1 | use core::ops; |
2 | |
3 | use crate::int::{DInt, Int, MinInt}; |
4 | |
5 | /// Wrapper to extract the integer type half of the float's size |
6 | pub type HalfRep<F> = <<F as Float>::Int as DInt>::H; |
7 | |
8 | /// Trait for some basic operations on floats |
9 | #[allow (dead_code)] |
10 | pub trait Float: |
11 | Copy |
12 | + core::fmt::Debug |
13 | + PartialEq |
14 | + PartialOrd |
15 | + ops::AddAssign |
16 | + ops::MulAssign |
17 | + ops::Add<Output = Self> |
18 | + ops::Sub<Output = Self> |
19 | + ops::Div<Output = Self> |
20 | + ops::Rem<Output = Self> |
21 | { |
22 | /// A uint of the same width as the float |
23 | type Int: Int<OtherSign = Self::SignedInt, Unsigned = Self::Int>; |
24 | |
25 | /// A int of the same width as the float |
26 | type SignedInt: Int + MinInt<OtherSign = Self::Int, Unsigned = Self::Int>; |
27 | |
28 | /// An int capable of containing the exponent bits plus a sign bit. This is signed. |
29 | type ExpInt: Int; |
30 | |
31 | const ZERO: Self; |
32 | const ONE: Self; |
33 | |
34 | /// The bitwidth of the float type. |
35 | const BITS: u32; |
36 | |
37 | /// The bitwidth of the significand. |
38 | const SIG_BITS: u32; |
39 | |
40 | /// The bitwidth of the exponent. |
41 | const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1; |
42 | |
43 | /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite |
44 | /// representation. |
45 | /// |
46 | /// This is in the rightmost position, use `EXP_MASK` for the shifted value. |
47 | const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1; |
48 | |
49 | /// The exponent bias value. |
50 | const EXP_BIAS: u32 = Self::EXP_SAT >> 1; |
51 | |
52 | /// A mask for the sign bit. |
53 | const SIGN_MASK: Self::Int; |
54 | |
55 | /// A mask for the significand. |
56 | const SIG_MASK: Self::Int; |
57 | |
58 | /// The implicit bit of the float format. |
59 | const IMPLICIT_BIT: Self::Int; |
60 | |
61 | /// A mask for the exponent. |
62 | const EXP_MASK: Self::Int; |
63 | |
64 | /// Returns `self` transmuted to `Self::Int` |
65 | fn to_bits(self) -> Self::Int; |
66 | |
67 | /// Returns `self` transmuted to `Self::SignedInt` |
68 | fn to_bits_signed(self) -> Self::SignedInt; |
69 | |
70 | /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be |
71 | /// represented in multiple different ways. This method returns `true` if two NaNs are |
72 | /// compared. |
73 | fn eq_repr(self, rhs: Self) -> bool; |
74 | |
75 | /// Returns true if the sign is negative |
76 | fn is_sign_negative(self) -> bool; |
77 | |
78 | /// Returns the exponent, not adjusting for bias. |
79 | fn exp(self) -> Self::ExpInt; |
80 | |
81 | /// Returns the significand with no implicit bit (or the "fractional" part) |
82 | fn frac(self) -> Self::Int; |
83 | |
84 | /// Returns the significand with implicit bit |
85 | fn imp_frac(self) -> Self::Int; |
86 | |
87 | /// Returns a `Self::Int` transmuted back to `Self` |
88 | fn from_bits(a: Self::Int) -> Self; |
89 | |
90 | /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position. |
91 | fn from_parts(negative: bool, exponent: Self::Int, significand: Self::Int) -> Self; |
92 | |
93 | fn abs(self) -> Self { |
94 | let abs_mask = !Self::SIGN_MASK; |
95 | Self::from_bits(self.to_bits() & abs_mask) |
96 | } |
97 | |
98 | /// Returns (normalized exponent, normalized significand) |
99 | fn normalize(significand: Self::Int) -> (i32, Self::Int); |
100 | |
101 | /// Returns if `self` is subnormal |
102 | fn is_subnormal(self) -> bool; |
103 | } |
104 | |
105 | macro_rules! float_impl { |
106 | ($ty:ident, $ity:ident, $sity:ident, $expty:ident, $bits:expr, $significand_bits:expr) => { |
107 | impl Float for $ty { |
108 | type Int = $ity; |
109 | type SignedInt = $sity; |
110 | type ExpInt = $expty; |
111 | |
112 | const ZERO: Self = 0.0; |
113 | const ONE: Self = 1.0; |
114 | |
115 | const BITS: u32 = $bits; |
116 | const SIG_BITS: u32 = $significand_bits; |
117 | |
118 | const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1); |
119 | const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1; |
120 | const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS; |
121 | const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK); |
122 | |
123 | fn to_bits(self) -> Self::Int { |
124 | self.to_bits() |
125 | } |
126 | fn to_bits_signed(self) -> Self::SignedInt { |
127 | self.to_bits() as Self::SignedInt |
128 | } |
129 | fn eq_repr(self, rhs: Self) -> bool { |
130 | #[cfg(feature = "mangled-names" )] |
131 | fn is_nan(x: $ty) -> bool { |
132 | // When using mangled-names, the "real" compiler-builtins might not have the |
133 | // necessary builtin (__unordtf2) to test whether `f128` is NaN. |
134 | // FIXME(f16_f128): Remove once the nightly toolchain has the __unordtf2 builtin |
135 | // x is NaN if all the bits of the exponent are set and the significand is non-0 |
136 | x.to_bits() & $ty::EXP_MASK == $ty::EXP_MASK && x.to_bits() & $ty::SIG_MASK != 0 |
137 | } |
138 | #[cfg(not(feature = "mangled-names" ))] |
139 | fn is_nan(x: $ty) -> bool { |
140 | x.is_nan() |
141 | } |
142 | if is_nan(self) && is_nan(rhs) { |
143 | true |
144 | } else { |
145 | self.to_bits() == rhs.to_bits() |
146 | } |
147 | } |
148 | fn is_sign_negative(self) -> bool { |
149 | self.is_sign_negative() |
150 | } |
151 | fn exp(self) -> Self::ExpInt { |
152 | ((self.to_bits() & Self::EXP_MASK) >> Self::SIG_BITS) as Self::ExpInt |
153 | } |
154 | fn frac(self) -> Self::Int { |
155 | self.to_bits() & Self::SIG_MASK |
156 | } |
157 | fn imp_frac(self) -> Self::Int { |
158 | self.frac() | Self::IMPLICIT_BIT |
159 | } |
160 | fn from_bits(a: Self::Int) -> Self { |
161 | Self::from_bits(a) |
162 | } |
163 | fn from_parts(negative: bool, exponent: Self::Int, significand: Self::Int) -> Self { |
164 | Self::from_bits( |
165 | ((negative as Self::Int) << (Self::BITS - 1)) |
166 | | ((exponent << Self::SIG_BITS) & Self::EXP_MASK) |
167 | | (significand & Self::SIG_MASK), |
168 | ) |
169 | } |
170 | fn normalize(significand: Self::Int) -> (i32, Self::Int) { |
171 | let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS); |
172 | ( |
173 | 1i32.wrapping_sub(shift as i32), |
174 | significand << shift as Self::Int, |
175 | ) |
176 | } |
177 | fn is_subnormal(self) -> bool { |
178 | (self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO |
179 | } |
180 | } |
181 | }; |
182 | } |
183 | |
184 | #[cfg (f16_enabled)] |
185 | float_impl!(f16, u16, i16, i8, 16, 10); |
186 | float_impl!(f32, u32, i32, i16, 32, 23); |
187 | float_impl!(f64, u64, i64, i16, 64, 52); |
188 | #[cfg (f128_enabled)] |
189 | float_impl!(f128, u128, i128, i16, 128, 112); |
190 | |