| 1 | use crate::Adler32; |
| 2 | use std::ops::{AddAssign, MulAssign, RemAssign}; |
| 3 | |
| 4 | impl Adler32 { |
| 5 | pub(crate) fn compute(&mut self, bytes: &[u8]) { |
| 6 | // The basic algorithm is, for every byte: |
| 7 | // a = (a + byte) % MOD |
| 8 | // b = (b + a) % MOD |
| 9 | // where MOD = 65521. |
| 10 | // |
| 11 | // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows: |
| 12 | // - Between calls to `write`, we ensure that a and b are always in range 0..MOD. |
| 13 | // - We use 32-bit arithmetic in this function. |
| 14 | // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD` |
| 15 | // operation. |
| 16 | // |
| 17 | // According to Wikipedia, b is calculated as follows for non-incremental checksumming: |
| 18 | // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521) |
| 19 | // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account |
| 20 | // for the previous values of a and b, as well as treat every input Byte as being 255: |
| 21 | // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520 |
| 22 | // Or in other words: |
| 23 | // b_inc = n*65520 + n(n+1)/2*255 |
| 24 | // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521. |
| 25 | // 2^32-65521 = n*65520 + n(n+1)/2*255 |
| 26 | // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552. |
| 27 | // |
| 28 | // On top of the optimization outlined above, the algorithm can also be parallelized with a |
| 29 | // bit more work: |
| 30 | // |
| 31 | // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn). |
| 32 | // |
| 33 | // If we fix some value k<N and rewrite indices 1, ..., N as |
| 34 | // |
| 35 | // 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k, |
| 36 | // |
| 37 | // then we can express a and b in terms of sums of smaller sequences kb and ka: |
| 38 | // |
| 39 | // ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k |
| 40 | // kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k |
| 41 | // |
| 42 | // a = ka(1) + ka(2) + ... + ka(k) + 1 |
| 43 | // b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N |
| 44 | // |
| 45 | // We use this insight to unroll the main loop and process k=4 bytes at a time. |
| 46 | // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups |
| 47 | // stem from increased pipeline parallelism rather than auto-vectorization. |
| 48 | // |
| 49 | // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\ |
| 50 | // en/develop/articles/fast-computation-of-fletcher-checksums.html] |
| 51 | |
| 52 | const MOD: u32 = 65521; |
| 53 | const CHUNK_SIZE: usize = 5552 * 4; |
| 54 | |
| 55 | let mut a = u32::from(self.a); |
| 56 | let mut b = u32::from(self.b); |
| 57 | let mut a_vec = U32X4([0; 4]); |
| 58 | let mut b_vec = a_vec; |
| 59 | |
| 60 | let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4); |
| 61 | |
| 62 | // iterate over 4 bytes at a time |
| 63 | let chunk_iter = bytes.chunks_exact(CHUNK_SIZE); |
| 64 | let remainder_chunk = chunk_iter.remainder(); |
| 65 | for chunk in chunk_iter { |
| 66 | for byte_vec in chunk.chunks_exact(4) { |
| 67 | let val = U32X4::from(byte_vec); |
| 68 | a_vec += val; |
| 69 | b_vec += a_vec; |
| 70 | } |
| 71 | b += CHUNK_SIZE as u32 * a; |
| 72 | a_vec %= MOD; |
| 73 | b_vec %= MOD; |
| 74 | b %= MOD; |
| 75 | } |
| 76 | // special-case the final chunk because it may be shorter than the rest |
| 77 | for byte_vec in remainder_chunk.chunks_exact(4) { |
| 78 | let val = U32X4::from(byte_vec); |
| 79 | a_vec += val; |
| 80 | b_vec += a_vec; |
| 81 | } |
| 82 | b += remainder_chunk.len() as u32 * a; |
| 83 | a_vec %= MOD; |
| 84 | b_vec %= MOD; |
| 85 | b %= MOD; |
| 86 | |
| 87 | // combine the sub-sum results into the main sum |
| 88 | b_vec *= 4; |
| 89 | b_vec.0[1] += MOD - a_vec.0[1]; |
| 90 | b_vec.0[2] += (MOD - a_vec.0[2]) * 2; |
| 91 | b_vec.0[3] += (MOD - a_vec.0[3]) * 3; |
| 92 | for &av in a_vec.0.iter() { |
| 93 | a += av; |
| 94 | } |
| 95 | for &bv in b_vec.0.iter() { |
| 96 | b += bv; |
| 97 | } |
| 98 | |
| 99 | // iterate over the remaining few bytes in serial |
| 100 | for &byte in remainder.iter() { |
| 101 | a += u32::from(byte); |
| 102 | b += a; |
| 103 | } |
| 104 | |
| 105 | self.a = (a % MOD) as u16; |
| 106 | self.b = (b % MOD) as u16; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | #[derive (Copy, Clone)] |
| 111 | struct U32X4([u32; 4]); |
| 112 | |
| 113 | impl U32X4 { |
| 114 | fn from(bytes: &[u8]) -> Self { |
| 115 | U32X4([ |
| 116 | u32::from(bytes[0]), |
| 117 | u32::from(bytes[1]), |
| 118 | u32::from(bytes[2]), |
| 119 | u32::from(bytes[3]), |
| 120 | ]) |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | impl AddAssign<Self> for U32X4 { |
| 125 | fn add_assign(&mut self, other: Self) { |
| 126 | for (s: &mut u32, o: &u32) in self.0.iter_mut().zip(other.0.iter()) { |
| 127 | *s += o; |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | impl RemAssign<u32> for U32X4 { |
| 133 | fn rem_assign(&mut self, quotient: u32) { |
| 134 | for s: &mut u32 in self.0.iter_mut() { |
| 135 | *s %= quotient; |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | impl MulAssign<u32> for U32X4 { |
| 141 | fn mul_assign(&mut self, rhs: u32) { |
| 142 | for s: &mut u32 in self.0.iter_mut() { |
| 143 | *s *= rhs; |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | |