| 1 | //! Constants for the `f16` half-precision floating point type. |
| 2 | //! |
| 3 | //! *[See also the `f16` primitive type][f16].* |
| 4 | //! |
| 5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
| 6 | //! |
| 7 | //! For the constants defined directly in this module |
| 8 | //! (as distinct from those defined in the `consts` sub-module), |
| 9 | //! new code should instead use the associated constants |
| 10 | //! defined directly on the `f16` type. |
| 11 | |
| 12 | #![unstable (feature = "f16" , issue = "116909" )] |
| 13 | |
| 14 | use crate::convert::FloatToInt; |
| 15 | use crate::num::FpCategory; |
| 16 | #[cfg (not(test))] |
| 17 | use crate::num::libm; |
| 18 | use crate::panic::const_assert; |
| 19 | use crate::{intrinsics, mem}; |
| 20 | |
| 21 | /// Basic mathematical constants. |
| 22 | #[unstable (feature = "f16" , issue = "116909" )] |
| 23 | #[rustc_diagnostic_item = "f16_consts_mod" ] |
| 24 | pub mod consts { |
| 25 | // FIXME: replace with mathematical constants from cmath. |
| 26 | |
| 27 | /// Archimedes' constant (π) |
| 28 | #[unstable (feature = "f16" , issue = "116909" )] |
| 29 | pub const PI: f16 = 3.14159265358979323846264338327950288_f16; |
| 30 | |
| 31 | /// The full circle constant (τ) |
| 32 | /// |
| 33 | /// Equal to 2π. |
| 34 | #[unstable (feature = "f16" , issue = "116909" )] |
| 35 | pub const TAU: f16 = 6.28318530717958647692528676655900577_f16; |
| 36 | |
| 37 | /// The golden ratio (φ) |
| 38 | #[unstable (feature = "f16" , issue = "116909" )] |
| 39 | pub const GOLDEN_RATIO: f16 = 1.618033988749894848204586834365638118_f16; |
| 40 | |
| 41 | /// The Euler-Mascheroni constant (γ) |
| 42 | #[unstable (feature = "f16" , issue = "116909" )] |
| 43 | pub const EULER_GAMMA: f16 = 0.577215664901532860606512090082402431_f16; |
| 44 | |
| 45 | /// π/2 |
| 46 | #[unstable (feature = "f16" , issue = "116909" )] |
| 47 | pub const FRAC_PI_2: f16 = 1.57079632679489661923132169163975144_f16; |
| 48 | |
| 49 | /// π/3 |
| 50 | #[unstable (feature = "f16" , issue = "116909" )] |
| 51 | pub const FRAC_PI_3: f16 = 1.04719755119659774615421446109316763_f16; |
| 52 | |
| 53 | /// π/4 |
| 54 | #[unstable (feature = "f16" , issue = "116909" )] |
| 55 | pub const FRAC_PI_4: f16 = 0.785398163397448309615660845819875721_f16; |
| 56 | |
| 57 | /// π/6 |
| 58 | #[unstable (feature = "f16" , issue = "116909" )] |
| 59 | pub const FRAC_PI_6: f16 = 0.52359877559829887307710723054658381_f16; |
| 60 | |
| 61 | /// π/8 |
| 62 | #[unstable (feature = "f16" , issue = "116909" )] |
| 63 | pub const FRAC_PI_8: f16 = 0.39269908169872415480783042290993786_f16; |
| 64 | |
| 65 | /// 1/π |
| 66 | #[unstable (feature = "f16" , issue = "116909" )] |
| 67 | pub const FRAC_1_PI: f16 = 0.318309886183790671537767526745028724_f16; |
| 68 | |
| 69 | /// 1/sqrt(π) |
| 70 | #[unstable (feature = "f16" , issue = "116909" )] |
| 71 | // Also, #[unstable(feature = "more_float_constants", issue = "146939")] |
| 72 | pub const FRAC_1_SQRT_PI: f16 = 0.564189583547756286948079451560772586_f16; |
| 73 | |
| 74 | /// 1/sqrt(2π) |
| 75 | #[doc (alias = "FRAC_1_SQRT_TAU" )] |
| 76 | #[unstable (feature = "f16" , issue = "116909" )] |
| 77 | // Also, #[unstable(feature = "more_float_constants", issue = "146939")] |
| 78 | pub const FRAC_1_SQRT_2PI: f16 = 0.398942280401432677939946059934381868_f16; |
| 79 | |
| 80 | /// 2/π |
| 81 | #[unstable (feature = "f16" , issue = "116909" )] |
| 82 | pub const FRAC_2_PI: f16 = 0.636619772367581343075535053490057448_f16; |
| 83 | |
| 84 | /// 2/sqrt(π) |
| 85 | #[unstable (feature = "f16" , issue = "116909" )] |
| 86 | pub const FRAC_2_SQRT_PI: f16 = 1.12837916709551257389615890312154517_f16; |
| 87 | |
| 88 | /// sqrt(2) |
| 89 | #[unstable (feature = "f16" , issue = "116909" )] |
| 90 | pub const SQRT_2: f16 = 1.41421356237309504880168872420969808_f16; |
| 91 | |
| 92 | /// 1/sqrt(2) |
| 93 | #[unstable (feature = "f16" , issue = "116909" )] |
| 94 | pub const FRAC_1_SQRT_2: f16 = 0.707106781186547524400844362104849039_f16; |
| 95 | |
| 96 | /// sqrt(3) |
| 97 | #[unstable (feature = "f16" , issue = "116909" )] |
| 98 | // Also, #[unstable(feature = "more_float_constants", issue = "146939")] |
| 99 | pub const SQRT_3: f16 = 1.732050807568877293527446341505872367_f16; |
| 100 | |
| 101 | /// 1/sqrt(3) |
| 102 | #[unstable (feature = "f16" , issue = "116909" )] |
| 103 | // Also, #[unstable(feature = "more_float_constants", issue = "146939")] |
| 104 | pub const FRAC_1_SQRT_3: f16 = 0.577350269189625764509148780501957456_f16; |
| 105 | |
| 106 | /// sqrt(5) |
| 107 | #[unstable (feature = "more_float_constants" , issue = "146939" )] |
| 108 | // Also, #[unstable(feature = "f16", issue = "116909")] |
| 109 | pub const SQRT_5: f16 = 2.23606797749978969640917366873127623_f16; |
| 110 | |
| 111 | /// 1/sqrt(5) |
| 112 | #[unstable (feature = "more_float_constants" , issue = "146939" )] |
| 113 | // Also, #[unstable(feature = "f16", issue = "116909")] |
| 114 | pub const FRAC_1_SQRT_5: f16 = 0.44721359549995793928183473374625524_f16; |
| 115 | |
| 116 | /// Euler's number (e) |
| 117 | #[unstable (feature = "f16" , issue = "116909" )] |
| 118 | pub const E: f16 = 2.71828182845904523536028747135266250_f16; |
| 119 | |
| 120 | /// log<sub>2</sub>(10) |
| 121 | #[unstable (feature = "f16" , issue = "116909" )] |
| 122 | pub const LOG2_10: f16 = 3.32192809488736234787031942948939018_f16; |
| 123 | |
| 124 | /// log<sub>2</sub>(e) |
| 125 | #[unstable (feature = "f16" , issue = "116909" )] |
| 126 | pub const LOG2_E: f16 = 1.44269504088896340735992468100189214_f16; |
| 127 | |
| 128 | /// log<sub>10</sub>(2) |
| 129 | #[unstable (feature = "f16" , issue = "116909" )] |
| 130 | pub const LOG10_2: f16 = 0.301029995663981195213738894724493027_f16; |
| 131 | |
| 132 | /// log<sub>10</sub>(e) |
| 133 | #[unstable (feature = "f16" , issue = "116909" )] |
| 134 | pub const LOG10_E: f16 = 0.434294481903251827651128918916605082_f16; |
| 135 | |
| 136 | /// ln(2) |
| 137 | #[unstable (feature = "f16" , issue = "116909" )] |
| 138 | pub const LN_2: f16 = 0.693147180559945309417232121458176568_f16; |
| 139 | |
| 140 | /// ln(10) |
| 141 | #[unstable (feature = "f16" , issue = "116909" )] |
| 142 | pub const LN_10: f16 = 2.30258509299404568401799145468436421_f16; |
| 143 | } |
| 144 | |
| 145 | #[doc (test(attr(feature(cfg_target_has_reliable_f16_f128), allow(internal_features))))] |
| 146 | impl f16 { |
| 147 | /// The radix or base of the internal representation of `f16`. |
| 148 | #[unstable (feature = "f16" , issue = "116909" )] |
| 149 | pub const RADIX: u32 = 2; |
| 150 | |
| 151 | /// The size of this float type in bits. |
| 152 | // #[unstable(feature = "f16", issue = "116909")] |
| 153 | #[unstable (feature = "float_bits_const" , issue = "151073" )] |
| 154 | pub const BITS: u32 = 16; |
| 155 | |
| 156 | /// Number of significant digits in base 2. |
| 157 | /// |
| 158 | /// Note that the size of the mantissa in the bitwise representation is one |
| 159 | /// smaller than this since the leading 1 is not stored explicitly. |
| 160 | #[unstable (feature = "f16" , issue = "116909" )] |
| 161 | pub const MANTISSA_DIGITS: u32 = 11; |
| 162 | |
| 163 | /// Approximate number of significant digits in base 10. |
| 164 | /// |
| 165 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
| 166 | /// significant digits can be converted to `f16` and back without loss. |
| 167 | /// |
| 168 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
| 169 | /// |
| 170 | /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS |
| 171 | #[unstable (feature = "f16" , issue = "116909" )] |
| 172 | pub const DIGITS: u32 = 3; |
| 173 | |
| 174 | /// [Machine epsilon] value for `f16`. |
| 175 | /// |
| 176 | /// This is the difference between `1.0` and the next larger representable number. |
| 177 | /// |
| 178 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
| 179 | /// |
| 180 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
| 181 | /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS |
| 182 | #[unstable (feature = "f16" , issue = "116909" )] |
| 183 | #[rustc_diagnostic_item = "f16_epsilon" ] |
| 184 | pub const EPSILON: f16 = 9.7656e-4_f16; |
| 185 | |
| 186 | /// Smallest finite `f16` value. |
| 187 | /// |
| 188 | /// Equal to −[`MAX`]. |
| 189 | /// |
| 190 | /// [`MAX`]: f16::MAX |
| 191 | #[unstable (feature = "f16" , issue = "116909" )] |
| 192 | pub const MIN: f16 = -6.5504e+4_f16; |
| 193 | /// Smallest positive normal `f16` value. |
| 194 | /// |
| 195 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
| 196 | /// |
| 197 | /// [`MIN_EXP`]: f16::MIN_EXP |
| 198 | #[unstable (feature = "f16" , issue = "116909" )] |
| 199 | pub const MIN_POSITIVE: f16 = 6.1035e-5_f16; |
| 200 | /// Largest finite `f16` value. |
| 201 | /// |
| 202 | /// Equal to |
| 203 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
| 204 | /// |
| 205 | /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS |
| 206 | /// [`MAX_EXP`]: f16::MAX_EXP |
| 207 | #[unstable (feature = "f16" , issue = "116909" )] |
| 208 | pub const MAX: f16 = 6.5504e+4_f16; |
| 209 | |
| 210 | /// One greater than the minimum possible *normal* power of 2 exponent |
| 211 | /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition). |
| 212 | /// |
| 213 | /// This corresponds to the exact minimum possible *normal* power of 2 exponent |
| 214 | /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition). |
| 215 | /// In other words, all normal numbers representable by this type are |
| 216 | /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>. |
| 217 | #[unstable (feature = "f16" , issue = "116909" )] |
| 218 | pub const MIN_EXP: i32 = -13; |
| 219 | /// One greater than the maximum possible power of 2 exponent |
| 220 | /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition). |
| 221 | /// |
| 222 | /// This corresponds to the exact maximum possible power of 2 exponent |
| 223 | /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition). |
| 224 | /// In other words, all numbers representable by this type are |
| 225 | /// strictly less than 2<sup><i>MAX_EXP</i></sup>. |
| 226 | #[unstable (feature = "f16" , issue = "116909" )] |
| 227 | pub const MAX_EXP: i32 = 16; |
| 228 | |
| 229 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
| 230 | /// |
| 231 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
| 232 | /// |
| 233 | /// [`MIN_POSITIVE`]: f16::MIN_POSITIVE |
| 234 | #[unstable (feature = "f16" , issue = "116909" )] |
| 235 | pub const MIN_10_EXP: i32 = -4; |
| 236 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
| 237 | /// |
| 238 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
| 239 | /// |
| 240 | /// [`MAX`]: f16::MAX |
| 241 | #[unstable (feature = "f16" , issue = "116909" )] |
| 242 | pub const MAX_10_EXP: i32 = 4; |
| 243 | |
| 244 | /// Not a Number (NaN). |
| 245 | /// |
| 246 | /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are |
| 247 | /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and |
| 248 | /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern) |
| 249 | /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more |
| 250 | /// info. |
| 251 | /// |
| 252 | /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions |
| 253 | /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is |
| 254 | /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary. |
| 255 | /// The concrete bit pattern may change across Rust versions and target platforms. |
| 256 | #[allow (clippy::eq_op)] |
| 257 | #[rustc_diagnostic_item = "f16_nan" ] |
| 258 | #[unstable (feature = "f16" , issue = "116909" )] |
| 259 | pub const NAN: f16 = 0.0_f16 / 0.0_f16; |
| 260 | |
| 261 | /// Infinity (∞). |
| 262 | #[unstable (feature = "f16" , issue = "116909" )] |
| 263 | pub const INFINITY: f16 = 1.0_f16 / 0.0_f16; |
| 264 | |
| 265 | /// Negative infinity (−∞). |
| 266 | #[unstable (feature = "f16" , issue = "116909" )] |
| 267 | pub const NEG_INFINITY: f16 = -1.0_f16 / 0.0_f16; |
| 268 | |
| 269 | /// Sign bit |
| 270 | pub(crate) const SIGN_MASK: u16 = 0x8000; |
| 271 | |
| 272 | /// Exponent mask |
| 273 | pub(crate) const EXP_MASK: u16 = 0x7c00; |
| 274 | |
| 275 | /// Mantissa mask |
| 276 | pub(crate) const MAN_MASK: u16 = 0x03ff; |
| 277 | |
| 278 | /// Minimum representable positive value (min subnormal) |
| 279 | const TINY_BITS: u16 = 0x1; |
| 280 | |
| 281 | /// Minimum representable negative value (min negative subnormal) |
| 282 | const NEG_TINY_BITS: u16 = Self::TINY_BITS | Self::SIGN_MASK; |
| 283 | |
| 284 | /// Returns `true` if this value is NaN. |
| 285 | /// |
| 286 | /// ``` |
| 287 | /// #![feature(f16)] |
| 288 | /// # #[cfg (target_has_reliable_f16)] { |
| 289 | /// |
| 290 | /// let nan = f16::NAN; |
| 291 | /// let f = 7.0_f16; |
| 292 | /// |
| 293 | /// assert!(nan.is_nan()); |
| 294 | /// assert!(!f.is_nan()); |
| 295 | /// # } |
| 296 | /// ``` |
| 297 | #[inline ] |
| 298 | #[must_use ] |
| 299 | #[unstable (feature = "f16" , issue = "116909" )] |
| 300 | #[allow (clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :) |
| 301 | pub const fn is_nan(self) -> bool { |
| 302 | self != self |
| 303 | } |
| 304 | |
| 305 | /// Returns `true` if this value is positive infinity or negative infinity, and |
| 306 | /// `false` otherwise. |
| 307 | /// |
| 308 | /// ``` |
| 309 | /// #![feature(f16)] |
| 310 | /// # #[cfg (target_has_reliable_f16)] { |
| 311 | /// |
| 312 | /// let f = 7.0f16; |
| 313 | /// let inf = f16::INFINITY; |
| 314 | /// let neg_inf = f16::NEG_INFINITY; |
| 315 | /// let nan = f16::NAN; |
| 316 | /// |
| 317 | /// assert!(!f.is_infinite()); |
| 318 | /// assert!(!nan.is_infinite()); |
| 319 | /// |
| 320 | /// assert!(inf.is_infinite()); |
| 321 | /// assert!(neg_inf.is_infinite()); |
| 322 | /// # } |
| 323 | /// ``` |
| 324 | #[inline ] |
| 325 | #[must_use ] |
| 326 | #[unstable (feature = "f16" , issue = "116909" )] |
| 327 | pub const fn is_infinite(self) -> bool { |
| 328 | (self == f16::INFINITY) | (self == f16::NEG_INFINITY) |
| 329 | } |
| 330 | |
| 331 | /// Returns `true` if this number is neither infinite nor NaN. |
| 332 | /// |
| 333 | /// ``` |
| 334 | /// #![feature(f16)] |
| 335 | /// # #[cfg (target_has_reliable_f16)] { |
| 336 | /// |
| 337 | /// let f = 7.0f16; |
| 338 | /// let inf: f16 = f16::INFINITY; |
| 339 | /// let neg_inf: f16 = f16::NEG_INFINITY; |
| 340 | /// let nan: f16 = f16::NAN; |
| 341 | /// |
| 342 | /// assert!(f.is_finite()); |
| 343 | /// |
| 344 | /// assert!(!nan.is_finite()); |
| 345 | /// assert!(!inf.is_finite()); |
| 346 | /// assert!(!neg_inf.is_finite()); |
| 347 | /// # } |
| 348 | /// ``` |
| 349 | #[inline ] |
| 350 | #[must_use ] |
| 351 | #[unstable (feature = "f16" , issue = "116909" )] |
| 352 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 353 | pub const fn is_finite(self) -> bool { |
| 354 | // There's no need to handle NaN separately: if self is NaN, |
| 355 | // the comparison is not true, exactly as desired. |
| 356 | self.abs() < Self::INFINITY |
| 357 | } |
| 358 | |
| 359 | /// Returns `true` if the number is [subnormal]. |
| 360 | /// |
| 361 | /// ``` |
| 362 | /// #![feature(f16)] |
| 363 | /// # #[cfg (target_has_reliable_f16)] { |
| 364 | /// |
| 365 | /// let min = f16::MIN_POSITIVE; // 6.1035e-5 |
| 366 | /// let max = f16::MAX; |
| 367 | /// let lower_than_min = 1.0e-7_f16; |
| 368 | /// let zero = 0.0_f16; |
| 369 | /// |
| 370 | /// assert!(!min.is_subnormal()); |
| 371 | /// assert!(!max.is_subnormal()); |
| 372 | /// |
| 373 | /// assert!(!zero.is_subnormal()); |
| 374 | /// assert!(!f16::NAN.is_subnormal()); |
| 375 | /// assert!(!f16::INFINITY.is_subnormal()); |
| 376 | /// // Values between `0` and `min` are Subnormal. |
| 377 | /// assert!(lower_than_min.is_subnormal()); |
| 378 | /// # } |
| 379 | /// ``` |
| 380 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
| 381 | #[inline ] |
| 382 | #[must_use ] |
| 383 | #[unstable (feature = "f16" , issue = "116909" )] |
| 384 | pub const fn is_subnormal(self) -> bool { |
| 385 | matches!(self.classify(), FpCategory::Subnormal) |
| 386 | } |
| 387 | |
| 388 | /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN. |
| 389 | /// |
| 390 | /// ``` |
| 391 | /// #![feature(f16)] |
| 392 | /// # #[cfg (target_has_reliable_f16)] { |
| 393 | /// |
| 394 | /// let min = f16::MIN_POSITIVE; // 6.1035e-5 |
| 395 | /// let max = f16::MAX; |
| 396 | /// let lower_than_min = 1.0e-7_f16; |
| 397 | /// let zero = 0.0_f16; |
| 398 | /// |
| 399 | /// assert!(min.is_normal()); |
| 400 | /// assert!(max.is_normal()); |
| 401 | /// |
| 402 | /// assert!(!zero.is_normal()); |
| 403 | /// assert!(!f16::NAN.is_normal()); |
| 404 | /// assert!(!f16::INFINITY.is_normal()); |
| 405 | /// // Values between `0` and `min` are Subnormal. |
| 406 | /// assert!(!lower_than_min.is_normal()); |
| 407 | /// # } |
| 408 | /// ``` |
| 409 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
| 410 | #[inline ] |
| 411 | #[must_use ] |
| 412 | #[unstable (feature = "f16" , issue = "116909" )] |
| 413 | pub const fn is_normal(self) -> bool { |
| 414 | matches!(self.classify(), FpCategory::Normal) |
| 415 | } |
| 416 | |
| 417 | /// Returns the floating point category of the number. If only one property |
| 418 | /// is going to be tested, it is generally faster to use the specific |
| 419 | /// predicate instead. |
| 420 | /// |
| 421 | /// ``` |
| 422 | /// #![feature(f16)] |
| 423 | /// # #[cfg (target_has_reliable_f16)] { |
| 424 | /// |
| 425 | /// use std::num::FpCategory; |
| 426 | /// |
| 427 | /// let num = 12.4_f16; |
| 428 | /// let inf = f16::INFINITY; |
| 429 | /// |
| 430 | /// assert_eq!(num.classify(), FpCategory::Normal); |
| 431 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| 432 | /// # } |
| 433 | /// ``` |
| 434 | #[inline ] |
| 435 | #[unstable (feature = "f16" , issue = "116909" )] |
| 436 | pub const fn classify(self) -> FpCategory { |
| 437 | let b = self.to_bits(); |
| 438 | match (b & Self::MAN_MASK, b & Self::EXP_MASK) { |
| 439 | (0, Self::EXP_MASK) => FpCategory::Infinite, |
| 440 | (_, Self::EXP_MASK) => FpCategory::Nan, |
| 441 | (0, 0) => FpCategory::Zero, |
| 442 | (_, 0) => FpCategory::Subnormal, |
| 443 | _ => FpCategory::Normal, |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
| 448 | /// positive sign bit and positive infinity. |
| 449 | /// |
| 450 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
| 451 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
| 452 | /// conserved over arithmetic operations, the result of `is_sign_positive` on |
| 453 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
| 454 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0` |
| 455 | /// if you need fully portable behavior (will return `false` for all NaNs). |
| 456 | /// |
| 457 | /// ``` |
| 458 | /// #![feature(f16)] |
| 459 | /// # #[cfg (target_has_reliable_f16)] { |
| 460 | /// |
| 461 | /// let f = 7.0_f16; |
| 462 | /// let g = -7.0_f16; |
| 463 | /// |
| 464 | /// assert!(f.is_sign_positive()); |
| 465 | /// assert!(!g.is_sign_positive()); |
| 466 | /// # } |
| 467 | /// ``` |
| 468 | #[inline ] |
| 469 | #[must_use ] |
| 470 | #[unstable (feature = "f16" , issue = "116909" )] |
| 471 | pub const fn is_sign_positive(self) -> bool { |
| 472 | !self.is_sign_negative() |
| 473 | } |
| 474 | |
| 475 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
| 476 | /// negative sign bit and negative infinity. |
| 477 | /// |
| 478 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
| 479 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
| 480 | /// conserved over arithmetic operations, the result of `is_sign_negative` on |
| 481 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
| 482 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0` |
| 483 | /// if you need fully portable behavior (will return `false` for all NaNs). |
| 484 | /// |
| 485 | /// ``` |
| 486 | /// #![feature(f16)] |
| 487 | /// # #[cfg (target_has_reliable_f16)] { |
| 488 | /// |
| 489 | /// let f = 7.0_f16; |
| 490 | /// let g = -7.0_f16; |
| 491 | /// |
| 492 | /// assert!(!f.is_sign_negative()); |
| 493 | /// assert!(g.is_sign_negative()); |
| 494 | /// # } |
| 495 | /// ``` |
| 496 | #[inline ] |
| 497 | #[must_use ] |
| 498 | #[unstable (feature = "f16" , issue = "116909" )] |
| 499 | pub const fn is_sign_negative(self) -> bool { |
| 500 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
| 501 | // applies to zeros and NaNs as well. |
| 502 | // SAFETY: This is just transmuting to get the sign bit, it's fine. |
| 503 | (self.to_bits() & (1 << 15)) != 0 |
| 504 | } |
| 505 | |
| 506 | /// Returns the least number greater than `self`. |
| 507 | /// |
| 508 | /// Let `TINY` be the smallest representable positive `f16`. Then, |
| 509 | /// - if `self.is_nan()`, this returns `self`; |
| 510 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
| 511 | /// - if `self` is `-TINY`, this returns -0.0; |
| 512 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
| 513 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
| 514 | /// - otherwise the unique least value greater than `self` is returned. |
| 515 | /// |
| 516 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
| 517 | /// is finite `x == x.next_up().next_down()` also holds. |
| 518 | /// |
| 519 | /// ```rust |
| 520 | /// #![feature(f16)] |
| 521 | /// # #[cfg (target_has_reliable_f16)] { |
| 522 | /// |
| 523 | /// // f16::EPSILON is the difference between 1.0 and the next number up. |
| 524 | /// assert_eq!(1.0f16.next_up(), 1.0 + f16::EPSILON); |
| 525 | /// // But not for most numbers. |
| 526 | /// assert!(0.1f16.next_up() < 0.1 + f16::EPSILON); |
| 527 | /// assert_eq!(4356f16.next_up(), 4360.0); |
| 528 | /// # } |
| 529 | /// ``` |
| 530 | /// |
| 531 | /// This operation corresponds to IEEE-754 `nextUp`. |
| 532 | /// |
| 533 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
| 534 | /// [`INFINITY`]: Self::INFINITY |
| 535 | /// [`MIN`]: Self::MIN |
| 536 | /// [`MAX`]: Self::MAX |
| 537 | #[inline ] |
| 538 | #[doc (alias = "nextUp" )] |
| 539 | #[unstable (feature = "f16" , issue = "116909" )] |
| 540 | pub const fn next_up(self) -> Self { |
| 541 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
| 542 | // denormals to zero. This is in general unsound and unsupported, but here |
| 543 | // we do our best to still produce the correct result on such targets. |
| 544 | let bits = self.to_bits(); |
| 545 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
| 546 | return self; |
| 547 | } |
| 548 | |
| 549 | let abs = bits & !Self::SIGN_MASK; |
| 550 | let next_bits = if abs == 0 { |
| 551 | Self::TINY_BITS |
| 552 | } else if bits == abs { |
| 553 | bits + 1 |
| 554 | } else { |
| 555 | bits - 1 |
| 556 | }; |
| 557 | Self::from_bits(next_bits) |
| 558 | } |
| 559 | |
| 560 | /// Returns the greatest number less than `self`. |
| 561 | /// |
| 562 | /// Let `TINY` be the smallest representable positive `f16`. Then, |
| 563 | /// - if `self.is_nan()`, this returns `self`; |
| 564 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
| 565 | /// - if `self` is `TINY`, this returns 0.0; |
| 566 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
| 567 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
| 568 | /// - otherwise the unique greatest value less than `self` is returned. |
| 569 | /// |
| 570 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
| 571 | /// is finite `x == x.next_down().next_up()` also holds. |
| 572 | /// |
| 573 | /// ```rust |
| 574 | /// #![feature(f16)] |
| 575 | /// # #[cfg (target_has_reliable_f16)] { |
| 576 | /// |
| 577 | /// let x = 1.0f16; |
| 578 | /// // Clamp value into range [0, 1). |
| 579 | /// let clamped = x.clamp(0.0, 1.0f16.next_down()); |
| 580 | /// assert!(clamped < 1.0); |
| 581 | /// assert_eq!(clamped.next_up(), 1.0); |
| 582 | /// # } |
| 583 | /// ``` |
| 584 | /// |
| 585 | /// This operation corresponds to IEEE-754 `nextDown`. |
| 586 | /// |
| 587 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
| 588 | /// [`INFINITY`]: Self::INFINITY |
| 589 | /// [`MIN`]: Self::MIN |
| 590 | /// [`MAX`]: Self::MAX |
| 591 | #[inline ] |
| 592 | #[doc (alias = "nextDown" )] |
| 593 | #[unstable (feature = "f16" , issue = "116909" )] |
| 594 | pub const fn next_down(self) -> Self { |
| 595 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
| 596 | // denormals to zero. This is in general unsound and unsupported, but here |
| 597 | // we do our best to still produce the correct result on such targets. |
| 598 | let bits = self.to_bits(); |
| 599 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
| 600 | return self; |
| 601 | } |
| 602 | |
| 603 | let abs = bits & !Self::SIGN_MASK; |
| 604 | let next_bits = if abs == 0 { |
| 605 | Self::NEG_TINY_BITS |
| 606 | } else if bits == abs { |
| 607 | bits - 1 |
| 608 | } else { |
| 609 | bits + 1 |
| 610 | }; |
| 611 | Self::from_bits(next_bits) |
| 612 | } |
| 613 | |
| 614 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
| 615 | /// |
| 616 | /// ``` |
| 617 | /// #![feature(f16)] |
| 618 | /// # #[cfg (target_has_reliable_f16)] { |
| 619 | /// |
| 620 | /// let x = 2.0_f16; |
| 621 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
| 622 | /// |
| 623 | /// assert!(abs_difference <= f16::EPSILON); |
| 624 | /// # } |
| 625 | /// ``` |
| 626 | #[inline ] |
| 627 | #[unstable (feature = "f16" , issue = "116909" )] |
| 628 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 629 | pub const fn recip(self) -> Self { |
| 630 | 1.0 / self |
| 631 | } |
| 632 | |
| 633 | /// Converts radians to degrees. |
| 634 | /// |
| 635 | /// # Unspecified precision |
| 636 | /// |
| 637 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 638 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 639 | /// |
| 640 | /// # Examples |
| 641 | /// |
| 642 | /// ``` |
| 643 | /// #![feature(f16)] |
| 644 | /// # #[cfg (target_has_reliable_f16)] { |
| 645 | /// |
| 646 | /// let angle = std::f16::consts::PI; |
| 647 | /// |
| 648 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
| 649 | /// assert!(abs_difference <= 0.5); |
| 650 | /// # } |
| 651 | /// ``` |
| 652 | #[inline ] |
| 653 | #[unstable (feature = "f16" , issue = "116909" )] |
| 654 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 655 | pub const fn to_degrees(self) -> Self { |
| 656 | // Use a literal to avoid double rounding, consts::PI is already rounded, |
| 657 | // and dividing would round again. |
| 658 | const PIS_IN_180: f16 = 57.2957795130823208767981548141051703_f16; |
| 659 | self * PIS_IN_180 |
| 660 | } |
| 661 | |
| 662 | /// Converts degrees to radians. |
| 663 | /// |
| 664 | /// # Unspecified precision |
| 665 | /// |
| 666 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 667 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 668 | /// |
| 669 | /// # Examples |
| 670 | /// |
| 671 | /// ``` |
| 672 | /// #![feature(f16)] |
| 673 | /// # #[cfg (target_has_reliable_f16)] { |
| 674 | /// |
| 675 | /// let angle = 180.0f16; |
| 676 | /// |
| 677 | /// let abs_difference = (angle.to_radians() - std::f16::consts::PI).abs(); |
| 678 | /// |
| 679 | /// assert!(abs_difference <= 0.01); |
| 680 | /// # } |
| 681 | /// ``` |
| 682 | #[inline ] |
| 683 | #[unstable (feature = "f16" , issue = "116909" )] |
| 684 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 685 | pub const fn to_radians(self) -> f16 { |
| 686 | // Use a literal to avoid double rounding, consts::PI is already rounded, |
| 687 | // and dividing would round again. |
| 688 | const RADS_PER_DEG: f16 = 0.017453292519943295769236907684886_f16; |
| 689 | self * RADS_PER_DEG |
| 690 | } |
| 691 | |
| 692 | /// Returns the maximum of the two numbers, ignoring NaN. |
| 693 | /// |
| 694 | /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is |
| 695 | /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked |
| 696 | /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs |
| 697 | /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned |
| 698 | /// non-deterministically. |
| 699 | /// |
| 700 | /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all |
| 701 | /// NaNs the same way to ensure the operation is associative. The handling of signed zeros |
| 702 | /// follows the IEEE 754-2008 semantics for `maxNum`. |
| 703 | /// |
| 704 | /// ``` |
| 705 | /// #![feature(f16)] |
| 706 | /// # #[cfg (target_has_reliable_f16)] { |
| 707 | /// |
| 708 | /// let x = 1.0f16; |
| 709 | /// let y = 2.0f16; |
| 710 | /// |
| 711 | /// assert_eq!(x.max(y), y); |
| 712 | /// assert_eq!(x.max(f16::NAN), x); |
| 713 | /// # } |
| 714 | /// ``` |
| 715 | #[inline ] |
| 716 | #[unstable (feature = "f16" , issue = "116909" )] |
| 717 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 718 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 719 | pub const fn max(self, other: f16) -> f16 { |
| 720 | intrinsics::maxnumf16(self, other) |
| 721 | } |
| 722 | |
| 723 | /// Returns the minimum of the two numbers, ignoring NaN. |
| 724 | /// |
| 725 | /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is |
| 726 | /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked |
| 727 | /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs |
| 728 | /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned |
| 729 | /// non-deterministically. |
| 730 | /// |
| 731 | /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all |
| 732 | /// NaNs the same way to ensure the operation is associative. The handling of signed zeros |
| 733 | /// follows the IEEE 754-2008 semantics for `minNum`. |
| 734 | /// |
| 735 | /// ``` |
| 736 | /// #![feature(f16)] |
| 737 | /// # #[cfg (target_has_reliable_f16)] { |
| 738 | /// |
| 739 | /// let x = 1.0f16; |
| 740 | /// let y = 2.0f16; |
| 741 | /// |
| 742 | /// assert_eq!(x.min(y), x); |
| 743 | /// assert_eq!(x.min(f16::NAN), x); |
| 744 | /// # } |
| 745 | /// ``` |
| 746 | #[inline ] |
| 747 | #[unstable (feature = "f16" , issue = "116909" )] |
| 748 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 749 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 750 | pub const fn min(self, other: f16) -> f16 { |
| 751 | intrinsics::minnumf16(self, other) |
| 752 | } |
| 753 | |
| 754 | /// Returns the maximum of the two numbers, propagating NaN. |
| 755 | /// |
| 756 | /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern |
| 757 | /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore, |
| 758 | /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for |
| 759 | /// non-NaN inputs. |
| 760 | /// |
| 761 | /// This is in contrast to [`f16::max`] which only returns NaN when *both* arguments are NaN, |
| 762 | /// and which does not reliably order `-0.0` and `+0.0`. |
| 763 | /// |
| 764 | /// This follows the IEEE 754-2019 semantics for `maximum`. |
| 765 | /// |
| 766 | /// ``` |
| 767 | /// #![feature(f16)] |
| 768 | /// #![feature(float_minimum_maximum)] |
| 769 | /// # #[cfg (target_has_reliable_f16)] { |
| 770 | /// |
| 771 | /// let x = 1.0f16; |
| 772 | /// let y = 2.0f16; |
| 773 | /// |
| 774 | /// assert_eq!(x.maximum(y), y); |
| 775 | /// assert!(x.maximum(f16::NAN).is_nan()); |
| 776 | /// # } |
| 777 | /// ``` |
| 778 | #[inline ] |
| 779 | #[unstable (feature = "f16" , issue = "116909" )] |
| 780 | // #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
| 781 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 782 | pub const fn maximum(self, other: f16) -> f16 { |
| 783 | intrinsics::maximumf16(self, other) |
| 784 | } |
| 785 | |
| 786 | /// Returns the minimum of the two numbers, propagating NaN. |
| 787 | /// |
| 788 | /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern |
| 789 | /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore, |
| 790 | /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for |
| 791 | /// non-NaN inputs. |
| 792 | /// |
| 793 | /// This is in contrast to [`f16::min`] which only returns NaN when *both* arguments are NaN, |
| 794 | /// and which does not reliably order `-0.0` and `+0.0`. |
| 795 | /// |
| 796 | /// This follows the IEEE 754-2019 semantics for `minimum`. |
| 797 | /// |
| 798 | /// ``` |
| 799 | /// #![feature(f16)] |
| 800 | /// #![feature(float_minimum_maximum)] |
| 801 | /// # #[cfg (target_has_reliable_f16)] { |
| 802 | /// |
| 803 | /// let x = 1.0f16; |
| 804 | /// let y = 2.0f16; |
| 805 | /// |
| 806 | /// assert_eq!(x.minimum(y), x); |
| 807 | /// assert!(x.minimum(f16::NAN).is_nan()); |
| 808 | /// # } |
| 809 | /// ``` |
| 810 | #[inline ] |
| 811 | #[unstable (feature = "f16" , issue = "116909" )] |
| 812 | // #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
| 813 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 814 | pub const fn minimum(self, other: f16) -> f16 { |
| 815 | intrinsics::minimumf16(self, other) |
| 816 | } |
| 817 | |
| 818 | /// Calculates the midpoint (average) between `self` and `rhs`. |
| 819 | /// |
| 820 | /// This returns NaN when *either* argument is NaN or if a combination of |
| 821 | /// +inf and -inf is provided as arguments. |
| 822 | /// |
| 823 | /// # Examples |
| 824 | /// |
| 825 | /// ``` |
| 826 | /// #![feature(f16)] |
| 827 | /// # #[cfg (target_has_reliable_f16)] { |
| 828 | /// |
| 829 | /// assert_eq!(1f16.midpoint(4.0), 2.5); |
| 830 | /// assert_eq!((-5.5f16).midpoint(8.0), 1.25); |
| 831 | /// # } |
| 832 | /// ``` |
| 833 | #[inline ] |
| 834 | #[doc (alias = "average" )] |
| 835 | #[unstable (feature = "f16" , issue = "116909" )] |
| 836 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 837 | pub const fn midpoint(self, other: f16) -> f16 { |
| 838 | const HI: f16 = f16::MAX / 2.; |
| 839 | |
| 840 | let (a, b) = (self, other); |
| 841 | let abs_a = a.abs(); |
| 842 | let abs_b = b.abs(); |
| 843 | |
| 844 | if abs_a <= HI && abs_b <= HI { |
| 845 | // Overflow is impossible |
| 846 | (a + b) / 2. |
| 847 | } else { |
| 848 | (a / 2.) + (b / 2.) |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | /// Rounds toward zero and converts to any primitive integer type, |
| 853 | /// assuming that the value is finite and fits in that type. |
| 854 | /// |
| 855 | /// ``` |
| 856 | /// #![feature(f16)] |
| 857 | /// # #[cfg (target_has_reliable_f16)] { |
| 858 | /// |
| 859 | /// let value = 4.6_f16; |
| 860 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
| 861 | /// assert_eq!(rounded, 4); |
| 862 | /// |
| 863 | /// let value = -128.9_f16; |
| 864 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
| 865 | /// assert_eq!(rounded, i8::MIN); |
| 866 | /// # } |
| 867 | /// ``` |
| 868 | /// |
| 869 | /// # Safety |
| 870 | /// |
| 871 | /// The value must: |
| 872 | /// |
| 873 | /// * Not be `NaN` |
| 874 | /// * Not be infinite |
| 875 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
| 876 | #[inline ] |
| 877 | #[unstable (feature = "f16" , issue = "116909" )] |
| 878 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 879 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
| 880 | where |
| 881 | Self: FloatToInt<Int>, |
| 882 | { |
| 883 | // SAFETY: the caller must uphold the safety contract for |
| 884 | // `FloatToInt::to_int_unchecked`. |
| 885 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
| 886 | } |
| 887 | |
| 888 | /// Raw transmutation to `u16`. |
| 889 | /// |
| 890 | /// This is currently identical to `transmute::<f16, u16>(self)` on all platforms. |
| 891 | /// |
| 892 | /// See [`from_bits`](#method.from_bits) for some discussion of the |
| 893 | /// portability of this operation (there are almost no issues). |
| 894 | /// |
| 895 | /// Note that this function is distinct from `as` casting, which attempts to |
| 896 | /// preserve the *numeric* value, and not the bitwise value. |
| 897 | /// |
| 898 | /// ``` |
| 899 | /// #![feature(f16)] |
| 900 | /// # #[cfg (target_has_reliable_f16)] { |
| 901 | /// |
| 902 | /// assert_ne!((1f16).to_bits(), 1f16 as u16); // to_bits() is not casting! |
| 903 | /// assert_eq!((12.5f16).to_bits(), 0x4a40); |
| 904 | /// # } |
| 905 | /// ``` |
| 906 | #[inline ] |
| 907 | #[unstable (feature = "f16" , issue = "116909" )] |
| 908 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 909 | #[allow (unnecessary_transmutes)] |
| 910 | pub const fn to_bits(self) -> u16 { |
| 911 | // SAFETY: `u16` is a plain old datatype so we can always transmute to it. |
| 912 | unsafe { mem::transmute(self) } |
| 913 | } |
| 914 | |
| 915 | /// Raw transmutation from `u16`. |
| 916 | /// |
| 917 | /// This is currently identical to `transmute::<u16, f16>(v)` on all platforms. |
| 918 | /// It turns out this is incredibly portable, for two reasons: |
| 919 | /// |
| 920 | /// * Floats and Ints have the same endianness on all supported platforms. |
| 921 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
| 922 | /// |
| 923 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
| 924 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
| 925 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
| 926 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
| 927 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
| 928 | /// |
| 929 | /// Rather than trying to preserve signaling-ness cross-platform, this |
| 930 | /// implementation favors preserving the exact bits. This means that |
| 931 | /// any payloads encoded in NaNs will be preserved even if the result of |
| 932 | /// this method is sent over the network from an x86 machine to a MIPS one. |
| 933 | /// |
| 934 | /// If the results of this method are only manipulated by the same |
| 935 | /// architecture that produced them, then there is no portability concern. |
| 936 | /// |
| 937 | /// If the input isn't NaN, then there is no portability concern. |
| 938 | /// |
| 939 | /// If you don't care about signalingness (very likely), then there is no |
| 940 | /// portability concern. |
| 941 | /// |
| 942 | /// Note that this function is distinct from `as` casting, which attempts to |
| 943 | /// preserve the *numeric* value, and not the bitwise value. |
| 944 | /// |
| 945 | /// ``` |
| 946 | /// #![feature(f16)] |
| 947 | /// # #[cfg (target_has_reliable_f16)] { |
| 948 | /// |
| 949 | /// let v = f16::from_bits(0x4a40); |
| 950 | /// assert_eq!(v, 12.5); |
| 951 | /// # } |
| 952 | /// ``` |
| 953 | #[inline ] |
| 954 | #[must_use ] |
| 955 | #[unstable (feature = "f16" , issue = "116909" )] |
| 956 | #[allow (unnecessary_transmutes)] |
| 957 | pub const fn from_bits(v: u16) -> Self { |
| 958 | // It turns out the safety issues with sNaN were overblown! Hooray! |
| 959 | // SAFETY: `u16` is a plain old datatype so we can always transmute from it. |
| 960 | unsafe { mem::transmute(v) } |
| 961 | } |
| 962 | |
| 963 | /// Returns the memory representation of this floating point number as a byte array in |
| 964 | /// big-endian (network) byte order. |
| 965 | /// |
| 966 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 967 | /// portability of this operation (there are almost no issues). |
| 968 | /// |
| 969 | /// # Examples |
| 970 | /// |
| 971 | /// ``` |
| 972 | /// #![feature(f16)] |
| 973 | /// # #[cfg (target_has_reliable_f16)] { |
| 974 | /// |
| 975 | /// let bytes = 12.5f16.to_be_bytes(); |
| 976 | /// assert_eq!(bytes, [0x4a, 0x40]); |
| 977 | /// # } |
| 978 | /// ``` |
| 979 | #[inline ] |
| 980 | #[unstable (feature = "f16" , issue = "116909" )] |
| 981 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 982 | pub const fn to_be_bytes(self) -> [u8; 2] { |
| 983 | self.to_bits().to_be_bytes() |
| 984 | } |
| 985 | |
| 986 | /// Returns the memory representation of this floating point number as a byte array in |
| 987 | /// little-endian byte order. |
| 988 | /// |
| 989 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 990 | /// portability of this operation (there are almost no issues). |
| 991 | /// |
| 992 | /// # Examples |
| 993 | /// |
| 994 | /// ``` |
| 995 | /// #![feature(f16)] |
| 996 | /// # #[cfg (target_has_reliable_f16)] { |
| 997 | /// |
| 998 | /// let bytes = 12.5f16.to_le_bytes(); |
| 999 | /// assert_eq!(bytes, [0x40, 0x4a]); |
| 1000 | /// # } |
| 1001 | /// ``` |
| 1002 | #[inline ] |
| 1003 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1004 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 1005 | pub const fn to_le_bytes(self) -> [u8; 2] { |
| 1006 | self.to_bits().to_le_bytes() |
| 1007 | } |
| 1008 | |
| 1009 | /// Returns the memory representation of this floating point number as a byte array in |
| 1010 | /// native byte order. |
| 1011 | /// |
| 1012 | /// As the target platform's native endianness is used, portable code |
| 1013 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
| 1014 | /// |
| 1015 | /// [`to_be_bytes`]: f16::to_be_bytes |
| 1016 | /// [`to_le_bytes`]: f16::to_le_bytes |
| 1017 | /// |
| 1018 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1019 | /// portability of this operation (there are almost no issues). |
| 1020 | /// |
| 1021 | /// # Examples |
| 1022 | /// |
| 1023 | /// ``` |
| 1024 | /// #![feature(f16)] |
| 1025 | /// # #[cfg (target_has_reliable_f16)] { |
| 1026 | /// |
| 1027 | /// let bytes = 12.5f16.to_ne_bytes(); |
| 1028 | /// assert_eq!( |
| 1029 | /// bytes, |
| 1030 | /// if cfg!(target_endian = "big" ) { |
| 1031 | /// [0x4a, 0x40] |
| 1032 | /// } else { |
| 1033 | /// [0x40, 0x4a] |
| 1034 | /// } |
| 1035 | /// ); |
| 1036 | /// # } |
| 1037 | /// ``` |
| 1038 | #[inline ] |
| 1039 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1040 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 1041 | pub const fn to_ne_bytes(self) -> [u8; 2] { |
| 1042 | self.to_bits().to_ne_bytes() |
| 1043 | } |
| 1044 | |
| 1045 | /// Creates a floating point value from its representation as a byte array in big endian. |
| 1046 | /// |
| 1047 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1048 | /// portability of this operation (there are almost no issues). |
| 1049 | /// |
| 1050 | /// # Examples |
| 1051 | /// |
| 1052 | /// ``` |
| 1053 | /// #![feature(f16)] |
| 1054 | /// # #[cfg (target_has_reliable_f16)] { |
| 1055 | /// |
| 1056 | /// let value = f16::from_be_bytes([0x4a, 0x40]); |
| 1057 | /// assert_eq!(value, 12.5); |
| 1058 | /// # } |
| 1059 | /// ``` |
| 1060 | #[inline ] |
| 1061 | #[must_use ] |
| 1062 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1063 | pub const fn from_be_bytes(bytes: [u8; 2]) -> Self { |
| 1064 | Self::from_bits(u16::from_be_bytes(bytes)) |
| 1065 | } |
| 1066 | |
| 1067 | /// Creates a floating point value from its representation as a byte array in little endian. |
| 1068 | /// |
| 1069 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1070 | /// portability of this operation (there are almost no issues). |
| 1071 | /// |
| 1072 | /// # Examples |
| 1073 | /// |
| 1074 | /// ``` |
| 1075 | /// #![feature(f16)] |
| 1076 | /// # #[cfg (target_has_reliable_f16)] { |
| 1077 | /// |
| 1078 | /// let value = f16::from_le_bytes([0x40, 0x4a]); |
| 1079 | /// assert_eq!(value, 12.5); |
| 1080 | /// # } |
| 1081 | /// ``` |
| 1082 | #[inline ] |
| 1083 | #[must_use ] |
| 1084 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1085 | pub const fn from_le_bytes(bytes: [u8; 2]) -> Self { |
| 1086 | Self::from_bits(u16::from_le_bytes(bytes)) |
| 1087 | } |
| 1088 | |
| 1089 | /// Creates a floating point value from its representation as a byte array in native endian. |
| 1090 | /// |
| 1091 | /// As the target platform's native endianness is used, portable code |
| 1092 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
| 1093 | /// appropriate instead. |
| 1094 | /// |
| 1095 | /// [`from_be_bytes`]: f16::from_be_bytes |
| 1096 | /// [`from_le_bytes`]: f16::from_le_bytes |
| 1097 | /// |
| 1098 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1099 | /// portability of this operation (there are almost no issues). |
| 1100 | /// |
| 1101 | /// # Examples |
| 1102 | /// |
| 1103 | /// ``` |
| 1104 | /// #![feature(f16)] |
| 1105 | /// # #[cfg (target_has_reliable_f16)] { |
| 1106 | /// |
| 1107 | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big" ) { |
| 1108 | /// [0x4a, 0x40] |
| 1109 | /// } else { |
| 1110 | /// [0x40, 0x4a] |
| 1111 | /// }); |
| 1112 | /// assert_eq!(value, 12.5); |
| 1113 | /// # } |
| 1114 | /// ``` |
| 1115 | #[inline ] |
| 1116 | #[must_use ] |
| 1117 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1118 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self { |
| 1119 | Self::from_bits(u16::from_ne_bytes(bytes)) |
| 1120 | } |
| 1121 | |
| 1122 | /// Returns the ordering between `self` and `other`. |
| 1123 | /// |
| 1124 | /// Unlike the standard partial comparison between floating point numbers, |
| 1125 | /// this comparison always produces an ordering in accordance to |
| 1126 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| 1127 | /// floating point standard. The values are ordered in the following sequence: |
| 1128 | /// |
| 1129 | /// - negative quiet NaN |
| 1130 | /// - negative signaling NaN |
| 1131 | /// - negative infinity |
| 1132 | /// - negative numbers |
| 1133 | /// - negative subnormal numbers |
| 1134 | /// - negative zero |
| 1135 | /// - positive zero |
| 1136 | /// - positive subnormal numbers |
| 1137 | /// - positive numbers |
| 1138 | /// - positive infinity |
| 1139 | /// - positive signaling NaN |
| 1140 | /// - positive quiet NaN. |
| 1141 | /// |
| 1142 | /// The ordering established by this function does not always agree with the |
| 1143 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example, |
| 1144 | /// they consider negative and positive zero equal, while `total_cmp` |
| 1145 | /// doesn't. |
| 1146 | /// |
| 1147 | /// The interpretation of the signaling NaN bit follows the definition in |
| 1148 | /// the IEEE 754 standard, which may not match the interpretation by some of |
| 1149 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
| 1150 | /// |
| 1151 | /// # Example |
| 1152 | /// |
| 1153 | /// ``` |
| 1154 | /// #![feature(f16)] |
| 1155 | /// # #[cfg (target_has_reliable_f16)] { |
| 1156 | /// |
| 1157 | /// struct GoodBoy { |
| 1158 | /// name: &'static str, |
| 1159 | /// weight: f16, |
| 1160 | /// } |
| 1161 | /// |
| 1162 | /// let mut bois = vec![ |
| 1163 | /// GoodBoy { name: "Pucci" , weight: 0.1 }, |
| 1164 | /// GoodBoy { name: "Woofer" , weight: 99.0 }, |
| 1165 | /// GoodBoy { name: "Yapper" , weight: 10.0 }, |
| 1166 | /// GoodBoy { name: "Chonk" , weight: f16::INFINITY }, |
| 1167 | /// GoodBoy { name: "Abs. Unit" , weight: f16::NAN }, |
| 1168 | /// GoodBoy { name: "Floaty" , weight: -5.0 }, |
| 1169 | /// ]; |
| 1170 | /// |
| 1171 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
| 1172 | /// |
| 1173 | /// // `f16::NAN` could be positive or negative, which will affect the sort order. |
| 1174 | /// if f16::NAN.is_sign_negative() { |
| 1175 | /// bois.into_iter().map(|b| b.weight) |
| 1176 | /// .zip([f16::NAN, -5.0, 0.1, 10.0, 99.0, f16::INFINITY].iter()) |
| 1177 | /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits())) |
| 1178 | /// } else { |
| 1179 | /// bois.into_iter().map(|b| b.weight) |
| 1180 | /// .zip([-5.0, 0.1, 10.0, 99.0, f16::INFINITY, f16::NAN].iter()) |
| 1181 | /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits())) |
| 1182 | /// } |
| 1183 | /// # } |
| 1184 | /// ``` |
| 1185 | #[inline ] |
| 1186 | #[must_use ] |
| 1187 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1188 | #[rustc_const_unstable (feature = "const_cmp" , issue = "143800" )] |
| 1189 | pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
| 1190 | let mut left = self.to_bits() as i16; |
| 1191 | let mut right = other.to_bits() as i16; |
| 1192 | |
| 1193 | // In case of negatives, flip all the bits except the sign |
| 1194 | // to achieve a similar layout as two's complement integers |
| 1195 | // |
| 1196 | // Why does this work? IEEE 754 floats consist of three fields: |
| 1197 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
| 1198 | // fields as a whole have the property that their bitwise order is |
| 1199 | // equal to the numeric magnitude where the magnitude is defined. |
| 1200 | // The magnitude is not normally defined on NaN values, but |
| 1201 | // IEEE 754 totalOrder defines the NaN values also to follow the |
| 1202 | // bitwise order. This leads to order explained in the doc comment. |
| 1203 | // However, the representation of magnitude is the same for negative |
| 1204 | // and positive numbers – only the sign bit is different. |
| 1205 | // To easily compare the floats as signed integers, we need to |
| 1206 | // flip the exponent and mantissa bits in case of negative numbers. |
| 1207 | // We effectively convert the numbers to "two's complement" form. |
| 1208 | // |
| 1209 | // To do the flipping, we construct a mask and XOR against it. |
| 1210 | // We branchlessly calculate an "all-ones except for the sign bit" |
| 1211 | // mask from negative-signed values: right shifting sign-extends |
| 1212 | // the integer, so we "fill" the mask with sign bits, and then |
| 1213 | // convert to unsigned to push one more zero bit. |
| 1214 | // On positive values, the mask is all zeros, so it's a no-op. |
| 1215 | left ^= (((left >> 15) as u16) >> 1) as i16; |
| 1216 | right ^= (((right >> 15) as u16) >> 1) as i16; |
| 1217 | |
| 1218 | left.cmp(&right) |
| 1219 | } |
| 1220 | |
| 1221 | /// Restrict a value to a certain interval unless it is NaN. |
| 1222 | /// |
| 1223 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
| 1224 | /// less than `min`. Otherwise this returns `self`. |
| 1225 | /// |
| 1226 | /// Note that this function returns NaN if the initial value was NaN as |
| 1227 | /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are |
| 1228 | /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically. |
| 1229 | /// |
| 1230 | /// # Panics |
| 1231 | /// |
| 1232 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
| 1233 | /// |
| 1234 | /// # Examples |
| 1235 | /// |
| 1236 | /// ``` |
| 1237 | /// #![feature(f16)] |
| 1238 | /// # #[cfg (target_has_reliable_f16)] { |
| 1239 | /// |
| 1240 | /// assert!((-3.0f16).clamp(-2.0, 1.0) == -2.0); |
| 1241 | /// assert!((0.0f16).clamp(-2.0, 1.0) == 0.0); |
| 1242 | /// assert!((2.0f16).clamp(-2.0, 1.0) == 1.0); |
| 1243 | /// assert!((f16::NAN).clamp(-2.0, 1.0).is_nan()); |
| 1244 | /// |
| 1245 | /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic. |
| 1246 | /// assert!((0.0f16).clamp(-0.0, -0.0) == 0.0); |
| 1247 | /// assert!((1.0f16).clamp(-0.0, 0.0) == 0.0); |
| 1248 | /// // This is definitely a negative zero. |
| 1249 | /// assert!((-1.0f16).clamp(-0.0, 1.0).is_sign_negative()); |
| 1250 | /// # } |
| 1251 | /// ``` |
| 1252 | #[inline ] |
| 1253 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1254 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1255 | pub const fn clamp(mut self, min: f16, max: f16) -> f16 { |
| 1256 | const_assert!( |
| 1257 | min <= max, |
| 1258 | "min > max, or either was NaN" , |
| 1259 | "min > max, or either was NaN. min = {min:?}, max = {max:?}" , |
| 1260 | min: f16, |
| 1261 | max: f16, |
| 1262 | ); |
| 1263 | |
| 1264 | if self < min { |
| 1265 | self = min; |
| 1266 | } |
| 1267 | if self > max { |
| 1268 | self = max; |
| 1269 | } |
| 1270 | self |
| 1271 | } |
| 1272 | |
| 1273 | /// Clamps this number to a symmetric range centered around zero. |
| 1274 | /// |
| 1275 | /// The method clamps the number's magnitude (absolute value) to be at most `limit`. |
| 1276 | /// |
| 1277 | /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more |
| 1278 | /// explicit about the intent. |
| 1279 | /// |
| 1280 | /// # Panics |
| 1281 | /// |
| 1282 | /// Panics if `limit` is negative or NaN, as this indicates a logic error. |
| 1283 | /// |
| 1284 | /// # Examples |
| 1285 | /// |
| 1286 | /// ``` |
| 1287 | /// #![feature(f16)] |
| 1288 | /// #![feature(clamp_magnitude)] |
| 1289 | /// # #[cfg (target_has_reliable_f16)] { |
| 1290 | /// assert_eq!(5.0f16.clamp_magnitude(3.0), 3.0); |
| 1291 | /// assert_eq!((-5.0f16).clamp_magnitude(3.0), -3.0); |
| 1292 | /// assert_eq!(2.0f16.clamp_magnitude(3.0), 2.0); |
| 1293 | /// assert_eq!((-2.0f16).clamp_magnitude(3.0), -2.0); |
| 1294 | /// # } |
| 1295 | /// ``` |
| 1296 | #[inline ] |
| 1297 | #[unstable (feature = "clamp_magnitude" , issue = "148519" )] |
| 1298 | #[must_use = "this returns the clamped value and does not modify the original" ] |
| 1299 | pub fn clamp_magnitude(self, limit: f16) -> f16 { |
| 1300 | assert!(limit >= 0.0, "limit must be non-negative" ); |
| 1301 | let limit = limit.abs(); // Canonicalises -0.0 to 0.0 |
| 1302 | self.clamp(-limit, limit) |
| 1303 | } |
| 1304 | |
| 1305 | /// Computes the absolute value of `self`. |
| 1306 | /// |
| 1307 | /// This function always returns the precise result. |
| 1308 | /// |
| 1309 | /// # Examples |
| 1310 | /// |
| 1311 | /// ``` |
| 1312 | /// #![feature(f16)] |
| 1313 | /// # #[cfg (target_has_reliable_f16_math)] { |
| 1314 | /// |
| 1315 | /// let x = 3.5_f16; |
| 1316 | /// let y = -3.5_f16; |
| 1317 | /// |
| 1318 | /// assert_eq!(x.abs(), x); |
| 1319 | /// assert_eq!(y.abs(), -y); |
| 1320 | /// |
| 1321 | /// assert!(f16::NAN.abs().is_nan()); |
| 1322 | /// # } |
| 1323 | /// ``` |
| 1324 | #[inline ] |
| 1325 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1326 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1327 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1328 | pub const fn abs(self) -> Self { |
| 1329 | intrinsics::fabsf16(self) |
| 1330 | } |
| 1331 | |
| 1332 | /// Returns a number that represents the sign of `self`. |
| 1333 | /// |
| 1334 | /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
| 1335 | /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
| 1336 | /// - NaN if the number is NaN |
| 1337 | /// |
| 1338 | /// # Examples |
| 1339 | /// |
| 1340 | /// ``` |
| 1341 | /// #![feature(f16)] |
| 1342 | /// # #[cfg (target_has_reliable_f16)] { |
| 1343 | /// |
| 1344 | /// let f = 3.5_f16; |
| 1345 | /// |
| 1346 | /// assert_eq!(f.signum(), 1.0); |
| 1347 | /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0); |
| 1348 | /// |
| 1349 | /// assert!(f16::NAN.signum().is_nan()); |
| 1350 | /// # } |
| 1351 | /// ``` |
| 1352 | #[inline ] |
| 1353 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1354 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1355 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1356 | pub const fn signum(self) -> f16 { |
| 1357 | if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) } |
| 1358 | } |
| 1359 | |
| 1360 | /// Returns a number composed of the magnitude of `self` and the sign of |
| 1361 | /// `sign`. |
| 1362 | /// |
| 1363 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
| 1364 | /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is |
| 1365 | /// returned. |
| 1366 | /// |
| 1367 | /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note |
| 1368 | /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust |
| 1369 | /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the |
| 1370 | /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable |
| 1371 | /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more |
| 1372 | /// info. |
| 1373 | /// |
| 1374 | /// # Examples |
| 1375 | /// |
| 1376 | /// ``` |
| 1377 | /// #![feature(f16)] |
| 1378 | /// # #[cfg (target_has_reliable_f16_math)] { |
| 1379 | /// |
| 1380 | /// let f = 3.5_f16; |
| 1381 | /// |
| 1382 | /// assert_eq!(f.copysign(0.42), 3.5_f16); |
| 1383 | /// assert_eq!(f.copysign(-0.42), -3.5_f16); |
| 1384 | /// assert_eq!((-f).copysign(0.42), 3.5_f16); |
| 1385 | /// assert_eq!((-f).copysign(-0.42), -3.5_f16); |
| 1386 | /// |
| 1387 | /// assert!(f16::NAN.copysign(1.0).is_nan()); |
| 1388 | /// # } |
| 1389 | /// ``` |
| 1390 | #[inline ] |
| 1391 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1392 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1393 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1394 | pub const fn copysign(self, sign: f16) -> f16 { |
| 1395 | intrinsics::copysignf16(self, sign) |
| 1396 | } |
| 1397 | |
| 1398 | /// Float addition that allows optimizations based on algebraic rules. |
| 1399 | /// |
| 1400 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
| 1401 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1402 | #[unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1403 | #[rustc_const_unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1404 | #[inline ] |
| 1405 | pub const fn algebraic_add(self, rhs: f16) -> f16 { |
| 1406 | intrinsics::fadd_algebraic(self, rhs) |
| 1407 | } |
| 1408 | |
| 1409 | /// Float subtraction that allows optimizations based on algebraic rules. |
| 1410 | /// |
| 1411 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
| 1412 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1413 | #[unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1414 | #[rustc_const_unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1415 | #[inline ] |
| 1416 | pub const fn algebraic_sub(self, rhs: f16) -> f16 { |
| 1417 | intrinsics::fsub_algebraic(self, rhs) |
| 1418 | } |
| 1419 | |
| 1420 | /// Float multiplication that allows optimizations based on algebraic rules. |
| 1421 | /// |
| 1422 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
| 1423 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1424 | #[unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1425 | #[rustc_const_unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1426 | #[inline ] |
| 1427 | pub const fn algebraic_mul(self, rhs: f16) -> f16 { |
| 1428 | intrinsics::fmul_algebraic(self, rhs) |
| 1429 | } |
| 1430 | |
| 1431 | /// Float division that allows optimizations based on algebraic rules. |
| 1432 | /// |
| 1433 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
| 1434 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1435 | #[unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1436 | #[rustc_const_unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1437 | #[inline ] |
| 1438 | pub const fn algebraic_div(self, rhs: f16) -> f16 { |
| 1439 | intrinsics::fdiv_algebraic(self, rhs) |
| 1440 | } |
| 1441 | |
| 1442 | /// Float remainder that allows optimizations based on algebraic rules. |
| 1443 | /// |
| 1444 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
| 1445 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1446 | #[unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1447 | #[rustc_const_unstable (feature = "float_algebraic" , issue = "136469" )] |
| 1448 | #[inline ] |
| 1449 | pub const fn algebraic_rem(self, rhs: f16) -> f16 { |
| 1450 | intrinsics::frem_algebraic(self, rhs) |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | // Functions in this module fall into `core_float_math` |
| 1455 | // #[unstable(feature = "core_float_math", issue = "137578")] |
| 1456 | #[cfg (not(test))] |
| 1457 | #[doc (test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))] |
| 1458 | impl f16 { |
| 1459 | /// Returns the largest integer less than or equal to `self`. |
| 1460 | /// |
| 1461 | /// This function always returns the precise result. |
| 1462 | /// |
| 1463 | /// # Examples |
| 1464 | /// |
| 1465 | /// ``` |
| 1466 | /// #![feature(f16)] |
| 1467 | /// # #[cfg (not(miri))] |
| 1468 | /// # #[cfg (target_has_reliable_f16)] { |
| 1469 | /// |
| 1470 | /// let f = 3.7_f16; |
| 1471 | /// let g = 3.0_f16; |
| 1472 | /// let h = -3.7_f16; |
| 1473 | /// |
| 1474 | /// assert_eq!(f.floor(), 3.0); |
| 1475 | /// assert_eq!(g.floor(), 3.0); |
| 1476 | /// assert_eq!(h.floor(), -4.0); |
| 1477 | /// # } |
| 1478 | /// ``` |
| 1479 | #[inline ] |
| 1480 | #[rustc_allow_incoherent_impl ] |
| 1481 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1482 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1483 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1484 | pub const fn floor(self) -> f16 { |
| 1485 | intrinsics::floorf16(self) |
| 1486 | } |
| 1487 | |
| 1488 | /// Returns the smallest integer greater than or equal to `self`. |
| 1489 | /// |
| 1490 | /// This function always returns the precise result. |
| 1491 | /// |
| 1492 | /// # Examples |
| 1493 | /// |
| 1494 | /// ``` |
| 1495 | /// #![feature(f16)] |
| 1496 | /// # #[cfg (not(miri))] |
| 1497 | /// # #[cfg (target_has_reliable_f16)] { |
| 1498 | /// |
| 1499 | /// let f = 3.01_f16; |
| 1500 | /// let g = 4.0_f16; |
| 1501 | /// |
| 1502 | /// assert_eq!(f.ceil(), 4.0); |
| 1503 | /// assert_eq!(g.ceil(), 4.0); |
| 1504 | /// # } |
| 1505 | /// ``` |
| 1506 | #[inline ] |
| 1507 | #[doc (alias = "ceiling" )] |
| 1508 | #[rustc_allow_incoherent_impl ] |
| 1509 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1510 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1511 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1512 | pub const fn ceil(self) -> f16 { |
| 1513 | intrinsics::ceilf16(self) |
| 1514 | } |
| 1515 | |
| 1516 | /// Returns the nearest integer to `self`. If a value is half-way between two |
| 1517 | /// integers, round away from `0.0`. |
| 1518 | /// |
| 1519 | /// This function always returns the precise result. |
| 1520 | /// |
| 1521 | /// # Examples |
| 1522 | /// |
| 1523 | /// ``` |
| 1524 | /// #![feature(f16)] |
| 1525 | /// # #[cfg (not(miri))] |
| 1526 | /// # #[cfg (target_has_reliable_f16)] { |
| 1527 | /// |
| 1528 | /// let f = 3.3_f16; |
| 1529 | /// let g = -3.3_f16; |
| 1530 | /// let h = -3.7_f16; |
| 1531 | /// let i = 3.5_f16; |
| 1532 | /// let j = 4.5_f16; |
| 1533 | /// |
| 1534 | /// assert_eq!(f.round(), 3.0); |
| 1535 | /// assert_eq!(g.round(), -3.0); |
| 1536 | /// assert_eq!(h.round(), -4.0); |
| 1537 | /// assert_eq!(i.round(), 4.0); |
| 1538 | /// assert_eq!(j.round(), 5.0); |
| 1539 | /// # } |
| 1540 | /// ``` |
| 1541 | #[inline ] |
| 1542 | #[rustc_allow_incoherent_impl ] |
| 1543 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1544 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1545 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1546 | pub const fn round(self) -> f16 { |
| 1547 | intrinsics::roundf16(self) |
| 1548 | } |
| 1549 | |
| 1550 | /// Returns the nearest integer to a number. Rounds half-way cases to the number |
| 1551 | /// with an even least significant digit. |
| 1552 | /// |
| 1553 | /// This function always returns the precise result. |
| 1554 | /// |
| 1555 | /// # Examples |
| 1556 | /// |
| 1557 | /// ``` |
| 1558 | /// #![feature(f16)] |
| 1559 | /// # #[cfg (not(miri))] |
| 1560 | /// # #[cfg (target_has_reliable_f16)] { |
| 1561 | /// |
| 1562 | /// let f = 3.3_f16; |
| 1563 | /// let g = -3.3_f16; |
| 1564 | /// let h = 3.5_f16; |
| 1565 | /// let i = 4.5_f16; |
| 1566 | /// |
| 1567 | /// assert_eq!(f.round_ties_even(), 3.0); |
| 1568 | /// assert_eq!(g.round_ties_even(), -3.0); |
| 1569 | /// assert_eq!(h.round_ties_even(), 4.0); |
| 1570 | /// assert_eq!(i.round_ties_even(), 4.0); |
| 1571 | /// # } |
| 1572 | /// ``` |
| 1573 | #[inline ] |
| 1574 | #[rustc_allow_incoherent_impl ] |
| 1575 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1576 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1577 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1578 | pub const fn round_ties_even(self) -> f16 { |
| 1579 | intrinsics::round_ties_even_f16(self) |
| 1580 | } |
| 1581 | |
| 1582 | /// Returns the integer part of `self`. |
| 1583 | /// This means that non-integer numbers are always truncated towards zero. |
| 1584 | /// |
| 1585 | /// This function always returns the precise result. |
| 1586 | /// |
| 1587 | /// # Examples |
| 1588 | /// |
| 1589 | /// ``` |
| 1590 | /// #![feature(f16)] |
| 1591 | /// # #[cfg (not(miri))] |
| 1592 | /// # #[cfg (target_has_reliable_f16)] { |
| 1593 | /// |
| 1594 | /// let f = 3.7_f16; |
| 1595 | /// let g = 3.0_f16; |
| 1596 | /// let h = -3.7_f16; |
| 1597 | /// |
| 1598 | /// assert_eq!(f.trunc(), 3.0); |
| 1599 | /// assert_eq!(g.trunc(), 3.0); |
| 1600 | /// assert_eq!(h.trunc(), -3.0); |
| 1601 | /// # } |
| 1602 | /// ``` |
| 1603 | #[inline ] |
| 1604 | #[doc (alias = "truncate" )] |
| 1605 | #[rustc_allow_incoherent_impl ] |
| 1606 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1607 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1608 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1609 | pub const fn trunc(self) -> f16 { |
| 1610 | intrinsics::truncf16(self) |
| 1611 | } |
| 1612 | |
| 1613 | /// Returns the fractional part of `self`. |
| 1614 | /// |
| 1615 | /// This function always returns the precise result. |
| 1616 | /// |
| 1617 | /// # Examples |
| 1618 | /// |
| 1619 | /// ``` |
| 1620 | /// #![feature(f16)] |
| 1621 | /// # #[cfg (not(miri))] |
| 1622 | /// # #[cfg (target_has_reliable_f16)] { |
| 1623 | /// |
| 1624 | /// let x = 3.6_f16; |
| 1625 | /// let y = -3.6_f16; |
| 1626 | /// let abs_difference_x = (x.fract() - 0.6).abs(); |
| 1627 | /// let abs_difference_y = (y.fract() - (-0.6)).abs(); |
| 1628 | /// |
| 1629 | /// assert!(abs_difference_x <= f16::EPSILON); |
| 1630 | /// assert!(abs_difference_y <= f16::EPSILON); |
| 1631 | /// # } |
| 1632 | /// ``` |
| 1633 | #[inline ] |
| 1634 | #[rustc_allow_incoherent_impl ] |
| 1635 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1636 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1637 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1638 | pub const fn fract(self) -> f16 { |
| 1639 | self - self.trunc() |
| 1640 | } |
| 1641 | |
| 1642 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
| 1643 | /// error, yielding a more accurate result than an unfused multiply-add. |
| 1644 | /// |
| 1645 | /// Using `mul_add` *may* be more performant than an unfused multiply-add if |
| 1646 | /// the target architecture has a dedicated `fma` CPU instruction. However, |
| 1647 | /// this is not always true, and will be heavily dependant on designing |
| 1648 | /// algorithms with specific target hardware in mind. |
| 1649 | /// |
| 1650 | /// # Precision |
| 1651 | /// |
| 1652 | /// The result of this operation is guaranteed to be the rounded |
| 1653 | /// infinite-precision result. It is specified by IEEE 754 as |
| 1654 | /// `fusedMultiplyAdd` and guaranteed not to change. |
| 1655 | /// |
| 1656 | /// # Examples |
| 1657 | /// |
| 1658 | /// ``` |
| 1659 | /// #![feature(f16)] |
| 1660 | /// # #[cfg (not(miri))] |
| 1661 | /// # #[cfg (target_has_reliable_f16)] { |
| 1662 | /// |
| 1663 | /// let m = 10.0_f16; |
| 1664 | /// let x = 4.0_f16; |
| 1665 | /// let b = 60.0_f16; |
| 1666 | /// |
| 1667 | /// assert_eq!(m.mul_add(x, b), 100.0); |
| 1668 | /// assert_eq!(m * x + b, 100.0); |
| 1669 | /// |
| 1670 | /// let one_plus_eps = 1.0_f16 + f16::EPSILON; |
| 1671 | /// let one_minus_eps = 1.0_f16 - f16::EPSILON; |
| 1672 | /// let minus_one = -1.0_f16; |
| 1673 | /// |
| 1674 | /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. |
| 1675 | /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON); |
| 1676 | /// // Different rounding with the non-fused multiply and add. |
| 1677 | /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); |
| 1678 | /// # } |
| 1679 | /// ``` |
| 1680 | #[inline ] |
| 1681 | #[rustc_allow_incoherent_impl ] |
| 1682 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1683 | #[doc (alias = "fmaf16" , alias = "fusedMultiplyAdd" )] |
| 1684 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1685 | pub const fn mul_add(self, a: f16, b: f16) -> f16 { |
| 1686 | intrinsics::fmaf16(self, a, b) |
| 1687 | } |
| 1688 | |
| 1689 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
| 1690 | /// |
| 1691 | /// This computes the integer `n` such that |
| 1692 | /// `self = n * rhs + self.rem_euclid(rhs)`. |
| 1693 | /// In other words, the result is `self / rhs` rounded to the integer `n` |
| 1694 | /// such that `self >= n * rhs`. |
| 1695 | /// |
| 1696 | /// # Precision |
| 1697 | /// |
| 1698 | /// The result of this operation is guaranteed to be the rounded |
| 1699 | /// infinite-precision result. |
| 1700 | /// |
| 1701 | /// # Examples |
| 1702 | /// |
| 1703 | /// ``` |
| 1704 | /// #![feature(f16)] |
| 1705 | /// # #[cfg (not(miri))] |
| 1706 | /// # #[cfg (target_has_reliable_f16)] { |
| 1707 | /// |
| 1708 | /// let a: f16 = 7.0; |
| 1709 | /// let b = 4.0; |
| 1710 | /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 |
| 1711 | /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 |
| 1712 | /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 |
| 1713 | /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 |
| 1714 | /// # } |
| 1715 | /// ``` |
| 1716 | #[inline ] |
| 1717 | #[rustc_allow_incoherent_impl ] |
| 1718 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1719 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1720 | pub fn div_euclid(self, rhs: f16) -> f16 { |
| 1721 | let q = (self / rhs).trunc(); |
| 1722 | if self % rhs < 0.0 { |
| 1723 | return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; |
| 1724 | } |
| 1725 | q |
| 1726 | } |
| 1727 | |
| 1728 | /// Calculates the least nonnegative remainder of `self` when |
| 1729 | /// divided by `rhs`. |
| 1730 | /// |
| 1731 | /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in |
| 1732 | /// most cases. However, due to a floating point round-off error it can |
| 1733 | /// result in `r == rhs.abs()`, violating the mathematical definition, if |
| 1734 | /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. |
| 1735 | /// This result is not an element of the function's codomain, but it is the |
| 1736 | /// closest floating point number in the real numbers and thus fulfills the |
| 1737 | /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` |
| 1738 | /// approximately. |
| 1739 | /// |
| 1740 | /// # Precision |
| 1741 | /// |
| 1742 | /// The result of this operation is guaranteed to be the rounded |
| 1743 | /// infinite-precision result. |
| 1744 | /// |
| 1745 | /// # Examples |
| 1746 | /// |
| 1747 | /// ``` |
| 1748 | /// #![feature(f16)] |
| 1749 | /// # #[cfg (not(miri))] |
| 1750 | /// # #[cfg (target_has_reliable_f16)] { |
| 1751 | /// |
| 1752 | /// let a: f16 = 7.0; |
| 1753 | /// let b = 4.0; |
| 1754 | /// assert_eq!(a.rem_euclid(b), 3.0); |
| 1755 | /// assert_eq!((-a).rem_euclid(b), 1.0); |
| 1756 | /// assert_eq!(a.rem_euclid(-b), 3.0); |
| 1757 | /// assert_eq!((-a).rem_euclid(-b), 1.0); |
| 1758 | /// // limitation due to round-off error |
| 1759 | /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0); |
| 1760 | /// # } |
| 1761 | /// ``` |
| 1762 | #[inline ] |
| 1763 | #[rustc_allow_incoherent_impl ] |
| 1764 | #[doc (alias = "modulo" , alias = "mod" )] |
| 1765 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1766 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1767 | pub fn rem_euclid(self, rhs: f16) -> f16 { |
| 1768 | let r = self % rhs; |
| 1769 | if r < 0.0 { r + rhs.abs() } else { r } |
| 1770 | } |
| 1771 | |
| 1772 | /// Raises a number to an integer power. |
| 1773 | /// |
| 1774 | /// Using this function is generally faster than using `powf`. |
| 1775 | /// It might have a different sequence of rounding operations than `powf`, |
| 1776 | /// so the results are not guaranteed to agree. |
| 1777 | /// |
| 1778 | /// Note that this function is special in that it can return non-NaN results for NaN inputs. For |
| 1779 | /// example, `f16::powi(f16::NAN, 0)` returns `1.0`. However, if an input is a *signaling* |
| 1780 | /// NaN, then the result is non-deterministically either a NaN or the result that the |
| 1781 | /// corresponding quiet NaN would produce. |
| 1782 | /// |
| 1783 | /// # Unspecified precision |
| 1784 | /// |
| 1785 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 1786 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 1787 | /// |
| 1788 | /// # Examples |
| 1789 | /// |
| 1790 | /// ``` |
| 1791 | /// #![feature(f16)] |
| 1792 | /// # #[cfg (not(miri))] |
| 1793 | /// # #[cfg (target_has_reliable_f16)] { |
| 1794 | /// |
| 1795 | /// let x = 2.0_f16; |
| 1796 | /// let abs_difference = (x.powi(2) - (x * x)).abs(); |
| 1797 | /// assert!(abs_difference <= f16::EPSILON); |
| 1798 | /// |
| 1799 | /// assert_eq!(f16::powi(f16::NAN, 0), 1.0); |
| 1800 | /// assert_eq!(f16::powi(0.0, 0), 1.0); |
| 1801 | /// # } |
| 1802 | /// ``` |
| 1803 | #[inline ] |
| 1804 | #[rustc_allow_incoherent_impl ] |
| 1805 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1806 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1807 | pub fn powi(self, n: i32) -> f16 { |
| 1808 | intrinsics::powif16(self, n) |
| 1809 | } |
| 1810 | |
| 1811 | /// Returns the square root of a number. |
| 1812 | /// |
| 1813 | /// Returns NaN if `self` is a negative number other than `-0.0`. |
| 1814 | /// |
| 1815 | /// # Precision |
| 1816 | /// |
| 1817 | /// The result of this operation is guaranteed to be the rounded |
| 1818 | /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` |
| 1819 | /// and guaranteed not to change. |
| 1820 | /// |
| 1821 | /// # Examples |
| 1822 | /// |
| 1823 | /// ``` |
| 1824 | /// #![feature(f16)] |
| 1825 | /// # #[cfg (not(miri))] |
| 1826 | /// # #[cfg (target_has_reliable_f16)] { |
| 1827 | /// |
| 1828 | /// let positive = 4.0_f16; |
| 1829 | /// let negative = -4.0_f16; |
| 1830 | /// let negative_zero = -0.0_f16; |
| 1831 | /// |
| 1832 | /// assert_eq!(positive.sqrt(), 2.0); |
| 1833 | /// assert!(negative.sqrt().is_nan()); |
| 1834 | /// assert!(negative_zero.sqrt() == negative_zero); |
| 1835 | /// # } |
| 1836 | /// ``` |
| 1837 | #[inline ] |
| 1838 | #[doc (alias = "squareRoot" )] |
| 1839 | #[rustc_allow_incoherent_impl ] |
| 1840 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1841 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1842 | pub fn sqrt(self) -> f16 { |
| 1843 | intrinsics::sqrtf16(self) |
| 1844 | } |
| 1845 | |
| 1846 | /// Returns the cube root of a number. |
| 1847 | /// |
| 1848 | /// # Unspecified precision |
| 1849 | /// |
| 1850 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 1851 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 1852 | /// |
| 1853 | /// This function currently corresponds to the `cbrtf` from libc on Unix |
| 1854 | /// and Windows. Note that this might change in the future. |
| 1855 | /// |
| 1856 | /// # Examples |
| 1857 | /// |
| 1858 | /// ``` |
| 1859 | /// #![feature(f16)] |
| 1860 | /// # #[cfg (not(miri))] |
| 1861 | /// # #[cfg (target_has_reliable_f16)] { |
| 1862 | /// |
| 1863 | /// let x = 8.0f16; |
| 1864 | /// |
| 1865 | /// // x^(1/3) - 2 == 0 |
| 1866 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
| 1867 | /// |
| 1868 | /// assert!(abs_difference <= f16::EPSILON); |
| 1869 | /// # } |
| 1870 | /// ``` |
| 1871 | #[inline ] |
| 1872 | #[rustc_allow_incoherent_impl ] |
| 1873 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1874 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1875 | pub fn cbrt(self) -> f16 { |
| 1876 | libm::cbrtf(self as f32) as f16 |
| 1877 | } |
| 1878 | } |
| 1879 | |