1macro_rules! uint_impl {
2 (
3 Self = $SelfT:ty,
4 ActualT = $ActualT:ident,
5 SignedT = $SignedT:ident,
6
7 // These are all for use *only* in doc comments.
8 // As such, they're all passed as literals -- passing them as a string
9 // literal is fine if they need to be multiple code tokens.
10 // In non-comments, use the associated constants rather than these.
11 BITS = $BITS:literal,
12 BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13 MAX = $MaxV:literal,
14 rot = $rot:literal,
15 rot_op = $rot_op:literal,
16 rot_result = $rot_result:literal,
17 swap_op = $swap_op:literal,
18 swapped = $swapped:literal,
19 reversed = $reversed:literal,
20 le_bytes = $le_bytes:literal,
21 be_bytes = $be_bytes:literal,
22 to_xe_bytes_doc = $to_xe_bytes_doc:expr,
23 from_xe_bytes_doc = $from_xe_bytes_doc:expr,
24 bound_condition = $bound_condition:literal,
25 ) => {
26 /// The smallest value that can be represented by this integer type.
27 ///
28 /// # Examples
29 ///
30 /// Basic usage:
31 ///
32 /// ```
33 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
34 /// ```
35 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
36 pub const MIN: Self = 0;
37
38 /// The largest value that can be represented by this integer type
39 #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
40 ///
41 /// # Examples
42 ///
43 /// Basic usage:
44 ///
45 /// ```
46 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
47 /// ```
48 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
49 pub const MAX: Self = !0;
50
51 /// The size of this integer type in bits.
52 ///
53 /// # Examples
54 ///
55 /// ```
56 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
57 /// ```
58 #[stable(feature = "int_bits_const", since = "1.53.0")]
59 pub const BITS: u32 = Self::MAX.count_ones();
60
61 /// Returns the number of ones in the binary representation of `self`.
62 ///
63 /// # Examples
64 ///
65 /// Basic usage:
66 ///
67 /// ```
68 #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
69 /// assert_eq!(n.count_ones(), 3);
70 ///
71 #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
72 #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
73 ///
74 #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
75 /// assert_eq!(zero.count_ones(), 0);
76 /// ```
77 #[stable(feature = "rust1", since = "1.0.0")]
78 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
79 #[doc(alias = "popcount")]
80 #[doc(alias = "popcnt")]
81 #[must_use = "this returns the result of the operation, \
82 without modifying the original"]
83 #[inline(always)]
84 pub const fn count_ones(self) -> u32 {
85 return intrinsics::ctpop(self);
86 }
87
88 /// Returns the number of zeros in the binary representation of `self`.
89 ///
90 /// # Examples
91 ///
92 /// Basic usage:
93 ///
94 /// ```
95 #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
96 #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
97 ///
98 #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
99 /// assert_eq!(max.count_zeros(), 0);
100 /// ```
101 #[stable(feature = "rust1", since = "1.0.0")]
102 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
103 #[must_use = "this returns the result of the operation, \
104 without modifying the original"]
105 #[inline(always)]
106 pub const fn count_zeros(self) -> u32 {
107 (!self).count_ones()
108 }
109
110 /// Returns the number of leading zeros in the binary representation of `self`.
111 ///
112 /// Depending on what you're doing with the value, you might also be interested in the
113 /// [`ilog2`] function which returns a consistent number, even if the type widens.
114 ///
115 /// # Examples
116 ///
117 /// Basic usage:
118 ///
119 /// ```
120 #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
121 /// assert_eq!(n.leading_zeros(), 2);
122 ///
123 #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
124 #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
125 ///
126 #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
127 /// assert_eq!(max.leading_zeros(), 0);
128 /// ```
129 #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
130 #[stable(feature = "rust1", since = "1.0.0")]
131 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
132 #[must_use = "this returns the result of the operation, \
133 without modifying the original"]
134 #[inline(always)]
135 pub const fn leading_zeros(self) -> u32 {
136 return intrinsics::ctlz(self as $ActualT);
137 }
138
139 /// Returns the number of trailing zeros in the binary representation
140 /// of `self`.
141 ///
142 /// # Examples
143 ///
144 /// Basic usage:
145 ///
146 /// ```
147 #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
148 /// assert_eq!(n.trailing_zeros(), 3);
149 ///
150 #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
151 #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
152 ///
153 #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
154 #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
155 /// ```
156 #[stable(feature = "rust1", since = "1.0.0")]
157 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
158 #[must_use = "this returns the result of the operation, \
159 without modifying the original"]
160 #[inline(always)]
161 pub const fn trailing_zeros(self) -> u32 {
162 return intrinsics::cttz(self);
163 }
164
165 /// Returns the number of leading ones in the binary representation of `self`.
166 ///
167 /// # Examples
168 ///
169 /// Basic usage:
170 ///
171 /// ```
172 #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
173 /// assert_eq!(n.leading_ones(), 2);
174 ///
175 #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
176 /// assert_eq!(zero.leading_ones(), 0);
177 ///
178 #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
179 #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
180 /// ```
181 #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
182 #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
183 #[must_use = "this returns the result of the operation, \
184 without modifying the original"]
185 #[inline(always)]
186 pub const fn leading_ones(self) -> u32 {
187 (!self).leading_zeros()
188 }
189
190 /// Returns the number of trailing ones in the binary representation
191 /// of `self`.
192 ///
193 /// # Examples
194 ///
195 /// Basic usage:
196 ///
197 /// ```
198 #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
199 /// assert_eq!(n.trailing_ones(), 3);
200 ///
201 #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
202 /// assert_eq!(zero.trailing_ones(), 0);
203 ///
204 #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
205 #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
206 /// ```
207 #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
208 #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
209 #[must_use = "this returns the result of the operation, \
210 without modifying the original"]
211 #[inline(always)]
212 pub const fn trailing_ones(self) -> u32 {
213 (!self).trailing_zeros()
214 }
215
216 /// Returns the minimum number of bits required to represent `self`.
217 ///
218 /// This method returns zero if `self` is zero.
219 ///
220 /// # Examples
221 ///
222 /// Basic usage:
223 ///
224 /// ```
225 /// #![feature(uint_bit_width)]
226 ///
227 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".bit_width(), 0);")]
228 #[doc = concat!("assert_eq!(0b111_", stringify!($SelfT), ".bit_width(), 3);")]
229 #[doc = concat!("assert_eq!(0b1110_", stringify!($SelfT), ".bit_width(), 4);")]
230 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.bit_width(), ", stringify!($BITS), ");")]
231 /// ```
232 #[unstable(feature = "uint_bit_width", issue = "142326")]
233 #[must_use = "this returns the result of the operation, \
234 without modifying the original"]
235 #[inline(always)]
236 pub const fn bit_width(self) -> u32 {
237 Self::BITS - self.leading_zeros()
238 }
239
240 /// Returns `self` with only the most significant bit set, or `0` if
241 /// the input is `0`.
242 ///
243 /// # Examples
244 ///
245 /// Basic usage:
246 ///
247 /// ```
248 /// #![feature(isolate_most_least_significant_one)]
249 ///
250 #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
251 ///
252 /// assert_eq!(n.isolate_most_significant_one(), 0b_01000000);
253 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_most_significant_one(), 0);")]
254 /// ```
255 #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
256 #[must_use = "this returns the result of the operation, \
257 without modifying the original"]
258 #[inline(always)]
259 pub const fn isolate_most_significant_one(self) -> Self {
260 self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
261 }
262
263 /// Returns `self` with only the least significant bit set, or `0` if
264 /// the input is `0`.
265 ///
266 /// # Examples
267 ///
268 /// Basic usage:
269 ///
270 /// ```
271 /// #![feature(isolate_most_least_significant_one)]
272 ///
273 #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
274 ///
275 /// assert_eq!(n.isolate_least_significant_one(), 0b_00000100);
276 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_least_significant_one(), 0);")]
277 /// ```
278 #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
279 #[must_use = "this returns the result of the operation, \
280 without modifying the original"]
281 #[inline(always)]
282 pub const fn isolate_least_significant_one(self) -> Self {
283 self & self.wrapping_neg()
284 }
285
286 /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
287 ///
288 /// This produces the same result as an `as` cast, but ensures that the bit-width remains
289 /// the same.
290 ///
291 /// # Examples
292 ///
293 /// Basic usage:
294 ///
295 /// ```
296 #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
297 ///
298 #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
299 /// ```
300 #[stable(feature = "integer_sign_cast", since = "1.87.0")]
301 #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
302 #[must_use = "this returns the result of the operation, \
303 without modifying the original"]
304 #[inline(always)]
305 pub const fn cast_signed(self) -> $SignedT {
306 self as $SignedT
307 }
308
309 /// Shifts the bits to the left by a specified amount, `n`,
310 /// wrapping the truncated bits to the end of the resulting integer.
311 ///
312 /// Please note this isn't the same operation as the `<<` shifting operator!
313 ///
314 /// # Examples
315 ///
316 /// Basic usage:
317 ///
318 /// ```
319 #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
320 #[doc = concat!("let m = ", $rot_result, ";")]
321 ///
322 #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
323 /// ```
324 #[stable(feature = "rust1", since = "1.0.0")]
325 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
326 #[must_use = "this returns the result of the operation, \
327 without modifying the original"]
328 #[inline(always)]
329 pub const fn rotate_left(self, n: u32) -> Self {
330 return intrinsics::rotate_left(self, n);
331 }
332
333 /// Shifts the bits to the right by a specified amount, `n`,
334 /// wrapping the truncated bits to the beginning of the resulting
335 /// integer.
336 ///
337 /// Please note this isn't the same operation as the `>>` shifting operator!
338 ///
339 /// # Examples
340 ///
341 /// Basic usage:
342 ///
343 /// ```
344 #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
345 #[doc = concat!("let m = ", $rot_op, ";")]
346 ///
347 #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
348 /// ```
349 #[stable(feature = "rust1", since = "1.0.0")]
350 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
351 #[must_use = "this returns the result of the operation, \
352 without modifying the original"]
353 #[inline(always)]
354 pub const fn rotate_right(self, n: u32) -> Self {
355 return intrinsics::rotate_right(self, n);
356 }
357
358 /// Reverses the byte order of the integer.
359 ///
360 /// # Examples
361 ///
362 /// Basic usage:
363 ///
364 /// ```
365 #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
366 /// let m = n.swap_bytes();
367 ///
368 #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
369 /// ```
370 #[stable(feature = "rust1", since = "1.0.0")]
371 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
372 #[must_use = "this returns the result of the operation, \
373 without modifying the original"]
374 #[inline(always)]
375 pub const fn swap_bytes(self) -> Self {
376 intrinsics::bswap(self as $ActualT) as Self
377 }
378
379 /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
380 /// second least-significant bit becomes second most-significant bit, etc.
381 ///
382 /// # Examples
383 ///
384 /// Basic usage:
385 ///
386 /// ```
387 #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
388 /// let m = n.reverse_bits();
389 ///
390 #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
391 #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
392 /// ```
393 #[stable(feature = "reverse_bits", since = "1.37.0")]
394 #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
395 #[must_use = "this returns the result of the operation, \
396 without modifying the original"]
397 #[inline(always)]
398 pub const fn reverse_bits(self) -> Self {
399 intrinsics::bitreverse(self as $ActualT) as Self
400 }
401
402 /// Converts an integer from big endian to the target's endianness.
403 ///
404 /// On big endian this is a no-op. On little endian the bytes are
405 /// swapped.
406 ///
407 /// # Examples
408 ///
409 /// Basic usage:
410 ///
411 /// ```
412 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
413 ///
414 /// if cfg!(target_endian = "big") {
415 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
416 /// } else {
417 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
418 /// }
419 /// ```
420 #[stable(feature = "rust1", since = "1.0.0")]
421 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
422 #[must_use]
423 #[inline(always)]
424 pub const fn from_be(x: Self) -> Self {
425 #[cfg(target_endian = "big")]
426 {
427 x
428 }
429 #[cfg(not(target_endian = "big"))]
430 {
431 x.swap_bytes()
432 }
433 }
434
435 /// Converts an integer from little endian to the target's endianness.
436 ///
437 /// On little endian this is a no-op. On big endian the bytes are
438 /// swapped.
439 ///
440 /// # Examples
441 ///
442 /// Basic usage:
443 ///
444 /// ```
445 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
446 ///
447 /// if cfg!(target_endian = "little") {
448 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
449 /// } else {
450 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
451 /// }
452 /// ```
453 #[stable(feature = "rust1", since = "1.0.0")]
454 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
455 #[must_use]
456 #[inline(always)]
457 pub const fn from_le(x: Self) -> Self {
458 #[cfg(target_endian = "little")]
459 {
460 x
461 }
462 #[cfg(not(target_endian = "little"))]
463 {
464 x.swap_bytes()
465 }
466 }
467
468 /// Converts `self` to big endian from the target's endianness.
469 ///
470 /// On big endian this is a no-op. On little endian the bytes are
471 /// swapped.
472 ///
473 /// # Examples
474 ///
475 /// Basic usage:
476 ///
477 /// ```
478 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
479 ///
480 /// if cfg!(target_endian = "big") {
481 /// assert_eq!(n.to_be(), n)
482 /// } else {
483 /// assert_eq!(n.to_be(), n.swap_bytes())
484 /// }
485 /// ```
486 #[stable(feature = "rust1", since = "1.0.0")]
487 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
488 #[must_use = "this returns the result of the operation, \
489 without modifying the original"]
490 #[inline(always)]
491 pub const fn to_be(self) -> Self { // or not to be?
492 #[cfg(target_endian = "big")]
493 {
494 self
495 }
496 #[cfg(not(target_endian = "big"))]
497 {
498 self.swap_bytes()
499 }
500 }
501
502 /// Converts `self` to little endian from the target's endianness.
503 ///
504 /// On little endian this is a no-op. On big endian the bytes are
505 /// swapped.
506 ///
507 /// # Examples
508 ///
509 /// Basic usage:
510 ///
511 /// ```
512 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
513 ///
514 /// if cfg!(target_endian = "little") {
515 /// assert_eq!(n.to_le(), n)
516 /// } else {
517 /// assert_eq!(n.to_le(), n.swap_bytes())
518 /// }
519 /// ```
520 #[stable(feature = "rust1", since = "1.0.0")]
521 #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
522 #[must_use = "this returns the result of the operation, \
523 without modifying the original"]
524 #[inline(always)]
525 pub const fn to_le(self) -> Self {
526 #[cfg(target_endian = "little")]
527 {
528 self
529 }
530 #[cfg(not(target_endian = "little"))]
531 {
532 self.swap_bytes()
533 }
534 }
535
536 /// Checked integer addition. Computes `self + rhs`, returning `None`
537 /// if overflow occurred.
538 ///
539 /// # Examples
540 ///
541 /// Basic usage:
542 ///
543 /// ```
544 #[doc = concat!(
545 "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
546 "Some(", stringify!($SelfT), "::MAX - 1));"
547 )]
548 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
549 /// ```
550 #[stable(feature = "rust1", since = "1.0.0")]
551 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
552 #[must_use = "this returns the result of the operation, \
553 without modifying the original"]
554 #[inline]
555 pub const fn checked_add(self, rhs: Self) -> Option<Self> {
556 // This used to use `overflowing_add`, but that means it ends up being
557 // a `wrapping_add`, losing some optimization opportunities. Notably,
558 // phrasing it this way helps `.checked_add(1)` optimize to a check
559 // against `MAX` and a `add nuw`.
560 // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
561 // LLVM is happy to re-form the intrinsic later if useful.
562
563 if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
564 None
565 } else {
566 // SAFETY: Just checked it doesn't overflow
567 Some(unsafe { intrinsics::unchecked_add(self, rhs) })
568 }
569 }
570
571 /// Strict integer addition. Computes `self + rhs`, panicking
572 /// if overflow occurred.
573 ///
574 /// # Panics
575 ///
576 /// ## Overflow behavior
577 ///
578 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
579 ///
580 /// # Examples
581 ///
582 /// Basic usage:
583 ///
584 /// ```
585 /// #![feature(strict_overflow_ops)]
586 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
587 /// ```
588 ///
589 /// The following panics because of overflow:
590 ///
591 /// ```should_panic
592 /// #![feature(strict_overflow_ops)]
593 #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
594 /// ```
595 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
596 #[must_use = "this returns the result of the operation, \
597 without modifying the original"]
598 #[inline]
599 #[track_caller]
600 pub const fn strict_add(self, rhs: Self) -> Self {
601 let (a, b) = self.overflowing_add(rhs);
602 if b { overflow_panic::add() } else { a }
603 }
604
605 /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
606 /// cannot occur.
607 ///
608 /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
609 /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
610 ///
611 /// If you're just trying to avoid the panic in debug mode, then **do not**
612 /// use this. Instead, you're looking for [`wrapping_add`].
613 ///
614 /// # Safety
615 ///
616 /// This results in undefined behavior when
617 #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
618 /// i.e. when [`checked_add`] would return `None`.
619 ///
620 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
621 #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
622 #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
623 #[stable(feature = "unchecked_math", since = "1.79.0")]
624 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
625 #[must_use = "this returns the result of the operation, \
626 without modifying the original"]
627 #[inline(always)]
628 #[track_caller]
629 pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
630 assert_unsafe_precondition!(
631 check_language_ub,
632 concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
633 (
634 lhs: $SelfT = self,
635 rhs: $SelfT = rhs,
636 ) => !lhs.overflowing_add(rhs).1,
637 );
638
639 // SAFETY: this is guaranteed to be safe by the caller.
640 unsafe {
641 intrinsics::unchecked_add(self, rhs)
642 }
643 }
644
645 /// Checked addition with a signed integer. Computes `self + rhs`,
646 /// returning `None` if overflow occurred.
647 ///
648 /// # Examples
649 ///
650 /// Basic usage:
651 ///
652 /// ```
653 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
654 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
655 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
656 /// ```
657 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
658 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
659 #[must_use = "this returns the result of the operation, \
660 without modifying the original"]
661 #[inline]
662 pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
663 let (a, b) = self.overflowing_add_signed(rhs);
664 if intrinsics::unlikely(b) { None } else { Some(a) }
665 }
666
667 /// Strict addition with a signed integer. Computes `self + rhs`,
668 /// panicking if overflow occurred.
669 ///
670 /// # Panics
671 ///
672 /// ## Overflow behavior
673 ///
674 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
675 ///
676 /// # Examples
677 ///
678 /// Basic usage:
679 ///
680 /// ```
681 /// #![feature(strict_overflow_ops)]
682 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
683 /// ```
684 ///
685 /// The following panic because of overflow:
686 ///
687 /// ```should_panic
688 /// #![feature(strict_overflow_ops)]
689 #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
690 /// ```
691 ///
692 /// ```should_panic
693 /// #![feature(strict_overflow_ops)]
694 #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
695 /// ```
696 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
697 #[must_use = "this returns the result of the operation, \
698 without modifying the original"]
699 #[inline]
700 #[track_caller]
701 pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
702 let (a, b) = self.overflowing_add_signed(rhs);
703 if b { overflow_panic::add() } else { a }
704 }
705
706 /// Checked integer subtraction. Computes `self - rhs`, returning
707 /// `None` if overflow occurred.
708 ///
709 /// # Examples
710 ///
711 /// Basic usage:
712 ///
713 /// ```
714 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
715 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
716 /// ```
717 #[stable(feature = "rust1", since = "1.0.0")]
718 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
719 #[must_use = "this returns the result of the operation, \
720 without modifying the original"]
721 #[inline]
722 pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
723 // Per PR#103299, there's no advantage to the `overflowing` intrinsic
724 // for *unsigned* subtraction and we just emit the manual check anyway.
725 // Thus, rather than using `overflowing_sub` that produces a wrapping
726 // subtraction, check it ourself so we can use an unchecked one.
727
728 if self < rhs {
729 None
730 } else {
731 // SAFETY: just checked this can't overflow
732 Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
733 }
734 }
735
736 /// Strict integer subtraction. Computes `self - rhs`, panicking if
737 /// overflow occurred.
738 ///
739 /// # Panics
740 ///
741 /// ## Overflow behavior
742 ///
743 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
744 ///
745 /// # Examples
746 ///
747 /// Basic usage:
748 ///
749 /// ```
750 /// #![feature(strict_overflow_ops)]
751 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
752 /// ```
753 ///
754 /// The following panics because of overflow:
755 ///
756 /// ```should_panic
757 /// #![feature(strict_overflow_ops)]
758 #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
759 /// ```
760 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
761 #[must_use = "this returns the result of the operation, \
762 without modifying the original"]
763 #[inline]
764 #[track_caller]
765 pub const fn strict_sub(self, rhs: Self) -> Self {
766 let (a, b) = self.overflowing_sub(rhs);
767 if b { overflow_panic::sub() } else { a }
768 }
769
770 /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
771 /// cannot occur.
772 ///
773 /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
774 /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
775 ///
776 /// If you're just trying to avoid the panic in debug mode, then **do not**
777 /// use this. Instead, you're looking for [`wrapping_sub`].
778 ///
779 /// If you find yourself writing code like this:
780 ///
781 /// ```
782 /// # let foo = 30_u32;
783 /// # let bar = 20;
784 /// if foo >= bar {
785 /// // SAFETY: just checked it will not overflow
786 /// let diff = unsafe { foo.unchecked_sub(bar) };
787 /// // ... use diff ...
788 /// }
789 /// ```
790 ///
791 /// Consider changing it to
792 ///
793 /// ```
794 /// # let foo = 30_u32;
795 /// # let bar = 20;
796 /// if let Some(diff) = foo.checked_sub(bar) {
797 /// // ... use diff ...
798 /// }
799 /// ```
800 ///
801 /// As that does exactly the same thing -- including telling the optimizer
802 /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
803 ///
804 /// # Safety
805 ///
806 /// This results in undefined behavior when
807 #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
808 /// i.e. when [`checked_sub`] would return `None`.
809 ///
810 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
811 #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
812 #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
813 #[stable(feature = "unchecked_math", since = "1.79.0")]
814 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
815 #[must_use = "this returns the result of the operation, \
816 without modifying the original"]
817 #[inline(always)]
818 #[track_caller]
819 pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
820 assert_unsafe_precondition!(
821 check_language_ub,
822 concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
823 (
824 lhs: $SelfT = self,
825 rhs: $SelfT = rhs,
826 ) => !lhs.overflowing_sub(rhs).1,
827 );
828
829 // SAFETY: this is guaranteed to be safe by the caller.
830 unsafe {
831 intrinsics::unchecked_sub(self, rhs)
832 }
833 }
834
835 /// Checked subtraction with a signed integer. Computes `self - rhs`,
836 /// returning `None` if overflow occurred.
837 ///
838 /// # Examples
839 ///
840 /// Basic usage:
841 ///
842 /// ```
843 /// #![feature(mixed_integer_ops_unsigned_sub)]
844 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
845 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
846 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
847 /// ```
848 #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
849 #[must_use = "this returns the result of the operation, \
850 without modifying the original"]
851 #[inline]
852 pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
853 let (res, overflow) = self.overflowing_sub_signed(rhs);
854
855 if !overflow {
856 Some(res)
857 } else {
858 None
859 }
860 }
861
862 #[doc = concat!(
863 "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
864 stringify!($SignedT), "`], returning `None` if overflow occurred."
865 )]
866 ///
867 /// # Examples
868 ///
869 /// Basic usage:
870 ///
871 /// ```
872 /// #![feature(unsigned_signed_diff)]
873 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
874 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
875 #[doc = concat!(
876 "assert_eq!(",
877 stringify!($SelfT),
878 "::MAX.checked_signed_diff(",
879 stringify!($SignedT),
880 "::MAX as ",
881 stringify!($SelfT),
882 "), None);"
883 )]
884 #[doc = concat!(
885 "assert_eq!((",
886 stringify!($SignedT),
887 "::MAX as ",
888 stringify!($SelfT),
889 ").checked_signed_diff(",
890 stringify!($SelfT),
891 "::MAX), Some(",
892 stringify!($SignedT),
893 "::MIN));"
894 )]
895 #[doc = concat!(
896 "assert_eq!((",
897 stringify!($SignedT),
898 "::MAX as ",
899 stringify!($SelfT),
900 " + 1).checked_signed_diff(0), None);"
901 )]
902 #[doc = concat!(
903 "assert_eq!(",
904 stringify!($SelfT),
905 "::MAX.checked_signed_diff(",
906 stringify!($SelfT),
907 "::MAX), Some(0));"
908 )]
909 /// ```
910 #[unstable(feature = "unsigned_signed_diff", issue = "126041")]
911 #[inline]
912 pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
913 let res = self.wrapping_sub(rhs) as $SignedT;
914 let overflow = (self >= rhs) == (res < 0);
915
916 if !overflow {
917 Some(res)
918 } else {
919 None
920 }
921 }
922
923 /// Checked integer multiplication. Computes `self * rhs`, returning
924 /// `None` if overflow occurred.
925 ///
926 /// # Examples
927 ///
928 /// Basic usage:
929 ///
930 /// ```
931 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
932 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
933 /// ```
934 #[stable(feature = "rust1", since = "1.0.0")]
935 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
936 #[must_use = "this returns the result of the operation, \
937 without modifying the original"]
938 #[inline]
939 pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
940 let (a, b) = self.overflowing_mul(rhs);
941 if intrinsics::unlikely(b) { None } else { Some(a) }
942 }
943
944 /// Strict integer multiplication. Computes `self * rhs`, panicking if
945 /// overflow occurred.
946 ///
947 /// # Panics
948 ///
949 /// ## Overflow behavior
950 ///
951 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
952 ///
953 /// # Examples
954 ///
955 /// Basic usage:
956 ///
957 /// ```
958 /// #![feature(strict_overflow_ops)]
959 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
960 /// ```
961 ///
962 /// The following panics because of overflow:
963 ///
964 /// ``` should_panic
965 /// #![feature(strict_overflow_ops)]
966 #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
967 /// ```
968 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
969 #[must_use = "this returns the result of the operation, \
970 without modifying the original"]
971 #[inline]
972 #[track_caller]
973 pub const fn strict_mul(self, rhs: Self) -> Self {
974 let (a, b) = self.overflowing_mul(rhs);
975 if b { overflow_panic::mul() } else { a }
976 }
977
978 /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
979 /// cannot occur.
980 ///
981 /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
982 /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
983 ///
984 /// If you're just trying to avoid the panic in debug mode, then **do not**
985 /// use this. Instead, you're looking for [`wrapping_mul`].
986 ///
987 /// # Safety
988 ///
989 /// This results in undefined behavior when
990 #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
991 /// i.e. when [`checked_mul`] would return `None`.
992 ///
993 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
994 #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
995 #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
996 #[stable(feature = "unchecked_math", since = "1.79.0")]
997 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
998 #[must_use = "this returns the result of the operation, \
999 without modifying the original"]
1000 #[inline(always)]
1001 #[track_caller]
1002 pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
1003 assert_unsafe_precondition!(
1004 check_language_ub,
1005 concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
1006 (
1007 lhs: $SelfT = self,
1008 rhs: $SelfT = rhs,
1009 ) => !lhs.overflowing_mul(rhs).1,
1010 );
1011
1012 // SAFETY: this is guaranteed to be safe by the caller.
1013 unsafe {
1014 intrinsics::unchecked_mul(self, rhs)
1015 }
1016 }
1017
1018 /// Checked integer division. Computes `self / rhs`, returning `None`
1019 /// if `rhs == 0`.
1020 ///
1021 /// # Examples
1022 ///
1023 /// Basic usage:
1024 ///
1025 /// ```
1026 #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
1027 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
1028 /// ```
1029 #[stable(feature = "rust1", since = "1.0.0")]
1030 #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1031 #[must_use = "this returns the result of the operation, \
1032 without modifying the original"]
1033 #[inline]
1034 pub const fn checked_div(self, rhs: Self) -> Option<Self> {
1035 if intrinsics::unlikely(rhs == 0) {
1036 None
1037 } else {
1038 // SAFETY: div by zero has been checked above and unsigned types have no other
1039 // failure modes for division
1040 Some(unsafe { intrinsics::unchecked_div(self, rhs) })
1041 }
1042 }
1043
1044 /// Strict integer division. Computes `self / rhs`.
1045 ///
1046 /// Strict division on unsigned types is just normal division. There's no
1047 /// way overflow could ever happen. This function exists so that all
1048 /// operations are accounted for in the strict operations.
1049 ///
1050 /// # Panics
1051 ///
1052 /// This function will panic if `rhs` is zero.
1053 ///
1054 /// # Examples
1055 ///
1056 /// Basic usage:
1057 ///
1058 /// ```
1059 /// #![feature(strict_overflow_ops)]
1060 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
1061 /// ```
1062 ///
1063 /// The following panics because of division by zero:
1064 ///
1065 /// ```should_panic
1066 /// #![feature(strict_overflow_ops)]
1067 #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
1068 /// ```
1069 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1070 #[must_use = "this returns the result of the operation, \
1071 without modifying the original"]
1072 #[inline(always)]
1073 #[track_caller]
1074 pub const fn strict_div(self, rhs: Self) -> Self {
1075 self / rhs
1076 }
1077
1078 /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
1079 /// if `rhs == 0`.
1080 ///
1081 /// # Examples
1082 ///
1083 /// Basic usage:
1084 ///
1085 /// ```
1086 #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
1087 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
1088 /// ```
1089 #[stable(feature = "euclidean_division", since = "1.38.0")]
1090 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1091 #[must_use = "this returns the result of the operation, \
1092 without modifying the original"]
1093 #[inline]
1094 pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
1095 if intrinsics::unlikely(rhs == 0) {
1096 None
1097 } else {
1098 Some(self.div_euclid(rhs))
1099 }
1100 }
1101
1102 /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
1103 ///
1104 /// Strict division on unsigned types is just normal division. There's no
1105 /// way overflow could ever happen. This function exists so that all
1106 /// operations are accounted for in the strict operations. Since, for the
1107 /// positive integers, all common definitions of division are equal, this
1108 /// is exactly equal to `self.strict_div(rhs)`.
1109 ///
1110 /// # Panics
1111 ///
1112 /// This function will panic if `rhs` is zero.
1113 ///
1114 /// # Examples
1115 ///
1116 /// Basic usage:
1117 ///
1118 /// ```
1119 /// #![feature(strict_overflow_ops)]
1120 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
1121 /// ```
1122 /// The following panics because of division by zero:
1123 ///
1124 /// ```should_panic
1125 /// #![feature(strict_overflow_ops)]
1126 #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1127 /// ```
1128 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1129 #[must_use = "this returns the result of the operation, \
1130 without modifying the original"]
1131 #[inline(always)]
1132 #[track_caller]
1133 pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1134 self / rhs
1135 }
1136
1137 /// Checked integer division without remainder. Computes `self / rhs`.
1138 ///
1139 /// # Panics
1140 ///
1141 /// This function will panic if `rhs == 0` or `self % rhs != 0`.
1142 ///
1143 /// # Examples
1144 ///
1145 /// Basic usage:
1146 ///
1147 /// ```
1148 /// #![feature(exact_div)]
1149 #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(2), 32);")]
1150 #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(32), 2);")]
1151 /// ```
1152 ///
1153 /// ```should_panic
1154 /// #![feature(exact_div)]
1155 #[doc = concat!("let _ = 65", stringify!($SelfT), ".exact_div(2);")]
1156 /// ```
1157 #[unstable(
1158 feature = "exact_div",
1159 issue = "139911",
1160 )]
1161 #[must_use = "this returns the result of the operation, \
1162 without modifying the original"]
1163 #[inline]
1164 pub const fn checked_exact_div(self, rhs: Self) -> Option<Self> {
1165 if intrinsics::unlikely(rhs == 0) {
1166 None
1167 } else {
1168 // SAFETY: division by zero is checked above
1169 unsafe {
1170 if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
1171 None
1172 } else {
1173 Some(intrinsics::exact_div(self, rhs))
1174 }
1175 }
1176 }
1177 }
1178
1179 /// Checked integer division without remainder. Computes `self / rhs`.
1180 ///
1181 /// # Panics
1182 ///
1183 /// This function will panic if `rhs == 0` or `self % rhs != 0`.
1184 ///
1185 /// # Examples
1186 ///
1187 /// Basic usage:
1188 ///
1189 /// ```
1190 /// #![feature(exact_div)]
1191 #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(2), 32);")]
1192 #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(32), 2);")]
1193 /// ```
1194 ///
1195 /// ```should_panic
1196 /// #![feature(exact_div)]
1197 #[doc = concat!("let _ = 65", stringify!($SelfT), ".exact_div(2);")]
1198 /// ```
1199 #[unstable(
1200 feature = "exact_div",
1201 issue = "139911",
1202 )]
1203 #[must_use = "this returns the result of the operation, \
1204 without modifying the original"]
1205 #[inline]
1206 pub const fn exact_div(self, rhs: Self) -> Self {
1207 match self.checked_exact_div(rhs) {
1208 Some(x) => x,
1209 None => panic!("Failed to divide without remainder"),
1210 }
1211 }
1212
1213 /// Unchecked integer division without remainder. Computes `self / rhs`.
1214 ///
1215 /// # Safety
1216 ///
1217 /// This results in undefined behavior when `rhs == 0` or `self % rhs != 0`,
1218 /// i.e. when [`checked_exact_div`](Self::checked_exact_div) would return `None`.
1219 #[unstable(
1220 feature = "exact_div",
1221 issue = "139911",
1222 )]
1223 #[must_use = "this returns the result of the operation, \
1224 without modifying the original"]
1225 #[inline]
1226 pub const unsafe fn unchecked_exact_div(self, rhs: Self) -> Self {
1227 assert_unsafe_precondition!(
1228 check_language_ub,
1229 concat!(stringify!($SelfT), "::unchecked_exact_div divide by zero or leave a remainder"),
1230 (
1231 lhs: $SelfT = self,
1232 rhs: $SelfT = rhs,
1233 ) => rhs > 0 && lhs % rhs == 0,
1234 );
1235 // SAFETY: Same precondition
1236 unsafe { intrinsics::exact_div(self, rhs) }
1237 }
1238
1239 /// Checked integer remainder. Computes `self % rhs`, returning `None`
1240 /// if `rhs == 0`.
1241 ///
1242 /// # Examples
1243 ///
1244 /// Basic usage:
1245 ///
1246 /// ```
1247 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1248 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1249 /// ```
1250 #[stable(feature = "wrapping", since = "1.7.0")]
1251 #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1252 #[must_use = "this returns the result of the operation, \
1253 without modifying the original"]
1254 #[inline]
1255 pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1256 if intrinsics::unlikely(rhs == 0) {
1257 None
1258 } else {
1259 // SAFETY: div by zero has been checked above and unsigned types have no other
1260 // failure modes for division
1261 Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1262 }
1263 }
1264
1265 /// Strict integer remainder. Computes `self % rhs`.
1266 ///
1267 /// Strict remainder calculation on unsigned types is just the regular
1268 /// remainder calculation. There's no way overflow could ever happen.
1269 /// This function exists so that all operations are accounted for in the
1270 /// strict operations.
1271 ///
1272 /// # Panics
1273 ///
1274 /// This function will panic if `rhs` is zero.
1275 ///
1276 /// # Examples
1277 ///
1278 /// Basic usage:
1279 ///
1280 /// ```
1281 /// #![feature(strict_overflow_ops)]
1282 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
1283 /// ```
1284 ///
1285 /// The following panics because of division by zero:
1286 ///
1287 /// ```should_panic
1288 /// #![feature(strict_overflow_ops)]
1289 #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1290 /// ```
1291 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1292 #[must_use = "this returns the result of the operation, \
1293 without modifying the original"]
1294 #[inline(always)]
1295 #[track_caller]
1296 pub const fn strict_rem(self, rhs: Self) -> Self {
1297 self % rhs
1298 }
1299
1300 /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
1301 /// if `rhs == 0`.
1302 ///
1303 /// # Examples
1304 ///
1305 /// Basic usage:
1306 ///
1307 /// ```
1308 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1309 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1310 /// ```
1311 #[stable(feature = "euclidean_division", since = "1.38.0")]
1312 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1313 #[must_use = "this returns the result of the operation, \
1314 without modifying the original"]
1315 #[inline]
1316 pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1317 if intrinsics::unlikely(rhs == 0) {
1318 None
1319 } else {
1320 Some(self.rem_euclid(rhs))
1321 }
1322 }
1323
1324 /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
1325 ///
1326 /// Strict modulo calculation on unsigned types is just the regular
1327 /// remainder calculation. There's no way overflow could ever happen.
1328 /// This function exists so that all operations are accounted for in the
1329 /// strict operations. Since, for the positive integers, all common
1330 /// definitions of division are equal, this is exactly equal to
1331 /// `self.strict_rem(rhs)`.
1332 ///
1333 /// # Panics
1334 ///
1335 /// This function will panic if `rhs` is zero.
1336 ///
1337 /// # Examples
1338 ///
1339 /// Basic usage:
1340 ///
1341 /// ```
1342 /// #![feature(strict_overflow_ops)]
1343 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
1344 /// ```
1345 ///
1346 /// The following panics because of division by zero:
1347 ///
1348 /// ```should_panic
1349 /// #![feature(strict_overflow_ops)]
1350 #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1351 /// ```
1352 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1353 #[must_use = "this returns the result of the operation, \
1354 without modifying the original"]
1355 #[inline(always)]
1356 #[track_caller]
1357 pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1358 self % rhs
1359 }
1360
1361 /// Same value as `self | other`, but UB if any bit position is set in both inputs.
1362 ///
1363 /// This is a situational micro-optimization for places where you'd rather
1364 /// use addition on some platforms and bitwise or on other platforms, based
1365 /// on exactly which instructions combine better with whatever else you're
1366 /// doing. Note that there's no reason to bother using this for places
1367 /// where it's clear from the operations involved that they can't overlap.
1368 /// For example, if you're combining `u16`s into a `u32` with
1369 /// `((a as u32) << 16) | (b as u32)`, that's fine, as the backend will
1370 /// know those sides of the `|` are disjoint without needing help.
1371 ///
1372 /// # Examples
1373 ///
1374 /// ```
1375 /// #![feature(disjoint_bitor)]
1376 ///
1377 /// // SAFETY: `1` and `4` have no bits in common.
1378 /// unsafe {
1379 #[doc = concat!(" assert_eq!(1_", stringify!($SelfT), ".unchecked_disjoint_bitor(4), 5);")]
1380 /// }
1381 /// ```
1382 ///
1383 /// # Safety
1384 ///
1385 /// Requires that `(self & other) == 0`, otherwise it's immediate UB.
1386 ///
1387 /// Equivalently, requires that `(self | other) == (self + other)`.
1388 #[unstable(feature = "disjoint_bitor", issue = "135758")]
1389 #[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
1390 #[inline]
1391 pub const unsafe fn unchecked_disjoint_bitor(self, other: Self) -> Self {
1392 assert_unsafe_precondition!(
1393 check_language_ub,
1394 concat!(stringify!($SelfT), "::unchecked_disjoint_bitor cannot have overlapping bits"),
1395 (
1396 lhs: $SelfT = self,
1397 rhs: $SelfT = other,
1398 ) => (lhs & rhs) == 0,
1399 );
1400
1401 // SAFETY: Same precondition
1402 unsafe { intrinsics::disjoint_bitor(self, other) }
1403 }
1404
1405 /// Returns the logarithm of the number with respect to an arbitrary base,
1406 /// rounded down.
1407 ///
1408 /// This method might not be optimized owing to implementation details;
1409 /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
1410 /// can produce results more efficiently for base 10.
1411 ///
1412 /// # Panics
1413 ///
1414 /// This function will panic if `self` is zero, or if `base` is less than 2.
1415 ///
1416 /// # Examples
1417 ///
1418 /// ```
1419 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
1420 /// ```
1421 #[stable(feature = "int_log", since = "1.67.0")]
1422 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1423 #[must_use = "this returns the result of the operation, \
1424 without modifying the original"]
1425 #[inline]
1426 #[track_caller]
1427 pub const fn ilog(self, base: Self) -> u32 {
1428 assert!(base >= 2, "base of integer logarithm must be at least 2");
1429 if let Some(log) = self.checked_ilog(base) {
1430 log
1431 } else {
1432 int_log10::panic_for_nonpositive_argument()
1433 }
1434 }
1435
1436 /// Returns the base 2 logarithm of the number, rounded down.
1437 ///
1438 /// # Panics
1439 ///
1440 /// This function will panic if `self` is zero.
1441 ///
1442 /// # Examples
1443 ///
1444 /// ```
1445 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
1446 /// ```
1447 #[stable(feature = "int_log", since = "1.67.0")]
1448 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1449 #[must_use = "this returns the result of the operation, \
1450 without modifying the original"]
1451 #[inline]
1452 #[track_caller]
1453 pub const fn ilog2(self) -> u32 {
1454 if let Some(log) = self.checked_ilog2() {
1455 log
1456 } else {
1457 int_log10::panic_for_nonpositive_argument()
1458 }
1459 }
1460
1461 /// Returns the base 10 logarithm of the number, rounded down.
1462 ///
1463 /// # Panics
1464 ///
1465 /// This function will panic if `self` is zero.
1466 ///
1467 /// # Example
1468 ///
1469 /// ```
1470 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
1471 /// ```
1472 #[stable(feature = "int_log", since = "1.67.0")]
1473 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1474 #[must_use = "this returns the result of the operation, \
1475 without modifying the original"]
1476 #[inline]
1477 #[track_caller]
1478 pub const fn ilog10(self) -> u32 {
1479 if let Some(log) = self.checked_ilog10() {
1480 log
1481 } else {
1482 int_log10::panic_for_nonpositive_argument()
1483 }
1484 }
1485
1486 /// Returns the logarithm of the number with respect to an arbitrary base,
1487 /// rounded down.
1488 ///
1489 /// Returns `None` if the number is zero, or if the base is not at least 2.
1490 ///
1491 /// This method might not be optimized owing to implementation details;
1492 /// `checked_ilog2` can produce results more efficiently for base 2, and
1493 /// `checked_ilog10` can produce results more efficiently for base 10.
1494 ///
1495 /// # Examples
1496 ///
1497 /// ```
1498 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
1499 /// ```
1500 #[stable(feature = "int_log", since = "1.67.0")]
1501 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1502 #[must_use = "this returns the result of the operation, \
1503 without modifying the original"]
1504 #[inline]
1505 pub const fn checked_ilog(self, base: Self) -> Option<u32> {
1506 if self <= 0 || base <= 1 {
1507 None
1508 } else if self < base {
1509 Some(0)
1510 } else {
1511 // Since base >= self, n >= 1
1512 let mut n = 1;
1513 let mut r = base;
1514
1515 // Optimization for 128 bit wide integers.
1516 if Self::BITS == 128 {
1517 // The following is a correct lower bound for ⌊log(base,self)⌋ because
1518 //
1519 // log(base,self) = log(2,self) / log(2,base)
1520 // ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
1521 //
1522 // hence
1523 //
1524 // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
1525 n = self.ilog2() / (base.ilog2() + 1);
1526 r = base.pow(n);
1527 }
1528
1529 while r <= self / base {
1530 n += 1;
1531 r *= base;
1532 }
1533 Some(n)
1534 }
1535 }
1536
1537 /// Returns the base 2 logarithm of the number, rounded down.
1538 ///
1539 /// Returns `None` if the number is zero.
1540 ///
1541 /// # Examples
1542 ///
1543 /// ```
1544 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
1545 /// ```
1546 #[stable(feature = "int_log", since = "1.67.0")]
1547 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1548 #[must_use = "this returns the result of the operation, \
1549 without modifying the original"]
1550 #[inline]
1551 pub const fn checked_ilog2(self) -> Option<u32> {
1552 match NonZero::new(self) {
1553 Some(x) => Some(x.ilog2()),
1554 None => None,
1555 }
1556 }
1557
1558 /// Returns the base 10 logarithm of the number, rounded down.
1559 ///
1560 /// Returns `None` if the number is zero.
1561 ///
1562 /// # Examples
1563 ///
1564 /// ```
1565 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
1566 /// ```
1567 #[stable(feature = "int_log", since = "1.67.0")]
1568 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1569 #[must_use = "this returns the result of the operation, \
1570 without modifying the original"]
1571 #[inline]
1572 pub const fn checked_ilog10(self) -> Option<u32> {
1573 match NonZero::new(self) {
1574 Some(x) => Some(x.ilog10()),
1575 None => None,
1576 }
1577 }
1578
1579 /// Checked negation. Computes `-self`, returning `None` unless `self ==
1580 /// 0`.
1581 ///
1582 /// Note that negating any positive integer will overflow.
1583 ///
1584 /// # Examples
1585 ///
1586 /// Basic usage:
1587 ///
1588 /// ```
1589 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
1590 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
1591 /// ```
1592 #[stable(feature = "wrapping", since = "1.7.0")]
1593 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1594 #[must_use = "this returns the result of the operation, \
1595 without modifying the original"]
1596 #[inline]
1597 pub const fn checked_neg(self) -> Option<Self> {
1598 let (a, b) = self.overflowing_neg();
1599 if intrinsics::unlikely(b) { None } else { Some(a) }
1600 }
1601
1602 /// Strict negation. Computes `-self`, panicking unless `self ==
1603 /// 0`.
1604 ///
1605 /// Note that negating any positive integer will overflow.
1606 ///
1607 /// # Panics
1608 ///
1609 /// ## Overflow behavior
1610 ///
1611 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1612 ///
1613 /// # Examples
1614 ///
1615 /// Basic usage:
1616 ///
1617 /// ```
1618 /// #![feature(strict_overflow_ops)]
1619 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
1620 /// ```
1621 ///
1622 /// The following panics because of overflow:
1623 ///
1624 /// ```should_panic
1625 /// #![feature(strict_overflow_ops)]
1626 #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
1627 ///
1628 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1629 #[must_use = "this returns the result of the operation, \
1630 without modifying the original"]
1631 #[inline]
1632 #[track_caller]
1633 pub const fn strict_neg(self) -> Self {
1634 let (a, b) = self.overflowing_neg();
1635 if b { overflow_panic::neg() } else { a }
1636 }
1637
1638 /// Checked shift left. Computes `self << rhs`, returning `None`
1639 /// if `rhs` is larger than or equal to the number of bits in `self`.
1640 ///
1641 /// # Examples
1642 ///
1643 /// Basic usage:
1644 ///
1645 /// ```
1646 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1647 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
1648 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1649 /// ```
1650 #[stable(feature = "wrapping", since = "1.7.0")]
1651 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1652 #[must_use = "this returns the result of the operation, \
1653 without modifying the original"]
1654 #[inline]
1655 pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1656 // Not using overflowing_shl as that's a wrapping shift
1657 if rhs < Self::BITS {
1658 // SAFETY: just checked the RHS is in-range
1659 Some(unsafe { self.unchecked_shl(rhs) })
1660 } else {
1661 None
1662 }
1663 }
1664
1665 /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1666 /// than or equal to the number of bits in `self`.
1667 ///
1668 /// # Panics
1669 ///
1670 /// ## Overflow behavior
1671 ///
1672 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1673 ///
1674 /// # Examples
1675 ///
1676 /// Basic usage:
1677 ///
1678 /// ```
1679 /// #![feature(strict_overflow_ops)]
1680 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1681 /// ```
1682 ///
1683 /// The following panics because of overflow:
1684 ///
1685 /// ```should_panic
1686 /// #![feature(strict_overflow_ops)]
1687 #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
1688 /// ```
1689 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1690 #[must_use = "this returns the result of the operation, \
1691 without modifying the original"]
1692 #[inline]
1693 #[track_caller]
1694 pub const fn strict_shl(self, rhs: u32) -> Self {
1695 let (a, b) = self.overflowing_shl(rhs);
1696 if b { overflow_panic::shl() } else { a }
1697 }
1698
1699 /// Unchecked shift left. Computes `self << rhs`, assuming that
1700 /// `rhs` is less than the number of bits in `self`.
1701 ///
1702 /// # Safety
1703 ///
1704 /// This results in undefined behavior if `rhs` is larger than
1705 /// or equal to the number of bits in `self`,
1706 /// i.e. when [`checked_shl`] would return `None`.
1707 ///
1708 #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1709 #[unstable(
1710 feature = "unchecked_shifts",
1711 reason = "niche optimization path",
1712 issue = "85122",
1713 )]
1714 #[must_use = "this returns the result of the operation, \
1715 without modifying the original"]
1716 #[inline(always)]
1717 #[track_caller]
1718 pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1719 assert_unsafe_precondition!(
1720 check_language_ub,
1721 concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1722 (
1723 rhs: u32 = rhs,
1724 ) => rhs < <$ActualT>::BITS,
1725 );
1726
1727 // SAFETY: this is guaranteed to be safe by the caller.
1728 unsafe {
1729 intrinsics::unchecked_shl(self, rhs)
1730 }
1731 }
1732
1733 /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1734 ///
1735 /// If `rhs` is larger or equal to the number of bits in `self`,
1736 /// the entire value is shifted out, and `0` is returned.
1737 ///
1738 /// # Examples
1739 ///
1740 /// Basic usage:
1741 /// ```
1742 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1743 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1744 /// ```
1745 #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1746 #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1747 #[must_use = "this returns the result of the operation, \
1748 without modifying the original"]
1749 #[inline]
1750 pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1751 if rhs < Self::BITS {
1752 // SAFETY:
1753 // rhs is just checked to be in-range above
1754 unsafe { self.unchecked_shl(rhs) }
1755 } else {
1756 0
1757 }
1758 }
1759
1760 /// Checked shift right. Computes `self >> rhs`, returning `None`
1761 /// if `rhs` is larger than or equal to the number of bits in `self`.
1762 ///
1763 /// # Examples
1764 ///
1765 /// Basic usage:
1766 ///
1767 /// ```
1768 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1769 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
1770 /// ```
1771 #[stable(feature = "wrapping", since = "1.7.0")]
1772 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1773 #[must_use = "this returns the result of the operation, \
1774 without modifying the original"]
1775 #[inline]
1776 pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1777 // Not using overflowing_shr as that's a wrapping shift
1778 if rhs < Self::BITS {
1779 // SAFETY: just checked the RHS is in-range
1780 Some(unsafe { self.unchecked_shr(rhs) })
1781 } else {
1782 None
1783 }
1784 }
1785
1786 /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
1787 /// larger than or equal to the number of bits in `self`.
1788 ///
1789 /// # Panics
1790 ///
1791 /// ## Overflow behavior
1792 ///
1793 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1794 ///
1795 /// # Examples
1796 ///
1797 /// Basic usage:
1798 ///
1799 /// ```
1800 /// #![feature(strict_overflow_ops)]
1801 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1802 /// ```
1803 ///
1804 /// The following panics because of overflow:
1805 ///
1806 /// ```should_panic
1807 /// #![feature(strict_overflow_ops)]
1808 #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
1809 /// ```
1810 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1811 #[must_use = "this returns the result of the operation, \
1812 without modifying the original"]
1813 #[inline]
1814 #[track_caller]
1815 pub const fn strict_shr(self, rhs: u32) -> Self {
1816 let (a, b) = self.overflowing_shr(rhs);
1817 if b { overflow_panic::shr() } else { a }
1818 }
1819
1820 /// Unchecked shift right. Computes `self >> rhs`, assuming that
1821 /// `rhs` is less than the number of bits in `self`.
1822 ///
1823 /// # Safety
1824 ///
1825 /// This results in undefined behavior if `rhs` is larger than
1826 /// or equal to the number of bits in `self`,
1827 /// i.e. when [`checked_shr`] would return `None`.
1828 ///
1829 #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1830 #[unstable(
1831 feature = "unchecked_shifts",
1832 reason = "niche optimization path",
1833 issue = "85122",
1834 )]
1835 #[must_use = "this returns the result of the operation, \
1836 without modifying the original"]
1837 #[inline(always)]
1838 #[track_caller]
1839 pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1840 assert_unsafe_precondition!(
1841 check_language_ub,
1842 concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1843 (
1844 rhs: u32 = rhs,
1845 ) => rhs < <$ActualT>::BITS,
1846 );
1847
1848 // SAFETY: this is guaranteed to be safe by the caller.
1849 unsafe {
1850 intrinsics::unchecked_shr(self, rhs)
1851 }
1852 }
1853
1854 /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1855 ///
1856 /// If `rhs` is larger or equal to the number of bits in `self`,
1857 /// the entire value is shifted out, and `0` is returned.
1858 ///
1859 /// # Examples
1860 ///
1861 /// Basic usage:
1862 /// ```
1863 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1864 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1865 /// ```
1866 #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1867 #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1868 #[must_use = "this returns the result of the operation, \
1869 without modifying the original"]
1870 #[inline]
1871 pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1872 if rhs < Self::BITS {
1873 // SAFETY:
1874 // rhs is just checked to be in-range above
1875 unsafe { self.unchecked_shr(rhs) }
1876 } else {
1877 0
1878 }
1879 }
1880
1881 /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1882 /// overflow occurred.
1883 ///
1884 /// # Examples
1885 ///
1886 /// Basic usage:
1887 ///
1888 /// ```
1889 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
1890 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1891 /// ```
1892 #[stable(feature = "no_panic_pow", since = "1.34.0")]
1893 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1894 #[must_use = "this returns the result of the operation, \
1895 without modifying the original"]
1896 #[inline]
1897 pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1898 if exp == 0 {
1899 return Some(1);
1900 }
1901 let mut base = self;
1902 let mut acc: Self = 1;
1903
1904 loop {
1905 if (exp & 1) == 1 {
1906 acc = try_opt!(acc.checked_mul(base));
1907 // since exp!=0, finally the exp must be 1.
1908 if exp == 1 {
1909 return Some(acc);
1910 }
1911 }
1912 exp /= 2;
1913 base = try_opt!(base.checked_mul(base));
1914 }
1915 }
1916
1917 /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1918 /// overflow occurred.
1919 ///
1920 /// # Panics
1921 ///
1922 /// ## Overflow behavior
1923 ///
1924 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1925 ///
1926 /// # Examples
1927 ///
1928 /// Basic usage:
1929 ///
1930 /// ```
1931 /// #![feature(strict_overflow_ops)]
1932 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
1933 /// ```
1934 ///
1935 /// The following panics because of overflow:
1936 ///
1937 /// ```should_panic
1938 /// #![feature(strict_overflow_ops)]
1939 #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1940 /// ```
1941 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1942 #[must_use = "this returns the result of the operation, \
1943 without modifying the original"]
1944 #[inline]
1945 #[track_caller]
1946 pub const fn strict_pow(self, mut exp: u32) -> Self {
1947 if exp == 0 {
1948 return 1;
1949 }
1950 let mut base = self;
1951 let mut acc: Self = 1;
1952
1953 loop {
1954 if (exp & 1) == 1 {
1955 acc = acc.strict_mul(base);
1956 // since exp!=0, finally the exp must be 1.
1957 if exp == 1 {
1958 return acc;
1959 }
1960 }
1961 exp /= 2;
1962 base = base.strict_mul(base);
1963 }
1964 }
1965
1966 /// Saturating integer addition. Computes `self + rhs`, saturating at
1967 /// the numeric bounds instead of overflowing.
1968 ///
1969 /// # Examples
1970 ///
1971 /// Basic usage:
1972 ///
1973 /// ```
1974 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1975 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
1976 /// ```
1977 #[stable(feature = "rust1", since = "1.0.0")]
1978 #[must_use = "this returns the result of the operation, \
1979 without modifying the original"]
1980 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1981 #[inline(always)]
1982 pub const fn saturating_add(self, rhs: Self) -> Self {
1983 intrinsics::saturating_add(self, rhs)
1984 }
1985
1986 /// Saturating addition with a signed integer. Computes `self + rhs`,
1987 /// saturating at the numeric bounds instead of overflowing.
1988 ///
1989 /// # Examples
1990 ///
1991 /// Basic usage:
1992 ///
1993 /// ```
1994 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
1995 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
1996 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
1997 /// ```
1998 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1999 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2000 #[must_use = "this returns the result of the operation, \
2001 without modifying the original"]
2002 #[inline]
2003 pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
2004 let (res, overflow) = self.overflowing_add(rhs as Self);
2005 if overflow == (rhs < 0) {
2006 res
2007 } else if overflow {
2008 Self::MAX
2009 } else {
2010 0
2011 }
2012 }
2013
2014 /// Saturating integer subtraction. Computes `self - rhs`, saturating
2015 /// at the numeric bounds instead of overflowing.
2016 ///
2017 /// # Examples
2018 ///
2019 /// Basic usage:
2020 ///
2021 /// ```
2022 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
2023 #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
2024 /// ```
2025 #[stable(feature = "rust1", since = "1.0.0")]
2026 #[must_use = "this returns the result of the operation, \
2027 without modifying the original"]
2028 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2029 #[inline(always)]
2030 pub const fn saturating_sub(self, rhs: Self) -> Self {
2031 intrinsics::saturating_sub(self, rhs)
2032 }
2033
2034 /// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
2035 /// the numeric bounds instead of overflowing.
2036 ///
2037 /// # Examples
2038 ///
2039 /// Basic usage:
2040 ///
2041 /// ```
2042 /// #![feature(mixed_integer_ops_unsigned_sub)]
2043 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
2044 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
2045 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
2046 /// ```
2047 #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
2048 #[must_use = "this returns the result of the operation, \
2049 without modifying the original"]
2050 #[inline]
2051 pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
2052 let (res, overflow) = self.overflowing_sub_signed(rhs);
2053
2054 if !overflow {
2055 res
2056 } else if rhs < 0 {
2057 Self::MAX
2058 } else {
2059 0
2060 }
2061 }
2062
2063 /// Saturating integer multiplication. Computes `self * rhs`,
2064 /// saturating at the numeric bounds instead of overflowing.
2065 ///
2066 /// # Examples
2067 ///
2068 /// Basic usage:
2069 ///
2070 /// ```
2071 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
2072 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
2073 /// ```
2074 #[stable(feature = "wrapping", since = "1.7.0")]
2075 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2076 #[must_use = "this returns the result of the operation, \
2077 without modifying the original"]
2078 #[inline]
2079 pub const fn saturating_mul(self, rhs: Self) -> Self {
2080 match self.checked_mul(rhs) {
2081 Some(x) => x,
2082 None => Self::MAX,
2083 }
2084 }
2085
2086 /// Saturating integer division. Computes `self / rhs`, saturating at the
2087 /// numeric bounds instead of overflowing.
2088 ///
2089 /// # Panics
2090 ///
2091 /// This function will panic if `rhs` is zero.
2092 ///
2093 /// # Examples
2094 ///
2095 /// Basic usage:
2096 ///
2097 /// ```
2098 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
2099 ///
2100 /// ```
2101 #[stable(feature = "saturating_div", since = "1.58.0")]
2102 #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
2103 #[must_use = "this returns the result of the operation, \
2104 without modifying the original"]
2105 #[inline]
2106 #[track_caller]
2107 pub const fn saturating_div(self, rhs: Self) -> Self {
2108 // on unsigned types, there is no overflow in integer division
2109 self.wrapping_div(rhs)
2110 }
2111
2112 /// Saturating integer exponentiation. Computes `self.pow(exp)`,
2113 /// saturating at the numeric bounds instead of overflowing.
2114 ///
2115 /// # Examples
2116 ///
2117 /// Basic usage:
2118 ///
2119 /// ```
2120 #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
2121 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
2122 /// ```
2123 #[stable(feature = "no_panic_pow", since = "1.34.0")]
2124 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2125 #[must_use = "this returns the result of the operation, \
2126 without modifying the original"]
2127 #[inline]
2128 pub const fn saturating_pow(self, exp: u32) -> Self {
2129 match self.checked_pow(exp) {
2130 Some(x) => x,
2131 None => Self::MAX,
2132 }
2133 }
2134
2135 /// Wrapping (modular) addition. Computes `self + rhs`,
2136 /// wrapping around at the boundary of the type.
2137 ///
2138 /// # Examples
2139 ///
2140 /// Basic usage:
2141 ///
2142 /// ```
2143 #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
2144 #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
2145 /// ```
2146 #[stable(feature = "rust1", since = "1.0.0")]
2147 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2148 #[must_use = "this returns the result of the operation, \
2149 without modifying the original"]
2150 #[inline(always)]
2151 pub const fn wrapping_add(self, rhs: Self) -> Self {
2152 intrinsics::wrapping_add(self, rhs)
2153 }
2154
2155 /// Wrapping (modular) addition with a signed integer. Computes
2156 /// `self + rhs`, wrapping around at the boundary of the type.
2157 ///
2158 /// # Examples
2159 ///
2160 /// Basic usage:
2161 ///
2162 /// ```
2163 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
2164 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
2165 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
2166 /// ```
2167 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2168 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2169 #[must_use = "this returns the result of the operation, \
2170 without modifying the original"]
2171 #[inline]
2172 pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
2173 self.wrapping_add(rhs as Self)
2174 }
2175
2176 /// Wrapping (modular) subtraction. Computes `self - rhs`,
2177 /// wrapping around at the boundary of the type.
2178 ///
2179 /// # Examples
2180 ///
2181 /// Basic usage:
2182 ///
2183 /// ```
2184 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
2185 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
2186 /// ```
2187 #[stable(feature = "rust1", since = "1.0.0")]
2188 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2189 #[must_use = "this returns the result of the operation, \
2190 without modifying the original"]
2191 #[inline(always)]
2192 pub const fn wrapping_sub(self, rhs: Self) -> Self {
2193 intrinsics::wrapping_sub(self, rhs)
2194 }
2195
2196 /// Wrapping (modular) subtraction with a signed integer. Computes
2197 /// `self - rhs`, wrapping around at the boundary of the type.
2198 ///
2199 /// # Examples
2200 ///
2201 /// Basic usage:
2202 ///
2203 /// ```
2204 /// #![feature(mixed_integer_ops_unsigned_sub)]
2205 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
2206 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
2207 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
2208 /// ```
2209 #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
2210 #[must_use = "this returns the result of the operation, \
2211 without modifying the original"]
2212 #[inline]
2213 pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
2214 self.wrapping_sub(rhs as Self)
2215 }
2216
2217 /// Wrapping (modular) multiplication. Computes `self *
2218 /// rhs`, wrapping around at the boundary of the type.
2219 ///
2220 /// # Examples
2221 ///
2222 /// Basic usage:
2223 ///
2224 /// Please note that this example is shared between integer types.
2225 /// Which explains why `u8` is used here.
2226 ///
2227 /// ```
2228 /// assert_eq!(10u8.wrapping_mul(12), 120);
2229 /// assert_eq!(25u8.wrapping_mul(12), 44);
2230 /// ```
2231 #[stable(feature = "rust1", since = "1.0.0")]
2232 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2233 #[must_use = "this returns the result of the operation, \
2234 without modifying the original"]
2235 #[inline(always)]
2236 pub const fn wrapping_mul(self, rhs: Self) -> Self {
2237 intrinsics::wrapping_mul(self, rhs)
2238 }
2239
2240 /// Wrapping (modular) division. Computes `self / rhs`.
2241 ///
2242 /// Wrapped division on unsigned types is just normal division. There's
2243 /// no way wrapping could ever happen. This function exists so that all
2244 /// operations are accounted for in the wrapping operations.
2245 ///
2246 /// # Panics
2247 ///
2248 /// This function will panic if `rhs` is zero.
2249 ///
2250 /// # Examples
2251 ///
2252 /// Basic usage:
2253 ///
2254 /// ```
2255 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2256 /// ```
2257 #[stable(feature = "num_wrapping", since = "1.2.0")]
2258 #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2259 #[must_use = "this returns the result of the operation, \
2260 without modifying the original"]
2261 #[inline(always)]
2262 #[track_caller]
2263 pub const fn wrapping_div(self, rhs: Self) -> Self {
2264 self / rhs
2265 }
2266
2267 /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
2268 ///
2269 /// Wrapped division on unsigned types is just normal division. There's
2270 /// no way wrapping could ever happen. This function exists so that all
2271 /// operations are accounted for in the wrapping operations. Since, for
2272 /// the positive integers, all common definitions of division are equal,
2273 /// this is exactly equal to `self.wrapping_div(rhs)`.
2274 ///
2275 /// # Panics
2276 ///
2277 /// This function will panic if `rhs` is zero.
2278 ///
2279 /// # Examples
2280 ///
2281 /// Basic usage:
2282 ///
2283 /// ```
2284 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2285 /// ```
2286 #[stable(feature = "euclidean_division", since = "1.38.0")]
2287 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2288 #[must_use = "this returns the result of the operation, \
2289 without modifying the original"]
2290 #[inline(always)]
2291 #[track_caller]
2292 pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2293 self / rhs
2294 }
2295
2296 /// Wrapping (modular) remainder. Computes `self % rhs`.
2297 ///
2298 /// Wrapped remainder calculation on unsigned types is just the regular
2299 /// remainder calculation. There's no way wrapping could ever happen.
2300 /// This function exists so that all operations are accounted for in the
2301 /// wrapping operations.
2302 ///
2303 /// # Panics
2304 ///
2305 /// This function will panic if `rhs` is zero.
2306 ///
2307 /// # Examples
2308 ///
2309 /// Basic usage:
2310 ///
2311 /// ```
2312 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2313 /// ```
2314 #[stable(feature = "num_wrapping", since = "1.2.0")]
2315 #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2316 #[must_use = "this returns the result of the operation, \
2317 without modifying the original"]
2318 #[inline(always)]
2319 #[track_caller]
2320 pub const fn wrapping_rem(self, rhs: Self) -> Self {
2321 self % rhs
2322 }
2323
2324 /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
2325 ///
2326 /// Wrapped modulo calculation on unsigned types is just the regular
2327 /// remainder calculation. There's no way wrapping could ever happen.
2328 /// This function exists so that all operations are accounted for in the
2329 /// wrapping operations. Since, for the positive integers, all common
2330 /// definitions of division are equal, this is exactly equal to
2331 /// `self.wrapping_rem(rhs)`.
2332 ///
2333 /// # Panics
2334 ///
2335 /// This function will panic if `rhs` is zero.
2336 ///
2337 /// # Examples
2338 ///
2339 /// Basic usage:
2340 ///
2341 /// ```
2342 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2343 /// ```
2344 #[stable(feature = "euclidean_division", since = "1.38.0")]
2345 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2346 #[must_use = "this returns the result of the operation, \
2347 without modifying the original"]
2348 #[inline(always)]
2349 #[track_caller]
2350 pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2351 self % rhs
2352 }
2353
2354 /// Wrapping (modular) negation. Computes `-self`,
2355 /// wrapping around at the boundary of the type.
2356 ///
2357 /// Since unsigned types do not have negative equivalents
2358 /// all applications of this function will wrap (except for `-0`).
2359 /// For values smaller than the corresponding signed type's maximum
2360 /// the result is the same as casting the corresponding signed value.
2361 /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
2362 /// `MAX` is the corresponding signed type's maximum.
2363 ///
2364 /// # Examples
2365 ///
2366 /// Basic usage:
2367 ///
2368 /// ```
2369 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
2370 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
2371 #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
2372 #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
2373 /// ```
2374 #[stable(feature = "num_wrapping", since = "1.2.0")]
2375 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2376 #[must_use = "this returns the result of the operation, \
2377 without modifying the original"]
2378 #[inline(always)]
2379 pub const fn wrapping_neg(self) -> Self {
2380 (0 as $SelfT).wrapping_sub(self)
2381 }
2382
2383 /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
2384 /// where `mask` removes any high-order bits of `rhs` that
2385 /// would cause the shift to exceed the bitwidth of the type.
2386 ///
2387 /// Note that this is *not* the same as a rotate-left; the
2388 /// RHS of a wrapping shift-left is restricted to the range
2389 /// of the type, rather than the bits shifted out of the LHS
2390 /// being returned to the other end. The primitive integer
2391 /// types all implement a [`rotate_left`](Self::rotate_left) function,
2392 /// which may be what you want instead.
2393 ///
2394 /// # Examples
2395 ///
2396 /// Basic usage:
2397 ///
2398 /// ```
2399 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
2400 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
2401 /// ```
2402 #[stable(feature = "num_wrapping", since = "1.2.0")]
2403 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2404 #[must_use = "this returns the result of the operation, \
2405 without modifying the original"]
2406 #[inline(always)]
2407 pub const fn wrapping_shl(self, rhs: u32) -> Self {
2408 // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2409 // out of bounds
2410 unsafe {
2411 self.unchecked_shl(rhs & (Self::BITS - 1))
2412 }
2413 }
2414
2415 /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
2416 /// where `mask` removes any high-order bits of `rhs` that
2417 /// would cause the shift to exceed the bitwidth of the type.
2418 ///
2419 /// Note that this is *not* the same as a rotate-right; the
2420 /// RHS of a wrapping shift-right is restricted to the range
2421 /// of the type, rather than the bits shifted out of the LHS
2422 /// being returned to the other end. The primitive integer
2423 /// types all implement a [`rotate_right`](Self::rotate_right) function,
2424 /// which may be what you want instead.
2425 ///
2426 /// # Examples
2427 ///
2428 /// Basic usage:
2429 ///
2430 /// ```
2431 #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
2432 #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
2433 /// ```
2434 #[stable(feature = "num_wrapping", since = "1.2.0")]
2435 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2436 #[must_use = "this returns the result of the operation, \
2437 without modifying the original"]
2438 #[inline(always)]
2439 pub const fn wrapping_shr(self, rhs: u32) -> Self {
2440 // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2441 // out of bounds
2442 unsafe {
2443 self.unchecked_shr(rhs & (Self::BITS - 1))
2444 }
2445 }
2446
2447 /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2448 /// wrapping around at the boundary of the type.
2449 ///
2450 /// # Examples
2451 ///
2452 /// Basic usage:
2453 ///
2454 /// ```
2455 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
2456 /// assert_eq!(3u8.wrapping_pow(6), 217);
2457 /// ```
2458 #[stable(feature = "no_panic_pow", since = "1.34.0")]
2459 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2460 #[must_use = "this returns the result of the operation, \
2461 without modifying the original"]
2462 #[inline]
2463 pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2464 if exp == 0 {
2465 return 1;
2466 }
2467 let mut base = self;
2468 let mut acc: Self = 1;
2469
2470 if intrinsics::is_val_statically_known(exp) {
2471 while exp > 1 {
2472 if (exp & 1) == 1 {
2473 acc = acc.wrapping_mul(base);
2474 }
2475 exp /= 2;
2476 base = base.wrapping_mul(base);
2477 }
2478
2479 // since exp!=0, finally the exp must be 1.
2480 // Deal with the final bit of the exponent separately, since
2481 // squaring the base afterwards is not necessary.
2482 acc.wrapping_mul(base)
2483 } else {
2484 // This is faster than the above when the exponent is not known
2485 // at compile time. We can't use the same code for the constant
2486 // exponent case because LLVM is currently unable to unroll
2487 // this loop.
2488 loop {
2489 if (exp & 1) == 1 {
2490 acc = acc.wrapping_mul(base);
2491 // since exp!=0, finally the exp must be 1.
2492 if exp == 1 {
2493 return acc;
2494 }
2495 }
2496 exp /= 2;
2497 base = base.wrapping_mul(base);
2498 }
2499 }
2500 }
2501
2502 /// Calculates `self` + `rhs`.
2503 ///
2504 /// Returns a tuple of the addition along with a boolean indicating
2505 /// whether an arithmetic overflow would occur. If an overflow would
2506 /// have occurred then the wrapped value is returned.
2507 ///
2508 /// # Examples
2509 ///
2510 /// Basic usage:
2511 ///
2512 /// ```
2513 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2514 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
2515 /// ```
2516 #[stable(feature = "wrapping", since = "1.7.0")]
2517 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2518 #[must_use = "this returns the result of the operation, \
2519 without modifying the original"]
2520 #[inline(always)]
2521 pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2522 let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2523 (a as Self, b)
2524 }
2525
2526 /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
2527 /// the sum and the output carry.
2528 ///
2529 /// Performs "ternary addition" of two integer operands and a carry-in
2530 /// bit, and returns an output integer and a carry-out bit. This allows
2531 /// chaining together multiple additions to create a wider addition, and
2532 /// can be useful for bignum addition.
2533 ///
2534 #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
2535 ///
2536 /// If the input carry is false, this method is equivalent to
2537 /// [`overflowing_add`](Self::overflowing_add), and the output carry is
2538 /// equal to the overflow flag. Note that although carry and overflow
2539 /// flags are similar for unsigned integers, they are different for
2540 /// signed integers.
2541 ///
2542 /// # Examples
2543 ///
2544 /// ```
2545 /// #![feature(bigint_helper_methods)]
2546 ///
2547 #[doc = concat!("// 3 MAX (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2548 #[doc = concat!("// + 5 7 (b = 5 × 2^", stringify!($BITS), " + 7)")]
2549 /// // ---------
2550 #[doc = concat!("// 9 6 (sum = 9 × 2^", stringify!($BITS), " + 6)")]
2551 ///
2552 #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
2553 #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2554 /// let carry0 = false;
2555 ///
2556 /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2557 /// assert_eq!(carry1, true);
2558 /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
2559 /// assert_eq!(carry2, false);
2560 ///
2561 /// assert_eq!((sum1, sum0), (9, 6));
2562 /// ```
2563 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2564 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2565 #[must_use = "this returns the result of the operation, \
2566 without modifying the original"]
2567 #[inline]
2568 pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2569 // note: longer-term this should be done via an intrinsic, but this has been shown
2570 // to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2571 let (a, c1) = self.overflowing_add(rhs);
2572 let (b, c2) = a.overflowing_add(carry as $SelfT);
2573 // Ideally LLVM would know this is disjoint without us telling them,
2574 // but it doesn't <https://github.com/llvm/llvm-project/issues/118162>
2575 // SAFETY: Only one of `c1` and `c2` can be set.
2576 // For c1 to be set we need to have overflowed, but if we did then
2577 // `a` is at most `MAX-1`, which means that `c2` cannot possibly
2578 // overflow because it's adding at most `1` (since it came from `bool`)
2579 (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2580 }
2581
2582 /// Calculates `self` + `rhs` with a signed `rhs`.
2583 ///
2584 /// Returns a tuple of the addition along with a boolean indicating
2585 /// whether an arithmetic overflow would occur. If an overflow would
2586 /// have occurred then the wrapped value is returned.
2587 ///
2588 /// # Examples
2589 ///
2590 /// Basic usage:
2591 ///
2592 /// ```
2593 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
2594 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
2595 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
2596 /// ```
2597 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2598 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2599 #[must_use = "this returns the result of the operation, \
2600 without modifying the original"]
2601 #[inline]
2602 pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
2603 let (res, overflowed) = self.overflowing_add(rhs as Self);
2604 (res, overflowed ^ (rhs < 0))
2605 }
2606
2607 /// Calculates `self` - `rhs`.
2608 ///
2609 /// Returns a tuple of the subtraction along with a boolean indicating
2610 /// whether an arithmetic overflow would occur. If an overflow would
2611 /// have occurred then the wrapped value is returned.
2612 ///
2613 /// # Examples
2614 ///
2615 /// Basic usage:
2616 ///
2617 /// ```
2618 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2619 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2620 /// ```
2621 #[stable(feature = "wrapping", since = "1.7.0")]
2622 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2623 #[must_use = "this returns the result of the operation, \
2624 without modifying the original"]
2625 #[inline(always)]
2626 pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2627 let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2628 (a as Self, b)
2629 }
2630
2631 /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
2632 /// containing the difference and the output borrow.
2633 ///
2634 /// Performs "ternary subtraction" by subtracting both an integer
2635 /// operand and a borrow-in bit from `self`, and returns an output
2636 /// integer and a borrow-out bit. This allows chaining together multiple
2637 /// subtractions to create a wider subtraction, and can be useful for
2638 /// bignum subtraction.
2639 ///
2640 /// # Examples
2641 ///
2642 /// ```
2643 /// #![feature(bigint_helper_methods)]
2644 ///
2645 #[doc = concat!("// 9 6 (a = 9 × 2^", stringify!($BITS), " + 6)")]
2646 #[doc = concat!("// - 5 7 (b = 5 × 2^", stringify!($BITS), " + 7)")]
2647 /// // ---------
2648 #[doc = concat!("// 3 MAX (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2649 ///
2650 #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
2651 #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2652 /// let borrow0 = false;
2653 ///
2654 /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2655 /// assert_eq!(borrow1, true);
2656 /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
2657 /// assert_eq!(borrow2, false);
2658 ///
2659 #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
2660 /// ```
2661 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2662 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2663 #[must_use = "this returns the result of the operation, \
2664 without modifying the original"]
2665 #[inline]
2666 pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2667 // note: longer-term this should be done via an intrinsic, but this has been shown
2668 // to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2669 let (a, c1) = self.overflowing_sub(rhs);
2670 let (b, c2) = a.overflowing_sub(borrow as $SelfT);
2671 // SAFETY: Only one of `c1` and `c2` can be set.
2672 // For c1 to be set we need to have underflowed, but if we did then
2673 // `a` is nonzero, which means that `c2` cannot possibly
2674 // underflow because it's subtracting at most `1` (since it came from `bool`)
2675 (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2676 }
2677
2678 /// Calculates `self` - `rhs` with a signed `rhs`
2679 ///
2680 /// Returns a tuple of the subtraction along with a boolean indicating
2681 /// whether an arithmetic overflow would occur. If an overflow would
2682 /// have occurred then the wrapped value is returned.
2683 ///
2684 /// # Examples
2685 ///
2686 /// Basic usage:
2687 ///
2688 /// ```
2689 /// #![feature(mixed_integer_ops_unsigned_sub)]
2690 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
2691 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
2692 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
2693 /// ```
2694 #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
2695 #[must_use = "this returns the result of the operation, \
2696 without modifying the original"]
2697 #[inline]
2698 pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
2699 let (res, overflow) = self.overflowing_sub(rhs as Self);
2700
2701 (res, overflow ^ (rhs < 0))
2702 }
2703
2704 /// Computes the absolute difference between `self` and `other`.
2705 ///
2706 /// # Examples
2707 ///
2708 /// Basic usage:
2709 ///
2710 /// ```
2711 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
2712 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
2713 /// ```
2714 #[stable(feature = "int_abs_diff", since = "1.60.0")]
2715 #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
2716 #[must_use = "this returns the result of the operation, \
2717 without modifying the original"]
2718 #[inline]
2719 pub const fn abs_diff(self, other: Self) -> Self {
2720 if size_of::<Self>() == 1 {
2721 // Trick LLVM into generating the psadbw instruction when SSE2
2722 // is available and this function is autovectorized for u8's.
2723 (self as i32).wrapping_sub(other as i32).abs() as Self
2724 } else {
2725 if self < other {
2726 other - self
2727 } else {
2728 self - other
2729 }
2730 }
2731 }
2732
2733 /// Calculates the multiplication of `self` and `rhs`.
2734 ///
2735 /// Returns a tuple of the multiplication along with a boolean
2736 /// indicating whether an arithmetic overflow would occur. If an
2737 /// overflow would have occurred then the wrapped value is returned.
2738 ///
2739 /// # Examples
2740 ///
2741 /// Basic usage:
2742 ///
2743 /// Please note that this example is shared between integer types.
2744 /// Which explains why `u32` is used here.
2745 ///
2746 /// ```
2747 /// assert_eq!(5u32.overflowing_mul(2), (10, false));
2748 /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
2749 /// ```
2750 #[stable(feature = "wrapping", since = "1.7.0")]
2751 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2752 #[must_use = "this returns the result of the operation, \
2753 without modifying the original"]
2754 #[inline(always)]
2755 pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2756 let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2757 (a as Self, b)
2758 }
2759
2760 /// Calculates the complete product `self * rhs` without the possibility to overflow.
2761 ///
2762 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2763 /// of the result as two separate values, in that order.
2764 ///
2765 /// If you also need to add a carry to the wide result, then you want
2766 /// [`Self::carrying_mul`] instead.
2767 ///
2768 /// # Examples
2769 ///
2770 /// Basic usage:
2771 ///
2772 /// Please note that this example is shared between integer types.
2773 /// Which explains why `u32` is used here.
2774 ///
2775 /// ```
2776 /// #![feature(bigint_helper_methods)]
2777 /// assert_eq!(5u32.widening_mul(2), (10, 0));
2778 /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
2779 /// ```
2780 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2781 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2782 #[must_use = "this returns the result of the operation, \
2783 without modifying the original"]
2784 #[inline]
2785 pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
2786 Self::carrying_mul_add(self, rhs, 0, 0)
2787 }
2788
2789 /// Calculates the "full multiplication" `self * rhs + carry`
2790 /// without the possibility to overflow.
2791 ///
2792 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2793 /// of the result as two separate values, in that order.
2794 ///
2795 /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2796 /// additional amount of overflow. This allows for chaining together multiple
2797 /// multiplications to create "big integers" which represent larger values.
2798 ///
2799 /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2800 ///
2801 /// # Examples
2802 ///
2803 /// Basic usage:
2804 ///
2805 /// Please note that this example is shared between integer types.
2806 /// Which explains why `u32` is used here.
2807 ///
2808 /// ```
2809 /// #![feature(bigint_helper_methods)]
2810 /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
2811 /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
2812 /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
2813 /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
2814 #[doc = concat!("assert_eq!(",
2815 stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2816 "(0, ", stringify!($SelfT), "::MAX));"
2817 )]
2818 /// ```
2819 ///
2820 /// This is the core operation needed for scalar multiplication when
2821 /// implementing it for wider-than-native types.
2822 ///
2823 /// ```
2824 /// #![feature(bigint_helper_methods)]
2825 /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
2826 /// let mut carry = 0;
2827 /// for d in little_endian_digits.iter_mut() {
2828 /// (*d, carry) = d.carrying_mul(multiplicand, carry);
2829 /// }
2830 /// if carry != 0 {
2831 /// little_endian_digits.push(carry);
2832 /// }
2833 /// }
2834 ///
2835 /// let mut v = vec![10, 20];
2836 /// scalar_mul_eq(&mut v, 3);
2837 /// assert_eq!(v, [30, 60]);
2838 ///
2839 /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
2840 /// let mut v = vec![0x4321, 0x8765];
2841 /// scalar_mul_eq(&mut v, 0xFEED);
2842 /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
2843 /// ```
2844 ///
2845 /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
2846 /// except that it gives the value of the overflow instead of just whether one happened:
2847 ///
2848 /// ```
2849 /// #![feature(bigint_helper_methods)]
2850 /// let r = u8::carrying_mul(7, 13, 0);
2851 /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
2852 /// let r = u8::carrying_mul(13, 42, 0);
2853 /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
2854 /// ```
2855 ///
2856 /// The value of the first field in the returned tuple matches what you'd get
2857 /// by combining the [`wrapping_mul`](Self::wrapping_mul) and
2858 /// [`wrapping_add`](Self::wrapping_add) methods:
2859 ///
2860 /// ```
2861 /// #![feature(bigint_helper_methods)]
2862 /// assert_eq!(
2863 /// 789_u16.carrying_mul(456, 123).0,
2864 /// 789_u16.wrapping_mul(456).wrapping_add(123),
2865 /// );
2866 /// ```
2867 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2868 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2869 #[must_use = "this returns the result of the operation, \
2870 without modifying the original"]
2871 #[inline]
2872 pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
2873 Self::carrying_mul_add(self, rhs, carry, 0)
2874 }
2875
2876 /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`
2877 /// without the possibility to overflow.
2878 ///
2879 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2880 /// of the result as two separate values, in that order.
2881 ///
2882 /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2883 /// additional amount of overflow. This allows for chaining together multiple
2884 /// multiplications to create "big integers" which represent larger values.
2885 ///
2886 /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2887 /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2888 ///
2889 /// # Examples
2890 ///
2891 /// Basic usage:
2892 ///
2893 /// Please note that this example is shared between integer types,
2894 /// which explains why `u32` is used here.
2895 ///
2896 /// ```
2897 /// #![feature(bigint_helper_methods)]
2898 /// assert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));
2899 /// assert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));
2900 /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));
2901 /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));
2902 #[doc = concat!("assert_eq!(",
2903 stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2904 "(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX));"
2905 )]
2906 /// ```
2907 ///
2908 /// This is the core per-digit operation for "grade school" O(n²) multiplication.
2909 ///
2910 /// Please note that this example is shared between integer types,
2911 /// using `u8` for simplicity of the demonstration.
2912 ///
2913 /// ```
2914 /// #![feature(bigint_helper_methods)]
2915 ///
2916 /// fn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {
2917 /// let mut out = [0; N];
2918 /// for j in 0..N {
2919 /// let mut carry = 0;
2920 /// for i in 0..(N - j) {
2921 /// (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);
2922 /// }
2923 /// }
2924 /// out
2925 /// }
2926 ///
2927 /// // -1 * -1 == 1
2928 /// assert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);
2929 ///
2930 /// assert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);
2931 /// assert_eq!(
2932 /// quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),
2933 /// u32::to_le_bytes(0xCFFC982D)
2934 /// );
2935 /// ```
2936 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2937 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2938 #[must_use = "this returns the result of the operation, \
2939 without modifying the original"]
2940 #[inline]
2941 pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> (Self, Self) {
2942 intrinsics::carrying_mul_add(self, rhs, carry, add)
2943 }
2944
2945 /// Calculates the divisor when `self` is divided by `rhs`.
2946 ///
2947 /// Returns a tuple of the divisor along with a boolean indicating
2948 /// whether an arithmetic overflow would occur. Note that for unsigned
2949 /// integers overflow never occurs, so the second value is always
2950 /// `false`.
2951 ///
2952 /// # Panics
2953 ///
2954 /// This function will panic if `rhs` is zero.
2955 ///
2956 /// # Examples
2957 ///
2958 /// Basic usage:
2959 ///
2960 /// ```
2961 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2962 /// ```
2963 #[inline(always)]
2964 #[stable(feature = "wrapping", since = "1.7.0")]
2965 #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2966 #[must_use = "this returns the result of the operation, \
2967 without modifying the original"]
2968 #[track_caller]
2969 pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2970 (self / rhs, false)
2971 }
2972
2973 /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2974 ///
2975 /// Returns a tuple of the divisor along with a boolean indicating
2976 /// whether an arithmetic overflow would occur. Note that for unsigned
2977 /// integers overflow never occurs, so the second value is always
2978 /// `false`.
2979 /// Since, for the positive integers, all common
2980 /// definitions of division are equal, this
2981 /// is exactly equal to `self.overflowing_div(rhs)`.
2982 ///
2983 /// # Panics
2984 ///
2985 /// This function will panic if `rhs` is zero.
2986 ///
2987 /// # Examples
2988 ///
2989 /// Basic usage:
2990 ///
2991 /// ```
2992 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2993 /// ```
2994 #[inline(always)]
2995 #[stable(feature = "euclidean_division", since = "1.38.0")]
2996 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2997 #[must_use = "this returns the result of the operation, \
2998 without modifying the original"]
2999 #[track_caller]
3000 pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
3001 (self / rhs, false)
3002 }
3003
3004 /// Calculates the remainder when `self` is divided by `rhs`.
3005 ///
3006 /// Returns a tuple of the remainder after dividing along with a boolean
3007 /// indicating whether an arithmetic overflow would occur. Note that for
3008 /// unsigned integers overflow never occurs, so the second value is
3009 /// always `false`.
3010 ///
3011 /// # Panics
3012 ///
3013 /// This function will panic if `rhs` is zero.
3014 ///
3015 /// # Examples
3016 ///
3017 /// Basic usage:
3018 ///
3019 /// ```
3020 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
3021 /// ```
3022 #[inline(always)]
3023 #[stable(feature = "wrapping", since = "1.7.0")]
3024 #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
3025 #[must_use = "this returns the result of the operation, \
3026 without modifying the original"]
3027 #[track_caller]
3028 pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
3029 (self % rhs, false)
3030 }
3031
3032 /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
3033 ///
3034 /// Returns a tuple of the modulo after dividing along with a boolean
3035 /// indicating whether an arithmetic overflow would occur. Note that for
3036 /// unsigned integers overflow never occurs, so the second value is
3037 /// always `false`.
3038 /// Since, for the positive integers, all common
3039 /// definitions of division are equal, this operation
3040 /// is exactly equal to `self.overflowing_rem(rhs)`.
3041 ///
3042 /// # Panics
3043 ///
3044 /// This function will panic if `rhs` is zero.
3045 ///
3046 /// # Examples
3047 ///
3048 /// Basic usage:
3049 ///
3050 /// ```
3051 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
3052 /// ```
3053 #[inline(always)]
3054 #[stable(feature = "euclidean_division", since = "1.38.0")]
3055 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3056 #[must_use = "this returns the result of the operation, \
3057 without modifying the original"]
3058 #[track_caller]
3059 pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
3060 (self % rhs, false)
3061 }
3062
3063 /// Negates self in an overflowing fashion.
3064 ///
3065 /// Returns `!self + 1` using wrapping operations to return the value
3066 /// that represents the negation of this unsigned value. Note that for
3067 /// positive unsigned values overflow always occurs, but negating 0 does
3068 /// not overflow.
3069 ///
3070 /// # Examples
3071 ///
3072 /// Basic usage:
3073 ///
3074 /// ```
3075 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
3076 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
3077 /// ```
3078 #[inline(always)]
3079 #[stable(feature = "wrapping", since = "1.7.0")]
3080 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3081 #[must_use = "this returns the result of the operation, \
3082 without modifying the original"]
3083 pub const fn overflowing_neg(self) -> (Self, bool) {
3084 ((!self).wrapping_add(1), self != 0)
3085 }
3086
3087 /// Shifts self left by `rhs` bits.
3088 ///
3089 /// Returns a tuple of the shifted version of self along with a boolean
3090 /// indicating whether the shift value was larger than or equal to the
3091 /// number of bits. If the shift value is too large, then value is
3092 /// masked (N-1) where N is the number of bits, and this value is then
3093 /// used to perform the shift.
3094 ///
3095 /// # Examples
3096 ///
3097 /// Basic usage:
3098 ///
3099 /// ```
3100 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
3101 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
3102 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
3103 /// ```
3104 #[stable(feature = "wrapping", since = "1.7.0")]
3105 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3106 #[must_use = "this returns the result of the operation, \
3107 without modifying the original"]
3108 #[inline(always)]
3109 pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
3110 (self.wrapping_shl(rhs), rhs >= Self::BITS)
3111 }
3112
3113 /// Shifts self right by `rhs` bits.
3114 ///
3115 /// Returns a tuple of the shifted version of self along with a boolean
3116 /// indicating whether the shift value was larger than or equal to the
3117 /// number of bits. If the shift value is too large, then value is
3118 /// masked (N-1) where N is the number of bits, and this value is then
3119 /// used to perform the shift.
3120 ///
3121 /// # Examples
3122 ///
3123 /// Basic usage:
3124 ///
3125 /// ```
3126 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
3127 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
3128 /// ```
3129 #[stable(feature = "wrapping", since = "1.7.0")]
3130 #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3131 #[must_use = "this returns the result of the operation, \
3132 without modifying the original"]
3133 #[inline(always)]
3134 pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
3135 (self.wrapping_shr(rhs), rhs >= Self::BITS)
3136 }
3137
3138 /// Raises self to the power of `exp`, using exponentiation by squaring.
3139 ///
3140 /// Returns a tuple of the exponentiation along with a bool indicating
3141 /// whether an overflow happened.
3142 ///
3143 /// # Examples
3144 ///
3145 /// Basic usage:
3146 ///
3147 /// ```
3148 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
3149 /// assert_eq!(3u8.overflowing_pow(6), (217, true));
3150 /// ```
3151 #[stable(feature = "no_panic_pow", since = "1.34.0")]
3152 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3153 #[must_use = "this returns the result of the operation, \
3154 without modifying the original"]
3155 #[inline]
3156 pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
3157 if exp == 0{
3158 return (1,false);
3159 }
3160 let mut base = self;
3161 let mut acc: Self = 1;
3162 let mut overflown = false;
3163 // Scratch space for storing results of overflowing_mul.
3164 let mut r;
3165
3166 loop {
3167 if (exp & 1) == 1 {
3168 r = acc.overflowing_mul(base);
3169 // since exp!=0, finally the exp must be 1.
3170 if exp == 1 {
3171 r.1 |= overflown;
3172 return r;
3173 }
3174 acc = r.0;
3175 overflown |= r.1;
3176 }
3177 exp /= 2;
3178 r = base.overflowing_mul(base);
3179 base = r.0;
3180 overflown |= r.1;
3181 }
3182 }
3183
3184 /// Raises self to the power of `exp`, using exponentiation by squaring.
3185 ///
3186 /// # Examples
3187 ///
3188 /// Basic usage:
3189 ///
3190 /// ```
3191 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
3192 /// ```
3193 #[stable(feature = "rust1", since = "1.0.0")]
3194 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3195 #[must_use = "this returns the result of the operation, \
3196 without modifying the original"]
3197 #[inline]
3198 #[rustc_inherit_overflow_checks]
3199 pub const fn pow(self, mut exp: u32) -> Self {
3200 if exp == 0 {
3201 return 1;
3202 }
3203 let mut base = self;
3204 let mut acc = 1;
3205
3206 if intrinsics::is_val_statically_known(exp) {
3207 while exp > 1 {
3208 if (exp & 1) == 1 {
3209 acc = acc * base;
3210 }
3211 exp /= 2;
3212 base = base * base;
3213 }
3214
3215 // since exp!=0, finally the exp must be 1.
3216 // Deal with the final bit of the exponent separately, since
3217 // squaring the base afterwards is not necessary and may cause a
3218 // needless overflow.
3219 acc * base
3220 } else {
3221 // This is faster than the above when the exponent is not known
3222 // at compile time. We can't use the same code for the constant
3223 // exponent case because LLVM is currently unable to unroll
3224 // this loop.
3225 loop {
3226 if (exp & 1) == 1 {
3227 acc = acc * base;
3228 // since exp!=0, finally the exp must be 1.
3229 if exp == 1 {
3230 return acc;
3231 }
3232 }
3233 exp /= 2;
3234 base = base * base;
3235 }
3236 }
3237 }
3238
3239 /// Returns the square root of the number, rounded down.
3240 ///
3241 /// # Examples
3242 ///
3243 /// Basic usage:
3244 /// ```
3245 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3246 /// ```
3247 #[stable(feature = "isqrt", since = "1.84.0")]
3248 #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3249 #[must_use = "this returns the result of the operation, \
3250 without modifying the original"]
3251 #[inline]
3252 pub const fn isqrt(self) -> Self {
3253 let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
3254
3255 // Inform the optimizer what the range of outputs is. If testing
3256 // `core` crashes with no panic message and a `num::int_sqrt::u*`
3257 // test failed, it's because your edits caused these assertions or
3258 // the assertions in `fn isqrt` of `nonzero.rs` to become false.
3259 //
3260 // SAFETY: Integer square root is a monotonically nondecreasing
3261 // function, which means that increasing the input will never
3262 // cause the output to decrease. Thus, since the input for unsigned
3263 // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
3264 // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
3265 unsafe {
3266 const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
3267 crate::hint::assert_unchecked(result <= MAX_RESULT);
3268 }
3269
3270 result
3271 }
3272
3273 /// Performs Euclidean division.
3274 ///
3275 /// Since, for the positive integers, all common
3276 /// definitions of division are equal, this
3277 /// is exactly equal to `self / rhs`.
3278 ///
3279 /// # Panics
3280 ///
3281 /// This function will panic if `rhs` is zero.
3282 ///
3283 /// # Examples
3284 ///
3285 /// Basic usage:
3286 ///
3287 /// ```
3288 #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
3289 /// ```
3290 #[stable(feature = "euclidean_division", since = "1.38.0")]
3291 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3292 #[must_use = "this returns the result of the operation, \
3293 without modifying the original"]
3294 #[inline(always)]
3295 #[track_caller]
3296 pub const fn div_euclid(self, rhs: Self) -> Self {
3297 self / rhs
3298 }
3299
3300
3301 /// Calculates the least remainder of `self (mod rhs)`.
3302 ///
3303 /// Since, for the positive integers, all common
3304 /// definitions of division are equal, this
3305 /// is exactly equal to `self % rhs`.
3306 ///
3307 /// # Panics
3308 ///
3309 /// This function will panic if `rhs` is zero.
3310 ///
3311 /// # Examples
3312 ///
3313 /// Basic usage:
3314 ///
3315 /// ```
3316 #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
3317 /// ```
3318 #[doc(alias = "modulo", alias = "mod")]
3319 #[stable(feature = "euclidean_division", since = "1.38.0")]
3320 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3321 #[must_use = "this returns the result of the operation, \
3322 without modifying the original"]
3323 #[inline(always)]
3324 #[track_caller]
3325 pub const fn rem_euclid(self, rhs: Self) -> Self {
3326 self % rhs
3327 }
3328
3329 /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3330 ///
3331 /// This is the same as performing `self / rhs` for all unsigned integers.
3332 ///
3333 /// # Panics
3334 ///
3335 /// This function will panic if `rhs` is zero.
3336 ///
3337 /// # Examples
3338 ///
3339 /// Basic usage:
3340 ///
3341 /// ```
3342 /// #![feature(int_roundings)]
3343 #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
3344 /// ```
3345 #[unstable(feature = "int_roundings", issue = "88581")]
3346 #[must_use = "this returns the result of the operation, \
3347 without modifying the original"]
3348 #[inline(always)]
3349 #[track_caller]
3350 pub const fn div_floor(self, rhs: Self) -> Self {
3351 self / rhs
3352 }
3353
3354 /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3355 ///
3356 /// # Panics
3357 ///
3358 /// This function will panic if `rhs` is zero.
3359 ///
3360 /// # Examples
3361 ///
3362 /// Basic usage:
3363 ///
3364 /// ```
3365 #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
3366 /// ```
3367 #[stable(feature = "int_roundings1", since = "1.73.0")]
3368 #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3369 #[must_use = "this returns the result of the operation, \
3370 without modifying the original"]
3371 #[inline]
3372 #[track_caller]
3373 pub const fn div_ceil(self, rhs: Self) -> Self {
3374 let d = self / rhs;
3375 let r = self % rhs;
3376 if r > 0 {
3377 d + 1
3378 } else {
3379 d
3380 }
3381 }
3382
3383 /// Calculates the smallest value greater than or equal to `self` that
3384 /// is a multiple of `rhs`.
3385 ///
3386 /// # Panics
3387 ///
3388 /// This function will panic if `rhs` is zero.
3389 ///
3390 /// ## Overflow behavior
3391 ///
3392 /// On overflow, this function will panic if overflow checks are enabled (default in debug
3393 /// mode) and wrap if overflow checks are disabled (default in release mode).
3394 ///
3395 /// # Examples
3396 ///
3397 /// Basic usage:
3398 ///
3399 /// ```
3400 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3401 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3402 /// ```
3403 #[stable(feature = "int_roundings1", since = "1.73.0")]
3404 #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3405 #[must_use = "this returns the result of the operation, \
3406 without modifying the original"]
3407 #[inline]
3408 #[rustc_inherit_overflow_checks]
3409 pub const fn next_multiple_of(self, rhs: Self) -> Self {
3410 match self % rhs {
3411 0 => self,
3412 r => self + (rhs - r)
3413 }
3414 }
3415
3416 /// Calculates the smallest value greater than or equal to `self` that
3417 /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
3418 /// operation would result in overflow.
3419 ///
3420 /// # Examples
3421 ///
3422 /// Basic usage:
3423 ///
3424 /// ```
3425 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3426 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3427 #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3428 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3429 /// ```
3430 #[stable(feature = "int_roundings1", since = "1.73.0")]
3431 #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3432 #[must_use = "this returns the result of the operation, \
3433 without modifying the original"]
3434 #[inline]
3435 pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3436 match try_opt!(self.checked_rem(rhs)) {
3437 0 => Some(self),
3438 // rhs - r cannot overflow because r is smaller than rhs
3439 r => self.checked_add(rhs - r)
3440 }
3441 }
3442
3443 /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
3444 ///
3445 /// This function is equivalent to `self % rhs == 0`, except that it will not panic
3446 /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
3447 /// `n.is_multiple_of(0) == false`.
3448 ///
3449 /// # Examples
3450 ///
3451 /// Basic usage:
3452 ///
3453 /// ```
3454 #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
3455 #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
3456 ///
3457 #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
3458 #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
3459 /// ```
3460 #[stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3461 #[rustc_const_stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3462 #[must_use]
3463 #[inline]
3464 #[rustc_inherit_overflow_checks]
3465 pub const fn is_multiple_of(self, rhs: Self) -> bool {
3466 match rhs {
3467 0 => self == 0,
3468 _ => self % rhs == 0,
3469 }
3470 }
3471
3472 /// Returns `true` if and only if `self == 2^k` for some unsigned integer `k`.
3473 ///
3474 /// # Examples
3475 ///
3476 /// Basic usage:
3477 ///
3478 /// ```
3479 #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
3480 #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
3481 /// ```
3482 #[must_use]
3483 #[stable(feature = "rust1", since = "1.0.0")]
3484 #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
3485 #[inline(always)]
3486 pub const fn is_power_of_two(self) -> bool {
3487 self.count_ones() == 1
3488 }
3489
3490 // Returns one less than next power of two.
3491 // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
3492 //
3493 // 8u8.one_less_than_next_power_of_two() == 7
3494 // 6u8.one_less_than_next_power_of_two() == 7
3495 //
3496 // This method cannot overflow, as in the `next_power_of_two`
3497 // overflow cases it instead ends up returning the maximum value
3498 // of the type, and can return 0 for 0.
3499 #[inline]
3500 const fn one_less_than_next_power_of_two(self) -> Self {
3501 if self <= 1 { return 0; }
3502
3503 let p = self - 1;
3504 // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
3505 // That means the shift is always in-bounds, and some processors
3506 // (such as intel pre-haswell) have more efficient ctlz
3507 // intrinsics when the argument is non-zero.
3508 let z = unsafe { intrinsics::ctlz_nonzero(p) };
3509 <$SelfT>::MAX >> z
3510 }
3511
3512 /// Returns the smallest power of two greater than or equal to `self`.
3513 ///
3514 /// When return value overflows (i.e., `self > (1 << (N-1))` for type
3515 /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
3516 /// release mode (the only situation in which this method can return 0).
3517 ///
3518 /// # Examples
3519 ///
3520 /// Basic usage:
3521 ///
3522 /// ```
3523 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
3524 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
3525 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
3526 /// ```
3527 #[stable(feature = "rust1", since = "1.0.0")]
3528 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3529 #[must_use = "this returns the result of the operation, \
3530 without modifying the original"]
3531 #[inline]
3532 #[rustc_inherit_overflow_checks]
3533 pub const fn next_power_of_two(self) -> Self {
3534 self.one_less_than_next_power_of_two() + 1
3535 }
3536
3537 /// Returns the smallest power of two greater than or equal to `self`. If
3538 /// the next power of two is greater than the type's maximum value,
3539 /// `None` is returned, otherwise the power of two is wrapped in `Some`.
3540 ///
3541 /// # Examples
3542 ///
3543 /// Basic usage:
3544 ///
3545 /// ```
3546 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
3547 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
3548 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
3549 /// ```
3550 #[inline]
3551 #[stable(feature = "rust1", since = "1.0.0")]
3552 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3553 #[must_use = "this returns the result of the operation, \
3554 without modifying the original"]
3555 pub const fn checked_next_power_of_two(self) -> Option<Self> {
3556 self.one_less_than_next_power_of_two().checked_add(1)
3557 }
3558
3559 /// Returns the smallest power of two greater than or equal to `n`. If
3560 /// the next power of two is greater than the type's maximum value,
3561 /// the return value is wrapped to `0`.
3562 ///
3563 /// # Examples
3564 ///
3565 /// Basic usage:
3566 ///
3567 /// ```
3568 /// #![feature(wrapping_next_power_of_two)]
3569 ///
3570 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
3571 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
3572 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
3573 /// ```
3574 #[inline]
3575 #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
3576 reason = "needs decision on wrapping behavior")]
3577 #[must_use = "this returns the result of the operation, \
3578 without modifying the original"]
3579 pub const fn wrapping_next_power_of_two(self) -> Self {
3580 self.one_less_than_next_power_of_two().wrapping_add(1)
3581 }
3582
3583 /// Returns the memory representation of this integer as a byte array in
3584 /// big-endian (network) byte order.
3585 ///
3586 #[doc = $to_xe_bytes_doc]
3587 ///
3588 /// # Examples
3589 ///
3590 /// ```
3591 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3592 #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3593 /// ```
3594 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3595 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3596 #[must_use = "this returns the result of the operation, \
3597 without modifying the original"]
3598 #[inline]
3599 pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3600 self.to_be().to_ne_bytes()
3601 }
3602
3603 /// Returns the memory representation of this integer as a byte array in
3604 /// little-endian byte order.
3605 ///
3606 #[doc = $to_xe_bytes_doc]
3607 ///
3608 /// # Examples
3609 ///
3610 /// ```
3611 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3612 #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3613 /// ```
3614 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3615 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3616 #[must_use = "this returns the result of the operation, \
3617 without modifying the original"]
3618 #[inline]
3619 pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3620 self.to_le().to_ne_bytes()
3621 }
3622
3623 /// Returns the memory representation of this integer as a byte array in
3624 /// native byte order.
3625 ///
3626 /// As the target platform's native endianness is used, portable code
3627 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3628 /// instead.
3629 ///
3630 #[doc = $to_xe_bytes_doc]
3631 ///
3632 /// [`to_be_bytes`]: Self::to_be_bytes
3633 /// [`to_le_bytes`]: Self::to_le_bytes
3634 ///
3635 /// # Examples
3636 ///
3637 /// ```
3638 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3639 /// assert_eq!(
3640 /// bytes,
3641 /// if cfg!(target_endian = "big") {
3642 #[doc = concat!(" ", $be_bytes)]
3643 /// } else {
3644 #[doc = concat!(" ", $le_bytes)]
3645 /// }
3646 /// );
3647 /// ```
3648 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3649 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3650 #[must_use = "this returns the result of the operation, \
3651 without modifying the original"]
3652 #[allow(unnecessary_transmutes)]
3653 // SAFETY: const sound because integers are plain old datatypes so we can always
3654 // transmute them to arrays of bytes
3655 #[inline]
3656 pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3657 // SAFETY: integers are plain old datatypes so we can always transmute them to
3658 // arrays of bytes
3659 unsafe { mem::transmute(self) }
3660 }
3661
3662 /// Creates a native endian integer value from its representation
3663 /// as a byte array in big endian.
3664 ///
3665 #[doc = $from_xe_bytes_doc]
3666 ///
3667 /// # Examples
3668 ///
3669 /// ```
3670 #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3671 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3672 /// ```
3673 ///
3674 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3675 ///
3676 /// ```
3677 #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3678 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3679 /// *input = rest;
3680 #[doc = concat!(" ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3681 /// }
3682 /// ```
3683 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3684 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3685 #[must_use]
3686 #[inline]
3687 pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3688 Self::from_be(Self::from_ne_bytes(bytes))
3689 }
3690
3691 /// Creates a native endian integer value from its representation
3692 /// as a byte array in little endian.
3693 ///
3694 #[doc = $from_xe_bytes_doc]
3695 ///
3696 /// # Examples
3697 ///
3698 /// ```
3699 #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3700 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3701 /// ```
3702 ///
3703 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3704 ///
3705 /// ```
3706 #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3707 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3708 /// *input = rest;
3709 #[doc = concat!(" ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3710 /// }
3711 /// ```
3712 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3713 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3714 #[must_use]
3715 #[inline]
3716 pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3717 Self::from_le(Self::from_ne_bytes(bytes))
3718 }
3719
3720 /// Creates a native endian integer value from its memory representation
3721 /// as a byte array in native endianness.
3722 ///
3723 /// As the target platform's native endianness is used, portable code
3724 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3725 /// appropriate instead.
3726 ///
3727 /// [`from_be_bytes`]: Self::from_be_bytes
3728 /// [`from_le_bytes`]: Self::from_le_bytes
3729 ///
3730 #[doc = $from_xe_bytes_doc]
3731 ///
3732 /// # Examples
3733 ///
3734 /// ```
3735 #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3736 #[doc = concat!(" ", $be_bytes, "")]
3737 /// } else {
3738 #[doc = concat!(" ", $le_bytes, "")]
3739 /// });
3740 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3741 /// ```
3742 ///
3743 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3744 ///
3745 /// ```
3746 #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3747 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3748 /// *input = rest;
3749 #[doc = concat!(" ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3750 /// }
3751 /// ```
3752 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3753 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3754 #[allow(unnecessary_transmutes)]
3755 #[must_use]
3756 // SAFETY: const sound because integers are plain old datatypes so we can always
3757 // transmute to them
3758 #[inline]
3759 pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3760 // SAFETY: integers are plain old datatypes so we can always transmute to them
3761 unsafe { mem::transmute(bytes) }
3762 }
3763
3764 /// New code should prefer to use
3765 #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3766 ///
3767 /// Returns the smallest value that can be represented by this integer type.
3768 #[stable(feature = "rust1", since = "1.0.0")]
3769 #[rustc_promotable]
3770 #[inline(always)]
3771 #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3772 #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3773 #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3774 pub const fn min_value() -> Self { Self::MIN }
3775
3776 /// New code should prefer to use
3777 #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3778 ///
3779 /// Returns the largest value that can be represented by this integer type.
3780 #[stable(feature = "rust1", since = "1.0.0")]
3781 #[rustc_promotable]
3782 #[inline(always)]
3783 #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3784 #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3785 #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3786 pub const fn max_value() -> Self { Self::MAX }
3787 }
3788}
3789

Provided by KDAB

Privacy Policy
Learn Rust with the experts
Find out more