| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2003 RiskMap srl |
| 5 | Copyright (C) 2012 StatPro Italia srl |
| 6 | |
| 7 | This file is part of QuantLib, a free-software/open-source library |
| 8 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 9 | |
| 10 | QuantLib is free software: you can redistribute it and/or modify it |
| 11 | under the terms of the QuantLib license. You should have received a |
| 12 | copy of the license along with this program; if not, please email |
| 13 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 14 | <http://quantlib.org/license.shtml>. |
| 15 | |
| 16 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 17 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 18 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 19 | */ |
| 20 | |
| 21 | #include "solvers.hpp" |
| 22 | #include "utilities.hpp" |
| 23 | #include <ql/math/solvers1d/brent.hpp> |
| 24 | #include <ql/math/solvers1d/bisection.hpp> |
| 25 | #include <ql/math/solvers1d/falseposition.hpp> |
| 26 | #include <ql/math/solvers1d/ridder.hpp> |
| 27 | #include <ql/math/solvers1d/secant.hpp> |
| 28 | #include <ql/math/solvers1d/newton.hpp> |
| 29 | #include <ql/math/solvers1d/newtonsafe.hpp> |
| 30 | #include <ql/math/solvers1d/finitedifferencenewtonsafe.hpp> |
| 31 | |
| 32 | using namespace QuantLib; |
| 33 | using namespace boost::unit_test_framework; |
| 34 | |
| 35 | namespace { |
| 36 | |
| 37 | class F1 { |
| 38 | public: |
| 39 | Real operator()(Real x) const { return x*x-1.0; } |
| 40 | Real derivative(Real x) const { return 2.0*x; } |
| 41 | }; |
| 42 | |
| 43 | class F2 { |
| 44 | public: |
| 45 | Real operator()(Real x) const { return 1.0-x*x; } |
| 46 | Real derivative(Real x) const { return -2.0*x; } |
| 47 | }; |
| 48 | |
| 49 | class F3 { |
| 50 | public: |
| 51 | Real operator()(Real x) const { return std::atan(x: x-1); } |
| 52 | Real derivative(Real x) const { return 1.0 / (1.0+(x-1.0)*(x-1.0)); } |
| 53 | }; |
| 54 | |
| 55 | template <class S, class F> |
| 56 | void test_not_bracketed(const S& solver, const std::string& name, |
| 57 | const F& f, Real guess) { |
| 58 | Real accuracy[] = { 1.0e-4, 1.0e-6, 1.0e-8 }; |
| 59 | Real expected = 1.0; |
| 60 | for (Real& i : accuracy) { |
| 61 | Real root = solver.solve(f, i, guess, 0.1); |
| 62 | if (std::fabs(x: root - expected) > i) { |
| 63 | BOOST_FAIL(name << " solver (not bracketed):\n" |
| 64 | << " expected: " << expected << "\n" |
| 65 | << " calculated: " << root << "\n" |
| 66 | << " accuracy: " << i); |
| 67 | } |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | template <class S, class F> |
| 72 | void test_bracketed(const S& solver, const std::string& name, |
| 73 | const F& f, Real guess) { |
| 74 | Real accuracy[] = { 1.0e-4, 1.0e-6, 1.0e-8 }; |
| 75 | Real expected = 1.0; |
| 76 | for (Real& i : accuracy) { |
| 77 | // guess on the left side of the root, increasing function |
| 78 | Real root = solver.solve(f, i, guess, 0.0, 2.0); |
| 79 | if (std::fabs(x: root - expected) > i) { |
| 80 | BOOST_FAIL(name << " solver (bracketed):\n" |
| 81 | << " expected: " << expected << "\n" |
| 82 | << " calculated: " << root << "\n" |
| 83 | << " accuracy: " << i); |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | class Probe { |
| 89 | public: |
| 90 | Probe(Real& result, Real offset) |
| 91 | : result_(result), previous_(result), offset_(offset) {} |
| 92 | Real operator()(Real x) const { |
| 93 | result_ = x; |
| 94 | return previous_ + offset_ - x*x; |
| 95 | } |
| 96 | Real derivative(Real x) const { return 2.0*x; } |
| 97 | private: |
| 98 | Real& result_; |
| 99 | Real previous_; |
| 100 | Real offset_; |
| 101 | }; |
| 102 | |
| 103 | template <class S> |
| 104 | void test_last_call_with_root(const S& solver, const std::string& name, |
| 105 | bool bracketed, Real accuracy) { |
| 106 | |
| 107 | Real mins[] = { 3.0, 2.25, 1.5, 1.0 }; |
| 108 | Real maxs[] = { 7.0, 5.75, 4.5, 3.0 }; |
| 109 | Real steps[] = { 0.2, 0.2, 0.1, 0.1 }; |
| 110 | Real offsets[] = { 25.0, 11.0, 5.0, 1.0 }; |
| 111 | Real guesses[] = { 4.5, 4.5, 2.5, 2.5 }; |
| 112 | //Real expected[] = { 5.0, 4.0, 3.0, 2.0 }; |
| 113 | |
| 114 | Real argument = 0.0; |
| 115 | Real result; |
| 116 | |
| 117 | for (Size i=0; i<4; ++i) { |
| 118 | if (bracketed) { |
| 119 | result = solver.solve(Probe(argument, offsets[i]), accuracy, |
| 120 | guesses[i], mins[i], maxs[i]); |
| 121 | } else { |
| 122 | result = solver.solve(Probe(argument, offsets[i]), accuracy, |
| 123 | guesses[i], steps[i]); |
| 124 | } |
| 125 | |
| 126 | Real error = std::fabs(x: result-argument); |
| 127 | // the solver should have called the function with |
| 128 | // the very same value it's returning. But the internal |
| 129 | // 80bit length of the x87 FPU register might lead to |
| 130 | // a very small glitch when compiled with -mfpmath=387 on gcc |
| 131 | if (error > 2*QL_EPSILON) { |
| 132 | BOOST_FAIL(name << " solver (" |
| 133 | << (bracketed ? "" : "not " ) |
| 134 | << "bracketed):\n" |
| 135 | << " index: " << i << "\n" |
| 136 | << " expected: " << result << "\n" |
| 137 | << " calculated: " << argument << "\n" |
| 138 | << " error: " << error); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | template <class S> |
| 144 | void test_solver(const S& solver, const std::string& name, Real accuracy) { |
| 145 | // guess on the left side of the root, increasing function |
| 146 | test_not_bracketed(solver, name, F1(), 0.5); |
| 147 | test_bracketed(solver, name, F1(), 0.5); |
| 148 | // guess on the right side of the root, increasing function |
| 149 | test_not_bracketed(solver, name, F1(), 1.5); |
| 150 | test_bracketed(solver, name, F1(), 1.5); |
| 151 | // guess on the left side of the root, decreasing function |
| 152 | test_not_bracketed(solver, name, F2(), 0.5); |
| 153 | test_bracketed(solver, name, F2(), 0.5); |
| 154 | // guess on the right side of the root, decreasing function |
| 155 | test_not_bracketed(solver, name, F2(), 1.5); |
| 156 | test_bracketed(solver, name, F2(), 1.5); |
| 157 | // situation where bisection is used in the finite difference |
| 158 | // newton solver as the first step and where the initial |
| 159 | // guess is equal to the next estimate (which causes an infinite |
| 160 | // derivative if we do not handle this case with special care) |
| 161 | test_not_bracketed(solver, name, F3(), 1.00001); |
| 162 | // check that the last function call is made with the root value |
| 163 | if(accuracy != Null<Real>()) { |
| 164 | test_last_call_with_root(solver, name, false, accuracy); |
| 165 | test_last_call_with_root(solver, name, true, accuracy); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | } |
| 170 | |
| 171 | |
| 172 | void Solver1DTest::testBrent() { |
| 173 | BOOST_TEST_MESSAGE("Testing Brent solver..." ); |
| 174 | test_solver(solver: Brent(), name: "Brent" , accuracy: 1.0e-6); |
| 175 | } |
| 176 | |
| 177 | void Solver1DTest::testBisection() { |
| 178 | BOOST_TEST_MESSAGE("Testing bisection solver..." ); |
| 179 | test_solver(solver: Bisection(), name: "Bisection" , accuracy: 1.0e-6); |
| 180 | } |
| 181 | |
| 182 | void Solver1DTest::testFalsePosition() { |
| 183 | BOOST_TEST_MESSAGE("Testing false-position solver..." ); |
| 184 | test_solver(solver: FalsePosition(), name: "FalsePosition" , accuracy: 1.0e-6); |
| 185 | } |
| 186 | |
| 187 | void Solver1DTest::testNewton() { |
| 188 | BOOST_TEST_MESSAGE("Testing Newton solver..." ); |
| 189 | test_solver(solver: Newton(), name: "Newton" , accuracy: 1.0e-12); |
| 190 | } |
| 191 | |
| 192 | void Solver1DTest::testNewtonSafe() { |
| 193 | BOOST_TEST_MESSAGE("Testing Newton-safe solver..." ); |
| 194 | test_solver(solver: NewtonSafe(), name: "NewtonSafe" , accuracy: 1.0e-9); |
| 195 | } |
| 196 | |
| 197 | void Solver1DTest::testFiniteDifferenceNewtonSafe() { |
| 198 | BOOST_TEST_MESSAGE("Testing finite-difference Newton-safe solver..." ); |
| 199 | test_solver(solver: FiniteDifferenceNewtonSafe(), name: "FiniteDifferenceNewtonSafe" , accuracy: Null<Real>()); |
| 200 | } |
| 201 | |
| 202 | void Solver1DTest::testRidder() { |
| 203 | BOOST_TEST_MESSAGE("Testing Ridder solver..." ); |
| 204 | test_solver(solver: Ridder(), name: "Ridder" , accuracy: 1.0e-6); |
| 205 | } |
| 206 | |
| 207 | void Solver1DTest::testSecant() { |
| 208 | BOOST_TEST_MESSAGE("Testing secant solver..." ); |
| 209 | test_solver(solver: Secant(), name: "Secant" , accuracy: 1.0e-6); |
| 210 | } |
| 211 | |
| 212 | |
| 213 | test_suite* Solver1DTest::suite() { |
| 214 | auto* suite = BOOST_TEST_SUITE("1-D solver tests" ); |
| 215 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testBrent)); |
| 216 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testBisection)); |
| 217 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testFalsePosition)); |
| 218 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testNewton)); |
| 219 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testNewtonSafe)); |
| 220 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testFiniteDifferenceNewtonSafe)); |
| 221 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testRidder)); |
| 222 | suite->add(QUANTLIB_TEST_CASE(&Solver1DTest::testSecant)); |
| 223 | return suite; |
| 224 | } |
| 225 | |
| 226 | |