| 1 | use crate::Adler32; | 
| 2 | use std::ops::{AddAssign, MulAssign, RemAssign}; | 
|---|
| 3 |  | 
|---|
| 4 | impl Adler32 { | 
|---|
| 5 | pub(crate) fn compute(&mut self, bytes: &[u8]) { | 
|---|
| 6 | // The basic algorithm is, for every byte: | 
|---|
| 7 | //   a = (a + byte) % MOD | 
|---|
| 8 | //   b = (b + a) % MOD | 
|---|
| 9 | // where MOD = 65521. | 
|---|
| 10 | // | 
|---|
| 11 | // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows: | 
|---|
| 12 | // - Between calls to `write`, we ensure that a and b are always in range 0..MOD. | 
|---|
| 13 | // - We use 32-bit arithmetic in this function. | 
|---|
| 14 | // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD` | 
|---|
| 15 | //   operation. | 
|---|
| 16 | // | 
|---|
| 17 | // According to Wikipedia, b is calculated as follows for non-incremental checksumming: | 
|---|
| 18 | //   b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521) | 
|---|
| 19 | // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account | 
|---|
| 20 | // for the previous values of a and b, as well as treat every input Byte as being 255: | 
|---|
| 21 | //   b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520 | 
|---|
| 22 | // Or in other words: | 
|---|
| 23 | //   b_inc = n*65520 + n(n+1)/2*255 | 
|---|
| 24 | // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521. | 
|---|
| 25 | //   2^32-65521 = n*65520 + n(n+1)/2*255 | 
|---|
| 26 | // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552. | 
|---|
| 27 | // | 
|---|
| 28 | // On top of the optimization outlined above, the algorithm can also be parallelized with a | 
|---|
| 29 | // bit more work: | 
|---|
| 30 | // | 
|---|
| 31 | // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn). | 
|---|
| 32 | // | 
|---|
| 33 | // If we fix some value k<N and rewrite indices 1, ..., N as | 
|---|
| 34 | // | 
|---|
| 35 | //   1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k, | 
|---|
| 36 | // | 
|---|
| 37 | // then we can express a and b in terms of sums of smaller sequences kb and ka: | 
|---|
| 38 | // | 
|---|
| 39 | //   ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k | 
|---|
| 40 | //   kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k | 
|---|
| 41 | // | 
|---|
| 42 | //  a = ka(1) + ka(2) + ... + ka(k) + 1 | 
|---|
| 43 | //  b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ...  - (k-1)*ka(k) + N | 
|---|
| 44 | // | 
|---|
| 45 | // We use this insight to unroll the main loop and process k=4 bytes at a time. | 
|---|
| 46 | // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups | 
|---|
| 47 | // stem from increased pipeline parallelism rather than auto-vectorization. | 
|---|
| 48 | // | 
|---|
| 49 | // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\ | 
|---|
| 50 | // en/develop/articles/fast-computation-of-fletcher-checksums.html] | 
|---|
| 51 |  | 
|---|
| 52 | const MOD: u32 = 65521; | 
|---|
| 53 | const CHUNK_SIZE: usize = 5552 * 4; | 
|---|
| 54 |  | 
|---|
| 55 | let mut a = u32::from(self.a); | 
|---|
| 56 | let mut b = u32::from(self.b); | 
|---|
| 57 | let mut a_vec = U32X4([0; 4]); | 
|---|
| 58 | let mut b_vec = a_vec; | 
|---|
| 59 |  | 
|---|
| 60 | let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4); | 
|---|
| 61 |  | 
|---|
| 62 | // iterate over 4 bytes at a time | 
|---|
| 63 | let chunk_iter = bytes.chunks_exact(CHUNK_SIZE); | 
|---|
| 64 | let remainder_chunk = chunk_iter.remainder(); | 
|---|
| 65 | for chunk in chunk_iter { | 
|---|
| 66 | for byte_vec in chunk.chunks_exact(4) { | 
|---|
| 67 | let val = U32X4::from(byte_vec); | 
|---|
| 68 | a_vec += val; | 
|---|
| 69 | b_vec += a_vec; | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 | b += CHUNK_SIZE as u32 * a; | 
|---|
| 73 | a_vec %= MOD; | 
|---|
| 74 | b_vec %= MOD; | 
|---|
| 75 | b %= MOD; | 
|---|
| 76 | } | 
|---|
| 77 | // special-case the final chunk because it may be shorter than the rest | 
|---|
| 78 | for byte_vec in remainder_chunk.chunks_exact(4) { | 
|---|
| 79 | let val = U32X4::from(byte_vec); | 
|---|
| 80 | a_vec += val; | 
|---|
| 81 | b_vec += a_vec; | 
|---|
| 82 | } | 
|---|
| 83 | b += remainder_chunk.len() as u32 * a; | 
|---|
| 84 | a_vec %= MOD; | 
|---|
| 85 | b_vec %= MOD; | 
|---|
| 86 | b %= MOD; | 
|---|
| 87 |  | 
|---|
| 88 | // combine the sub-sum results into the main sum | 
|---|
| 89 | b_vec *= 4; | 
|---|
| 90 | b_vec.0[1] += MOD - a_vec.0[1]; | 
|---|
| 91 | b_vec.0[2] += (MOD - a_vec.0[2]) * 2; | 
|---|
| 92 | b_vec.0[3] += (MOD - a_vec.0[3]) * 3; | 
|---|
| 93 | for &av in a_vec.0.iter() { | 
|---|
| 94 | a += av; | 
|---|
| 95 | } | 
|---|
| 96 | for &bv in b_vec.0.iter() { | 
|---|
| 97 | b += bv; | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | // iterate over the remaining few bytes in serial | 
|---|
| 101 | for &byte in remainder.iter() { | 
|---|
| 102 | a += u32::from(byte); | 
|---|
| 103 | b += a; | 
|---|
| 104 | } | 
|---|
| 105 |  | 
|---|
| 106 | self.a = (a % MOD) as u16; | 
|---|
| 107 | self.b = (b % MOD) as u16; | 
|---|
| 108 | } | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | #[ derive(Copy, Clone)] | 
|---|
| 112 | struct U32X4([u32; 4]); | 
|---|
| 113 |  | 
|---|
| 114 | impl U32X4 { | 
|---|
| 115 | #[ inline] | 
|---|
| 116 | fn from(bytes: &[u8]) -> Self { | 
|---|
| 117 | U32X4([ | 
|---|
| 118 | u32::from(bytes[0]), | 
|---|
| 119 | u32::from(bytes[1]), | 
|---|
| 120 | u32::from(bytes[2]), | 
|---|
| 121 | u32::from(bytes[3]), | 
|---|
| 122 | ]) | 
|---|
| 123 | } | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | impl AddAssign<Self> for U32X4 { | 
|---|
| 127 | #[ inline] | 
|---|
| 128 | fn add_assign(&mut self, other: Self) { | 
|---|
| 129 | // Implement this in a primitive manner to help out the compiler a bit. | 
|---|
| 130 | self.0[0] += other.0[0]; | 
|---|
| 131 | self.0[1] += other.0[1]; | 
|---|
| 132 | self.0[2] += other.0[2]; | 
|---|
| 133 | self.0[3] += other.0[3]; | 
|---|
| 134 | } | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | impl RemAssign<u32> for U32X4 { | 
|---|
| 138 | #[ inline] | 
|---|
| 139 | fn rem_assign(&mut self, quotient: u32) { | 
|---|
| 140 | self.0[0] %= quotient; | 
|---|
| 141 | self.0[1] %= quotient; | 
|---|
| 142 | self.0[2] %= quotient; | 
|---|
| 143 | self.0[3] %= quotient; | 
|---|
| 144 | } | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | impl MulAssign<u32> for U32X4 { | 
|---|
| 148 | #[ inline] | 
|---|
| 149 | fn mul_assign(&mut self, rhs: u32) { | 
|---|
| 150 | self.0[0] *= rhs; | 
|---|
| 151 | self.0[1] *= rhs; | 
|---|
| 152 | self.0[2] *= rhs; | 
|---|
| 153 | self.0[3] *= rhs; | 
|---|
| 154 | } | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|