
| 74 | if (n >= 4) { |
| 75 | // different formulas for j = 2: |
| 76 | f_j *= 0.5 / divK; // (2 - 1.5) / (Real) (2 - 1) / divK; |
| 77 | Real dgj = gjM * std::sqrt(x: xHK * (1 - xHK)); |
| 78 | g_j += dgj; |
| 79 | sum += f_j * g_j; |
| 80 | // and then the loop for the rest of the j's: |
| 81 | for (Natural j = 3; j <= n / 2; ++j) { |
| 82 | f_j *= (j - 1.5) / (Real) (j - 1) / divK; |
| 83 | dgj *= (Real) (j - 2) / (2 * j - 3) * dgM; |
| 84 | g_j += dgj; |
| 85 | sum += f_j * g_j; |
| 86 | } |
| 87 | } |
| 88 | res += k / div * sum; |
| 89 | |
| 90 | // third line of (10) |
| 91 | dgM = 2 * (1 - xKH); |
| 92 | gjM = sgnKH * 2 / M_PI; |
| 93 | // initializations for j = 1: |
| 94 | f_j = std::sqrt(M_PI / divH); |
| 95 | g_j = 1 + gjM * arctan(x: std::sqrt(x: xKH), y: std::sqrt(x: 1 - xKH)); |
| 96 | sum = f_j * g_j; |
| 97 | if (n >= 4) { |
| 98 | // different formulas for j = 2: |
| 99 | f_j *= 0.5 / divH; // (2 - 1.5) / (Real) (2 - 1) / divK; |
| 100 | Real dgj = gjM * std::sqrt(x: xKH * (1 - xKH)); |
| 101 | g_j += dgj; |
| 102 | sum += f_j * g_j; |
| 103 | // and then the loop for the rest of the j's: |
| 104 | for (Natural j = 3; j <= n / 2; ++j) { |
| 105 | f_j *= (j - 1.5) / (Real) (j - 1) / divH; |
| 106 | dgj *= (Real) (j - 2) / (2 * j - 3) * dgM; |
| 107 | g_j += dgj; |
| 108 | sum += f_j * g_j; |
| 109 | } |
| 110 | } |
| 111 | res += h / div * sum; |
| 112 | return res; |
| 113 | |
| 114 | } else { // n is odd, equation (11) |
| 115 | // first line of (11) |
| 116 | Real hk = h * k; |
| 117 | Real hkcn = hk + rho * n; |
| 118 | Real sqrtExpr = std::sqrt(x: h*h - 2 * rho * hk + k*k + n * unCor); |
| 119 | Real res = arctan(x: std::sqrt(x: Real(n)) * (-(h + k) * hkcn - (hk - n) * sqrtExpr), |
| 120 | y: (hk - n) * hkcn - n * (h + k) * sqrtExpr ) / M_TWOPI; |
| 121 | |
| 122 | if (n > 1) { |
| 123 | // second line of (11) |
| 124 | Real mult = (1 - xHK) / 2; |
| 125 | // initializations for j = 1: |
| 126 | Real f_j = 2 / std::sqrt(M_PI) / divK; |
| 127 | Real dgj = sgnHK * std::sqrt(x: xHK); |
| 128 | Real g_j = 1 + dgj; |
| 129 | Real sum = f_j * g_j; |
| 130 | // and then the loop for the rest of the j's: |
| 131 | for (Natural j = 2; j <= (n - 1) / 2; ++j) { |
| 132 | f_j *= (Real) (j - 1) / (j - 0.5) / divK; |
| 133 | dgj *= (Real) (2 * j - 3) / (j - 1) * mult; |
| 134 | g_j += dgj; |
| 135 | sum += f_j * g_j; |
| 136 | } |
| 137 | res += k / div * sum; |
| 138 | |
| 139 | // third line of (11) |
| 140 | mult = (1 - xKH) / 2; |
| 141 | // initializations for j = 1: |
| 142 | f_j = 2 / std::sqrt(M_PI) / divH; |
| 143 | dgj = sgnKH * std::sqrt(x: xKH); |
| 144 | g_j = 1 + dgj; |
| 145 | sum = f_j * g_j; |
| 146 | // and then the loop for the rest of the j's: |
| 147 | for (Natural j = 2; j <= (n - 1) / 2; ++j) { |
| 148 | f_j *= (Real) (j - 1) / (j - 0.5) / divH; |
| 149 | dgj *= (Real) (2 * j - 3) / (j - 1) * mult; |
| 150 | g_j += dgj; |
| 151 | sum += f_j * g_j; |
| 152 | } |
| 153 | res += h / div * sum; |
| 154 | } |
| 155 | return res; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | } |
| 160 | |
| 161 | |
| 162 | BivariateCumulativeStudentDistribution:: |
| 163 | BivariateCumulativeStudentDistribution(Natural n, |
| 164 | Real rho) |
| 165 | : n_(n), rho_(rho) {} |
| 166 | |
| 167 | Real BivariateCumulativeStudentDistribution::operator()(Real x, |
| 168 | Real y) const { |
| 169 | return P_n(h: x, k: y, n: n_, rho: rho_); |
| 170 | } |
| 171 | |
| 172 | } |
| 173 | |