1macro_rules! int_impl {
2 (
3 Self = $SelfT:ty,
4 ActualT = $ActualT:ident,
5 UnsignedT = $UnsignedT:ty,
6
7 // These are all for use *only* in doc comments.
8 // As such, they're all passed as literals -- passing them as a string
9 // literal is fine if they need to be multiple code tokens.
10 // In non-comments, use the associated constants rather than these.
11 BITS = $BITS:literal,
12 BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13 Min = $Min:literal,
14 Max = $Max:literal,
15 rot = $rot:literal,
16 rot_op = $rot_op:literal,
17 rot_result = $rot_result:literal,
18 swap_op = $swap_op:literal,
19 swapped = $swapped:literal,
20 reversed = $reversed:literal,
21 le_bytes = $le_bytes:literal,
22 be_bytes = $be_bytes:literal,
23 to_xe_bytes_doc = $to_xe_bytes_doc:expr,
24 from_xe_bytes_doc = $from_xe_bytes_doc:expr,
25 bound_condition = $bound_condition:literal,
26 ) => {
27 /// The smallest value that can be represented by this integer type
28 #[doc = concat!("(&minus;2<sup>", $BITS_MINUS_ONE, "</sup>", $bound_condition, ").")]
29 ///
30 /// # Examples
31 ///
32 /// Basic usage:
33 ///
34 /// ```
35 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, ", stringify!($Min), ");")]
36 /// ```
37 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
38 pub const MIN: Self = !Self::MAX;
39
40 /// The largest value that can be represented by this integer type
41 #[doc = concat!("(2<sup>", $BITS_MINUS_ONE, "</sup> &minus; 1", $bound_condition, ").")]
42 ///
43 /// # Examples
44 ///
45 /// Basic usage:
46 ///
47 /// ```
48 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($Max), ");")]
49 /// ```
50 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
51 pub const MAX: Self = (<$UnsignedT>::MAX >> 1) as Self;
52
53 /// The size of this integer type in bits.
54 ///
55 /// # Examples
56 ///
57 /// ```
58 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
59 /// ```
60 #[stable(feature = "int_bits_const", since = "1.53.0")]
61 pub const BITS: u32 = <$UnsignedT>::BITS;
62
63 /// Returns the number of ones in the binary representation of `self`.
64 ///
65 /// # Examples
66 ///
67 /// Basic usage:
68 ///
69 /// ```
70 #[doc = concat!("let n = 0b100_0000", stringify!($SelfT), ";")]
71 ///
72 /// assert_eq!(n.count_ones(), 1);
73 /// ```
74 ///
75 #[stable(feature = "rust1", since = "1.0.0")]
76 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
77 #[doc(alias = "popcount")]
78 #[doc(alias = "popcnt")]
79 #[must_use = "this returns the result of the operation, \
80 without modifying the original"]
81 #[inline(always)]
82 pub const fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() }
83
84 /// Returns the number of zeros in the binary representation of `self`.
85 ///
86 /// # Examples
87 ///
88 /// Basic usage:
89 ///
90 /// ```
91 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.count_zeros(), 1);")]
92 /// ```
93 #[stable(feature = "rust1", since = "1.0.0")]
94 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
95 #[must_use = "this returns the result of the operation, \
96 without modifying the original"]
97 #[inline(always)]
98 pub const fn count_zeros(self) -> u32 {
99 (!self).count_ones()
100 }
101
102 /// Returns the number of leading zeros in the binary representation of `self`.
103 ///
104 /// Depending on what you're doing with the value, you might also be interested in the
105 /// [`ilog2`] function which returns a consistent number, even if the type widens.
106 ///
107 /// # Examples
108 ///
109 /// Basic usage:
110 ///
111 /// ```
112 #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
113 ///
114 /// assert_eq!(n.leading_zeros(), 0);
115 /// ```
116 #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
117 #[stable(feature = "rust1", since = "1.0.0")]
118 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
119 #[must_use = "this returns the result of the operation, \
120 without modifying the original"]
121 #[inline(always)]
122 pub const fn leading_zeros(self) -> u32 {
123 (self as $UnsignedT).leading_zeros()
124 }
125
126 /// Returns the number of trailing zeros in the binary representation of `self`.
127 ///
128 /// # Examples
129 ///
130 /// Basic usage:
131 ///
132 /// ```
133 #[doc = concat!("let n = -4", stringify!($SelfT), ";")]
134 ///
135 /// assert_eq!(n.trailing_zeros(), 2);
136 /// ```
137 #[stable(feature = "rust1", since = "1.0.0")]
138 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
139 #[must_use = "this returns the result of the operation, \
140 without modifying the original"]
141 #[inline(always)]
142 pub const fn trailing_zeros(self) -> u32 {
143 (self as $UnsignedT).trailing_zeros()
144 }
145
146 /// Returns the number of leading ones in the binary representation of `self`.
147 ///
148 /// # Examples
149 ///
150 /// Basic usage:
151 ///
152 /// ```
153 #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
154 ///
155 #[doc = concat!("assert_eq!(n.leading_ones(), ", stringify!($BITS), ");")]
156 /// ```
157 #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
158 #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
159 #[must_use = "this returns the result of the operation, \
160 without modifying the original"]
161 #[inline(always)]
162 pub const fn leading_ones(self) -> u32 {
163 (self as $UnsignedT).leading_ones()
164 }
165
166 /// Returns the number of trailing ones in the binary representation of `self`.
167 ///
168 /// # Examples
169 ///
170 /// Basic usage:
171 ///
172 /// ```
173 #[doc = concat!("let n = 3", stringify!($SelfT), ";")]
174 ///
175 /// assert_eq!(n.trailing_ones(), 2);
176 /// ```
177 #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
178 #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
179 #[must_use = "this returns the result of the operation, \
180 without modifying the original"]
181 #[inline(always)]
182 pub const fn trailing_ones(self) -> u32 {
183 (self as $UnsignedT).trailing_ones()
184 }
185
186 /// Returns `self` with only the most significant bit set, or `0` if
187 /// the input is `0`.
188 ///
189 /// # Examples
190 ///
191 /// Basic usage:
192 ///
193 /// ```
194 /// #![feature(isolate_most_least_significant_one)]
195 ///
196 #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
197 ///
198 /// assert_eq!(n.isolate_most_significant_one(), 0b_01000000);
199 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_most_significant_one(), 0);")]
200 /// ```
201 #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
202 #[must_use = "this returns the result of the operation, \
203 without modifying the original"]
204 #[inline(always)]
205 pub const fn isolate_most_significant_one(self) -> Self {
206 self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
207 }
208
209 /// Returns `self` with only the least significant bit set, or `0` if
210 /// the input is `0`.
211 ///
212 /// # Examples
213 ///
214 /// Basic usage:
215 ///
216 /// ```
217 /// #![feature(isolate_most_least_significant_one)]
218 ///
219 #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
220 ///
221 /// assert_eq!(n.isolate_least_significant_one(), 0b_00000100);
222 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_least_significant_one(), 0);")]
223 /// ```
224 #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
225 #[must_use = "this returns the result of the operation, \
226 without modifying the original"]
227 #[inline(always)]
228 pub const fn isolate_least_significant_one(self) -> Self {
229 self & self.wrapping_neg()
230 }
231
232 /// Returns the bit pattern of `self` reinterpreted as an unsigned integer of the same size.
233 ///
234 /// This produces the same result as an `as` cast, but ensures that the bit-width remains
235 /// the same.
236 ///
237 /// # Examples
238 ///
239 /// Basic usage:
240 ///
241 /// ```
242 ///
243 #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
244 ///
245 #[doc = concat!("assert_eq!(n.cast_unsigned(), ", stringify!($UnsignedT), "::MAX);")]
246 /// ```
247 #[stable(feature = "integer_sign_cast", since = "1.87.0")]
248 #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
249 #[must_use = "this returns the result of the operation, \
250 without modifying the original"]
251 #[inline(always)]
252 pub const fn cast_unsigned(self) -> $UnsignedT {
253 self as $UnsignedT
254 }
255
256 /// Shifts the bits to the left by a specified amount, `n`,
257 /// wrapping the truncated bits to the end of the resulting integer.
258 ///
259 /// Please note this isn't the same operation as the `<<` shifting operator!
260 ///
261 /// # Examples
262 ///
263 /// Basic usage:
264 ///
265 /// ```
266 #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
267 #[doc = concat!("let m = ", $rot_result, ";")]
268 ///
269 #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
270 /// ```
271 #[stable(feature = "rust1", since = "1.0.0")]
272 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
273 #[must_use = "this returns the result of the operation, \
274 without modifying the original"]
275 #[inline(always)]
276 pub const fn rotate_left(self, n: u32) -> Self {
277 (self as $UnsignedT).rotate_left(n) as Self
278 }
279
280 /// Shifts the bits to the right by a specified amount, `n`,
281 /// wrapping the truncated bits to the beginning of the resulting
282 /// integer.
283 ///
284 /// Please note this isn't the same operation as the `>>` shifting operator!
285 ///
286 /// # Examples
287 ///
288 /// Basic usage:
289 ///
290 /// ```
291 #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
292 #[doc = concat!("let m = ", $rot_op, ";")]
293 ///
294 #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
295 /// ```
296 #[stable(feature = "rust1", since = "1.0.0")]
297 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
298 #[must_use = "this returns the result of the operation, \
299 without modifying the original"]
300 #[inline(always)]
301 pub const fn rotate_right(self, n: u32) -> Self {
302 (self as $UnsignedT).rotate_right(n) as Self
303 }
304
305 /// Reverses the byte order of the integer.
306 ///
307 /// # Examples
308 ///
309 /// Basic usage:
310 ///
311 /// ```
312 #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
313 ///
314 /// let m = n.swap_bytes();
315 ///
316 #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
317 /// ```
318 #[stable(feature = "rust1", since = "1.0.0")]
319 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
320 #[must_use = "this returns the result of the operation, \
321 without modifying the original"]
322 #[inline(always)]
323 pub const fn swap_bytes(self) -> Self {
324 (self as $UnsignedT).swap_bytes() as Self
325 }
326
327 /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
328 /// second least-significant bit becomes second most-significant bit, etc.
329 ///
330 /// # Examples
331 ///
332 /// Basic usage:
333 ///
334 /// ```
335 #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
336 /// let m = n.reverse_bits();
337 ///
338 #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
339 #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
340 /// ```
341 #[stable(feature = "reverse_bits", since = "1.37.0")]
342 #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
343 #[must_use = "this returns the result of the operation, \
344 without modifying the original"]
345 #[inline(always)]
346 pub const fn reverse_bits(self) -> Self {
347 (self as $UnsignedT).reverse_bits() as Self
348 }
349
350 /// Converts an integer from big endian to the target's endianness.
351 ///
352 /// On big endian this is a no-op. On little endian the bytes are swapped.
353 ///
354 /// # Examples
355 ///
356 /// Basic usage:
357 ///
358 /// ```
359 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
360 ///
361 /// if cfg!(target_endian = "big") {
362 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
363 /// } else {
364 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
365 /// }
366 /// ```
367 #[stable(feature = "rust1", since = "1.0.0")]
368 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
369 #[must_use]
370 #[inline]
371 pub const fn from_be(x: Self) -> Self {
372 #[cfg(target_endian = "big")]
373 {
374 x
375 }
376 #[cfg(not(target_endian = "big"))]
377 {
378 x.swap_bytes()
379 }
380 }
381
382 /// Converts an integer from little endian to the target's endianness.
383 ///
384 /// On little endian this is a no-op. On big endian the bytes are swapped.
385 ///
386 /// # Examples
387 ///
388 /// Basic usage:
389 ///
390 /// ```
391 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
392 ///
393 /// if cfg!(target_endian = "little") {
394 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
395 /// } else {
396 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
397 /// }
398 /// ```
399 #[stable(feature = "rust1", since = "1.0.0")]
400 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
401 #[must_use]
402 #[inline]
403 pub const fn from_le(x: Self) -> Self {
404 #[cfg(target_endian = "little")]
405 {
406 x
407 }
408 #[cfg(not(target_endian = "little"))]
409 {
410 x.swap_bytes()
411 }
412 }
413
414 /// Converts `self` to big endian from the target's endianness.
415 ///
416 /// On big endian this is a no-op. On little endian the bytes are swapped.
417 ///
418 /// # Examples
419 ///
420 /// Basic usage:
421 ///
422 /// ```
423 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
424 ///
425 /// if cfg!(target_endian = "big") {
426 /// assert_eq!(n.to_be(), n)
427 /// } else {
428 /// assert_eq!(n.to_be(), n.swap_bytes())
429 /// }
430 /// ```
431 #[stable(feature = "rust1", since = "1.0.0")]
432 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
433 #[must_use = "this returns the result of the operation, \
434 without modifying the original"]
435 #[inline]
436 pub const fn to_be(self) -> Self { // or not to be?
437 #[cfg(target_endian = "big")]
438 {
439 self
440 }
441 #[cfg(not(target_endian = "big"))]
442 {
443 self.swap_bytes()
444 }
445 }
446
447 /// Converts `self` to little endian from the target's endianness.
448 ///
449 /// On little endian this is a no-op. On big endian the bytes are swapped.
450 ///
451 /// # Examples
452 ///
453 /// Basic usage:
454 ///
455 /// ```
456 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
457 ///
458 /// if cfg!(target_endian = "little") {
459 /// assert_eq!(n.to_le(), n)
460 /// } else {
461 /// assert_eq!(n.to_le(), n.swap_bytes())
462 /// }
463 /// ```
464 #[stable(feature = "rust1", since = "1.0.0")]
465 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
466 #[must_use = "this returns the result of the operation, \
467 without modifying the original"]
468 #[inline]
469 pub const fn to_le(self) -> Self {
470 #[cfg(target_endian = "little")]
471 {
472 self
473 }
474 #[cfg(not(target_endian = "little"))]
475 {
476 self.swap_bytes()
477 }
478 }
479
480 /// Checked integer addition. Computes `self + rhs`, returning `None`
481 /// if overflow occurred.
482 ///
483 /// # Examples
484 ///
485 /// Basic usage:
486 ///
487 /// ```
488 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), Some(", stringify!($SelfT), "::MAX - 1));")]
489 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
490 /// ```
491 #[stable(feature = "rust1", since = "1.0.0")]
492 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
493 #[must_use = "this returns the result of the operation, \
494 without modifying the original"]
495 #[inline]
496 pub const fn checked_add(self, rhs: Self) -> Option<Self> {
497 let (a, b) = self.overflowing_add(rhs);
498 if intrinsics::unlikely(b) { None } else { Some(a) }
499 }
500
501 /// Strict integer addition. Computes `self + rhs`, panicking
502 /// if overflow occurred.
503 ///
504 /// # Panics
505 ///
506 /// ## Overflow behavior
507 ///
508 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
509 ///
510 /// # Examples
511 ///
512 /// Basic usage:
513 ///
514 /// ```
515 /// #![feature(strict_overflow_ops)]
516 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
517 /// ```
518 ///
519 /// The following panics because of overflow:
520 ///
521 /// ```should_panic
522 /// #![feature(strict_overflow_ops)]
523 #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
524 /// ```
525 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
526 #[must_use = "this returns the result of the operation, \
527 without modifying the original"]
528 #[inline]
529 #[track_caller]
530 pub const fn strict_add(self, rhs: Self) -> Self {
531 let (a, b) = self.overflowing_add(rhs);
532 if b { overflow_panic::add() } else { a }
533 }
534
535 /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
536 /// cannot occur.
537 ///
538 /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
539 /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
540 ///
541 /// If you're just trying to avoid the panic in debug mode, then **do not**
542 /// use this. Instead, you're looking for [`wrapping_add`].
543 ///
544 /// # Safety
545 ///
546 /// This results in undefined behavior when
547 #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
548 /// i.e. when [`checked_add`] would return `None`.
549 ///
550 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
551 #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
552 #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
553 #[stable(feature = "unchecked_math", since = "1.79.0")]
554 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
555 #[must_use = "this returns the result of the operation, \
556 without modifying the original"]
557 #[inline(always)]
558 #[track_caller]
559 pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
560 assert_unsafe_precondition!(
561 check_language_ub,
562 concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
563 (
564 lhs: $SelfT = self,
565 rhs: $SelfT = rhs,
566 ) => !lhs.overflowing_add(rhs).1,
567 );
568
569 // SAFETY: this is guaranteed to be safe by the caller.
570 unsafe {
571 intrinsics::unchecked_add(self, rhs)
572 }
573 }
574
575 /// Checked addition with an unsigned integer. Computes `self + rhs`,
576 /// returning `None` if overflow occurred.
577 ///
578 /// # Examples
579 ///
580 /// Basic usage:
581 ///
582 /// ```
583 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_unsigned(2), Some(3));")]
584 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_unsigned(3), None);")]
585 /// ```
586 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
587 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
588 #[must_use = "this returns the result of the operation, \
589 without modifying the original"]
590 #[inline]
591 pub const fn checked_add_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
592 let (a, b) = self.overflowing_add_unsigned(rhs);
593 if intrinsics::unlikely(b) { None } else { Some(a) }
594 }
595
596 /// Strict addition with an unsigned integer. Computes `self + rhs`,
597 /// panicking if overflow occurred.
598 ///
599 /// # Panics
600 ///
601 /// ## Overflow behavior
602 ///
603 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
604 ///
605 /// # Examples
606 ///
607 /// Basic usage:
608 ///
609 /// ```
610 /// #![feature(strict_overflow_ops)]
611 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_unsigned(2), 3);")]
612 /// ```
613 ///
614 /// The following panics because of overflow:
615 ///
616 /// ```should_panic
617 /// #![feature(strict_overflow_ops)]
618 #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_unsigned(3);")]
619 /// ```
620 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
621 #[must_use = "this returns the result of the operation, \
622 without modifying the original"]
623 #[inline]
624 #[track_caller]
625 pub const fn strict_add_unsigned(self, rhs: $UnsignedT) -> Self {
626 let (a, b) = self.overflowing_add_unsigned(rhs);
627 if b { overflow_panic::add() } else { a }
628 }
629
630 /// Checked integer subtraction. Computes `self - rhs`, returning `None` if
631 /// overflow occurred.
632 ///
633 /// # Examples
634 ///
635 /// Basic usage:
636 ///
637 /// ```
638 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(1), Some(", stringify!($SelfT), "::MIN + 1));")]
639 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(3), None);")]
640 /// ```
641 #[stable(feature = "rust1", since = "1.0.0")]
642 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
643 #[must_use = "this returns the result of the operation, \
644 without modifying the original"]
645 #[inline]
646 pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
647 let (a, b) = self.overflowing_sub(rhs);
648 if intrinsics::unlikely(b) { None } else { Some(a) }
649 }
650
651 /// Strict integer subtraction. Computes `self - rhs`, panicking if
652 /// overflow occurred.
653 ///
654 /// # Panics
655 ///
656 /// ## Overflow behavior
657 ///
658 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
659 ///
660 /// # Examples
661 ///
662 /// Basic usage:
663 ///
664 /// ```
665 /// #![feature(strict_overflow_ops)]
666 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).strict_sub(1), ", stringify!($SelfT), "::MIN + 1);")]
667 /// ```
668 ///
669 /// The following panics because of overflow:
670 ///
671 /// ```should_panic
672 /// #![feature(strict_overflow_ops)]
673 #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub(3);")]
674 /// ```
675 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
676 #[must_use = "this returns the result of the operation, \
677 without modifying the original"]
678 #[inline]
679 #[track_caller]
680 pub const fn strict_sub(self, rhs: Self) -> Self {
681 let (a, b) = self.overflowing_sub(rhs);
682 if b { overflow_panic::sub() } else { a }
683 }
684
685 /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
686 /// cannot occur.
687 ///
688 /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
689 /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
690 ///
691 /// If you're just trying to avoid the panic in debug mode, then **do not**
692 /// use this. Instead, you're looking for [`wrapping_sub`].
693 ///
694 /// # Safety
695 ///
696 /// This results in undefined behavior when
697 #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
698 /// i.e. when [`checked_sub`] would return `None`.
699 ///
700 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
701 #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
702 #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
703 #[stable(feature = "unchecked_math", since = "1.79.0")]
704 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
705 #[must_use = "this returns the result of the operation, \
706 without modifying the original"]
707 #[inline(always)]
708 #[track_caller]
709 pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
710 assert_unsafe_precondition!(
711 check_language_ub,
712 concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
713 (
714 lhs: $SelfT = self,
715 rhs: $SelfT = rhs,
716 ) => !lhs.overflowing_sub(rhs).1,
717 );
718
719 // SAFETY: this is guaranteed to be safe by the caller.
720 unsafe {
721 intrinsics::unchecked_sub(self, rhs)
722 }
723 }
724
725 /// Checked subtraction with an unsigned integer. Computes `self - rhs`,
726 /// returning `None` if overflow occurred.
727 ///
728 /// # Examples
729 ///
730 /// Basic usage:
731 ///
732 /// ```
733 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_unsigned(2), Some(-1));")]
734 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub_unsigned(3), None);")]
735 /// ```
736 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
737 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
738 #[must_use = "this returns the result of the operation, \
739 without modifying the original"]
740 #[inline]
741 pub const fn checked_sub_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
742 let (a, b) = self.overflowing_sub_unsigned(rhs);
743 if intrinsics::unlikely(b) { None } else { Some(a) }
744 }
745
746 /// Strict subtraction with an unsigned integer. Computes `self - rhs`,
747 /// panicking if overflow occurred.
748 ///
749 /// # Panics
750 ///
751 /// ## Overflow behavior
752 ///
753 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
754 ///
755 /// # Examples
756 ///
757 /// Basic usage:
758 ///
759 /// ```
760 /// #![feature(strict_overflow_ops)]
761 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub_unsigned(2), -1);")]
762 /// ```
763 ///
764 /// The following panics because of overflow:
765 ///
766 /// ```should_panic
767 /// #![feature(strict_overflow_ops)]
768 #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub_unsigned(3);")]
769 /// ```
770 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
771 #[must_use = "this returns the result of the operation, \
772 without modifying the original"]
773 #[inline]
774 #[track_caller]
775 pub const fn strict_sub_unsigned(self, rhs: $UnsignedT) -> Self {
776 let (a, b) = self.overflowing_sub_unsigned(rhs);
777 if b { overflow_panic::sub() } else { a }
778 }
779
780 /// Checked integer multiplication. Computes `self * rhs`, returning `None` if
781 /// overflow occurred.
782 ///
783 /// # Examples
784 ///
785 /// Basic usage:
786 ///
787 /// ```
788 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(1), Some(", stringify!($SelfT), "::MAX));")]
789 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
790 /// ```
791 #[stable(feature = "rust1", since = "1.0.0")]
792 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
793 #[must_use = "this returns the result of the operation, \
794 without modifying the original"]
795 #[inline]
796 pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
797 let (a, b) = self.overflowing_mul(rhs);
798 if intrinsics::unlikely(b) { None } else { Some(a) }
799 }
800
801 /// Strict integer multiplication. Computes `self * rhs`, panicking if
802 /// overflow occurred.
803 ///
804 /// # Panics
805 ///
806 /// ## Overflow behavior
807 ///
808 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
809 ///
810 /// # Examples
811 ///
812 /// Basic usage:
813 ///
814 /// ```
815 /// #![feature(strict_overflow_ops)]
816 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.strict_mul(1), ", stringify!($SelfT), "::MAX);")]
817 /// ```
818 ///
819 /// The following panics because of overflow:
820 ///
821 /// ``` should_panic
822 /// #![feature(strict_overflow_ops)]
823 #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
824 /// ```
825 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
826 #[must_use = "this returns the result of the operation, \
827 without modifying the original"]
828 #[inline]
829 #[track_caller]
830 pub const fn strict_mul(self, rhs: Self) -> Self {
831 let (a, b) = self.overflowing_mul(rhs);
832 if b { overflow_panic::mul() } else { a }
833 }
834
835 /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
836 /// cannot occur.
837 ///
838 /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
839 /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
840 ///
841 /// If you're just trying to avoid the panic in debug mode, then **do not**
842 /// use this. Instead, you're looking for [`wrapping_mul`].
843 ///
844 /// # Safety
845 ///
846 /// This results in undefined behavior when
847 #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
848 /// i.e. when [`checked_mul`] would return `None`.
849 ///
850 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
851 #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
852 #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
853 #[stable(feature = "unchecked_math", since = "1.79.0")]
854 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
855 #[must_use = "this returns the result of the operation, \
856 without modifying the original"]
857 #[inline(always)]
858 #[track_caller]
859 pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
860 assert_unsafe_precondition!(
861 check_language_ub,
862 concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
863 (
864 lhs: $SelfT = self,
865 rhs: $SelfT = rhs,
866 ) => !lhs.overflowing_mul(rhs).1,
867 );
868
869 // SAFETY: this is guaranteed to be safe by the caller.
870 unsafe {
871 intrinsics::unchecked_mul(self, rhs)
872 }
873 }
874
875 /// Checked integer division. Computes `self / rhs`, returning `None` if `rhs == 0`
876 /// or the division results in overflow.
877 ///
878 /// # Examples
879 ///
880 /// Basic usage:
881 ///
882 /// ```
883 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div(-1), Some(", stringify!($Max), "));")]
884 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div(-1), None);")]
885 #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div(0), None);")]
886 /// ```
887 #[stable(feature = "rust1", since = "1.0.0")]
888 #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
889 #[must_use = "this returns the result of the operation, \
890 without modifying the original"]
891 #[inline]
892 pub const fn checked_div(self, rhs: Self) -> Option<Self> {
893 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
894 None
895 } else {
896 // SAFETY: div by zero and by INT_MIN have been checked above
897 Some(unsafe { intrinsics::unchecked_div(self, rhs) })
898 }
899 }
900
901 /// Strict integer division. Computes `self / rhs`, panicking
902 /// if overflow occurred.
903 ///
904 /// # Panics
905 ///
906 /// This function will panic if `rhs` is zero.
907 ///
908 /// ## Overflow behavior
909 ///
910 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
911 ///
912 /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
913 /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
914 /// that is too large to represent in the type.
915 ///
916 /// # Examples
917 ///
918 /// Basic usage:
919 ///
920 /// ```
921 /// #![feature(strict_overflow_ops)]
922 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div(-1), ", stringify!($Max), ");")]
923 /// ```
924 ///
925 /// The following panics because of overflow:
926 ///
927 /// ```should_panic
928 /// #![feature(strict_overflow_ops)]
929 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div(-1);")]
930 /// ```
931 ///
932 /// The following panics because of division by zero:
933 ///
934 /// ```should_panic
935 /// #![feature(strict_overflow_ops)]
936 #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
937 /// ```
938 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
939 #[must_use = "this returns the result of the operation, \
940 without modifying the original"]
941 #[inline]
942 #[track_caller]
943 pub const fn strict_div(self, rhs: Self) -> Self {
944 let (a, b) = self.overflowing_div(rhs);
945 if b { overflow_panic::div() } else { a }
946 }
947
948 /// Checked Euclidean division. Computes `self.div_euclid(rhs)`,
949 /// returning `None` if `rhs == 0` or the division results in overflow.
950 ///
951 /// # Examples
952 ///
953 /// Basic usage:
954 ///
955 /// ```
956 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_euclid(-1), Some(", stringify!($Max), "));")]
957 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_euclid(-1), None);")]
958 #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_euclid(0), None);")]
959 /// ```
960 #[stable(feature = "euclidean_division", since = "1.38.0")]
961 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
962 #[must_use = "this returns the result of the operation, \
963 without modifying the original"]
964 #[inline]
965 pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
966 // Using `&` helps LLVM see that it is the same check made in division.
967 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
968 None
969 } else {
970 Some(self.div_euclid(rhs))
971 }
972 }
973
974 /// Strict Euclidean division. Computes `self.div_euclid(rhs)`, panicking
975 /// if overflow occurred.
976 ///
977 /// # Panics
978 ///
979 /// This function will panic if `rhs` is zero.
980 ///
981 /// ## Overflow behavior
982 ///
983 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
984 ///
985 /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
986 /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
987 /// that is too large to represent in the type.
988 ///
989 /// # Examples
990 ///
991 /// Basic usage:
992 ///
993 /// ```
994 /// #![feature(strict_overflow_ops)]
995 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div_euclid(-1), ", stringify!($Max), ");")]
996 /// ```
997 ///
998 /// The following panics because of overflow:
999 ///
1000 /// ```should_panic
1001 /// #![feature(strict_overflow_ops)]
1002 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div_euclid(-1);")]
1003 /// ```
1004 ///
1005 /// The following panics because of division by zero:
1006 ///
1007 /// ```should_panic
1008 /// #![feature(strict_overflow_ops)]
1009 #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1010 /// ```
1011 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1012 #[must_use = "this returns the result of the operation, \
1013 without modifying the original"]
1014 #[inline]
1015 #[track_caller]
1016 pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1017 let (a, b) = self.overflowing_div_euclid(rhs);
1018 if b { overflow_panic::div() } else { a }
1019 }
1020
1021 /// Checked integer division without remainder. Computes `self / rhs`,
1022 /// returning `None` if `rhs == 0`, the division results in overflow,
1023 /// or `self % rhs != 0`.
1024 ///
1025 /// # Examples
1026 ///
1027 /// Basic usage:
1028 ///
1029 /// ```
1030 /// #![feature(exact_div)]
1031 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_exact_div(-1), Some(", stringify!($Max), "));")]
1032 #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_exact_div(2), None);")]
1033 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_exact_div(-1), None);")]
1034 #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_exact_div(0), None);")]
1035 /// ```
1036 #[unstable(
1037 feature = "exact_div",
1038 issue = "139911",
1039 )]
1040 #[must_use = "this returns the result of the operation, \
1041 without modifying the original"]
1042 #[inline]
1043 pub const fn checked_exact_div(self, rhs: Self) -> Option<Self> {
1044 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
1045 None
1046 } else {
1047 // SAFETY: division by zero and overflow are checked above
1048 unsafe {
1049 if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
1050 None
1051 } else {
1052 Some(intrinsics::exact_div(self, rhs))
1053 }
1054 }
1055 }
1056 }
1057
1058 /// Checked integer division without remainder. Computes `self / rhs`.
1059 ///
1060 /// # Panics
1061 ///
1062 /// This function will panic if `rhs == 0`, the division results in overflow,
1063 /// or `self % rhs != 0`.
1064 ///
1065 /// # Examples
1066 ///
1067 /// Basic usage:
1068 ///
1069 /// ```
1070 /// #![feature(exact_div)]
1071 #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(2), 32);")]
1072 #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(32), 2);")]
1073 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).exact_div(-1), ", stringify!($Max), ");")]
1074 /// ```
1075 ///
1076 /// ```should_panic
1077 /// #![feature(exact_div)]
1078 #[doc = concat!("let _ = 65", stringify!($SelfT), ".exact_div(2);")]
1079 /// ```
1080 /// ```should_panic
1081 /// #![feature(exact_div)]
1082 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.exact_div(-1);")]
1083 /// ```
1084 #[unstable(
1085 feature = "exact_div",
1086 issue = "139911",
1087 )]
1088 #[must_use = "this returns the result of the operation, \
1089 without modifying the original"]
1090 #[inline]
1091 pub const fn exact_div(self, rhs: Self) -> Self {
1092 match self.checked_exact_div(rhs) {
1093 Some(x) => x,
1094 None => panic!("Failed to divide without remainder"),
1095 }
1096 }
1097
1098 /// Unchecked integer division without remainder. Computes `self / rhs`.
1099 ///
1100 /// # Safety
1101 ///
1102 /// This results in undefined behavior when `rhs == 0`, `self % rhs != 0`, or
1103 #[doc = concat!("`self == ", stringify!($SelfT), "::MIN && rhs == -1`,")]
1104 /// i.e. when [`checked_exact_div`](Self::checked_exact_div) would return `None`.
1105 #[unstable(
1106 feature = "exact_div",
1107 issue = "139911",
1108 )]
1109 #[must_use = "this returns the result of the operation, \
1110 without modifying the original"]
1111 #[inline]
1112 pub const unsafe fn unchecked_exact_div(self, rhs: Self) -> Self {
1113 assert_unsafe_precondition!(
1114 check_language_ub,
1115 concat!(stringify!($SelfT), "::unchecked_exact_div cannot overflow, divide by zero, or leave a remainder"),
1116 (
1117 lhs: $SelfT = self,
1118 rhs: $SelfT = rhs,
1119 ) => rhs > 0 && lhs % rhs == 0 && (lhs != <$SelfT>::MIN || rhs != -1),
1120 );
1121 // SAFETY: Same precondition
1122 unsafe { intrinsics::exact_div(self, rhs) }
1123 }
1124
1125 /// Checked integer remainder. Computes `self % rhs`, returning `None` if
1126 /// `rhs == 0` or the division results in overflow.
1127 ///
1128 /// # Examples
1129 ///
1130 /// Basic usage:
1131 ///
1132 /// ```
1133 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1134 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1135 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem(-1), None);")]
1136 /// ```
1137 #[stable(feature = "wrapping", since = "1.7.0")]
1138 #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1139 #[must_use = "this returns the result of the operation, \
1140 without modifying the original"]
1141 #[inline]
1142 pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1143 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
1144 None
1145 } else {
1146 // SAFETY: div by zero and by INT_MIN have been checked above
1147 Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1148 }
1149 }
1150
1151 /// Strict integer remainder. Computes `self % rhs`, panicking if
1152 /// the division results in overflow.
1153 ///
1154 /// # Panics
1155 ///
1156 /// This function will panic if `rhs` is zero.
1157 ///
1158 /// ## Overflow behavior
1159 ///
1160 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1161 ///
1162 /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1163 /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1164 ///
1165 /// # Examples
1166 ///
1167 /// Basic usage:
1168 ///
1169 /// ```
1170 /// #![feature(strict_overflow_ops)]
1171 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem(2), 1);")]
1172 /// ```
1173 ///
1174 /// The following panics because of division by zero:
1175 ///
1176 /// ```should_panic
1177 /// #![feature(strict_overflow_ops)]
1178 #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1179 /// ```
1180 ///
1181 /// The following panics because of overflow:
1182 ///
1183 /// ```should_panic
1184 /// #![feature(strict_overflow_ops)]
1185 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem(-1);")]
1186 /// ```
1187 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1188 #[must_use = "this returns the result of the operation, \
1189 without modifying the original"]
1190 #[inline]
1191 #[track_caller]
1192 pub const fn strict_rem(self, rhs: Self) -> Self {
1193 let (a, b) = self.overflowing_rem(rhs);
1194 if b { overflow_panic::rem() } else { a }
1195 }
1196
1197 /// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning `None`
1198 /// if `rhs == 0` or the division results in overflow.
1199 ///
1200 /// # Examples
1201 ///
1202 /// Basic usage:
1203 ///
1204 /// ```
1205 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1206 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1207 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem_euclid(-1), None);")]
1208 /// ```
1209 #[stable(feature = "euclidean_division", since = "1.38.0")]
1210 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1211 #[must_use = "this returns the result of the operation, \
1212 without modifying the original"]
1213 #[inline]
1214 pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1215 // Using `&` helps LLVM see that it is the same check made in division.
1216 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
1217 None
1218 } else {
1219 Some(self.rem_euclid(rhs))
1220 }
1221 }
1222
1223 /// Strict Euclidean remainder. Computes `self.rem_euclid(rhs)`, panicking if
1224 /// the division results in overflow.
1225 ///
1226 /// # Panics
1227 ///
1228 /// This function will panic if `rhs` is zero.
1229 ///
1230 /// ## Overflow behavior
1231 ///
1232 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1233 ///
1234 /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1235 /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1236 ///
1237 /// # Examples
1238 ///
1239 /// Basic usage:
1240 ///
1241 /// ```
1242 /// #![feature(strict_overflow_ops)]
1243 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem_euclid(2), 1);")]
1244 /// ```
1245 ///
1246 /// The following panics because of division by zero:
1247 ///
1248 /// ```should_panic
1249 /// #![feature(strict_overflow_ops)]
1250 #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1251 /// ```
1252 ///
1253 /// The following panics because of overflow:
1254 ///
1255 /// ```should_panic
1256 /// #![feature(strict_overflow_ops)]
1257 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem_euclid(-1);")]
1258 /// ```
1259 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1260 #[must_use = "this returns the result of the operation, \
1261 without modifying the original"]
1262 #[inline]
1263 #[track_caller]
1264 pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1265 let (a, b) = self.overflowing_rem_euclid(rhs);
1266 if b { overflow_panic::rem() } else { a }
1267 }
1268
1269 /// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
1270 ///
1271 /// # Examples
1272 ///
1273 /// Basic usage:
1274 ///
1275 /// ```
1276 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_neg(), Some(-5));")]
1277 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_neg(), None);")]
1278 /// ```
1279 #[stable(feature = "wrapping", since = "1.7.0")]
1280 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1281 #[must_use = "this returns the result of the operation, \
1282 without modifying the original"]
1283 #[inline]
1284 pub const fn checked_neg(self) -> Option<Self> {
1285 let (a, b) = self.overflowing_neg();
1286 if intrinsics::unlikely(b) { None } else { Some(a) }
1287 }
1288
1289 /// Unchecked negation. Computes `-self`, assuming overflow cannot occur.
1290 ///
1291 /// # Safety
1292 ///
1293 /// This results in undefined behavior when
1294 #[doc = concat!("`self == ", stringify!($SelfT), "::MIN`,")]
1295 /// i.e. when [`checked_neg`] would return `None`.
1296 ///
1297 #[doc = concat!("[`checked_neg`]: ", stringify!($SelfT), "::checked_neg")]
1298 #[unstable(
1299 feature = "unchecked_neg",
1300 reason = "niche optimization path",
1301 issue = "85122",
1302 )]
1303 #[must_use = "this returns the result of the operation, \
1304 without modifying the original"]
1305 #[inline(always)]
1306 #[track_caller]
1307 pub const unsafe fn unchecked_neg(self) -> Self {
1308 assert_unsafe_precondition!(
1309 check_language_ub,
1310 concat!(stringify!($SelfT), "::unchecked_neg cannot overflow"),
1311 (
1312 lhs: $SelfT = self,
1313 ) => !lhs.overflowing_neg().1,
1314 );
1315
1316 // SAFETY: this is guaranteed to be safe by the caller.
1317 unsafe {
1318 intrinsics::unchecked_sub(0, self)
1319 }
1320 }
1321
1322 /// Strict negation. Computes `-self`, panicking if `self == MIN`.
1323 ///
1324 /// # Panics
1325 ///
1326 /// ## Overflow behavior
1327 ///
1328 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1329 ///
1330 /// # Examples
1331 ///
1332 /// Basic usage:
1333 ///
1334 /// ```
1335 /// #![feature(strict_overflow_ops)]
1336 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_neg(), -5);")]
1337 /// ```
1338 ///
1339 /// The following panics because of overflow:
1340 ///
1341 /// ```should_panic
1342 /// #![feature(strict_overflow_ops)]
1343 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_neg();")]
1344 ///
1345 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1346 #[must_use = "this returns the result of the operation, \
1347 without modifying the original"]
1348 #[inline]
1349 #[track_caller]
1350 pub const fn strict_neg(self) -> Self {
1351 let (a, b) = self.overflowing_neg();
1352 if b { overflow_panic::neg() } else { a }
1353 }
1354
1355 /// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is larger
1356 /// than or equal to the number of bits in `self`.
1357 ///
1358 /// # Examples
1359 ///
1360 /// Basic usage:
1361 ///
1362 /// ```
1363 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1364 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(129), None);")]
1365 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1366 /// ```
1367 #[stable(feature = "wrapping", since = "1.7.0")]
1368 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1369 #[must_use = "this returns the result of the operation, \
1370 without modifying the original"]
1371 #[inline]
1372 pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1373 // Not using overflowing_shl as that's a wrapping shift
1374 if rhs < Self::BITS {
1375 // SAFETY: just checked the RHS is in-range
1376 Some(unsafe { self.unchecked_shl(rhs) })
1377 } else {
1378 None
1379 }
1380 }
1381
1382 /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1383 /// than or equal to the number of bits in `self`.
1384 ///
1385 /// # Panics
1386 ///
1387 /// ## Overflow behavior
1388 ///
1389 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1390 ///
1391 /// # Examples
1392 ///
1393 /// Basic usage:
1394 ///
1395 /// ```
1396 /// #![feature(strict_overflow_ops)]
1397 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1398 /// ```
1399 ///
1400 /// The following panics because of overflow:
1401 ///
1402 /// ```should_panic
1403 /// #![feature(strict_overflow_ops)]
1404 #[doc = concat!("let _ = 0x1", stringify!($SelfT), ".strict_shl(129);")]
1405 /// ```
1406 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1407 #[must_use = "this returns the result of the operation, \
1408 without modifying the original"]
1409 #[inline]
1410 #[track_caller]
1411 pub const fn strict_shl(self, rhs: u32) -> Self {
1412 let (a, b) = self.overflowing_shl(rhs);
1413 if b { overflow_panic::shl() } else { a }
1414 }
1415
1416 /// Unchecked shift left. Computes `self << rhs`, assuming that
1417 /// `rhs` is less than the number of bits in `self`.
1418 ///
1419 /// # Safety
1420 ///
1421 /// This results in undefined behavior if `rhs` is larger than
1422 /// or equal to the number of bits in `self`,
1423 /// i.e. when [`checked_shl`] would return `None`.
1424 ///
1425 #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1426 #[unstable(
1427 feature = "unchecked_shifts",
1428 reason = "niche optimization path",
1429 issue = "85122",
1430 )]
1431 #[must_use = "this returns the result of the operation, \
1432 without modifying the original"]
1433 #[inline(always)]
1434 #[track_caller]
1435 pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1436 assert_unsafe_precondition!(
1437 check_language_ub,
1438 concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1439 (
1440 rhs: u32 = rhs,
1441 ) => rhs < <$ActualT>::BITS,
1442 );
1443
1444 // SAFETY: this is guaranteed to be safe by the caller.
1445 unsafe {
1446 intrinsics::unchecked_shl(self, rhs)
1447 }
1448 }
1449
1450 /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1451 ///
1452 /// If `rhs` is larger or equal to the number of bits in `self`,
1453 /// the entire value is shifted out, and `0` is returned.
1454 ///
1455 /// # Examples
1456 ///
1457 /// Basic usage:
1458 /// ```
1459 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1460 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1461 /// ```
1462 #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1463 #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1464 #[must_use = "this returns the result of the operation, \
1465 without modifying the original"]
1466 #[inline]
1467 pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1468 if rhs < Self::BITS {
1469 // SAFETY:
1470 // rhs is just checked to be in-range above
1471 unsafe { self.unchecked_shl(rhs) }
1472 } else {
1473 0
1474 }
1475 }
1476
1477 /// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs` is
1478 /// larger than or equal to the number of bits in `self`.
1479 ///
1480 /// # Examples
1481 ///
1482 /// Basic usage:
1483 ///
1484 /// ```
1485 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1486 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(128), None);")]
1487 /// ```
1488 #[stable(feature = "wrapping", since = "1.7.0")]
1489 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1490 #[must_use = "this returns the result of the operation, \
1491 without modifying the original"]
1492 #[inline]
1493 pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1494 // Not using overflowing_shr as that's a wrapping shift
1495 if rhs < Self::BITS {
1496 // SAFETY: just checked the RHS is in-range
1497 Some(unsafe { self.unchecked_shr(rhs) })
1498 } else {
1499 None
1500 }
1501 }
1502
1503 /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
1504 /// larger than or equal to the number of bits in `self`.
1505 ///
1506 /// # Panics
1507 ///
1508 /// ## Overflow behavior
1509 ///
1510 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1511 ///
1512 /// # Examples
1513 ///
1514 /// Basic usage:
1515 ///
1516 /// ```
1517 /// #![feature(strict_overflow_ops)]
1518 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1519 /// ```
1520 ///
1521 /// The following panics because of overflow:
1522 ///
1523 /// ```should_panic
1524 /// #![feature(strict_overflow_ops)]
1525 #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(128);")]
1526 /// ```
1527 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1528 #[must_use = "this returns the result of the operation, \
1529 without modifying the original"]
1530 #[inline]
1531 #[track_caller]
1532 pub const fn strict_shr(self, rhs: u32) -> Self {
1533 let (a, b) = self.overflowing_shr(rhs);
1534 if b { overflow_panic::shr() } else { a }
1535 }
1536
1537 /// Unchecked shift right. Computes `self >> rhs`, assuming that
1538 /// `rhs` is less than the number of bits in `self`.
1539 ///
1540 /// # Safety
1541 ///
1542 /// This results in undefined behavior if `rhs` is larger than
1543 /// or equal to the number of bits in `self`,
1544 /// i.e. when [`checked_shr`] would return `None`.
1545 ///
1546 #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1547 #[unstable(
1548 feature = "unchecked_shifts",
1549 reason = "niche optimization path",
1550 issue = "85122",
1551 )]
1552 #[must_use = "this returns the result of the operation, \
1553 without modifying the original"]
1554 #[inline(always)]
1555 #[track_caller]
1556 pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1557 assert_unsafe_precondition!(
1558 check_language_ub,
1559 concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1560 (
1561 rhs: u32 = rhs,
1562 ) => rhs < <$ActualT>::BITS,
1563 );
1564
1565 // SAFETY: this is guaranteed to be safe by the caller.
1566 unsafe {
1567 intrinsics::unchecked_shr(self, rhs)
1568 }
1569 }
1570
1571 /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1572 ///
1573 /// If `rhs` is larger or equal to the number of bits in `self`,
1574 /// the entire value is shifted out, which yields `0` for a positive number,
1575 /// and `-1` for a negative number.
1576 ///
1577 /// # Examples
1578 ///
1579 /// Basic usage:
1580 /// ```
1581 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1582 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1583 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.unbounded_shr(129), -1);")]
1584 /// ```
1585 #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1586 #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1587 #[must_use = "this returns the result of the operation, \
1588 without modifying the original"]
1589 #[inline]
1590 pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1591 if rhs < Self::BITS {
1592 // SAFETY:
1593 // rhs is just checked to be in-range above
1594 unsafe { self.unchecked_shr(rhs) }
1595 } else {
1596 // A shift by `Self::BITS-1` suffices for signed integers, because the sign bit is copied for each of the shifted bits.
1597
1598 // SAFETY:
1599 // `Self::BITS-1` is guaranteed to be less than `Self::BITS`
1600 unsafe { self.unchecked_shr(Self::BITS - 1) }
1601 }
1602 }
1603
1604 /// Checked absolute value. Computes `self.abs()`, returning `None` if
1605 /// `self == MIN`.
1606 ///
1607 /// # Examples
1608 ///
1609 /// Basic usage:
1610 ///
1611 /// ```
1612 #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_abs(), Some(5));")]
1613 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_abs(), None);")]
1614 /// ```
1615 #[stable(feature = "no_panic_abs", since = "1.13.0")]
1616 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1617 #[must_use = "this returns the result of the operation, \
1618 without modifying the original"]
1619 #[inline]
1620 pub const fn checked_abs(self) -> Option<Self> {
1621 if self.is_negative() {
1622 self.checked_neg()
1623 } else {
1624 Some(self)
1625 }
1626 }
1627
1628 /// Strict absolute value. Computes `self.abs()`, panicking if
1629 /// `self == MIN`.
1630 ///
1631 /// # Panics
1632 ///
1633 /// ## Overflow behavior
1634 ///
1635 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1636 ///
1637 /// # Examples
1638 ///
1639 /// Basic usage:
1640 ///
1641 /// ```
1642 /// #![feature(strict_overflow_ops)]
1643 #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").strict_abs(), 5);")]
1644 /// ```
1645 ///
1646 /// The following panics because of overflow:
1647 ///
1648 /// ```should_panic
1649 /// #![feature(strict_overflow_ops)]
1650 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_abs();")]
1651 /// ```
1652 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1653 #[must_use = "this returns the result of the operation, \
1654 without modifying the original"]
1655 #[inline]
1656 #[track_caller]
1657 pub const fn strict_abs(self) -> Self {
1658 if self.is_negative() {
1659 self.strict_neg()
1660 } else {
1661 self
1662 }
1663 }
1664
1665 /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1666 /// overflow occurred.
1667 ///
1668 /// # Examples
1669 ///
1670 /// Basic usage:
1671 ///
1672 /// ```
1673 #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".checked_pow(2), Some(64));")]
1674 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1675 /// ```
1676
1677 #[stable(feature = "no_panic_pow", since = "1.34.0")]
1678 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1679 #[must_use = "this returns the result of the operation, \
1680 without modifying the original"]
1681 #[inline]
1682 pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1683 if exp == 0 {
1684 return Some(1);
1685 }
1686 let mut base = self;
1687 let mut acc: Self = 1;
1688
1689 loop {
1690 if (exp & 1) == 1 {
1691 acc = try_opt!(acc.checked_mul(base));
1692 // since exp!=0, finally the exp must be 1.
1693 if exp == 1 {
1694 return Some(acc);
1695 }
1696 }
1697 exp /= 2;
1698 base = try_opt!(base.checked_mul(base));
1699 }
1700 }
1701
1702 /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1703 /// overflow occurred.
1704 ///
1705 /// # Panics
1706 ///
1707 /// ## Overflow behavior
1708 ///
1709 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1710 ///
1711 /// # Examples
1712 ///
1713 /// Basic usage:
1714 ///
1715 /// ```
1716 /// #![feature(strict_overflow_ops)]
1717 #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".strict_pow(2), 64);")]
1718 /// ```
1719 ///
1720 /// The following panics because of overflow:
1721 ///
1722 /// ```should_panic
1723 /// #![feature(strict_overflow_ops)]
1724 #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1725 /// ```
1726 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1727 #[must_use = "this returns the result of the operation, \
1728 without modifying the original"]
1729 #[inline]
1730 #[track_caller]
1731 pub const fn strict_pow(self, mut exp: u32) -> Self {
1732 if exp == 0 {
1733 return 1;
1734 }
1735 let mut base = self;
1736 let mut acc: Self = 1;
1737
1738 loop {
1739 if (exp & 1) == 1 {
1740 acc = acc.strict_mul(base);
1741 // since exp!=0, finally the exp must be 1.
1742 if exp == 1 {
1743 return acc;
1744 }
1745 }
1746 exp /= 2;
1747 base = base.strict_mul(base);
1748 }
1749 }
1750
1751 /// Returns the square root of the number, rounded down.
1752 ///
1753 /// Returns `None` if `self` is negative.
1754 ///
1755 /// # Examples
1756 ///
1757 /// Basic usage:
1758 /// ```
1759 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
1760 /// ```
1761 #[stable(feature = "isqrt", since = "1.84.0")]
1762 #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
1763 #[must_use = "this returns the result of the operation, \
1764 without modifying the original"]
1765 #[inline]
1766 pub const fn checked_isqrt(self) -> Option<Self> {
1767 if self < 0 {
1768 None
1769 } else {
1770 // SAFETY: Input is nonnegative in this `else` branch.
1771 let result = unsafe {
1772 crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT
1773 };
1774
1775 // Inform the optimizer what the range of outputs is. If
1776 // testing `core` crashes with no panic message and a
1777 // `num::int_sqrt::i*` test failed, it's because your edits
1778 // caused these assertions to become false.
1779 //
1780 // SAFETY: Integer square root is a monotonically nondecreasing
1781 // function, which means that increasing the input will never
1782 // cause the output to decrease. Thus, since the input for
1783 // nonnegative signed integers is bounded by
1784 // `[0, <$ActualT>::MAX]`, sqrt(n) will be bounded by
1785 // `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
1786 unsafe {
1787 // SAFETY: `<$ActualT>::MAX` is nonnegative.
1788 const MAX_RESULT: $SelfT = unsafe {
1789 crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT
1790 };
1791
1792 crate::hint::assert_unchecked(result >= 0);
1793 crate::hint::assert_unchecked(result <= MAX_RESULT);
1794 }
1795
1796 Some(result)
1797 }
1798 }
1799
1800 /// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
1801 /// bounds instead of overflowing.
1802 ///
1803 /// # Examples
1804 ///
1805 /// Basic usage:
1806 ///
1807 /// ```
1808 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1809 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(100), ", stringify!($SelfT), "::MAX);")]
1810 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_add(-1), ", stringify!($SelfT), "::MIN);")]
1811 /// ```
1812
1813 #[stable(feature = "rust1", since = "1.0.0")]
1814 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1815 #[must_use = "this returns the result of the operation, \
1816 without modifying the original"]
1817 #[inline(always)]
1818 pub const fn saturating_add(self, rhs: Self) -> Self {
1819 intrinsics::saturating_add(self, rhs)
1820 }
1821
1822 /// Saturating addition with an unsigned integer. Computes `self + rhs`,
1823 /// saturating at the numeric bounds instead of overflowing.
1824 ///
1825 /// # Examples
1826 ///
1827 /// Basic usage:
1828 ///
1829 /// ```
1830 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_unsigned(2), 3);")]
1831 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add_unsigned(100), ", stringify!($SelfT), "::MAX);")]
1832 /// ```
1833 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1834 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1835 #[must_use = "this returns the result of the operation, \
1836 without modifying the original"]
1837 #[inline]
1838 pub const fn saturating_add_unsigned(self, rhs: $UnsignedT) -> Self {
1839 // Overflow can only happen at the upper bound
1840 // We cannot use `unwrap_or` here because it is not `const`
1841 match self.checked_add_unsigned(rhs) {
1842 Some(x) => x,
1843 None => Self::MAX,
1844 }
1845 }
1846
1847 /// Saturating integer subtraction. Computes `self - rhs`, saturating at the
1848 /// numeric bounds instead of overflowing.
1849 ///
1850 /// # Examples
1851 ///
1852 /// Basic usage:
1853 ///
1854 /// ```
1855 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(127), -27);")]
1856 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub(100), ", stringify!($SelfT), "::MIN);")]
1857 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_sub(-1), ", stringify!($SelfT), "::MAX);")]
1858 /// ```
1859 #[stable(feature = "rust1", since = "1.0.0")]
1860 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1861 #[must_use = "this returns the result of the operation, \
1862 without modifying the original"]
1863 #[inline(always)]
1864 pub const fn saturating_sub(self, rhs: Self) -> Self {
1865 intrinsics::saturating_sub(self, rhs)
1866 }
1867
1868 /// Saturating subtraction with an unsigned integer. Computes `self - rhs`,
1869 /// saturating at the numeric bounds instead of overflowing.
1870 ///
1871 /// # Examples
1872 ///
1873 /// Basic usage:
1874 ///
1875 /// ```
1876 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub_unsigned(127), -27);")]
1877 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub_unsigned(100), ", stringify!($SelfT), "::MIN);")]
1878 /// ```
1879 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1880 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1881 #[must_use = "this returns the result of the operation, \
1882 without modifying the original"]
1883 #[inline]
1884 pub const fn saturating_sub_unsigned(self, rhs: $UnsignedT) -> Self {
1885 // Overflow can only happen at the lower bound
1886 // We cannot use `unwrap_or` here because it is not `const`
1887 match self.checked_sub_unsigned(rhs) {
1888 Some(x) => x,
1889 None => Self::MIN,
1890 }
1891 }
1892
1893 /// Saturating integer negation. Computes `-self`, returning `MAX` if `self == MIN`
1894 /// instead of overflowing.
1895 ///
1896 /// # Examples
1897 ///
1898 /// Basic usage:
1899 ///
1900 /// ```
1901 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_neg(), -100);")]
1902 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_neg(), 100);")]
1903 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_neg(), ", stringify!($SelfT), "::MAX);")]
1904 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_neg(), ", stringify!($SelfT), "::MIN + 1);")]
1905 /// ```
1906
1907 #[stable(feature = "saturating_neg", since = "1.45.0")]
1908 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1909 #[must_use = "this returns the result of the operation, \
1910 without modifying the original"]
1911 #[inline(always)]
1912 pub const fn saturating_neg(self) -> Self {
1913 intrinsics::saturating_sub(0, self)
1914 }
1915
1916 /// Saturating absolute value. Computes `self.abs()`, returning `MAX` if `self ==
1917 /// MIN` instead of overflowing.
1918 ///
1919 /// # Examples
1920 ///
1921 /// Basic usage:
1922 ///
1923 /// ```
1924 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_abs(), 100);")]
1925 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_abs(), 100);")]
1926 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1927 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1928 /// ```
1929
1930 #[stable(feature = "saturating_neg", since = "1.45.0")]
1931 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1932 #[must_use = "this returns the result of the operation, \
1933 without modifying the original"]
1934 #[inline]
1935 pub const fn saturating_abs(self) -> Self {
1936 if self.is_negative() {
1937 self.saturating_neg()
1938 } else {
1939 self
1940 }
1941 }
1942
1943 /// Saturating integer multiplication. Computes `self * rhs`, saturating at the
1944 /// numeric bounds instead of overflowing.
1945 ///
1946 /// # Examples
1947 ///
1948 /// Basic usage:
1949 ///
1950 /// ```
1951 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".saturating_mul(12), 120);")]
1952 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_mul(10), ", stringify!($SelfT), "::MAX);")]
1953 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_mul(10), ", stringify!($SelfT), "::MIN);")]
1954 /// ```
1955 #[stable(feature = "wrapping", since = "1.7.0")]
1956 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1957 #[must_use = "this returns the result of the operation, \
1958 without modifying the original"]
1959 #[inline]
1960 pub const fn saturating_mul(self, rhs: Self) -> Self {
1961 match self.checked_mul(rhs) {
1962 Some(x) => x,
1963 None => if (self < 0) == (rhs < 0) {
1964 Self::MAX
1965 } else {
1966 Self::MIN
1967 }
1968 }
1969 }
1970
1971 /// Saturating integer division. Computes `self / rhs`, saturating at the
1972 /// numeric bounds instead of overflowing.
1973 ///
1974 /// # Panics
1975 ///
1976 /// This function will panic if `rhs` is zero.
1977 ///
1978 /// # Examples
1979 ///
1980 /// Basic usage:
1981 ///
1982 /// ```
1983 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
1984 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_div(-1), ", stringify!($SelfT), "::MIN + 1);")]
1985 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_div(-1), ", stringify!($SelfT), "::MAX);")]
1986 ///
1987 /// ```
1988 #[stable(feature = "saturating_div", since = "1.58.0")]
1989 #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
1990 #[must_use = "this returns the result of the operation, \
1991 without modifying the original"]
1992 #[inline]
1993 pub const fn saturating_div(self, rhs: Self) -> Self {
1994 match self.overflowing_div(rhs) {
1995 (result, false) => result,
1996 (_result, true) => Self::MAX, // MIN / -1 is the only possible saturating overflow
1997 }
1998 }
1999
2000 /// Saturating integer exponentiation. Computes `self.pow(exp)`,
2001 /// saturating at the numeric bounds instead of overflowing.
2002 ///
2003 /// # Examples
2004 ///
2005 /// Basic usage:
2006 ///
2007 /// ```
2008 #[doc = concat!("assert_eq!((-4", stringify!($SelfT), ").saturating_pow(3), -64);")]
2009 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
2010 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(3), ", stringify!($SelfT), "::MIN);")]
2011 /// ```
2012 #[stable(feature = "no_panic_pow", since = "1.34.0")]
2013 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2014 #[must_use = "this returns the result of the operation, \
2015 without modifying the original"]
2016 #[inline]
2017 pub const fn saturating_pow(self, exp: u32) -> Self {
2018 match self.checked_pow(exp) {
2019 Some(x) => x,
2020 None if self < 0 && exp % 2 == 1 => Self::MIN,
2021 None => Self::MAX,
2022 }
2023 }
2024
2025 /// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the
2026 /// boundary of the type.
2027 ///
2028 /// # Examples
2029 ///
2030 /// Basic usage:
2031 ///
2032 /// ```
2033 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add(27), 127);")]
2034 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add(2), ", stringify!($SelfT), "::MIN + 1);")]
2035 /// ```
2036 #[stable(feature = "rust1", since = "1.0.0")]
2037 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2038 #[must_use = "this returns the result of the operation, \
2039 without modifying the original"]
2040 #[inline(always)]
2041 pub const fn wrapping_add(self, rhs: Self) -> Self {
2042 intrinsics::wrapping_add(self, rhs)
2043 }
2044
2045 /// Wrapping (modular) addition with an unsigned integer. Computes
2046 /// `self + rhs`, wrapping around at the boundary of the type.
2047 ///
2048 /// # Examples
2049 ///
2050 /// Basic usage:
2051 ///
2052 /// ```
2053 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add_unsigned(27), 127);")]
2054 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add_unsigned(2), ", stringify!($SelfT), "::MIN + 1);")]
2055 /// ```
2056 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2057 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2058 #[must_use = "this returns the result of the operation, \
2059 without modifying the original"]
2060 #[inline(always)]
2061 pub const fn wrapping_add_unsigned(self, rhs: $UnsignedT) -> Self {
2062 self.wrapping_add(rhs as Self)
2063 }
2064
2065 /// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the
2066 /// boundary of the type.
2067 ///
2068 /// # Examples
2069 ///
2070 /// Basic usage:
2071 ///
2072 /// ```
2073 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub(127), -127);")]
2074 #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub(", stringify!($SelfT), "::MAX), ", stringify!($SelfT), "::MAX);")]
2075 /// ```
2076 #[stable(feature = "rust1", since = "1.0.0")]
2077 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2078 #[must_use = "this returns the result of the operation, \
2079 without modifying the original"]
2080 #[inline(always)]
2081 pub const fn wrapping_sub(self, rhs: Self) -> Self {
2082 intrinsics::wrapping_sub(self, rhs)
2083 }
2084
2085 /// Wrapping (modular) subtraction with an unsigned integer. Computes
2086 /// `self - rhs`, wrapping around at the boundary of the type.
2087 ///
2088 /// # Examples
2089 ///
2090 /// Basic usage:
2091 ///
2092 /// ```
2093 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub_unsigned(127), -127);")]
2094 #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub_unsigned(", stringify!($UnsignedT), "::MAX), -1);")]
2095 /// ```
2096 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2097 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2098 #[must_use = "this returns the result of the operation, \
2099 without modifying the original"]
2100 #[inline(always)]
2101 pub const fn wrapping_sub_unsigned(self, rhs: $UnsignedT) -> Self {
2102 self.wrapping_sub(rhs as Self)
2103 }
2104
2105 /// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at
2106 /// the boundary of the type.
2107 ///
2108 /// # Examples
2109 ///
2110 /// Basic usage:
2111 ///
2112 /// ```
2113 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".wrapping_mul(12), 120);")]
2114 /// assert_eq!(11i8.wrapping_mul(12), -124);
2115 /// ```
2116 #[stable(feature = "rust1", since = "1.0.0")]
2117 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2118 #[must_use = "this returns the result of the operation, \
2119 without modifying the original"]
2120 #[inline(always)]
2121 pub const fn wrapping_mul(self, rhs: Self) -> Self {
2122 intrinsics::wrapping_mul(self, rhs)
2123 }
2124
2125 /// Wrapping (modular) division. Computes `self / rhs`, wrapping around at the
2126 /// boundary of the type.
2127 ///
2128 /// The only case where such wrapping can occur is when one divides `MIN / -1` on a signed type (where
2129 /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
2130 /// that is too large to represent in the type. In such a case, this function returns `MIN` itself.
2131 ///
2132 /// # Panics
2133 ///
2134 /// This function will panic if `rhs` is zero.
2135 ///
2136 /// # Examples
2137 ///
2138 /// Basic usage:
2139 ///
2140 /// ```
2141 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2142 /// assert_eq!((-128i8).wrapping_div(-1), -128);
2143 /// ```
2144 #[stable(feature = "num_wrapping", since = "1.2.0")]
2145 #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2146 #[must_use = "this returns the result of the operation, \
2147 without modifying the original"]
2148 #[inline]
2149 pub const fn wrapping_div(self, rhs: Self) -> Self {
2150 self.overflowing_div(rhs).0
2151 }
2152
2153 /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
2154 /// wrapping around at the boundary of the type.
2155 ///
2156 /// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is the negative minimal value
2157 /// for the type). This is equivalent to `-MIN`, a positive value that is too large to represent in the
2158 /// type. In this case, this method returns `MIN` itself.
2159 ///
2160 /// # Panics
2161 ///
2162 /// This function will panic if `rhs` is zero.
2163 ///
2164 /// # Examples
2165 ///
2166 /// Basic usage:
2167 ///
2168 /// ```
2169 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2170 /// assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
2171 /// ```
2172 #[stable(feature = "euclidean_division", since = "1.38.0")]
2173 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2174 #[must_use = "this returns the result of the operation, \
2175 without modifying the original"]
2176 #[inline]
2177 pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2178 self.overflowing_div_euclid(rhs).0
2179 }
2180
2181 /// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at the
2182 /// boundary of the type.
2183 ///
2184 /// Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`
2185 /// invalid for `MIN / -1` on a signed type (where `MIN` is the negative minimal value). In such a case,
2186 /// this function returns `0`.
2187 ///
2188 /// # Panics
2189 ///
2190 /// This function will panic if `rhs` is zero.
2191 ///
2192 /// # Examples
2193 ///
2194 /// Basic usage:
2195 ///
2196 /// ```
2197 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2198 /// assert_eq!((-128i8).wrapping_rem(-1), 0);
2199 /// ```
2200 #[stable(feature = "num_wrapping", since = "1.2.0")]
2201 #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2202 #[must_use = "this returns the result of the operation, \
2203 without modifying the original"]
2204 #[inline]
2205 pub const fn wrapping_rem(self, rhs: Self) -> Self {
2206 self.overflowing_rem(rhs).0
2207 }
2208
2209 /// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping around
2210 /// at the boundary of the type.
2211 ///
2212 /// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is the negative minimal value
2213 /// for the type). In this case, this method returns 0.
2214 ///
2215 /// # Panics
2216 ///
2217 /// This function will panic if `rhs` is zero.
2218 ///
2219 /// # Examples
2220 ///
2221 /// Basic usage:
2222 ///
2223 /// ```
2224 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2225 /// assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
2226 /// ```
2227 #[stable(feature = "euclidean_division", since = "1.38.0")]
2228 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2229 #[must_use = "this returns the result of the operation, \
2230 without modifying the original"]
2231 #[inline]
2232 pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2233 self.overflowing_rem_euclid(rhs).0
2234 }
2235
2236 /// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
2237 /// of the type.
2238 ///
2239 /// The only case where such wrapping can occur is when one negates `MIN` on a signed type (where `MIN`
2240 /// is the negative minimal value for the type); this is a positive value that is too large to represent
2241 /// in the type. In such a case, this function returns `MIN` itself.
2242 ///
2243 /// # Examples
2244 ///
2245 /// Basic usage:
2246 ///
2247 /// ```
2248 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_neg(), -100);")]
2249 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_neg(), 100);")]
2250 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_neg(), ", stringify!($SelfT), "::MIN);")]
2251 /// ```
2252 #[stable(feature = "num_wrapping", since = "1.2.0")]
2253 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2254 #[must_use = "this returns the result of the operation, \
2255 without modifying the original"]
2256 #[inline(always)]
2257 pub const fn wrapping_neg(self) -> Self {
2258 (0 as $SelfT).wrapping_sub(self)
2259 }
2260
2261 /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
2262 /// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2263 ///
2264 /// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
2265 /// the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
2266 /// The primitive integer types all implement a [`rotate_left`](Self::rotate_left) function,
2267 /// which may be what you want instead.
2268 ///
2269 /// # Examples
2270 ///
2271 /// Basic usage:
2272 ///
2273 /// ```
2274 #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(7), -128);")]
2275 #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(128), -1);")]
2276 /// ```
2277 #[stable(feature = "num_wrapping", since = "1.2.0")]
2278 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2279 #[must_use = "this returns the result of the operation, \
2280 without modifying the original"]
2281 #[inline(always)]
2282 pub const fn wrapping_shl(self, rhs: u32) -> Self {
2283 // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2284 // out of bounds
2285 unsafe {
2286 self.unchecked_shl(rhs & (Self::BITS - 1))
2287 }
2288 }
2289
2290 /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
2291 /// removes any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2292 ///
2293 /// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
2294 /// to the range of the type, rather than the bits shifted out of the LHS being returned to the other
2295 /// end. The primitive integer types all implement a [`rotate_right`](Self::rotate_right) function,
2296 /// which may be what you want instead.
2297 ///
2298 /// # Examples
2299 ///
2300 /// Basic usage:
2301 ///
2302 /// ```
2303 #[doc = concat!("assert_eq!((-128", stringify!($SelfT), ").wrapping_shr(7), -1);")]
2304 /// assert_eq!((-128i16).wrapping_shr(64), -128);
2305 /// ```
2306 #[stable(feature = "num_wrapping", since = "1.2.0")]
2307 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2308 #[must_use = "this returns the result of the operation, \
2309 without modifying the original"]
2310 #[inline(always)]
2311 pub const fn wrapping_shr(self, rhs: u32) -> Self {
2312 // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2313 // out of bounds
2314 unsafe {
2315 self.unchecked_shr(rhs & (Self::BITS - 1))
2316 }
2317 }
2318
2319 /// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping around at
2320 /// the boundary of the type.
2321 ///
2322 /// The only case where such wrapping can occur is when one takes the absolute value of the negative
2323 /// minimal value for the type; this is a positive value that is too large to represent in the type. In
2324 /// such a case, this function returns `MIN` itself.
2325 ///
2326 /// # Examples
2327 ///
2328 /// Basic usage:
2329 ///
2330 /// ```
2331 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_abs(), 100);")]
2332 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_abs(), 100);")]
2333 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_abs(), ", stringify!($SelfT), "::MIN);")]
2334 /// assert_eq!((-128i8).wrapping_abs() as u8, 128);
2335 /// ```
2336 #[stable(feature = "no_panic_abs", since = "1.13.0")]
2337 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2338 #[must_use = "this returns the result of the operation, \
2339 without modifying the original"]
2340 #[allow(unused_attributes)]
2341 #[inline]
2342 pub const fn wrapping_abs(self) -> Self {
2343 if self.is_negative() {
2344 self.wrapping_neg()
2345 } else {
2346 self
2347 }
2348 }
2349
2350 /// Computes the absolute value of `self` without any wrapping
2351 /// or panicking.
2352 ///
2353 ///
2354 /// # Examples
2355 ///
2356 /// Basic usage:
2357 ///
2358 /// ```
2359 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2360 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2361 /// assert_eq!((-128i8).unsigned_abs(), 128u8);
2362 /// ```
2363 #[stable(feature = "unsigned_abs", since = "1.51.0")]
2364 #[rustc_const_stable(feature = "unsigned_abs", since = "1.51.0")]
2365 #[must_use = "this returns the result of the operation, \
2366 without modifying the original"]
2367 #[inline]
2368 pub const fn unsigned_abs(self) -> $UnsignedT {
2369 self.wrapping_abs() as $UnsignedT
2370 }
2371
2372 /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2373 /// wrapping around at the boundary of the type.
2374 ///
2375 /// # Examples
2376 ///
2377 /// Basic usage:
2378 ///
2379 /// ```
2380 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(4), 81);")]
2381 /// assert_eq!(3i8.wrapping_pow(5), -13);
2382 /// assert_eq!(3i8.wrapping_pow(6), -39);
2383 /// ```
2384 #[stable(feature = "no_panic_pow", since = "1.34.0")]
2385 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2386 #[must_use = "this returns the result of the operation, \
2387 without modifying the original"]
2388 #[inline]
2389 pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2390 if exp == 0 {
2391 return 1;
2392 }
2393 let mut base = self;
2394 let mut acc: Self = 1;
2395
2396 if intrinsics::is_val_statically_known(exp) {
2397 while exp > 1 {
2398 if (exp & 1) == 1 {
2399 acc = acc.wrapping_mul(base);
2400 }
2401 exp /= 2;
2402 base = base.wrapping_mul(base);
2403 }
2404
2405 // since exp!=0, finally the exp must be 1.
2406 // Deal with the final bit of the exponent separately, since
2407 // squaring the base afterwards is not necessary.
2408 acc.wrapping_mul(base)
2409 } else {
2410 // This is faster than the above when the exponent is not known
2411 // at compile time. We can't use the same code for the constant
2412 // exponent case because LLVM is currently unable to unroll
2413 // this loop.
2414 loop {
2415 if (exp & 1) == 1 {
2416 acc = acc.wrapping_mul(base);
2417 // since exp!=0, finally the exp must be 1.
2418 if exp == 1 {
2419 return acc;
2420 }
2421 }
2422 exp /= 2;
2423 base = base.wrapping_mul(base);
2424 }
2425 }
2426 }
2427
2428 /// Calculates `self` + `rhs`.
2429 ///
2430 /// Returns a tuple of the addition along with a boolean indicating
2431 /// whether an arithmetic overflow would occur. If an overflow would have
2432 /// occurred then the wrapped value is returned.
2433 ///
2434 /// # Examples
2435 ///
2436 /// Basic usage:
2437 ///
2438 /// ```
2439 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2440 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (", stringify!($SelfT), "::MIN, true));")]
2441 /// ```
2442 #[stable(feature = "wrapping", since = "1.7.0")]
2443 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2444 #[must_use = "this returns the result of the operation, \
2445 without modifying the original"]
2446 #[inline(always)]
2447 pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2448 let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2449 (a as Self, b)
2450 }
2451
2452 /// Calculates `self` + `rhs` + `carry` and checks for overflow.
2453 ///
2454 /// Performs "ternary addition" of two integer operands and a carry-in
2455 /// bit, and returns a tuple of the sum along with a boolean indicating
2456 /// whether an arithmetic overflow would occur. On overflow, the wrapped
2457 /// value is returned.
2458 ///
2459 /// This allows chaining together multiple additions to create a wider
2460 /// addition, and can be useful for bignum addition. This method should
2461 /// only be used for the most significant word; for the less significant
2462 /// words the unsigned method
2463 #[doc = concat!("[`", stringify!($UnsignedT), "::carrying_add`]")]
2464 /// should be used.
2465 ///
2466 /// The output boolean returned by this method is *not* a carry flag,
2467 /// and should *not* be added to a more significant word.
2468 ///
2469 /// If the input carry is false, this method is equivalent to
2470 /// [`overflowing_add`](Self::overflowing_add).
2471 ///
2472 /// # Examples
2473 ///
2474 /// ```
2475 /// #![feature(bigint_helper_methods)]
2476 /// // Only the most significant word is signed.
2477 /// //
2478 #[doc = concat!("// 10 MAX (a = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2479 #[doc = concat!("// + -5 9 (b = -5 × 2^", stringify!($BITS), " + 9)")]
2480 /// // ---------
2481 #[doc = concat!("// 6 8 (sum = 6 × 2^", stringify!($BITS), " + 8)")]
2482 ///
2483 #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (10, ", stringify!($UnsignedT), "::MAX);")]
2484 #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2485 /// let carry0 = false;
2486 ///
2487 #[doc = concat!("// ", stringify!($UnsignedT), "::carrying_add for the less significant words")]
2488 /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2489 /// assert_eq!(carry1, true);
2490 ///
2491 #[doc = concat!("// ", stringify!($SelfT), "::carrying_add for the most significant word")]
2492 /// let (sum1, overflow) = a1.carrying_add(b1, carry1);
2493 /// assert_eq!(overflow, false);
2494 ///
2495 /// assert_eq!((sum1, sum0), (6, 8));
2496 /// ```
2497 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2498 #[must_use = "this returns the result of the operation, \
2499 without modifying the original"]
2500 #[inline]
2501 pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2502 // note: longer-term this should be done via an intrinsic.
2503 // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2504 let (a, b) = self.overflowing_add(rhs);
2505 let (c, d) = a.overflowing_add(carry as $SelfT);
2506 (c, b != d)
2507 }
2508
2509 /// Calculates `self` + `rhs` with an unsigned `rhs`.
2510 ///
2511 /// Returns a tuple of the addition along with a boolean indicating
2512 /// whether an arithmetic overflow would occur. If an overflow would
2513 /// have occurred then the wrapped value is returned.
2514 ///
2515 /// # Examples
2516 ///
2517 /// Basic usage:
2518 ///
2519 /// ```
2520 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_unsigned(2), (3, false));")]
2521 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_add_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MAX, false));")]
2522 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_unsigned(3), (", stringify!($SelfT), "::MIN, true));")]
2523 /// ```
2524 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2525 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2526 #[must_use = "this returns the result of the operation, \
2527 without modifying the original"]
2528 #[inline]
2529 pub const fn overflowing_add_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2530 let rhs = rhs as Self;
2531 let (res, overflowed) = self.overflowing_add(rhs);
2532 (res, overflowed ^ (rhs < 0))
2533 }
2534
2535 /// Calculates `self` - `rhs`.
2536 ///
2537 /// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow
2538 /// would occur. If an overflow would have occurred then the wrapped value is returned.
2539 ///
2540 /// # Examples
2541 ///
2542 /// Basic usage:
2543 ///
2544 /// ```
2545 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2546 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2547 /// ```
2548 #[stable(feature = "wrapping", since = "1.7.0")]
2549 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2550 #[must_use = "this returns the result of the operation, \
2551 without modifying the original"]
2552 #[inline(always)]
2553 pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2554 let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2555 (a as Self, b)
2556 }
2557
2558 /// Calculates `self` &minus; `rhs` &minus; `borrow` and checks for
2559 /// overflow.
2560 ///
2561 /// Performs "ternary subtraction" by subtracting both an integer
2562 /// operand and a borrow-in bit from `self`, and returns a tuple of the
2563 /// difference along with a boolean indicating whether an arithmetic
2564 /// overflow would occur. On overflow, the wrapped value is returned.
2565 ///
2566 /// This allows chaining together multiple subtractions to create a
2567 /// wider subtraction, and can be useful for bignum subtraction. This
2568 /// method should only be used for the most significant word; for the
2569 /// less significant words the unsigned method
2570 #[doc = concat!("[`", stringify!($UnsignedT), "::borrowing_sub`]")]
2571 /// should be used.
2572 ///
2573 /// The output boolean returned by this method is *not* a borrow flag,
2574 /// and should *not* be subtracted from a more significant word.
2575 ///
2576 /// If the input borrow is false, this method is equivalent to
2577 /// [`overflowing_sub`](Self::overflowing_sub).
2578 ///
2579 /// # Examples
2580 ///
2581 /// ```
2582 /// #![feature(bigint_helper_methods)]
2583 /// // Only the most significant word is signed.
2584 /// //
2585 #[doc = concat!("// 6 8 (a = 6 × 2^", stringify!($BITS), " + 8)")]
2586 #[doc = concat!("// - -5 9 (b = -5 × 2^", stringify!($BITS), " + 9)")]
2587 /// // ---------
2588 #[doc = concat!("// 10 MAX (diff = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2589 ///
2590 #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (6, 8);")]
2591 #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2592 /// let borrow0 = false;
2593 ///
2594 #[doc = concat!("// ", stringify!($UnsignedT), "::borrowing_sub for the less significant words")]
2595 /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2596 /// assert_eq!(borrow1, true);
2597 ///
2598 #[doc = concat!("// ", stringify!($SelfT), "::borrowing_sub for the most significant word")]
2599 /// let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
2600 /// assert_eq!(overflow, false);
2601 ///
2602 #[doc = concat!("assert_eq!((diff1, diff0), (10, ", stringify!($UnsignedT), "::MAX));")]
2603 /// ```
2604 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2605 #[must_use = "this returns the result of the operation, \
2606 without modifying the original"]
2607 #[inline]
2608 pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2609 // note: longer-term this should be done via an intrinsic.
2610 // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2611 let (a, b) = self.overflowing_sub(rhs);
2612 let (c, d) = a.overflowing_sub(borrow as $SelfT);
2613 (c, b != d)
2614 }
2615
2616 /// Calculates `self` - `rhs` with an unsigned `rhs`.
2617 ///
2618 /// Returns a tuple of the subtraction along with a boolean indicating
2619 /// whether an arithmetic overflow would occur. If an overflow would
2620 /// have occurred then the wrapped value is returned.
2621 ///
2622 /// # Examples
2623 ///
2624 /// Basic usage:
2625 ///
2626 /// ```
2627 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_unsigned(2), (-1, false));")]
2628 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).overflowing_sub_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MIN, false));")]
2629 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).overflowing_sub_unsigned(3), (", stringify!($SelfT), "::MAX, true));")]
2630 /// ```
2631 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2632 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2633 #[must_use = "this returns the result of the operation, \
2634 without modifying the original"]
2635 #[inline]
2636 pub const fn overflowing_sub_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2637 let rhs = rhs as Self;
2638 let (res, overflowed) = self.overflowing_sub(rhs);
2639 (res, overflowed ^ (rhs < 0))
2640 }
2641
2642 /// Calculates the multiplication of `self` and `rhs`.
2643 ///
2644 /// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow
2645 /// would occur. If an overflow would have occurred then the wrapped value is returned.
2646 ///
2647 /// # Examples
2648 ///
2649 /// Basic usage:
2650 ///
2651 /// ```
2652 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_mul(2), (10, false));")]
2653 /// assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
2654 /// ```
2655 #[stable(feature = "wrapping", since = "1.7.0")]
2656 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2657 #[must_use = "this returns the result of the operation, \
2658 without modifying the original"]
2659 #[inline(always)]
2660 pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2661 let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2662 (a as Self, b)
2663 }
2664
2665 /// Calculates the complete product `self * rhs` without the possibility to overflow.
2666 ///
2667 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2668 /// of the result as two separate values, in that order.
2669 ///
2670 /// If you also need to add a carry to the wide result, then you want
2671 /// [`Self::carrying_mul`] instead.
2672 ///
2673 /// # Examples
2674 ///
2675 /// Basic usage:
2676 ///
2677 /// Please note that this example is shared between integer types.
2678 /// Which explains why `i32` is used here.
2679 ///
2680 /// ```
2681 /// #![feature(bigint_helper_methods)]
2682 /// assert_eq!(5i32.widening_mul(-2), (4294967286, -1));
2683 /// assert_eq!(1_000_000_000i32.widening_mul(-10), (2884901888, -3));
2684 /// ```
2685 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2686 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2687 #[must_use = "this returns the result of the operation, \
2688 without modifying the original"]
2689 #[inline]
2690 pub const fn widening_mul(self, rhs: Self) -> ($UnsignedT, Self) {
2691 Self::carrying_mul_add(self, rhs, 0, 0)
2692 }
2693
2694 /// Calculates the "full multiplication" `self * rhs + carry`
2695 /// without the possibility to overflow.
2696 ///
2697 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2698 /// of the result as two separate values, in that order.
2699 ///
2700 /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2701 /// additional amount of overflow. This allows for chaining together multiple
2702 /// multiplications to create "big integers" which represent larger values.
2703 ///
2704 /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2705 ///
2706 /// # Examples
2707 ///
2708 /// Basic usage:
2709 ///
2710 /// Please note that this example is shared between integer types.
2711 /// Which explains why `i32` is used here.
2712 ///
2713 /// ```
2714 /// #![feature(bigint_helper_methods)]
2715 /// assert_eq!(5i32.carrying_mul(-2, 0), (4294967286, -1));
2716 /// assert_eq!(5i32.carrying_mul(-2, 10), (0, 0));
2717 /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 0), (2884901888, -3));
2718 /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 10), (2884901898, -3));
2719 #[doc = concat!("assert_eq!(",
2720 stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2721 "(", stringify!($SelfT), "::MAX.unsigned_abs() + 1, ", stringify!($SelfT), "::MAX / 2));"
2722 )]
2723 /// ```
2724 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2725 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2726 #[must_use = "this returns the result of the operation, \
2727 without modifying the original"]
2728 #[inline]
2729 pub const fn carrying_mul(self, rhs: Self, carry: Self) -> ($UnsignedT, Self) {
2730 Self::carrying_mul_add(self, rhs, carry, 0)
2731 }
2732
2733 /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`
2734 /// without the possibility to overflow.
2735 ///
2736 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2737 /// of the result as two separate values, in that order.
2738 ///
2739 /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2740 /// additional amount of overflow. This allows for chaining together multiple
2741 /// multiplications to create "big integers" which represent larger values.
2742 ///
2743 /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2744 /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2745 ///
2746 /// # Examples
2747 ///
2748 /// Basic usage:
2749 ///
2750 /// Please note that this example is shared between integer types.
2751 /// Which explains why `i32` is used here.
2752 ///
2753 /// ```
2754 /// #![feature(bigint_helper_methods)]
2755 /// assert_eq!(5i32.carrying_mul_add(-2, 0, 0), (4294967286, -1));
2756 /// assert_eq!(5i32.carrying_mul_add(-2, 10, 10), (10, 0));
2757 /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 0, 0), (2884901888, -3));
2758 /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 10, 10), (2884901908, -3));
2759 #[doc = concat!("assert_eq!(",
2760 stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2761 "(", stringify!($UnsignedT), "::MAX, ", stringify!($SelfT), "::MAX / 2));"
2762 )]
2763 /// ```
2764 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2765 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2766 #[must_use = "this returns the result of the operation, \
2767 without modifying the original"]
2768 #[inline]
2769 pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> ($UnsignedT, Self) {
2770 intrinsics::carrying_mul_add(self, rhs, carry, add)
2771 }
2772
2773 /// Calculates the divisor when `self` is divided by `rhs`.
2774 ///
2775 /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2776 /// occur. If an overflow would occur then self is returned.
2777 ///
2778 /// # Panics
2779 ///
2780 /// This function will panic if `rhs` is zero.
2781 ///
2782 /// # Examples
2783 ///
2784 /// Basic usage:
2785 ///
2786 /// ```
2787 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2788 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div(-1), (", stringify!($SelfT), "::MIN, true));")]
2789 /// ```
2790 #[inline]
2791 #[stable(feature = "wrapping", since = "1.7.0")]
2792 #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2793 #[must_use = "this returns the result of the operation, \
2794 without modifying the original"]
2795 pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2796 // Using `&` helps LLVM see that it is the same check made in division.
2797 if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2798 (self, true)
2799 } else {
2800 (self / rhs, false)
2801 }
2802 }
2803
2804 /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2805 ///
2806 /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2807 /// occur. If an overflow would occur then `self` is returned.
2808 ///
2809 /// # Panics
2810 ///
2811 /// This function will panic if `rhs` is zero.
2812 ///
2813 /// # Examples
2814 ///
2815 /// Basic usage:
2816 ///
2817 /// ```
2818 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2819 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div_euclid(-1), (", stringify!($SelfT), "::MIN, true));")]
2820 /// ```
2821 #[inline]
2822 #[stable(feature = "euclidean_division", since = "1.38.0")]
2823 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2824 #[must_use = "this returns the result of the operation, \
2825 without modifying the original"]
2826 pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
2827 // Using `&` helps LLVM see that it is the same check made in division.
2828 if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2829 (self, true)
2830 } else {
2831 (self.div_euclid(rhs), false)
2832 }
2833 }
2834
2835 /// Calculates the remainder when `self` is divided by `rhs`.
2836 ///
2837 /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2838 /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2839 ///
2840 /// # Panics
2841 ///
2842 /// This function will panic if `rhs` is zero.
2843 ///
2844 /// # Examples
2845 ///
2846 /// Basic usage:
2847 ///
2848 /// ```
2849 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
2850 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem(-1), (0, true));")]
2851 /// ```
2852 #[inline]
2853 #[stable(feature = "wrapping", since = "1.7.0")]
2854 #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2855 #[must_use = "this returns the result of the operation, \
2856 without modifying the original"]
2857 pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
2858 if intrinsics::unlikely(rhs == -1) {
2859 (0, self == Self::MIN)
2860 } else {
2861 (self % rhs, false)
2862 }
2863 }
2864
2865
2866 /// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
2867 ///
2868 /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2869 /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2870 ///
2871 /// # Panics
2872 ///
2873 /// This function will panic if `rhs` is zero.
2874 ///
2875 /// # Examples
2876 ///
2877 /// Basic usage:
2878 ///
2879 /// ```
2880 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
2881 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem_euclid(-1), (0, true));")]
2882 /// ```
2883 #[stable(feature = "euclidean_division", since = "1.38.0")]
2884 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2885 #[must_use = "this returns the result of the operation, \
2886 without modifying the original"]
2887 #[inline]
2888 #[track_caller]
2889 pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
2890 if intrinsics::unlikely(rhs == -1) {
2891 (0, self == Self::MIN)
2892 } else {
2893 (self.rem_euclid(rhs), false)
2894 }
2895 }
2896
2897
2898 /// Negates self, overflowing if this is equal to the minimum value.
2899 ///
2900 /// Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
2901 /// happened. If `self` is the minimum value (e.g., `i32::MIN` for values of type `i32`), then the
2902 /// minimum value will be returned again and `true` will be returned for an overflow happening.
2903 ///
2904 /// # Examples
2905 ///
2906 /// Basic usage:
2907 ///
2908 /// ```
2909 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2, false));")]
2910 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_neg(), (", stringify!($SelfT), "::MIN, true));")]
2911 /// ```
2912 #[inline]
2913 #[stable(feature = "wrapping", since = "1.7.0")]
2914 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2915 #[must_use = "this returns the result of the operation, \
2916 without modifying the original"]
2917 #[allow(unused_attributes)]
2918 pub const fn overflowing_neg(self) -> (Self, bool) {
2919 if intrinsics::unlikely(self == Self::MIN) {
2920 (Self::MIN, true)
2921 } else {
2922 (-self, false)
2923 }
2924 }
2925
2926 /// Shifts self left by `rhs` bits.
2927 ///
2928 /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2929 /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2930 /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2931 ///
2932 /// # Examples
2933 ///
2934 /// Basic usage:
2935 ///
2936 /// ```
2937 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT),".overflowing_shl(4), (0x10, false));")]
2938 /// assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
2939 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
2940 /// ```
2941 #[stable(feature = "wrapping", since = "1.7.0")]
2942 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2943 #[must_use = "this returns the result of the operation, \
2944 without modifying the original"]
2945 #[inline]
2946 pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
2947 (self.wrapping_shl(rhs), rhs >= Self::BITS)
2948 }
2949
2950 /// Shifts self right by `rhs` bits.
2951 ///
2952 /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2953 /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2954 /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2955 ///
2956 /// # Examples
2957 ///
2958 /// Basic usage:
2959 ///
2960 /// ```
2961 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
2962 /// assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
2963 /// ```
2964 #[stable(feature = "wrapping", since = "1.7.0")]
2965 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2966 #[must_use = "this returns the result of the operation, \
2967 without modifying the original"]
2968 #[inline]
2969 pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
2970 (self.wrapping_shr(rhs), rhs >= Self::BITS)
2971 }
2972
2973 /// Computes the absolute value of `self`.
2974 ///
2975 /// Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow
2976 /// happened. If self is the minimum value
2977 #[doc = concat!("(e.g., ", stringify!($SelfT), "::MIN for values of type ", stringify!($SelfT), "),")]
2978 /// then the minimum value will be returned again and true will be returned
2979 /// for an overflow happening.
2980 ///
2981 /// # Examples
2982 ///
2983 /// Basic usage:
2984 ///
2985 /// ```
2986 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".overflowing_abs(), (10, false));")]
2987 #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").overflowing_abs(), (10, false));")]
2988 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_abs(), (", stringify!($SelfT), "::MIN, true));")]
2989 /// ```
2990 #[stable(feature = "no_panic_abs", since = "1.13.0")]
2991 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2992 #[must_use = "this returns the result of the operation, \
2993 without modifying the original"]
2994 #[inline]
2995 pub const fn overflowing_abs(self) -> (Self, bool) {
2996 (self.wrapping_abs(), self == Self::MIN)
2997 }
2998
2999 /// Raises self to the power of `exp`, using exponentiation by squaring.
3000 ///
3001 /// Returns a tuple of the exponentiation along with a bool indicating
3002 /// whether an overflow happened.
3003 ///
3004 /// # Examples
3005 ///
3006 /// Basic usage:
3007 ///
3008 /// ```
3009 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(4), (81, false));")]
3010 /// assert_eq!(3i8.overflowing_pow(5), (-13, true));
3011 /// ```
3012 #[stable(feature = "no_panic_pow", since = "1.34.0")]
3013 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3014 #[must_use = "this returns the result of the operation, \
3015 without modifying the original"]
3016 #[inline]
3017 pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
3018 if exp == 0 {
3019 return (1,false);
3020 }
3021 let mut base = self;
3022 let mut acc: Self = 1;
3023 let mut overflown = false;
3024 // Scratch space for storing results of overflowing_mul.
3025 let mut r;
3026
3027 loop {
3028 if (exp & 1) == 1 {
3029 r = acc.overflowing_mul(base);
3030 // since exp!=0, finally the exp must be 1.
3031 if exp == 1 {
3032 r.1 |= overflown;
3033 return r;
3034 }
3035 acc = r.0;
3036 overflown |= r.1;
3037 }
3038 exp /= 2;
3039 r = base.overflowing_mul(base);
3040 base = r.0;
3041 overflown |= r.1;
3042 }
3043 }
3044
3045 /// Raises self to the power of `exp`, using exponentiation by squaring.
3046 ///
3047 /// # Examples
3048 ///
3049 /// Basic usage:
3050 ///
3051 /// ```
3052 #[doc = concat!("let x: ", stringify!($SelfT), " = 2; // or any other integer type")]
3053 ///
3054 /// assert_eq!(x.pow(5), 32);
3055 /// ```
3056 #[stable(feature = "rust1", since = "1.0.0")]
3057 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3058 #[must_use = "this returns the result of the operation, \
3059 without modifying the original"]
3060 #[inline]
3061 #[rustc_inherit_overflow_checks]
3062 pub const fn pow(self, mut exp: u32) -> Self {
3063 if exp == 0 {
3064 return 1;
3065 }
3066 let mut base = self;
3067 let mut acc = 1;
3068
3069 if intrinsics::is_val_statically_known(exp) {
3070 while exp > 1 {
3071 if (exp & 1) == 1 {
3072 acc = acc * base;
3073 }
3074 exp /= 2;
3075 base = base * base;
3076 }
3077
3078 // since exp!=0, finally the exp must be 1.
3079 // Deal with the final bit of the exponent separately, since
3080 // squaring the base afterwards is not necessary and may cause a
3081 // needless overflow.
3082 acc * base
3083 } else {
3084 // This is faster than the above when the exponent is not known
3085 // at compile time. We can't use the same code for the constant
3086 // exponent case because LLVM is currently unable to unroll
3087 // this loop.
3088 loop {
3089 if (exp & 1) == 1 {
3090 acc = acc * base;
3091 // since exp!=0, finally the exp must be 1.
3092 if exp == 1 {
3093 return acc;
3094 }
3095 }
3096 exp /= 2;
3097 base = base * base;
3098 }
3099 }
3100 }
3101
3102 /// Returns the square root of the number, rounded down.
3103 ///
3104 /// # Panics
3105 ///
3106 /// This function will panic if `self` is negative.
3107 ///
3108 /// # Examples
3109 ///
3110 /// Basic usage:
3111 /// ```
3112 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3113 /// ```
3114 #[stable(feature = "isqrt", since = "1.84.0")]
3115 #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3116 #[must_use = "this returns the result of the operation, \
3117 without modifying the original"]
3118 #[inline]
3119 #[track_caller]
3120 pub const fn isqrt(self) -> Self {
3121 match self.checked_isqrt() {
3122 Some(sqrt) => sqrt,
3123 None => crate::num::int_sqrt::panic_for_negative_argument(),
3124 }
3125 }
3126
3127 /// Calculates the quotient of Euclidean division of `self` by `rhs`.
3128 ///
3129 /// This computes the integer `q` such that `self = q * rhs + r`, with
3130 /// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
3131 ///
3132 /// In other words, the result is `self / rhs` rounded to the integer `q`
3133 /// such that `self >= q * rhs`.
3134 /// If `self > 0`, this is equal to rounding towards zero (the default in Rust);
3135 /// if `self < 0`, this is equal to rounding away from zero (towards +/- infinity).
3136 /// If `rhs > 0`, this is equal to rounding towards -infinity;
3137 /// if `rhs < 0`, this is equal to rounding towards +infinity.
3138 ///
3139 /// # Panics
3140 ///
3141 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3142 /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3143 ///
3144 /// # Examples
3145 ///
3146 /// Basic usage:
3147 ///
3148 /// ```
3149 #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3150 /// let b = 4;
3151 ///
3152 /// assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
3153 /// assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
3154 /// assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
3155 /// assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
3156 /// ```
3157 #[stable(feature = "euclidean_division", since = "1.38.0")]
3158 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3159 #[must_use = "this returns the result of the operation, \
3160 without modifying the original"]
3161 #[inline]
3162 #[track_caller]
3163 pub const fn div_euclid(self, rhs: Self) -> Self {
3164 let q = self / rhs;
3165 if self % rhs < 0 {
3166 return if rhs > 0 { q - 1 } else { q + 1 }
3167 }
3168 q
3169 }
3170
3171
3172 /// Calculates the least nonnegative remainder of `self (mod rhs)`.
3173 ///
3174 /// This is done as if by the Euclidean division algorithm -- given
3175 /// `r = self.rem_euclid(rhs)`, the result satisfies
3176 /// `self = rhs * self.div_euclid(rhs) + r` and `0 <= r < abs(rhs)`.
3177 ///
3178 /// # Panics
3179 ///
3180 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN` and
3181 /// `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3182 ///
3183 /// # Examples
3184 ///
3185 /// Basic usage:
3186 ///
3187 /// ```
3188 #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3189 /// let b = 4;
3190 ///
3191 /// assert_eq!(a.rem_euclid(b), 3);
3192 /// assert_eq!((-a).rem_euclid(b), 1);
3193 /// assert_eq!(a.rem_euclid(-b), 3);
3194 /// assert_eq!((-a).rem_euclid(-b), 1);
3195 /// ```
3196 ///
3197 /// This will panic:
3198 /// ```should_panic
3199 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.rem_euclid(-1);")]
3200 /// ```
3201 #[doc(alias = "modulo", alias = "mod")]
3202 #[stable(feature = "euclidean_division", since = "1.38.0")]
3203 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3204 #[must_use = "this returns the result of the operation, \
3205 without modifying the original"]
3206 #[inline]
3207 #[track_caller]
3208 pub const fn rem_euclid(self, rhs: Self) -> Self {
3209 let r = self % rhs;
3210 if r < 0 {
3211 // Semantically equivalent to `if rhs < 0 { r - rhs } else { r + rhs }`.
3212 // If `rhs` is not `Self::MIN`, then `r + abs(rhs)` will not overflow
3213 // and is clearly equivalent, because `r` is negative.
3214 // Otherwise, `rhs` is `Self::MIN`, then we have
3215 // `r.wrapping_add(Self::MIN.wrapping_abs())`, which evaluates
3216 // to `r.wrapping_add(Self::MIN)`, which is equivalent to
3217 // `r - Self::MIN`, which is what we wanted (and will not overflow
3218 // for negative `r`).
3219 r.wrapping_add(rhs.wrapping_abs())
3220 } else {
3221 r
3222 }
3223 }
3224
3225 /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3226 ///
3227 /// # Panics
3228 ///
3229 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3230 /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3231 ///
3232 /// # Examples
3233 ///
3234 /// Basic usage:
3235 ///
3236 /// ```
3237 /// #![feature(int_roundings)]
3238 #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3239 /// let b = 3;
3240 ///
3241 /// assert_eq!(a.div_floor(b), 2);
3242 /// assert_eq!(a.div_floor(-b), -3);
3243 /// assert_eq!((-a).div_floor(b), -3);
3244 /// assert_eq!((-a).div_floor(-b), 2);
3245 /// ```
3246 #[unstable(feature = "int_roundings", issue = "88581")]
3247 #[must_use = "this returns the result of the operation, \
3248 without modifying the original"]
3249 #[inline]
3250 #[track_caller]
3251 pub const fn div_floor(self, rhs: Self) -> Self {
3252 let d = self / rhs;
3253 let r = self % rhs;
3254
3255 // If the remainder is non-zero, we need to subtract one if the
3256 // signs of self and rhs differ, as this means we rounded upwards
3257 // instead of downwards. We do this branchlessly by creating a mask
3258 // which is all-ones iff the signs differ, and 0 otherwise. Then by
3259 // adding this mask (which corresponds to the signed value -1), we
3260 // get our correction.
3261 let correction = (self ^ rhs) >> (Self::BITS - 1);
3262 if r != 0 {
3263 d + correction
3264 } else {
3265 d
3266 }
3267 }
3268
3269 /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3270 ///
3271 /// # Panics
3272 ///
3273 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3274 /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3275 ///
3276 /// # Examples
3277 ///
3278 /// Basic usage:
3279 ///
3280 /// ```
3281 /// #![feature(int_roundings)]
3282 #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3283 /// let b = 3;
3284 ///
3285 /// assert_eq!(a.div_ceil(b), 3);
3286 /// assert_eq!(a.div_ceil(-b), -2);
3287 /// assert_eq!((-a).div_ceil(b), -2);
3288 /// assert_eq!((-a).div_ceil(-b), 3);
3289 /// ```
3290 #[unstable(feature = "int_roundings", issue = "88581")]
3291 #[must_use = "this returns the result of the operation, \
3292 without modifying the original"]
3293 #[inline]
3294 #[track_caller]
3295 pub const fn div_ceil(self, rhs: Self) -> Self {
3296 let d = self / rhs;
3297 let r = self % rhs;
3298
3299 // When remainder is non-zero we have a.div_ceil(b) == 1 + a.div_floor(b),
3300 // so we can re-use the algorithm from div_floor, just adding 1.
3301 let correction = 1 + ((self ^ rhs) >> (Self::BITS - 1));
3302 if r != 0 {
3303 d + correction
3304 } else {
3305 d
3306 }
3307 }
3308
3309 /// If `rhs` is positive, calculates the smallest value greater than or
3310 /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3311 /// calculates the largest value less than or equal to `self` that is a
3312 /// multiple of `rhs`.
3313 ///
3314 /// # Panics
3315 ///
3316 /// This function will panic if `rhs` is zero.
3317 ///
3318 /// ## Overflow behavior
3319 ///
3320 /// On overflow, this function will panic if overflow checks are enabled (default in debug
3321 /// mode) and wrap if overflow checks are disabled (default in release mode).
3322 ///
3323 /// # Examples
3324 ///
3325 /// Basic usage:
3326 ///
3327 /// ```
3328 /// #![feature(int_roundings)]
3329 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3330 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3331 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3332 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3333 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3334 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3335 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(-8), -16);")]
3336 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(-8), -24);")]
3337 /// ```
3338 #[unstable(feature = "int_roundings", issue = "88581")]
3339 #[must_use = "this returns the result of the operation, \
3340 without modifying the original"]
3341 #[inline]
3342 #[rustc_inherit_overflow_checks]
3343 pub const fn next_multiple_of(self, rhs: Self) -> Self {
3344 // This would otherwise fail when calculating `r` when self == T::MIN.
3345 if rhs == -1 {
3346 return self;
3347 }
3348
3349 let r = self % rhs;
3350 let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3351 r + rhs
3352 } else {
3353 r
3354 };
3355
3356 if m == 0 {
3357 self
3358 } else {
3359 self + (rhs - m)
3360 }
3361 }
3362
3363 /// If `rhs` is positive, calculates the smallest value greater than or
3364 /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3365 /// calculates the largest value less than or equal to `self` that is a
3366 /// multiple of `rhs`. Returns `None` if `rhs` is zero or the operation
3367 /// would result in overflow.
3368 ///
3369 /// # Examples
3370 ///
3371 /// Basic usage:
3372 ///
3373 /// ```
3374 /// #![feature(int_roundings)]
3375 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3376 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3377 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3378 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3379 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3380 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3381 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-16));")]
3382 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-24));")]
3383 #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3384 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3385 /// ```
3386 #[unstable(feature = "int_roundings", issue = "88581")]
3387 #[must_use = "this returns the result of the operation, \
3388 without modifying the original"]
3389 #[inline]
3390 pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3391 // This would otherwise fail when calculating `r` when self == T::MIN.
3392 if rhs == -1 {
3393 return Some(self);
3394 }
3395
3396 let r = try_opt!(self.checked_rem(rhs));
3397 let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3398 // r + rhs cannot overflow because they have opposite signs
3399 r + rhs
3400 } else {
3401 r
3402 };
3403
3404 if m == 0 {
3405 Some(self)
3406 } else {
3407 // rhs - m cannot overflow because m has the same sign as rhs
3408 self.checked_add(rhs - m)
3409 }
3410 }
3411
3412 /// Returns the logarithm of the number with respect to an arbitrary base,
3413 /// rounded down.
3414 ///
3415 /// This method might not be optimized owing to implementation details;
3416 /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
3417 /// can produce results more efficiently for base 10.
3418 ///
3419 /// # Panics
3420 ///
3421 /// This function will panic if `self` is less than or equal to zero,
3422 /// or if `base` is less than 2.
3423 ///
3424 /// # Examples
3425 ///
3426 /// ```
3427 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
3428 /// ```
3429 #[stable(feature = "int_log", since = "1.67.0")]
3430 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3431 #[must_use = "this returns the result of the operation, \
3432 without modifying the original"]
3433 #[inline]
3434 #[track_caller]
3435 pub const fn ilog(self, base: Self) -> u32 {
3436 assert!(base >= 2, "base of integer logarithm must be at least 2");
3437 if let Some(log) = self.checked_ilog(base) {
3438 log
3439 } else {
3440 int_log10::panic_for_nonpositive_argument()
3441 }
3442 }
3443
3444 /// Returns the base 2 logarithm of the number, rounded down.
3445 ///
3446 /// # Panics
3447 ///
3448 /// This function will panic if `self` is less than or equal to zero.
3449 ///
3450 /// # Examples
3451 ///
3452 /// ```
3453 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
3454 /// ```
3455 #[stable(feature = "int_log", since = "1.67.0")]
3456 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3457 #[must_use = "this returns the result of the operation, \
3458 without modifying the original"]
3459 #[inline]
3460 #[track_caller]
3461 pub const fn ilog2(self) -> u32 {
3462 if let Some(log) = self.checked_ilog2() {
3463 log
3464 } else {
3465 int_log10::panic_for_nonpositive_argument()
3466 }
3467 }
3468
3469 /// Returns the base 10 logarithm of the number, rounded down.
3470 ///
3471 /// # Panics
3472 ///
3473 /// This function will panic if `self` is less than or equal to zero.
3474 ///
3475 /// # Example
3476 ///
3477 /// ```
3478 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
3479 /// ```
3480 #[stable(feature = "int_log", since = "1.67.0")]
3481 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3482 #[must_use = "this returns the result of the operation, \
3483 without modifying the original"]
3484 #[inline]
3485 #[track_caller]
3486 pub const fn ilog10(self) -> u32 {
3487 if let Some(log) = self.checked_ilog10() {
3488 log
3489 } else {
3490 int_log10::panic_for_nonpositive_argument()
3491 }
3492 }
3493
3494 /// Returns the logarithm of the number with respect to an arbitrary base,
3495 /// rounded down.
3496 ///
3497 /// Returns `None` if the number is negative or zero, or if the base is not at least 2.
3498 ///
3499 /// This method might not be optimized owing to implementation details;
3500 /// `checked_ilog2` can produce results more efficiently for base 2, and
3501 /// `checked_ilog10` can produce results more efficiently for base 10.
3502 ///
3503 /// # Examples
3504 ///
3505 /// ```
3506 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
3507 /// ```
3508 #[stable(feature = "int_log", since = "1.67.0")]
3509 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3510 #[must_use = "this returns the result of the operation, \
3511 without modifying the original"]
3512 #[inline]
3513 pub const fn checked_ilog(self, base: Self) -> Option<u32> {
3514 if self <= 0 || base <= 1 {
3515 None
3516 } else {
3517 // Delegate to the unsigned implementation.
3518 // The condition makes sure that both casts are exact.
3519 (self as $UnsignedT).checked_ilog(base as $UnsignedT)
3520 }
3521 }
3522
3523 /// Returns the base 2 logarithm of the number, rounded down.
3524 ///
3525 /// Returns `None` if the number is negative or zero.
3526 ///
3527 /// # Examples
3528 ///
3529 /// ```
3530 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
3531 /// ```
3532 #[stable(feature = "int_log", since = "1.67.0")]
3533 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3534 #[must_use = "this returns the result of the operation, \
3535 without modifying the original"]
3536 #[inline]
3537 pub const fn checked_ilog2(self) -> Option<u32> {
3538 if self <= 0 {
3539 None
3540 } else {
3541 // SAFETY: We just checked that this number is positive
3542 let log = (Self::BITS - 1) - unsafe { intrinsics::ctlz_nonzero(self) as u32 };
3543 Some(log)
3544 }
3545 }
3546
3547 /// Returns the base 10 logarithm of the number, rounded down.
3548 ///
3549 /// Returns `None` if the number is negative or zero.
3550 ///
3551 /// # Example
3552 ///
3553 /// ```
3554 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
3555 /// ```
3556 #[stable(feature = "int_log", since = "1.67.0")]
3557 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3558 #[must_use = "this returns the result of the operation, \
3559 without modifying the original"]
3560 #[inline]
3561 pub const fn checked_ilog10(self) -> Option<u32> {
3562 if self > 0 {
3563 Some(int_log10::$ActualT(self as $ActualT))
3564 } else {
3565 None
3566 }
3567 }
3568
3569 /// Computes the absolute value of `self`.
3570 ///
3571 /// # Overflow behavior
3572 ///
3573 /// The absolute value of
3574 #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3575 /// cannot be represented as an
3576 #[doc = concat!("`", stringify!($SelfT), "`,")]
3577 /// and attempting to calculate it will cause an overflow. This means
3578 /// that code in debug mode will trigger a panic on this case and
3579 /// optimized code will return
3580 #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3581 /// without a panic. If you do not want this behavior, consider
3582 /// using [`unsigned_abs`](Self::unsigned_abs) instead.
3583 ///
3584 /// # Examples
3585 ///
3586 /// Basic usage:
3587 ///
3588 /// ```
3589 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".abs(), 10);")]
3590 #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").abs(), 10);")]
3591 /// ```
3592 #[stable(feature = "rust1", since = "1.0.0")]
3593 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3594 #[allow(unused_attributes)]
3595 #[must_use = "this returns the result of the operation, \
3596 without modifying the original"]
3597 #[inline]
3598 #[rustc_inherit_overflow_checks]
3599 pub const fn abs(self) -> Self {
3600 // Note that the #[rustc_inherit_overflow_checks] and #[inline]
3601 // above mean that the overflow semantics of the subtraction
3602 // depend on the crate we're being called from.
3603 if self.is_negative() {
3604 -self
3605 } else {
3606 self
3607 }
3608 }
3609
3610 /// Computes the absolute difference between `self` and `other`.
3611 ///
3612 /// This function always returns the correct answer without overflow or
3613 /// panics by returning an unsigned integer.
3614 ///
3615 /// # Examples
3616 ///
3617 /// Basic usage:
3618 ///
3619 /// ```
3620 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($UnsignedT), ");")]
3621 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($UnsignedT), ");")]
3622 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(80), 180", stringify!($UnsignedT), ");")]
3623 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(-120), 20", stringify!($UnsignedT), ");")]
3624 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.abs_diff(", stringify!($SelfT), "::MAX), ", stringify!($UnsignedT), "::MAX);")]
3625 /// ```
3626 #[stable(feature = "int_abs_diff", since = "1.60.0")]
3627 #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
3628 #[must_use = "this returns the result of the operation, \
3629 without modifying the original"]
3630 #[inline]
3631 pub const fn abs_diff(self, other: Self) -> $UnsignedT {
3632 if self < other {
3633 // Converting a non-negative x from signed to unsigned by using
3634 // `x as U` is left unchanged, but a negative x is converted
3635 // to value x + 2^N. Thus if `s` and `o` are binary variables
3636 // respectively indicating whether `self` and `other` are
3637 // negative, we are computing the mathematical value:
3638 //
3639 // (other + o*2^N) - (self + s*2^N) mod 2^N
3640 // other - self + (o-s)*2^N mod 2^N
3641 // other - self mod 2^N
3642 //
3643 // Finally, taking the mod 2^N of the mathematical value of
3644 // `other - self` does not change it as it already is
3645 // in the range [0, 2^N).
3646 (other as $UnsignedT).wrapping_sub(self as $UnsignedT)
3647 } else {
3648 (self as $UnsignedT).wrapping_sub(other as $UnsignedT)
3649 }
3650 }
3651
3652 /// Returns a number representing sign of `self`.
3653 ///
3654 /// - `0` if the number is zero
3655 /// - `1` if the number is positive
3656 /// - `-1` if the number is negative
3657 ///
3658 /// # Examples
3659 ///
3660 /// Basic usage:
3661 ///
3662 /// ```
3663 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".signum(), 1);")]
3664 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".signum(), 0);")]
3665 #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").signum(), -1);")]
3666 /// ```
3667 #[stable(feature = "rust1", since = "1.0.0")]
3668 #[rustc_const_stable(feature = "const_int_sign", since = "1.47.0")]
3669 #[must_use = "this returns the result of the operation, \
3670 without modifying the original"]
3671 #[inline(always)]
3672 pub const fn signum(self) -> Self {
3673 // Picking the right way to phrase this is complicated
3674 // (<https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign>)
3675 // so delegate it to `Ord` which is already producing -1/0/+1
3676 // exactly like we need and can be the place to deal with the complexity.
3677
3678 crate::intrinsics::three_way_compare(self, 0) as Self
3679 }
3680
3681 /// Returns `true` if `self` is positive and `false` if the number is zero or
3682 /// negative.
3683 ///
3684 /// # Examples
3685 ///
3686 /// Basic usage:
3687 ///
3688 /// ```
3689 #[doc = concat!("assert!(10", stringify!($SelfT), ".is_positive());")]
3690 #[doc = concat!("assert!(!(-10", stringify!($SelfT), ").is_positive());")]
3691 /// ```
3692 #[must_use]
3693 #[stable(feature = "rust1", since = "1.0.0")]
3694 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3695 #[inline(always)]
3696 pub const fn is_positive(self) -> bool { self > 0 }
3697
3698 /// Returns `true` if `self` is negative and `false` if the number is zero or
3699 /// positive.
3700 ///
3701 /// # Examples
3702 ///
3703 /// Basic usage:
3704 ///
3705 /// ```
3706 #[doc = concat!("assert!((-10", stringify!($SelfT), ").is_negative());")]
3707 #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_negative());")]
3708 /// ```
3709 #[must_use]
3710 #[stable(feature = "rust1", since = "1.0.0")]
3711 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3712 #[inline(always)]
3713 pub const fn is_negative(self) -> bool { self < 0 }
3714
3715 /// Returns the memory representation of this integer as a byte array in
3716 /// big-endian (network) byte order.
3717 ///
3718 #[doc = $to_xe_bytes_doc]
3719 ///
3720 /// # Examples
3721 ///
3722 /// ```
3723 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3724 #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3725 /// ```
3726 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3727 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3728 #[must_use = "this returns the result of the operation, \
3729 without modifying the original"]
3730 #[inline]
3731 pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3732 self.to_be().to_ne_bytes()
3733 }
3734
3735 /// Returns the memory representation of this integer as a byte array in
3736 /// little-endian byte order.
3737 ///
3738 #[doc = $to_xe_bytes_doc]
3739 ///
3740 /// # Examples
3741 ///
3742 /// ```
3743 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3744 #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3745 /// ```
3746 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3747 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3748 #[must_use = "this returns the result of the operation, \
3749 without modifying the original"]
3750 #[inline]
3751 pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3752 self.to_le().to_ne_bytes()
3753 }
3754
3755 /// Returns the memory representation of this integer as a byte array in
3756 /// native byte order.
3757 ///
3758 /// As the target platform's native endianness is used, portable code
3759 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3760 /// instead.
3761 ///
3762 #[doc = $to_xe_bytes_doc]
3763 ///
3764 /// [`to_be_bytes`]: Self::to_be_bytes
3765 /// [`to_le_bytes`]: Self::to_le_bytes
3766 ///
3767 /// # Examples
3768 ///
3769 /// ```
3770 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3771 /// assert_eq!(
3772 /// bytes,
3773 /// if cfg!(target_endian = "big") {
3774 #[doc = concat!(" ", $be_bytes)]
3775 /// } else {
3776 #[doc = concat!(" ", $le_bytes)]
3777 /// }
3778 /// );
3779 /// ```
3780 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3781 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3782 #[allow(unnecessary_transmutes)]
3783 // SAFETY: const sound because integers are plain old datatypes so we can always
3784 // transmute them to arrays of bytes
3785 #[must_use = "this returns the result of the operation, \
3786 without modifying the original"]
3787 #[inline]
3788 pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3789 // SAFETY: integers are plain old datatypes so we can always transmute them to
3790 // arrays of bytes
3791 unsafe { mem::transmute(self) }
3792 }
3793
3794 /// Creates an integer value from its representation as a byte array in
3795 /// big endian.
3796 ///
3797 #[doc = $from_xe_bytes_doc]
3798 ///
3799 /// # Examples
3800 ///
3801 /// ```
3802 #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3803 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3804 /// ```
3805 ///
3806 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3807 ///
3808 /// ```
3809 #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3810 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3811 /// *input = rest;
3812 #[doc = concat!(" ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3813 /// }
3814 /// ```
3815 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3816 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3817 #[must_use]
3818 #[inline]
3819 pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3820 Self::from_be(Self::from_ne_bytes(bytes))
3821 }
3822
3823 /// Creates an integer value from its representation as a byte array in
3824 /// little endian.
3825 ///
3826 #[doc = $from_xe_bytes_doc]
3827 ///
3828 /// # Examples
3829 ///
3830 /// ```
3831 #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3832 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3833 /// ```
3834 ///
3835 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3836 ///
3837 /// ```
3838 #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3839 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3840 /// *input = rest;
3841 #[doc = concat!(" ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3842 /// }
3843 /// ```
3844 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3845 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3846 #[must_use]
3847 #[inline]
3848 pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3849 Self::from_le(Self::from_ne_bytes(bytes))
3850 }
3851
3852 /// Creates an integer value from its memory representation as a byte
3853 /// array in native endianness.
3854 ///
3855 /// As the target platform's native endianness is used, portable code
3856 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3857 /// appropriate instead.
3858 ///
3859 /// [`from_be_bytes`]: Self::from_be_bytes
3860 /// [`from_le_bytes`]: Self::from_le_bytes
3861 ///
3862 #[doc = $from_xe_bytes_doc]
3863 ///
3864 /// # Examples
3865 ///
3866 /// ```
3867 #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3868 #[doc = concat!(" ", $be_bytes)]
3869 /// } else {
3870 #[doc = concat!(" ", $le_bytes)]
3871 /// });
3872 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3873 /// ```
3874 ///
3875 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3876 ///
3877 /// ```
3878 #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3879 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3880 /// *input = rest;
3881 #[doc = concat!(" ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3882 /// }
3883 /// ```
3884 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3885 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3886 #[allow(unnecessary_transmutes)]
3887 #[must_use]
3888 // SAFETY: const sound because integers are plain old datatypes so we can always
3889 // transmute to them
3890 #[inline]
3891 pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3892 // SAFETY: integers are plain old datatypes so we can always transmute to them
3893 unsafe { mem::transmute(bytes) }
3894 }
3895
3896 /// New code should prefer to use
3897 #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3898 ///
3899 /// Returns the smallest value that can be represented by this integer type.
3900 #[stable(feature = "rust1", since = "1.0.0")]
3901 #[inline(always)]
3902 #[rustc_promotable]
3903 #[rustc_const_stable(feature = "const_min_value", since = "1.32.0")]
3904 #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3905 #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3906 pub const fn min_value() -> Self {
3907 Self::MIN
3908 }
3909
3910 /// New code should prefer to use
3911 #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3912 ///
3913 /// Returns the largest value that can be represented by this integer type.
3914 #[stable(feature = "rust1", since = "1.0.0")]
3915 #[inline(always)]
3916 #[rustc_promotable]
3917 #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3918 #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3919 #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3920 pub const fn max_value() -> Self {
3921 Self::MAX
3922 }
3923 }
3924}
3925

Provided by KDAB

Privacy Policy
Learn Rust with the experts
Find out more