1 | // Copyright 2014 The Flutter Authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | import 'dart:math' as math; |
6 | import 'dart:ui' show DisplayFeature, DisplayFeatureState; |
7 | |
8 | import 'basic.dart'; |
9 | import 'debug.dart'; |
10 | import 'framework.dart'; |
11 | import 'media_query.dart'; |
12 | |
13 | /// Positions [child] such that it avoids overlapping any [DisplayFeature] that |
14 | /// splits the screen into sub-screens. |
15 | /// |
16 | /// A [DisplayFeature] splits the screen into sub-screens when both these |
17 | /// conditions are met: |
18 | /// |
19 | /// * it obstructs the screen, meaning the area it occupies is not 0 or the |
20 | /// `state` is [DisplayFeatureState.postureHalfOpened]. |
21 | /// * it is at least as tall as the screen, producing a left and right |
22 | /// sub-screen or it is at least as wide as the screen, producing a top and |
23 | /// bottom sub-screen |
24 | /// |
25 | /// After determining the sub-screens, the closest one to [anchorPoint] is used |
26 | /// to render the content. |
27 | /// |
28 | /// If no [anchorPoint] is provided, then [Directionality] is used: |
29 | /// |
30 | /// * for [TextDirection.ltr], [anchorPoint] is `Offset.zero`, which will |
31 | /// cause the content to appear in the top-left sub-screen. |
32 | /// * for [TextDirection.rtl], [anchorPoint] is `Offset(double.maxFinite, 0)`, |
33 | /// which will cause the content to appear in the top-right sub-screen. |
34 | /// |
35 | /// If no [anchorPoint] is provided, and there is no [Directionality] ancestor |
36 | /// widget in the tree, then the widget asserts during build in debug mode. |
37 | /// |
38 | /// Similarly to [SafeArea], this widget assumes there is no added padding |
39 | /// between it and the first [MediaQuery] ancestor. The [child] is wrapped in a |
40 | /// new [MediaQuery] instance containing the [DisplayFeature]s that exist in the |
41 | /// selected sub-screen, with coordinates relative to the sub-screen. Padding is |
42 | /// also adjusted to zero out any sides that were avoided by this widget. |
43 | /// |
44 | /// See also: |
45 | /// |
46 | /// * [showDialog], which is a way to display a [DialogRoute]. |
47 | /// * [showCupertinoDialog], which displays an iOS-style dialog. |
48 | class DisplayFeatureSubScreen extends StatelessWidget { |
49 | /// Creates a widget that positions its child so that it avoids display |
50 | /// features. |
51 | const DisplayFeatureSubScreen({ |
52 | super.key, |
53 | this.anchorPoint, |
54 | required this.child, |
55 | }); |
56 | |
57 | /// {@template flutter.widgets.DisplayFeatureSubScreen.anchorPoint} |
58 | /// The anchor point used to pick the closest sub-screen. |
59 | /// |
60 | /// If the anchor point sits inside one of these sub-screens, then that |
61 | /// sub-screen is picked. If not, then the sub-screen with the closest edge to |
62 | /// the point is used. |
63 | /// |
64 | /// [Offset.zero] is the top-left corner of the available screen space. For a |
65 | /// vertically split dual-screen device, this is the top-left corner of the |
66 | /// left screen. |
67 | /// |
68 | /// When this is null, [Directionality] is used: |
69 | /// |
70 | /// * for [TextDirection.ltr], [anchorPoint] is [Offset.zero], which will |
71 | /// cause the top-left sub-screen to be picked. |
72 | /// * for [TextDirection.rtl], [anchorPoint] is |
73 | /// `Offset(double.maxFinite, 0)`, which will cause the top-right |
74 | /// sub-screen to be picked. |
75 | /// {@endtemplate} |
76 | final Offset? anchorPoint; |
77 | |
78 | /// The widget below this widget in the tree. |
79 | /// |
80 | /// The padding on the [MediaQuery] for the [child] will be suitably adjusted |
81 | /// to zero out any sides that were avoided by this widget. The [MediaQuery] |
82 | /// for the [child] will no longer contain any display features that split the |
83 | /// screen into sub-screens. |
84 | /// |
85 | /// {@macro flutter.widgets.ProxyWidget.child} |
86 | final Widget child; |
87 | |
88 | @override |
89 | Widget build(BuildContext context) { |
90 | assert(anchorPoint != null || debugCheckHasDirectionality( |
91 | context, |
92 | why: 'to determine which sub-screen DisplayFeatureSubScreen uses' , |
93 | alternative: "Alternatively, consider specifying the 'anchorPoint' argument on the DisplayFeatureSubScreen." , |
94 | )); |
95 | final MediaQueryData mediaQuery = MediaQuery.of(context); |
96 | final Size parentSize = mediaQuery.size; |
97 | final Rect wantedBounds = Offset.zero & parentSize; |
98 | final Offset resolvedAnchorPoint = _capOffset(anchorPoint ?? _fallbackAnchorPoint(context), parentSize); |
99 | final Iterable<Rect> subScreens = subScreensInBounds(wantedBounds, avoidBounds(mediaQuery)); |
100 | final Rect closestSubScreen = _closestToAnchorPoint(subScreens, resolvedAnchorPoint); |
101 | |
102 | return Padding( |
103 | padding: EdgeInsets.only( |
104 | left: closestSubScreen.left, |
105 | top: closestSubScreen.top, |
106 | right: parentSize.width - closestSubScreen.right, |
107 | bottom: parentSize.height - closestSubScreen.bottom, |
108 | ), |
109 | child: MediaQuery( |
110 | data: mediaQuery.removeDisplayFeatures(closestSubScreen), |
111 | child: child, |
112 | ), |
113 | ); |
114 | } |
115 | |
116 | static Offset _fallbackAnchorPoint(BuildContext context) { |
117 | final TextDirection textDirection = Directionality.of(context); |
118 | switch (textDirection) { |
119 | case TextDirection.rtl: |
120 | return const Offset(double.maxFinite, 0); |
121 | case TextDirection.ltr: |
122 | return Offset.zero; |
123 | } |
124 | } |
125 | |
126 | /// Returns the areas of the screen that are obstructed by display features. |
127 | /// |
128 | /// A [DisplayFeature] obstructs the screen when the area it occupies is |
129 | /// not 0 or the `state` is [DisplayFeatureState.postureHalfOpened]. |
130 | static Iterable<Rect> avoidBounds(MediaQueryData mediaQuery) { |
131 | return mediaQuery.displayFeatures |
132 | .where((DisplayFeature d) => d.bounds.shortestSide > 0 || |
133 | d.state == DisplayFeatureState.postureHalfOpened) |
134 | .map((DisplayFeature d) => d.bounds); |
135 | } |
136 | |
137 | /// Returns the closest sub-screen to the [anchorPoint]. |
138 | static Rect _closestToAnchorPoint(Iterable<Rect> subScreens, Offset anchorPoint) { |
139 | Rect closestScreen = subScreens.first; |
140 | double closestDistance = _distanceFromPointToRect(anchorPoint, closestScreen); |
141 | for (final Rect screen in subScreens) { |
142 | final double subScreenDistance = _distanceFromPointToRect(anchorPoint, screen); |
143 | if (subScreenDistance < closestDistance) { |
144 | closestScreen = screen; |
145 | closestDistance = subScreenDistance; |
146 | } |
147 | } |
148 | return closestScreen; |
149 | } |
150 | |
151 | static double _distanceFromPointToRect(Offset point, Rect rect) { |
152 | // Cases for point position relative to rect: |
153 | // 1 2 3 |
154 | // 4 [R] 5 |
155 | // 6 7 8 |
156 | if (point.dx < rect.left) { |
157 | if (point.dy < rect.top) { |
158 | // Case 1 |
159 | return (point - rect.topLeft).distance; |
160 | } else if (point.dy > rect.bottom) { |
161 | // Case 6 |
162 | return (point - rect.bottomLeft).distance; |
163 | } else { |
164 | // Case 4 |
165 | return rect.left - point.dx; |
166 | } |
167 | } else if (point.dx > rect.right) { |
168 | if (point.dy < rect.top) { |
169 | // Case 3 |
170 | return (point - rect.topRight).distance; |
171 | } else if (point.dy > rect.bottom) { |
172 | // Case 8 |
173 | return (point - rect.bottomRight).distance; |
174 | } else { |
175 | // Case 5 |
176 | return point.dx - rect.right; |
177 | } |
178 | } else { |
179 | if (point.dy < rect.top) { |
180 | // Case 2 |
181 | return rect.top - point.dy; |
182 | } else if (point.dy > rect.bottom) { |
183 | // Case 7 |
184 | return point.dy - rect.bottom; |
185 | } else { |
186 | // Case R |
187 | return 0; |
188 | } |
189 | } |
190 | } |
191 | |
192 | /// Returns sub-screens resulted by dividing [wantedBounds] along items of |
193 | /// [avoidBounds] that are at least as tall or as wide. |
194 | static Iterable<Rect> subScreensInBounds(Rect wantedBounds, Iterable<Rect> avoidBounds) { |
195 | Iterable<Rect> subScreens = <Rect>[wantedBounds]; |
196 | for (final Rect bounds in avoidBounds) { |
197 | final List<Rect> newSubScreens = <Rect>[]; |
198 | for (final Rect screen in subScreens) { |
199 | if (screen.top >= bounds.top && screen.bottom <= bounds.bottom) { |
200 | // Display feature splits the screen vertically |
201 | if (screen.left < bounds.left) { |
202 | // There is a smaller sub-screen, left of the display feature |
203 | newSubScreens.add(Rect.fromLTWH( |
204 | screen.left, |
205 | screen.top, |
206 | bounds.left - screen.left, |
207 | screen.height, |
208 | )); |
209 | } |
210 | if (screen.right > bounds.right) { |
211 | // There is a smaller sub-screen, right of the display feature |
212 | newSubScreens.add(Rect.fromLTWH( |
213 | bounds.right, |
214 | screen.top, |
215 | screen.right - bounds.right, |
216 | screen.height, |
217 | )); |
218 | } |
219 | } else if (screen.left >= bounds.left && screen.right <= bounds.right) { |
220 | // Display feature splits the sub-screen horizontally |
221 | if (screen.top < bounds.top) { |
222 | // There is a smaller sub-screen, above the display feature |
223 | newSubScreens.add(Rect.fromLTWH( |
224 | screen.left, |
225 | screen.top, |
226 | screen.width, |
227 | bounds.top - screen.top, |
228 | )); |
229 | } |
230 | if (screen.bottom > bounds.bottom) { |
231 | // There is a smaller sub-screen, below the display feature |
232 | newSubScreens.add(Rect.fromLTWH( |
233 | screen.left, |
234 | bounds.bottom, |
235 | screen.width, |
236 | screen.bottom - bounds.bottom, |
237 | )); |
238 | } |
239 | } else { |
240 | newSubScreens.add(screen); |
241 | } |
242 | } |
243 | subScreens = newSubScreens; |
244 | } |
245 | return subScreens; |
246 | } |
247 | |
248 | static Offset _capOffset(Offset offset, Size maximum) { |
249 | if (offset.dx >= 0 && offset.dx <= maximum.width |
250 | && offset.dy >=0 && offset.dy <= maximum.height) { |
251 | return offset; |
252 | } else { |
253 | return Offset( |
254 | math.min(math.max(0, offset.dx), maximum.width), |
255 | math.min(math.max(0, offset.dy), maximum.height), |
256 | ); |
257 | } |
258 | } |
259 | } |
260 | |