| 1 | // Internal |
| 2 | use crate::builder::Command; |
| 3 | |
| 4 | /// Find strings from an iterable of `possible_values` similar to a given value `v` |
| 5 | /// Returns a Vec of all possible values that exceed a similarity threshold |
| 6 | /// sorted by ascending similarity, most similar comes last |
| 7 | #[cfg (feature = "suggestions" )] |
| 8 | pub(crate) fn did_you_mean<T, I>(v: &str, possible_values: I) -> Vec<String> |
| 9 | where |
| 10 | T: AsRef<str>, |
| 11 | I: IntoIterator<Item = T>, |
| 12 | { |
| 13 | use std::cmp::Ordering; |
| 14 | |
| 15 | let mut candidates: Vec<(f64, String)> = Vec::new(); |
| 16 | for pv in possible_values { |
| 17 | // GH #4660: using `jaro` because `jaro_winkler` implementation in `strsim-rs` is wrong |
| 18 | // causing strings with common prefix >=10 to be considered perfectly similar |
| 19 | let confidence = strsim::jaro(v, pv.as_ref()); |
| 20 | |
| 21 | if confidence > 0.7 { |
| 22 | let new_elem = (confidence, pv.as_ref().to_owned()); |
| 23 | let pos = candidates |
| 24 | .binary_search_by(|probe| { |
| 25 | if probe.0 > confidence { |
| 26 | Ordering::Greater |
| 27 | } else { |
| 28 | Ordering::Less |
| 29 | } |
| 30 | }) |
| 31 | .unwrap_or_else(|e| e); |
| 32 | candidates.insert(pos, new_elem); |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | candidates.into_iter().map(|(_, pv)| pv).collect() |
| 37 | } |
| 38 | |
| 39 | #[cfg (not(feature = "suggestions" ))] |
| 40 | pub(crate) fn did_you_mean<T, I>(_: &str, _: I) -> Vec<String> |
| 41 | where |
| 42 | T: AsRef<str>, |
| 43 | I: IntoIterator<Item = T>, |
| 44 | { |
| 45 | Vec::new() |
| 46 | } |
| 47 | |
| 48 | /// Returns a suffix that can be empty, or is the standard 'did you mean' phrase |
| 49 | pub(crate) fn did_you_mean_flag<'a, 'help, I, T>( |
| 50 | arg: &str, |
| 51 | remaining_args: &[&std::ffi::OsStr], |
| 52 | longs: I, |
| 53 | subcommands: impl IntoIterator<Item = &'a mut Command>, |
| 54 | ) -> Option<(String, Option<String>)> |
| 55 | where |
| 56 | 'help: 'a, |
| 57 | T: AsRef<str>, |
| 58 | I: IntoIterator<Item = T>, |
| 59 | { |
| 60 | use crate::mkeymap::KeyType; |
| 61 | |
| 62 | match did_you_mean(arg, longs).pop() { |
| 63 | Some(candidate) => Some((candidate, None)), |
| 64 | None => subcommands |
| 65 | .into_iter() |
| 66 | .filter_map(|subcommand| { |
| 67 | subcommand._build_self(false); |
| 68 | |
| 69 | let longs = subcommand.get_keymap().keys().filter_map(|a| { |
| 70 | if let KeyType::Long(v) = a { |
| 71 | Some(v.to_string_lossy().into_owned()) |
| 72 | } else { |
| 73 | None |
| 74 | } |
| 75 | }); |
| 76 | |
| 77 | let subcommand_name = subcommand.get_name(); |
| 78 | |
| 79 | let candidate = some!(did_you_mean(arg, longs).pop()); |
| 80 | let score = some!(remaining_args.iter().position(|x| subcommand_name == *x)); |
| 81 | Some((score, (candidate, Some(subcommand_name.to_string())))) |
| 82 | }) |
| 83 | .min_by_key(|(x, _)| *x) |
| 84 | .map(|(_, suggestion)| suggestion), |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | #[cfg (all(test, feature = "suggestions" ))] |
| 89 | mod test { |
| 90 | use super::*; |
| 91 | |
| 92 | #[test ] |
| 93 | fn missing_letter() { |
| 94 | let p_vals = ["test" , "possible" , "values" ]; |
| 95 | assert_eq!(did_you_mean("tst" , p_vals.iter()), vec!["test" ]); |
| 96 | } |
| 97 | |
| 98 | #[test ] |
| 99 | fn ambiguous() { |
| 100 | let p_vals = ["test" , "temp" , "possible" , "values" ]; |
| 101 | assert_eq!(did_you_mean("te" , p_vals.iter()), vec!["test" , "temp" ]); |
| 102 | } |
| 103 | |
| 104 | #[test ] |
| 105 | fn unrelated() { |
| 106 | let p_vals = ["test" , "possible" , "values" ]; |
| 107 | assert_eq!( |
| 108 | did_you_mean("hahaahahah" , p_vals.iter()), |
| 109 | Vec::<String>::new() |
| 110 | ); |
| 111 | } |
| 112 | |
| 113 | #[test ] |
| 114 | fn best_fit() { |
| 115 | let p_vals = [ |
| 116 | "test" , |
| 117 | "possible" , |
| 118 | "values" , |
| 119 | "alignmentStart" , |
| 120 | "alignmentScore" , |
| 121 | ]; |
| 122 | assert_eq!( |
| 123 | did_you_mean("alignmentScorr" , p_vals.iter()), |
| 124 | vec!["alignmentStart" , "alignmentScore" ] |
| 125 | ); |
| 126 | } |
| 127 | |
| 128 | #[test ] |
| 129 | fn best_fit_long_common_prefix_issue_4660() { |
| 130 | let p_vals = ["alignmentScore" , "alignmentStart" ]; |
| 131 | assert_eq!( |
| 132 | did_you_mean("alignmentScorr" , p_vals.iter()), |
| 133 | vec!["alignmentStart" , "alignmentScore" ] |
| 134 | ); |
| 135 | } |
| 136 | |
| 137 | #[test ] |
| 138 | fn flag_missing_letter() { |
| 139 | let p_vals = ["test" , "possible" , "values" ]; |
| 140 | assert_eq!( |
| 141 | did_you_mean_flag("tst" , &[], p_vals.iter(), []), |
| 142 | Some(("test" .to_owned(), None)) |
| 143 | ); |
| 144 | } |
| 145 | |
| 146 | #[test ] |
| 147 | fn flag_ambiguous() { |
| 148 | let p_vals = ["test" , "temp" , "possible" , "values" ]; |
| 149 | assert_eq!( |
| 150 | did_you_mean_flag("te" , &[], p_vals.iter(), []), |
| 151 | Some(("temp" .to_owned(), None)) |
| 152 | ); |
| 153 | } |
| 154 | |
| 155 | #[test ] |
| 156 | fn flag_unrelated() { |
| 157 | let p_vals = ["test" , "possible" , "values" ]; |
| 158 | assert_eq!( |
| 159 | did_you_mean_flag("hahaahahah" , &[], p_vals.iter(), []), |
| 160 | None |
| 161 | ); |
| 162 | } |
| 163 | |
| 164 | #[test ] |
| 165 | fn flag_best_fit() { |
| 166 | let p_vals = [ |
| 167 | "test" , |
| 168 | "possible" , |
| 169 | "values" , |
| 170 | "alignmentStart" , |
| 171 | "alignmentScore" , |
| 172 | ]; |
| 173 | assert_eq!( |
| 174 | did_you_mean_flag("alignmentScorr" , &[], p_vals.iter(), []), |
| 175 | Some(("alignmentScore" .to_owned(), None)) |
| 176 | ); |
| 177 | } |
| 178 | } |
| 179 | |