1 | /// Creates an unsigned division function that uses binary long division, designed for |
2 | /// computer architectures without division instructions. These functions have good performance for |
3 | /// microarchitectures with large branch miss penalties and architectures without the ability to |
4 | /// predicate instructions. For architectures with predicated instructions, one of the algorithms |
5 | /// described in the documentation of these functions probably has higher performance, and a custom |
6 | /// assembly routine should be used instead. |
7 | #[allow (unused_macros)] |
8 | macro_rules! impl_binary_long { |
9 | ( |
10 | $fn:ident, // name of the unsigned division function |
11 | $zero_div_fn:ident, // function called when division by zero is attempted |
12 | $normalization_shift:ident, // function for finding the normalization shift |
13 | $n:tt, // the number of bits in a $iX or $uX |
14 | $uX:ident, // unsigned integer type for the inputs and outputs of `$fn` |
15 | $iX:ident // signed integer type with same bitwidth as `$uX` |
16 | $(, $fun_attr:meta)* // attributes for the function |
17 | ) => { |
18 | /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a |
19 | /// tuple. |
20 | $( |
21 | #[$fun_attr] |
22 | )* |
23 | pub fn $fn(duo: $uX, div: $uX) -> ($uX, $uX) { |
24 | let mut duo = duo; |
25 | // handle edge cases before calling `$normalization_shift` |
26 | if div == 0 { |
27 | $zero_div_fn() |
28 | } |
29 | if duo < div { |
30 | return (0, duo); |
31 | } |
32 | |
33 | // There are many variations of binary division algorithm that could be used. This |
34 | // documentation gives a tour of different methods so that future readers wanting to |
35 | // optimize further do not have to painstakingly derive them. The SWAR variation is |
36 | // especially hard to understand without reading the less convoluted methods first. |
37 | |
38 | // You may notice that a `duo < div_original` check is included in many these |
39 | // algorithms. A critical optimization that many algorithms miss is handling of |
40 | // quotients that will turn out to have many trailing zeros or many leading zeros. This |
41 | // happens in cases of exact or close-to-exact divisions, divisions by power of two, and |
42 | // in cases where the quotient is small. The `duo < div_original` check handles these |
43 | // cases of early returns and ends up replacing other kinds of mundane checks that |
44 | // normally terminate a binary division algorithm. |
45 | // |
46 | // Something you may see in other algorithms that is not special-cased here is checks |
47 | // for division by powers of two. The `duo < div_original` check handles this case and |
48 | // more, however it can be checked up front before the bisection using the |
49 | // `((div > 0) && ((div & (div - 1)) == 0))` trick. This is not special-cased because |
50 | // compilers should handle most cases where divisions by power of two occur, and we do |
51 | // not want to add on a few cycles for every division operation just to save a few |
52 | // cycles rarely. |
53 | |
54 | // The following example is the most straightforward translation from the way binary |
55 | // long division is typically visualized: |
56 | // Dividing 178u8 (0b10110010) by 6u8 (0b110). `div` is shifted left by 5, according to |
57 | // the result from `$normalization_shift(duo, div, false)`. |
58 | // |
59 | // Step 0: `sub` is negative, so there is not full normalization, so no `quo` bit is set |
60 | // and `duo` is kept unchanged. |
61 | // duo:10110010, div_shifted:11000000, sub:11110010, quo:00000000, shl:5 |
62 | // |
63 | // Step 1: `sub` is positive, set a `quo` bit and update `duo` for next step. |
64 | // duo:10110010, div_shifted:01100000, sub:01010010, quo:00010000, shl:4 |
65 | // |
66 | // Step 2: Continue based on `sub`. The `quo` bits start accumulating. |
67 | // duo:01010010, div_shifted:00110000, sub:00100010, quo:00011000, shl:3 |
68 | // duo:00100010, div_shifted:00011000, sub:00001010, quo:00011100, shl:2 |
69 | // duo:00001010, div_shifted:00001100, sub:11111110, quo:00011100, shl:1 |
70 | // duo:00001010, div_shifted:00000110, sub:00000100, quo:00011100, shl:0 |
71 | // The `duo < div_original` check terminates the algorithm with the correct quotient of |
72 | // 29u8 and remainder of 4u8 |
73 | /* |
74 | let div_original = div; |
75 | let mut shl = $normalization_shift(duo, div, false); |
76 | let mut quo = 0; |
77 | loop { |
78 | let div_shifted = div << shl; |
79 | let sub = duo.wrapping_sub(div_shifted); |
80 | // it is recommended to use `println!`s like this if functionality is unclear |
81 | /* |
82 | println!("duo:{:08b}, div_shifted:{:08b}, sub:{:08b}, quo:{:08b}, shl:{}", |
83 | duo, |
84 | div_shifted, |
85 | sub, |
86 | quo, |
87 | shl |
88 | ); |
89 | */ |
90 | if 0 <= (sub as $iX) { |
91 | duo = sub; |
92 | quo += 1 << shl; |
93 | if duo < div_original { |
94 | // this branch is optional |
95 | return (quo, duo) |
96 | } |
97 | } |
98 | if shl == 0 { |
99 | return (quo, duo) |
100 | } |
101 | shl -= 1; |
102 | } |
103 | */ |
104 | |
105 | // This restoring binary long division algorithm reduces the number of operations |
106 | // overall via: |
107 | // - `pow` can be shifted right instead of recalculating from `shl` |
108 | // - starting `div` shifted left and shifting it right for each step instead of |
109 | // recalculating from `shl` |
110 | // - The `duo < div_original` branch is used to terminate the algorithm instead of the |
111 | // `shl == 0` branch. This check is strong enough to prevent set bits of `pow` and |
112 | // `div` from being shifted off the end. This check also only occurs on half of steps |
113 | // on average, since it is behind the `(sub as $iX) >= 0` branch. |
114 | // - `shl` is now not needed by any aspect of of the loop and thus only 3 variables are |
115 | // being updated between steps |
116 | // |
117 | // There are many variations of this algorithm, but this encompases the largest number |
118 | // of architectures and does not rely on carry flags, add-with-carry, or SWAR |
119 | // complications to be decently fast. |
120 | /* |
121 | let div_original = div; |
122 | let shl = $normalization_shift(duo, div, false); |
123 | let mut div: $uX = div << shl; |
124 | let mut pow: $uX = 1 << shl; |
125 | let mut quo: $uX = 0; |
126 | loop { |
127 | let sub = duo.wrapping_sub(div); |
128 | if 0 <= (sub as $iX) { |
129 | duo = sub; |
130 | quo |= pow; |
131 | if duo < div_original { |
132 | return (quo, duo) |
133 | } |
134 | } |
135 | div >>= 1; |
136 | pow >>= 1; |
137 | } |
138 | */ |
139 | |
140 | // If the architecture has flags and predicated arithmetic instructions, it is possible |
141 | // to do binary long division without branching and in only 3 or 4 instructions. This is |
142 | // a variation of a 3 instruction central loop from |
143 | // http://www.chiark.greenend.org.uk/~theom/riscos/docs/ultimate/a252div.txt. |
144 | // |
145 | // What allows doing division in only 3 instructions is realizing that instead of |
146 | // keeping `duo` in place and shifting `div` right to align bits, `div` can be kept in |
147 | // place and `duo` can be shifted left. This means `div` does not have to be updated, |
148 | // but causes edge case problems and makes `duo < div_original` tests harder. Some |
149 | // architectures have an option to shift an argument in an arithmetic operation, which |
150 | // means `duo` can be shifted left and subtracted from in one instruction. The other two |
151 | // instructions are updating `quo` and undoing the subtraction if it turns out things |
152 | // were not normalized. |
153 | |
154 | /* |
155 | // Perform one binary long division step on the already normalized arguments, because |
156 | // the main. Note that this does a full normalization since the central loop needs |
157 | // `duo.leading_zeros()` to be at least 1 more than `div.leading_zeros()`. The original |
158 | // variation only did normalization to the nearest 4 steps, but this makes handling edge |
159 | // cases much harder. We do a full normalization and perform a binary long division |
160 | // step. In the edge case where the msbs of `duo` and `div` are set, it clears the msb |
161 | // of `duo`, then the edge case handler shifts `div` right and does another long |
162 | // division step to always insure `duo.leading_zeros() + 1 >= div.leading_zeros()`. |
163 | let div_original = div; |
164 | let mut shl = $normalization_shift(duo, div, true); |
165 | let mut div: $uX = (div << shl); |
166 | let mut quo: $uX = 1; |
167 | duo = duo.wrapping_sub(div); |
168 | if duo < div_original { |
169 | return (1 << shl, duo); |
170 | } |
171 | let div_neg: $uX; |
172 | if (div as $iX) < 0 { |
173 | // A very ugly edge case where the most significant bit of `div` is set (after |
174 | // shifting to match `duo` when its most significant bit is at the sign bit), which |
175 | // leads to the sign bit of `div_neg` being cut off and carries not happening when |
176 | // they should. This branch performs a long division step that keeps `duo` in place |
177 | // and shifts `div` down. |
178 | div >>= 1; |
179 | div_neg = div.wrapping_neg(); |
180 | let (sub, carry) = duo.overflowing_add(div_neg); |
181 | duo = sub; |
182 | quo = quo.wrapping_add(quo).wrapping_add(carry as $uX); |
183 | if !carry { |
184 | duo = duo.wrapping_add(div); |
185 | } |
186 | shl -= 1; |
187 | } else { |
188 | div_neg = div.wrapping_neg(); |
189 | } |
190 | // The add-with-carry that updates `quo` needs to have the carry set when a normalized |
191 | // subtract happens. Using `duo.wrapping_shl(1).overflowing_sub(div)` to do the |
192 | // subtraction generates a carry when an unnormalized subtract happens, which is the |
193 | // opposite of what we want. Instead, we use |
194 | // `duo.wrapping_shl(1).overflowing_add(div_neg)`, where `div_neg` is negative `div`. |
195 | let mut i = shl; |
196 | loop { |
197 | if i == 0 { |
198 | break; |
199 | } |
200 | i -= 1; |
201 | // `ADDS duo, div, duo, LSL #1` |
202 | // (add `div` to `duo << 1` and set flags) |
203 | let (sub, carry) = duo.wrapping_shl(1).overflowing_add(div_neg); |
204 | duo = sub; |
205 | // `ADC quo, quo, quo` |
206 | // (add with carry). Effectively shifts `quo` left by 1 and sets the least |
207 | // significant bit to the carry. |
208 | quo = quo.wrapping_add(quo).wrapping_add(carry as $uX); |
209 | // `ADDCC duo, duo, div` |
210 | // (add if carry clear). Undoes the subtraction if no carry was generated. |
211 | if !carry { |
212 | duo = duo.wrapping_add(div); |
213 | } |
214 | } |
215 | return (quo, duo >> shl); |
216 | */ |
217 | |
218 | // This is the SWAR (SIMD within in a register) restoring division algorithm. |
219 | // This combines several ideas of the above algorithms: |
220 | // - If `duo` is shifted left instead of shifting `div` right like in the 3 instruction |
221 | // restoring division algorithm, some architectures can do the shifting and |
222 | // subtraction step in one instruction. |
223 | // - `quo` can be constructed by adding powers-of-two to it or shifting it left by one |
224 | // and adding one. |
225 | // - Every time `duo` is shifted left, there is another unused 0 bit shifted into the |
226 | // LSB, so what if we use those bits to store `quo`? |
227 | // Through a complex setup, it is possible to manage `duo` and `quo` in the same |
228 | // register, and perform one step with 2 or 3 instructions. The only major downsides are |
229 | // that there is significant setup (it is only saves instructions if `shl` is |
230 | // approximately more than 4), `duo < div_original` checks are impractical once SWAR is |
231 | // initiated, and the number of division steps taken has to be exact (we cannot do more |
232 | // division steps than `shl`, because it introduces edge cases where quotient bits in |
233 | // `duo` start to collide with the real part of `div`. |
234 | /* |
235 | // first step. The quotient bit is stored in `quo` for now |
236 | let div_original = div; |
237 | let mut shl = $normalization_shift(duo, div, true); |
238 | let mut div: $uX = (div << shl); |
239 | duo = duo.wrapping_sub(div); |
240 | let mut quo: $uX = 1 << shl; |
241 | if duo < div_original { |
242 | return (quo, duo); |
243 | } |
244 | |
245 | let mask: $uX; |
246 | if (div as $iX) < 0 { |
247 | // deal with same edge case as the 3 instruction restoring division algorithm, but |
248 | // the quotient bit from this step also has to be stored in `quo` |
249 | div >>= 1; |
250 | shl -= 1; |
251 | let tmp = 1 << shl; |
252 | mask = tmp - 1; |
253 | let sub = duo.wrapping_sub(div); |
254 | if (sub as $iX) >= 0 { |
255 | // restore |
256 | duo = sub; |
257 | quo |= tmp; |
258 | } |
259 | if duo < div_original { |
260 | return (quo, duo); |
261 | } |
262 | } else { |
263 | mask = quo - 1; |
264 | } |
265 | // There is now room for quotient bits in `duo`. |
266 | |
267 | // Note that `div` is already shifted left and has `shl` unset bits. We subtract 1 from |
268 | // `div` and end up with the subset of `shl` bits being all being set. This subset acts |
269 | // just like a two's complement negative one. The subset of `div` containing the divisor |
270 | // had 1 subtracted from it, but a carry will always be generated from the `shl` subset |
271 | // as long as the quotient stays positive. |
272 | // |
273 | // When the modified `div` is subtracted from `duo.wrapping_shl(1)`, the `shl` subset |
274 | // adds a quotient bit to the least significant bit. |
275 | // For example, 89 (0b01011001) divided by 3 (0b11): |
276 | // |
277 | // shl:4, div:0b00110000 |
278 | // first step: |
279 | // duo:0b01011001 |
280 | // + div_neg:0b11010000 |
281 | // ____________________ |
282 | // 0b00101001 |
283 | // quo is set to 0b00010000 and mask is set to 0b00001111 for later |
284 | // |
285 | // 1 is subtracted from `div`. I will differentiate the `shl` part of `div` and the |
286 | // quotient part of `duo` with `^`s. |
287 | // chars. |
288 | // div:0b00110000 |
289 | // ^^^^ |
290 | // + 0b11111111 |
291 | // ________________ |
292 | // 0b00101111 |
293 | // ^^^^ |
294 | // div_neg:0b11010001 |
295 | // |
296 | // first SWAR step: |
297 | // duo_shl1:0b01010010 |
298 | // ^ |
299 | // + div_neg:0b11010001 |
300 | // ____________________ |
301 | // 0b00100011 |
302 | // ^ |
303 | // second: |
304 | // duo_shl1:0b01000110 |
305 | // ^^ |
306 | // + div_neg:0b11010001 |
307 | // ____________________ |
308 | // 0b00010111 |
309 | // ^^ |
310 | // third: |
311 | // duo_shl1:0b00101110 |
312 | // ^^^ |
313 | // + div_neg:0b11010001 |
314 | // ____________________ |
315 | // 0b11111111 |
316 | // ^^^ |
317 | // 3 steps resulted in the quotient with 3 set bits as expected, but currently the real |
318 | // part of `duo` is negative and the third step was an unnormalized step. The restore |
319 | // branch then restores `duo`. Note that the restore branch does not shift `duo` left. |
320 | // |
321 | // duo:0b11111111 |
322 | // ^^^ |
323 | // + div:0b00101111 |
324 | // ^^^^ |
325 | // ________________ |
326 | // 0b00101110 |
327 | // ^^^ |
328 | // `duo` is now back in the `duo_shl1` state it was at in the the third step, with an |
329 | // unset quotient bit. |
330 | // |
331 | // final step (`shl` was 4, so exactly 4 steps must be taken) |
332 | // duo_shl1:0b01011100 |
333 | // ^^^^ |
334 | // + div_neg:0b11010001 |
335 | // ____________________ |
336 | // 0b00101101 |
337 | // ^^^^ |
338 | // The quotient includes the `^` bits added with the `quo` bits from the beginning that |
339 | // contained the first step and potential edge case step, |
340 | // `quo:0b00010000 + (duo:0b00101101 & mask:0b00001111) == 0b00011101 == 29u8`. |
341 | // The remainder is the bits remaining in `duo` that are not part of the quotient bits, |
342 | // `duo:0b00101101 >> shl == 0b0010 == 2u8`. |
343 | let div: $uX = div.wrapping_sub(1); |
344 | let mut i = shl; |
345 | loop { |
346 | if i == 0 { |
347 | break; |
348 | } |
349 | i -= 1; |
350 | duo = duo.wrapping_shl(1).wrapping_sub(div); |
351 | if (duo as $iX) < 0 { |
352 | // restore |
353 | duo = duo.wrapping_add(div); |
354 | } |
355 | } |
356 | // unpack the results of SWAR |
357 | return ((duo & mask) | quo, duo >> shl); |
358 | */ |
359 | |
360 | // The problem with the conditional restoring SWAR algorithm above is that, in practice, |
361 | // it requires assembly code to bring out its full unrolled potential (It seems that |
362 | // LLVM can't use unrolled conditionals optimally and ends up erasing all the benefit |
363 | // that my algorithm intends. On architectures without predicated instructions, the code |
364 | // gen is especially bad. We need a default software division algorithm that is |
365 | // guaranteed to get decent code gen for the central loop. |
366 | |
367 | // For non-SWAR algorithms, there is a way to do binary long division without |
368 | // predication or even branching. This involves creating a mask from the sign bit and |
369 | // performing different kinds of steps using that. |
370 | /* |
371 | let shl = $normalization_shift(duo, div, true); |
372 | let mut div: $uX = div << shl; |
373 | let mut pow: $uX = 1 << shl; |
374 | let mut quo: $uX = 0; |
375 | loop { |
376 | let sub = duo.wrapping_sub(div); |
377 | let sign_mask = !((sub as $iX).wrapping_shr($n - 1) as $uX); |
378 | duo -= div & sign_mask; |
379 | quo |= pow & sign_mask; |
380 | div >>= 1; |
381 | pow >>= 1; |
382 | if pow == 0 { |
383 | break; |
384 | } |
385 | } |
386 | return (quo, duo); |
387 | */ |
388 | // However, it requires about 4 extra operations (smearing the sign bit, negating the |
389 | // mask, and applying the mask twice) on top of the operations done by the actual |
390 | // algorithm. With SWAR however, just 2 extra operations are needed, making it |
391 | // practical and even the most optimal algorithm for some architectures. |
392 | |
393 | // What we do is use custom assembly for predicated architectures that need software |
394 | // division, and for the default algorithm use a mask based restoring SWAR algorithm |
395 | // without conditionals or branches. On almost all architectures, this Rust code is |
396 | // guaranteed to compile down to 5 assembly instructions or less for each step, and LLVM |
397 | // will unroll it in a decent way. |
398 | |
399 | // standard opening for SWAR algorithm with first step and edge case handling |
400 | let div_original = div; |
401 | let mut shl = $normalization_shift(duo, div, true); |
402 | let mut div: $uX = (div << shl); |
403 | duo = duo.wrapping_sub(div); |
404 | let mut quo: $uX = 1 << shl; |
405 | if duo < div_original { |
406 | return (quo, duo); |
407 | } |
408 | let mask: $uX; |
409 | if (div as $iX) < 0 { |
410 | div >>= 1; |
411 | shl -= 1; |
412 | let tmp = 1 << shl; |
413 | mask = tmp - 1; |
414 | let sub = duo.wrapping_sub(div); |
415 | if (sub as $iX) >= 0 { |
416 | duo = sub; |
417 | quo |= tmp; |
418 | } |
419 | if duo < div_original { |
420 | return (quo, duo); |
421 | } |
422 | } else { |
423 | mask = quo - 1; |
424 | } |
425 | |
426 | // central loop |
427 | div = div.wrapping_sub(1); |
428 | let mut i = shl; |
429 | loop { |
430 | if i == 0 { |
431 | break; |
432 | } |
433 | i -= 1; |
434 | // shift left 1 and subtract |
435 | duo = duo.wrapping_shl(1).wrapping_sub(div); |
436 | // create mask |
437 | let mask = (duo as $iX).wrapping_shr($n - 1) as $uX; |
438 | // restore |
439 | duo = duo.wrapping_add(div & mask); |
440 | } |
441 | // unpack |
442 | return ((duo & mask) | quo, duo >> shl); |
443 | |
444 | // miscellanious binary long division algorithms that might be better for specific |
445 | // architectures |
446 | |
447 | // Another kind of long division uses an interesting fact that `div` and `pow` can be |
448 | // negated when `duo` is negative to perform a "negated" division step that works in |
449 | // place of any normalization mechanism. This is a non-restoring division algorithm that |
450 | // is very similar to the non-restoring division algorithms that can be found on the |
451 | // internet, except there is only one test for `duo < 0`. The subtraction from `quo` can |
452 | // be viewed as shifting the least significant set bit right (e.x. if we enter a series |
453 | // of negated binary long division steps starting with `quo == 0b1011_0000` and |
454 | // `pow == 0b0000_1000`, `quo` will progress like this: 0b1010_1000, 0b1010_0100, |
455 | // 0b1010_0010, 0b1010_0001). |
456 | /* |
457 | let div_original = div; |
458 | let shl = $normalization_shift(duo, div, true); |
459 | let mut div: $uX = (div << shl); |
460 | let mut pow: $uX = 1 << shl; |
461 | let mut quo: $uX = pow; |
462 | duo = duo.wrapping_sub(div); |
463 | if duo < div_original { |
464 | return (quo, duo); |
465 | } |
466 | div >>= 1; |
467 | pow >>= 1; |
468 | loop { |
469 | if (duo as $iX) < 0 { |
470 | // Negated binary long division step. |
471 | duo = duo.wrapping_add(div); |
472 | quo = quo.wrapping_sub(pow); |
473 | } else { |
474 | // Normal long division step. |
475 | if duo < div_original { |
476 | return (quo, duo) |
477 | } |
478 | duo = duo.wrapping_sub(div); |
479 | quo = quo.wrapping_add(pow); |
480 | } |
481 | pow >>= 1; |
482 | div >>= 1; |
483 | } |
484 | */ |
485 | |
486 | // This is the Nonrestoring SWAR algorithm, combining the nonrestoring algorithm with |
487 | // SWAR techniques that makes the only difference between steps be negation of `div`. |
488 | // If there was an architecture with an instruction that negated inputs to an adder |
489 | // based on conditionals, and in place shifting (or a three input addition operation |
490 | // that can have `duo` as two of the inputs to effectively shift it left by 1), then a |
491 | // single instruction central loop is possible. Microarchitectures often have inputs to |
492 | // their ALU that can invert the arguments and carry in of adders, but the architectures |
493 | // unfortunately do not have an instruction to dynamically invert this input based on |
494 | // conditionals. |
495 | /* |
496 | // SWAR opening |
497 | let div_original = div; |
498 | let mut shl = $normalization_shift(duo, div, true); |
499 | let mut div: $uX = (div << shl); |
500 | duo = duo.wrapping_sub(div); |
501 | let mut quo: $uX = 1 << shl; |
502 | if duo < div_original { |
503 | return (quo, duo); |
504 | } |
505 | let mask: $uX; |
506 | if (div as $iX) < 0 { |
507 | div >>= 1; |
508 | shl -= 1; |
509 | let tmp = 1 << shl; |
510 | let sub = duo.wrapping_sub(div); |
511 | if (sub as $iX) >= 0 { |
512 | // restore |
513 | duo = sub; |
514 | quo |= tmp; |
515 | } |
516 | if duo < div_original { |
517 | return (quo, duo); |
518 | } |
519 | mask = tmp - 1; |
520 | } else { |
521 | mask = quo - 1; |
522 | } |
523 | |
524 | // central loop |
525 | let div: $uX = div.wrapping_sub(1); |
526 | let mut i = shl; |
527 | loop { |
528 | if i == 0 { |
529 | break; |
530 | } |
531 | i -= 1; |
532 | // note: the `wrapping_shl(1)` can be factored out, but would require another |
533 | // restoring division step to prevent `(duo as $iX)` from overflowing |
534 | if (duo as $iX) < 0 { |
535 | // Negated binary long division step. |
536 | duo = duo.wrapping_shl(1).wrapping_add(div); |
537 | } else { |
538 | // Normal long division step. |
539 | duo = duo.wrapping_shl(1).wrapping_sub(div); |
540 | } |
541 | } |
542 | if (duo as $iX) < 0 { |
543 | // Restore. This was not needed in the original nonrestoring algorithm because of |
544 | // the `duo < div_original` checks. |
545 | duo = duo.wrapping_add(div); |
546 | } |
547 | // unpack |
548 | return ((duo & mask) | quo, duo >> shl); |
549 | */ |
550 | } |
551 | }; |
552 | } |
553 | |