| 1 | /// Creates an unsigned division function optimized for division of integers with bitwidths |
| 2 | /// larger than the largest hardware integer division supported. These functions use large radix |
| 3 | /// division algorithms that require both fast division and very fast widening multiplication on the |
| 4 | /// target microarchitecture. Otherwise, `impl_delegate` should be used instead. |
| 5 | #[allow (unused_macros)] |
| 6 | macro_rules! impl_trifecta { |
| 7 | ( |
| 8 | $fn:ident, // name of the unsigned division function |
| 9 | $zero_div_fn:ident, // function called when division by zero is attempted |
| 10 | $half_division:ident, // function for division of a $uX by a $uX |
| 11 | $n_h:expr, // the number of bits in $iH or $uH |
| 12 | $uH:ident, // unsigned integer with half the bit width of $uX |
| 13 | $uX:ident, // unsigned integer with half the bit width of $uD |
| 14 | $uD:ident // unsigned integer type for the inputs and outputs of `$unsigned_name` |
| 15 | ) => { |
| 16 | /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a |
| 17 | /// tuple. |
| 18 | pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) { |
| 19 | // This is called the trifecta algorithm because it uses three main algorithms: short |
| 20 | // division for small divisors, the two possibility algorithm for large divisors, and an |
| 21 | // undersubtracting long division algorithm for intermediate cases. |
| 22 | |
| 23 | // This replicates `carrying_mul` (rust-lang rfc #2417). LLVM correctly optimizes this |
| 24 | // to use a widening multiply to 128 bits on the relevant architectures. |
| 25 | fn carrying_mul(lhs: $uX, rhs: $uX) -> ($uX, $uX) { |
| 26 | let tmp = (lhs as $uD).wrapping_mul(rhs as $uD); |
| 27 | (tmp as $uX, (tmp >> ($n_h * 2)) as $uX) |
| 28 | } |
| 29 | fn carrying_mul_add(lhs: $uX, mul: $uX, add: $uX) -> ($uX, $uX) { |
| 30 | let tmp = (lhs as $uD) |
| 31 | .wrapping_mul(mul as $uD) |
| 32 | .wrapping_add(add as $uD); |
| 33 | (tmp as $uX, (tmp >> ($n_h * 2)) as $uX) |
| 34 | } |
| 35 | |
| 36 | // the number of bits in a $uX |
| 37 | let n = $n_h * 2; |
| 38 | |
| 39 | if div == 0 { |
| 40 | $zero_div_fn() |
| 41 | } |
| 42 | |
| 43 | // Trying to use a normalization shift function will cause inelegancies in the code and |
| 44 | // inefficiencies for architectures with a native count leading zeros instruction. The |
| 45 | // undersubtracting algorithm needs both values (keeping the original `div_lz` but |
| 46 | // updating `duo_lz` multiple times), so we assume hardware support for fast |
| 47 | // `leading_zeros` calculation. |
| 48 | let div_lz = div.leading_zeros(); |
| 49 | let mut duo_lz = duo.leading_zeros(); |
| 50 | |
| 51 | // the possible ranges of `duo` and `div` at this point: |
| 52 | // `0 <= duo < 2^n_d` |
| 53 | // `1 <= div < 2^n_d` |
| 54 | |
| 55 | // quotient is 0 or 1 branch |
| 56 | if div_lz <= duo_lz { |
| 57 | // The quotient cannot be more than 1. The highest set bit of `duo` needs to be at |
| 58 | // least one place higher than `div` for the quotient to be more than 1. |
| 59 | if duo >= div { |
| 60 | return (1, duo - div); |
| 61 | } else { |
| 62 | return (0, duo); |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | // `_sb` is the number of significant bits (from the ones place to the highest set bit) |
| 67 | // `{2, 2^div_sb} <= duo < 2^n_d` |
| 68 | // `1 <= div < {2^duo_sb, 2^(n_d - 1)}` |
| 69 | // smaller division branch |
| 70 | if duo_lz >= n { |
| 71 | // `duo < 2^n` so it will fit in a $uX. `div` will also fit in a $uX (because of the |
| 72 | // `div_lz <= duo_lz` branch) so no numerical error. |
| 73 | let (quo, rem) = $half_division(duo as $uX, div as $uX); |
| 74 | return (quo as $uD, rem as $uD); |
| 75 | } |
| 76 | |
| 77 | // `{2^n, 2^div_sb} <= duo < 2^n_d` |
| 78 | // `1 <= div < {2^duo_sb, 2^(n_d - 1)}` |
| 79 | // short division branch |
| 80 | if div_lz >= (n + $n_h) { |
| 81 | // `1 <= div < {2^duo_sb, 2^n_h}` |
| 82 | |
| 83 | // It is barely possible to improve the performance of this by calculating the |
| 84 | // reciprocal and removing one `$half_division`, but only if the CPU can do fast |
| 85 | // multiplications in parallel. Other reciprocal based methods can remove two |
| 86 | // `$half_division`s, but have multiplications that cannot be done in parallel and |
| 87 | // reduce performance. I have decided to use this trivial short division method and |
| 88 | // rely on the CPU having quick divisions. |
| 89 | |
| 90 | let duo_hi = (duo >> n) as $uX; |
| 91 | let div_0 = div as $uH as $uX; |
| 92 | let (quo_hi, rem_3) = $half_division(duo_hi, div_0); |
| 93 | |
| 94 | let duo_mid = ((duo >> $n_h) as $uH as $uX) | (rem_3 << $n_h); |
| 95 | let (quo_1, rem_2) = $half_division(duo_mid, div_0); |
| 96 | |
| 97 | let duo_lo = (duo as $uH as $uX) | (rem_2 << $n_h); |
| 98 | let (quo_0, rem_1) = $half_division(duo_lo, div_0); |
| 99 | |
| 100 | return ( |
| 101 | (quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n), |
| 102 | rem_1 as $uD, |
| 103 | ); |
| 104 | } |
| 105 | |
| 106 | // relative leading significant bits, cannot overflow because of above branches |
| 107 | let lz_diff = div_lz - duo_lz; |
| 108 | |
| 109 | // `{2^n, 2^div_sb} <= duo < 2^n_d` |
| 110 | // `2^n_h <= div < {2^duo_sb, 2^(n_d - 1)}` |
| 111 | // `mul` or `mul - 1` branch |
| 112 | if lz_diff < $n_h { |
| 113 | // Two possibility division algorithm |
| 114 | |
| 115 | // The most significant bits of `duo` and `div` are within `$n_h` bits of each |
| 116 | // other. If we take the `n` most significant bits of `duo` and divide them by the |
| 117 | // corresponding bits in `div`, it produces a quotient value `quo`. It happens that |
| 118 | // `quo` or `quo - 1` will always be the correct quotient for the whole number. In |
| 119 | // other words, the bits less significant than the `n` most significant bits of |
| 120 | // `duo` and `div` can only influence the quotient to be one of two values. |
| 121 | // Because there are only two possibilities, there only needs to be one `$uH` sized |
| 122 | // division, a `$uH` by `$uD` multiplication, and only one branch with a few simple |
| 123 | // operations. |
| 124 | // |
| 125 | // Proof that the true quotient can only be `quo` or `quo - 1`. |
| 126 | // All `/` operators here are floored divisions. |
| 127 | // |
| 128 | // `shift` is the number of bits not in the higher `n` significant bits of `duo`. |
| 129 | // (definitions) |
| 130 | // 0. shift = n - duo_lz |
| 131 | // 1. duo_sig_n == duo / 2^shift |
| 132 | // 2. div_sig_n == div / 2^shift |
| 133 | // 3. quo == duo_sig_n / div_sig_n |
| 134 | // |
| 135 | // |
| 136 | // We are trying to find the true quotient, `true_quo`. |
| 137 | // 4. true_quo = duo / div. (definition) |
| 138 | // |
| 139 | // This is true because of the bits that are cut off during the bit shift. |
| 140 | // 5. duo_sig_n * 2^shift <= duo < (duo_sig_n + 1) * 2^shift. |
| 141 | // 6. div_sig_n * 2^shift <= div < (div_sig_n + 1) * 2^shift. |
| 142 | // |
| 143 | // Dividing each bound of (5) by each bound of (6) gives 4 possibilities for what |
| 144 | // `true_quo == duo / div` is bounded by: |
| 145 | // (duo_sig_n * 2^shift) / (div_sig_n * 2^shift) |
| 146 | // (duo_sig_n * 2^shift) / ((div_sig_n + 1) * 2^shift) |
| 147 | // ((duo_sig_n + 1) * 2^shift) / (div_sig_n * 2^shift) |
| 148 | // ((duo_sig_n + 1) * 2^shift) / ((div_sig_n + 1) * 2^shift) |
| 149 | // |
| 150 | // Simplifying each of these four: |
| 151 | // duo_sig_n / div_sig_n |
| 152 | // duo_sig_n / (div_sig_n + 1) |
| 153 | // (duo_sig_n + 1) / div_sig_n |
| 154 | // (duo_sig_n + 1) / (div_sig_n + 1) |
| 155 | // |
| 156 | // Taking the smallest and the largest of these as the low and high bounds |
| 157 | // and replacing `duo / div` with `true_quo`: |
| 158 | // 7. duo_sig_n / (div_sig_n + 1) <= true_quo < (duo_sig_n + 1) / div_sig_n |
| 159 | // |
| 160 | // The `lz_diff < n_h` conditional on this branch makes sure that `div_sig_n` is at |
| 161 | // least `2^n_h`, and the `div_lz <= duo_lz` branch makes sure that the highest bit |
| 162 | // of `div_sig_n` is not the `2^(n - 1)` bit. |
| 163 | // 8. `2^(n - 1) <= duo_sig_n < 2^n` |
| 164 | // 9. `2^n_h <= div_sig_n < 2^(n - 1)` |
| 165 | // |
| 166 | // We want to prove that either |
| 167 | // `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1)` or that |
| 168 | // `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1) + 1`. |
| 169 | // |
| 170 | // We also want to prove that `quo` is one of these: |
| 171 | // `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or |
| 172 | // `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n`. |
| 173 | // |
| 174 | // When 1 is added to the numerator of `duo_sig_n / div_sig_n` to produce |
| 175 | // `(duo_sig_n + 1) / div_sig_n`, it is not possible that the value increases by |
| 176 | // more than 1 with floored integer arithmetic and `div_sig_n != 0`. Consider |
| 177 | // `x/y + 1 < (x + 1)/y` <=> `x/y + 1 < x/y + 1/y` <=> `1 < 1/y` <=> `y < 1`. |
| 178 | // `div_sig_n` is a nonzero integer. Thus, |
| 179 | // 10. `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n` or |
| 180 | // `(duo_sig_n / div_sig_n) + 1 == (duo_sig_n + 1) / div_sig_n. |
| 181 | // |
| 182 | // When 1 is added to the denominator of `duo_sig_n / div_sig_n` to produce |
| 183 | // `duo_sig_n / (div_sig_n + 1)`, it is not possible that the value decreases by |
| 184 | // more than 1 with the bounds (8) and (9). Consider `x/y - 1 <= x/(y + 1)` <=> |
| 185 | // `(x - y)/y < x/(y + 1)` <=> `(y + 1)*(x - y) < x*y` <=> `x*y - y*y + x - y < x*y` |
| 186 | // <=> `x < y*y + y`. The smallest value of `div_sig_n` is `2^n_h` and the largest |
| 187 | // value of `duo_sig_n` is `2^n - 1`. Substituting reveals `2^n - 1 < 2^n + 2^n_h`. |
| 188 | // Thus, |
| 189 | // 11. `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or |
| 190 | // `(duo_sig_n / div_sig_n) - 1` == duo_sig_n / (div_sig_n + 1)` |
| 191 | // |
| 192 | // Combining both (10) and (11), we know that |
| 193 | // `quo - 1 <= duo_sig_n / (div_sig_n + 1) <= true_quo |
| 194 | // < (duo_sig_n + 1) / div_sig_n <= quo + 1` and therefore: |
| 195 | // 12. quo - 1 <= true_quo < quo + 1 |
| 196 | // |
| 197 | // In a lot of division algorithms using smaller divisions to construct a larger |
| 198 | // division, we often encounter a situation where the approximate `quo` value |
| 199 | // calculated from a smaller division is multiple increments away from the true |
| 200 | // `quo` value. In those algorithms, multiple correction steps have to be applied. |
| 201 | // Those correction steps may need more multiplications to test `duo - (quo*div)` |
| 202 | // again. Because of the fact that our `quo` can only be one of two values, we can |
| 203 | // see if `duo - (quo*div)` overflows. If it did overflow, then we know that we have |
| 204 | // the larger of the two values (since the true quotient is unique, and any larger |
| 205 | // quotient will cause `duo - (quo*div)` to be negative). Also because there is only |
| 206 | // one correction needed, we can calculate the remainder `duo - (true_quo*div) == |
| 207 | // duo - ((quo - 1)*div) == duo - (quo*div - div) == duo + div - quo*div`. |
| 208 | // If `duo - (quo*div)` did not overflow, then we have the correct answer. |
| 209 | let shift = n - duo_lz; |
| 210 | let duo_sig_n = (duo >> shift) as $uX; |
| 211 | let div_sig_n = (div >> shift) as $uX; |
| 212 | let quo = $half_division(duo_sig_n, div_sig_n).0; |
| 213 | |
| 214 | // The larger `quo` value can overflow `$uD` in the right circumstances. This is a |
| 215 | // manual `carrying_mul_add` with overflow checking. |
| 216 | let div_lo = div as $uX; |
| 217 | let div_hi = (div >> n) as $uX; |
| 218 | let (tmp_lo, carry) = carrying_mul(quo, div_lo); |
| 219 | let (tmp_hi, overflow) = carrying_mul_add(quo, div_hi, carry); |
| 220 | let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n); |
| 221 | if (overflow != 0) || (duo < tmp) { |
| 222 | return ( |
| 223 | (quo - 1) as $uD, |
| 224 | // Both the addition and subtraction can overflow, but when combined end up |
| 225 | // as a correct positive number. |
| 226 | duo.wrapping_add(div).wrapping_sub(tmp), |
| 227 | ); |
| 228 | } else { |
| 229 | return (quo as $uD, duo - tmp); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | // Undersubtracting long division algorithm. |
| 234 | // Instead of clearing a minimum of 1 bit from `duo` per iteration via binary long |
| 235 | // division, `n_h - 1` bits are cleared per iteration with this algorithm. It is a more |
| 236 | // complicated version of regular long division. Most integer division algorithms tend |
| 237 | // to guess a part of the quotient, and may have a larger quotient than the true |
| 238 | // quotient (which when multiplied by `div` will "oversubtract" the original dividend). |
| 239 | // They then check if the quotient was in fact too large and then have to correct it. |
| 240 | // This long division algorithm has been carefully constructed to always underguess the |
| 241 | // quotient by slim margins. This allows different subalgorithms to be blindly jumped to |
| 242 | // without needing an extra correction step. |
| 243 | // |
| 244 | // The only problem is that this subalgorithm will not work for many ranges of `duo` and |
| 245 | // `div`. Fortunately, the short division, two possibility algorithm, and other simple |
| 246 | // cases happen to exactly fill these gaps. |
| 247 | // |
| 248 | // For an example, consider the division of 76543210 by 213 and assume that `n_h` is |
| 249 | // equal to two decimal digits (note: we are working with base 10 here for readability). |
| 250 | // The first `sig_n_h` part of the divisor (21) is taken and is incremented by 1 to |
| 251 | // prevent oversubtraction. We also record the number of extra places not a part of |
| 252 | // the `sig_n` or `sig_n_h` parts. |
| 253 | // |
| 254 | // sig_n_h == 2 digits, sig_n == 4 digits |
| 255 | // |
| 256 | // vvvv <- `duo_sig_n` |
| 257 | // 76543210 |
| 258 | // ^^^^ <- extra places in duo, `duo_extra == 4` |
| 259 | // |
| 260 | // vv <- `div_sig_n_h` |
| 261 | // 213 |
| 262 | // ^ <- extra places in div, `div_extra == 1` |
| 263 | // |
| 264 | // The difference in extra places, `duo_extra - div_extra == extra_shl == 3`, is used |
| 265 | // for shifting partial sums in the long division. |
| 266 | // |
| 267 | // In the first step, the first `sig_n` part of duo (7654) is divided by |
| 268 | // `div_sig_n_h_add_1` (22), which results in a partial quotient of 347. This is |
| 269 | // multiplied by the whole divisor to make 73911, which is shifted left by `extra_shl` |
| 270 | // and subtracted from duo. The partial quotient is also shifted left by `extra_shl` to |
| 271 | // be added to `quo`. |
| 272 | // |
| 273 | // 347 |
| 274 | // ________ |
| 275 | // |76543210 |
| 276 | // -73911 |
| 277 | // 2632210 |
| 278 | // |
| 279 | // Variables dependent on duo have to be updated: |
| 280 | // |
| 281 | // vvvv <- `duo_sig_n == 2632` |
| 282 | // 2632210 |
| 283 | // ^^^ <- `duo_extra == 3` |
| 284 | // |
| 285 | // `extra_shl == 2` |
| 286 | // |
| 287 | // Two more steps are taken after this and then duo fits into `n` bits, and then a final |
| 288 | // normal long division step is made. The partial quotients are all progressively added |
| 289 | // to each other in the actual algorithm, but here I have left them all in a tower that |
| 290 | // can be added together to produce the quotient, 359357. |
| 291 | // |
| 292 | // 14 |
| 293 | // 443 |
| 294 | // 119 |
| 295 | // 347 |
| 296 | // ________ |
| 297 | // |76543210 |
| 298 | // -73911 |
| 299 | // 2632210 |
| 300 | // -25347 |
| 301 | // 97510 |
| 302 | // -94359 |
| 303 | // 3151 |
| 304 | // -2982 |
| 305 | // 169 <- the remainder |
| 306 | |
| 307 | let mut duo = duo; |
| 308 | let mut quo: $uD = 0; |
| 309 | |
| 310 | // The number of lesser significant bits not a part of `div_sig_n_h` |
| 311 | let div_extra = (n + $n_h) - div_lz; |
| 312 | |
| 313 | // The most significant `n_h` bits of div |
| 314 | let div_sig_n_h = (div >> div_extra) as $uH; |
| 315 | |
| 316 | // This needs to be a `$uX` in case of overflow from the increment |
| 317 | let div_sig_n_h_add1 = (div_sig_n_h as $uX) + 1; |
| 318 | |
| 319 | // `{2^n, 2^(div_sb + n_h)} <= duo < 2^n_d` |
| 320 | // `2^n_h <= div < {2^(duo_sb - n_h), 2^n}` |
| 321 | loop { |
| 322 | // The number of lesser significant bits not a part of `duo_sig_n` |
| 323 | let duo_extra = n - duo_lz; |
| 324 | |
| 325 | // The most significant `n` bits of `duo` |
| 326 | let duo_sig_n = (duo >> duo_extra) as $uX; |
| 327 | |
| 328 | // the two possibility algorithm requires that the difference between msbs is less |
| 329 | // than `n_h`, so the comparison is `<=` here. |
| 330 | if div_extra <= duo_extra { |
| 331 | // Undersubtracting long division step |
| 332 | let quo_part = $half_division(duo_sig_n, div_sig_n_h_add1).0 as $uD; |
| 333 | let extra_shl = duo_extra - div_extra; |
| 334 | |
| 335 | // Addition to the quotient. |
| 336 | quo += (quo_part << extra_shl); |
| 337 | |
| 338 | // Subtraction from `duo`. At least `n_h - 1` bits are cleared from `duo` here. |
| 339 | duo -= (div.wrapping_mul(quo_part) << extra_shl); |
| 340 | } else { |
| 341 | // Two possibility algorithm |
| 342 | let shift = n - duo_lz; |
| 343 | let duo_sig_n = (duo >> shift) as $uX; |
| 344 | let div_sig_n = (div >> shift) as $uX; |
| 345 | let quo_part = $half_division(duo_sig_n, div_sig_n).0; |
| 346 | let div_lo = div as $uX; |
| 347 | let div_hi = (div >> n) as $uX; |
| 348 | |
| 349 | let (tmp_lo, carry) = carrying_mul(quo_part, div_lo); |
| 350 | // The undersubtracting long division algorithm has already run once, so |
| 351 | // overflow beyond `$uD` bits is not possible here |
| 352 | let (tmp_hi, _) = carrying_mul_add(quo_part, div_hi, carry); |
| 353 | let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n); |
| 354 | |
| 355 | if duo < tmp { |
| 356 | return ( |
| 357 | quo + ((quo_part - 1) as $uD), |
| 358 | duo.wrapping_add(div).wrapping_sub(tmp), |
| 359 | ); |
| 360 | } else { |
| 361 | return (quo + (quo_part as $uD), duo - tmp); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | duo_lz = duo.leading_zeros(); |
| 366 | |
| 367 | if div_lz <= duo_lz { |
| 368 | // quotient can have 0 or 1 added to it |
| 369 | if div <= duo { |
| 370 | return (quo + 1, duo - div); |
| 371 | } else { |
| 372 | return (quo, duo); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | // This can only happen if `div_sd < n` (because of previous "quo = 0 or 1" |
| 377 | // branches), but it is not worth it to unroll further. |
| 378 | if n <= duo_lz { |
| 379 | // simple division and addition |
| 380 | let tmp = $half_division(duo as $uX, div as $uX); |
| 381 | return (quo + (tmp.0 as $uD), tmp.1 as $uD); |
| 382 | } |
| 383 | } |
| 384 | } |
| 385 | }; |
| 386 | } |
| 387 | |