| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2003 Ferdinando Ametrano |
| 5 | Copyright (C) 2004 Walter Penschke |
| 6 | |
| 7 | This file is part of QuantLib, a free-software/open-source library |
| 8 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 9 | |
| 10 | QuantLib is free software: you can redistribute it and/or modify it |
| 11 | under the terms of the QuantLib license. You should have received a |
| 12 | copy of the license along with this program; if not, please email |
| 13 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 14 | <http://quantlib.org/license.shtml>. |
| 15 | |
| 16 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 17 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 18 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 19 | */ |
| 20 | |
| 21 | /*! \file poissondistribution.hpp |
| 22 | \brief Poisson distribution |
| 23 | */ |
| 24 | |
| 25 | #ifndef quantlib_poisson_distribution_hpp |
| 26 | #define quantlib_poisson_distribution_hpp |
| 27 | |
| 28 | #include <ql/math/factorial.hpp> |
| 29 | #include <ql/math/incompletegamma.hpp> |
| 30 | |
| 31 | namespace QuantLib { |
| 32 | |
| 33 | //! Poisson distribution function |
| 34 | /*! Given an integer \f$ k \f$, it returns its probability |
| 35 | in a Poisson distribution. |
| 36 | |
| 37 | \test the correctness of the returned value is tested by |
| 38 | checking it against known good results. |
| 39 | */ |
| 40 | class PoissonDistribution { |
| 41 | public: |
| 42 | /*! \deprecated Use `auto` or `decltype` instead. |
| 43 | Deprecated in version 1.29. |
| 44 | */ |
| 45 | QL_DEPRECATED |
| 46 | typedef Real argument_type; |
| 47 | |
| 48 | /*! \deprecated Use `auto` or `decltype` instead. |
| 49 | Deprecated in version 1.29. |
| 50 | */ |
| 51 | QL_DEPRECATED |
| 52 | typedef Real result_type; |
| 53 | |
| 54 | PoissonDistribution(Real mu); |
| 55 | // function |
| 56 | Real operator()(BigNatural k) const; |
| 57 | private: |
| 58 | Real mu_, logMu_; |
| 59 | }; |
| 60 | |
| 61 | |
| 62 | //! Cumulative Poisson distribution function |
| 63 | /*! This function provides an approximation of the |
| 64 | integral of the Poisson distribution. |
| 65 | |
| 66 | For this implementation see |
| 67 | "Numerical Recipes in C", 2nd edition, |
| 68 | Press, Teukolsky, Vetterling, Flannery, chapter 6 |
| 69 | |
| 70 | \test the correctness of the returned value is tested by |
| 71 | checking it against known good results. |
| 72 | */ |
| 73 | class CumulativePoissonDistribution { |
| 74 | public: |
| 75 | /*! \deprecated Use `auto` or `decltype` instead. |
| 76 | Deprecated in version 1.29. |
| 77 | */ |
| 78 | QL_DEPRECATED |
| 79 | typedef Real argument_type; |
| 80 | |
| 81 | /*! \deprecated Use `auto` or `decltype` instead. |
| 82 | Deprecated in version 1.29. |
| 83 | */ |
| 84 | QL_DEPRECATED |
| 85 | typedef Real result_type; |
| 86 | |
| 87 | CumulativePoissonDistribution(Real mu) : mu_(mu) {} |
| 88 | Real operator()(BigNatural k) const { |
| 89 | return 1.0 - incompleteGammaFunction(a: k+1, x: mu_); |
| 90 | } |
| 91 | private: |
| 92 | Real mu_; |
| 93 | }; |
| 94 | |
| 95 | |
| 96 | //! Inverse cumulative Poisson distribution function |
| 97 | /*! \test the correctness of the returned value is tested by |
| 98 | checking it against known good results. |
| 99 | */ |
| 100 | class InverseCumulativePoisson { |
| 101 | public: |
| 102 | /*! \deprecated Use `auto` or `decltype` instead. |
| 103 | Deprecated in version 1.29. |
| 104 | */ |
| 105 | QL_DEPRECATED |
| 106 | typedef Real argument_type; |
| 107 | |
| 108 | /*! \deprecated Use `auto` or `decltype` instead. |
| 109 | Deprecated in version 1.29. |
| 110 | */ |
| 111 | QL_DEPRECATED |
| 112 | typedef Real result_type; |
| 113 | |
| 114 | InverseCumulativePoisson(Real lambda = 1.0); |
| 115 | Real operator()(Real x) const; |
| 116 | private: |
| 117 | Real lambda_; |
| 118 | Real calcSummand(BigNatural index) const; |
| 119 | }; |
| 120 | |
| 121 | |
| 122 | |
| 123 | // inline definitions |
| 124 | |
| 125 | inline PoissonDistribution::PoissonDistribution(Real mu) |
| 126 | : mu_(mu) { |
| 127 | |
| 128 | QL_REQUIRE(mu_>=0.0, |
| 129 | "mu must be non negative (" << mu_ << " not allowed)" ); |
| 130 | |
| 131 | if (mu_!=0.0) logMu_ = std::log(x: mu_); |
| 132 | } |
| 133 | |
| 134 | inline Real PoissonDistribution::operator()(BigNatural k) const { |
| 135 | if (mu_==0.0) { |
| 136 | if (k==0) return 1.0; |
| 137 | else return 0.0; |
| 138 | } |
| 139 | Real logFactorial = Factorial::ln(n: k); |
| 140 | return std::exp(x: k*std::log(x: mu_) - logFactorial - mu_); |
| 141 | } |
| 142 | |
| 143 | |
| 144 | inline InverseCumulativePoisson::InverseCumulativePoisson(Real lambda) |
| 145 | : lambda_(lambda) { |
| 146 | QL_REQUIRE(lambda_ > 0.0, "lambda must be positive" ); |
| 147 | } |
| 148 | |
| 149 | inline Real InverseCumulativePoisson::operator()(Real x) const { |
| 150 | QL_REQUIRE(x >= 0.0 && x <= 1.0, |
| 151 | "Inverse cumulative Poisson distribution is " |
| 152 | "only defined on the interval [0,1]" ); |
| 153 | |
| 154 | if (x == 1.0) |
| 155 | return QL_MAX_REAL; |
| 156 | |
| 157 | Real sum = 0.0; |
| 158 | BigNatural index = 0; |
| 159 | while (x > sum) { |
| 160 | sum += calcSummand(index); |
| 161 | index++; |
| 162 | } |
| 163 | |
| 164 | return Real(index-1); |
| 165 | } |
| 166 | |
| 167 | inline Real InverseCumulativePoisson::calcSummand(BigNatural index) const { |
| 168 | return std::exp(x: -lambda_) * std::pow(x: lambda_, y: Integer(index)) / |
| 169 | Factorial::get(n: index); |
| 170 | } |
| 171 | |
| 172 | } |
| 173 | |
| 174 | |
| 175 | #endif |
| 176 | |