| 1 | //! Macros used by iterators of slice. |
| 2 | |
| 3 | /// Convenience & performance macro for consuming the `end_or_len` field, by |
| 4 | /// giving a `(&mut) usize` or `(&mut) NonNull<T>` depending whether `T` is |
| 5 | /// or is not a ZST respectively. |
| 6 | /// |
| 7 | /// Internally, this reads the `end` through a pointer-to-`NonNull` so that |
| 8 | /// it'll get the appropriate non-null metadata in the backend without needing |
| 9 | /// to call `assume` manually. |
| 10 | macro_rules! if_zst { |
| 11 | (mut $this:ident, $len:ident => $zst_body:expr, $end:ident => $other_body:expr,) => {{ |
| 12 | #![allow(unused_unsafe)] // we're sometimes used within an unsafe block |
| 13 | |
| 14 | if T::IS_ZST { |
| 15 | // SAFETY: for ZSTs, the pointer is storing a provenance-free length, |
| 16 | // so consuming and updating it as a `usize` is fine. |
| 17 | let $len = unsafe { &mut *(&raw mut $this.end_or_len).cast::<usize>() }; |
| 18 | $zst_body |
| 19 | } else { |
| 20 | // SAFETY: for non-ZSTs, the type invariant ensures it cannot be null |
| 21 | let $end = unsafe { &mut *(&raw mut $this.end_or_len).cast::<NonNull<T>>() }; |
| 22 | $other_body |
| 23 | } |
| 24 | }}; |
| 25 | ($this:ident, $len:ident => $zst_body:expr, $end:ident => $other_body:expr,) => {{ |
| 26 | #![allow(unused_unsafe)] // we're sometimes used within an unsafe block |
| 27 | |
| 28 | if T::IS_ZST { |
| 29 | let $len = $this.end_or_len.addr(); |
| 30 | $zst_body |
| 31 | } else { |
| 32 | // SAFETY: for non-ZSTs, the type invariant ensures it cannot be null |
| 33 | let $end = unsafe { mem::transmute::<*const T, NonNull<T>>($this.end_or_len) }; |
| 34 | $other_body |
| 35 | } |
| 36 | }}; |
| 37 | } |
| 38 | |
| 39 | // Inlining is_empty and len makes a huge performance difference |
| 40 | macro_rules! is_empty { |
| 41 | ($self: ident) => { |
| 42 | if_zst!($self, |
| 43 | len => len == 0, |
| 44 | end => $self.ptr == end, |
| 45 | ) |
| 46 | }; |
| 47 | } |
| 48 | |
| 49 | macro_rules! len { |
| 50 | ($self: ident) => {{ |
| 51 | if_zst!($self, |
| 52 | len => len, |
| 53 | end => { |
| 54 | // To get rid of some bounds checks (see `position`), we use ptr_sub instead of |
| 55 | // offset_from (Tested by `codegen/slice-position-bounds-check`.) |
| 56 | // SAFETY: by the type invariant pointers are aligned and `start <= end` |
| 57 | unsafe { end.offset_from_unsigned($self.ptr) } |
| 58 | }, |
| 59 | ) |
| 60 | }}; |
| 61 | } |
| 62 | |
| 63 | // The shared definition of the `Iter` and `IterMut` iterators |
| 64 | macro_rules! iterator { |
| 65 | ( |
| 66 | struct $name:ident -> $ptr:ty, |
| 67 | $elem:ty, |
| 68 | $raw_mut:tt, |
| 69 | {$( $mut_:tt )?}, |
| 70 | $into_ref:ident, |
| 71 | $array_ref:ident, |
| 72 | {$($extra:tt)*} |
| 73 | ) => { |
| 74 | impl<'a, T> $name<'a, T> { |
| 75 | /// Returns the last element and moves the end of the iterator backwards by 1. |
| 76 | /// |
| 77 | /// # Safety |
| 78 | /// |
| 79 | /// The iterator must not be empty |
| 80 | #[inline] |
| 81 | unsafe fn next_back_unchecked(&mut self) -> $elem { |
| 82 | // SAFETY: the caller promised it's not empty, so |
| 83 | // the offsetting is in-bounds and there's an element to return. |
| 84 | unsafe { self.pre_dec_end(1).$into_ref() } |
| 85 | } |
| 86 | |
| 87 | // Helper function for creating a slice from the iterator. |
| 88 | #[inline(always)] |
| 89 | fn make_slice(&self) -> &'a [T] { |
| 90 | // SAFETY: the iterator was created from a slice with pointer |
| 91 | // `self.ptr` and length `len!(self)`. This guarantees that all |
| 92 | // the prerequisites for `from_raw_parts` are fulfilled. |
| 93 | unsafe { from_raw_parts(self.ptr.as_ptr(), len!(self)) } |
| 94 | } |
| 95 | |
| 96 | // Helper function for moving the start of the iterator forwards by `offset` elements, |
| 97 | // returning the old start. |
| 98 | // Unsafe because the offset must not exceed `self.len()`. |
| 99 | #[inline(always)] |
| 100 | unsafe fn post_inc_start(&mut self, offset: usize) -> NonNull<T> { |
| 101 | let old = self.ptr; |
| 102 | |
| 103 | // SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`, |
| 104 | // so this new pointer is inside `self` and thus guaranteed to be non-null. |
| 105 | unsafe { |
| 106 | if_zst!(mut self, |
| 107 | // Using the intrinsic directly avoids emitting a UbCheck |
| 108 | len => *len = crate::intrinsics::unchecked_sub(*len, offset), |
| 109 | _end => self.ptr = self.ptr.add(offset), |
| 110 | ); |
| 111 | } |
| 112 | old |
| 113 | } |
| 114 | |
| 115 | // Helper function for moving the end of the iterator backwards by `offset` elements, |
| 116 | // returning the new end. |
| 117 | // Unsafe because the offset must not exceed `self.len()`. |
| 118 | #[inline(always)] |
| 119 | unsafe fn pre_dec_end(&mut self, offset: usize) -> NonNull<T> { |
| 120 | if_zst!(mut self, |
| 121 | // SAFETY: By our precondition, `offset` can be at most the |
| 122 | // current length, so the subtraction can never overflow. |
| 123 | len => unsafe { |
| 124 | // Using the intrinsic directly avoids emitting a UbCheck |
| 125 | *len = crate::intrinsics::unchecked_sub(*len, offset); |
| 126 | self.ptr |
| 127 | }, |
| 128 | // SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`, |
| 129 | // which is guaranteed to not overflow an `isize`. Also, the resulting pointer |
| 130 | // is in bounds of `slice`, which fulfills the other requirements for `offset`. |
| 131 | end => unsafe { |
| 132 | *end = end.sub(offset); |
| 133 | *end |
| 134 | }, |
| 135 | ) |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | #[stable(feature = "rust1" , since = "1.0.0" )] |
| 140 | impl<T> ExactSizeIterator for $name<'_, T> { |
| 141 | #[inline(always)] |
| 142 | fn len(&self) -> usize { |
| 143 | len!(self) |
| 144 | } |
| 145 | |
| 146 | #[inline(always)] |
| 147 | fn is_empty(&self) -> bool { |
| 148 | is_empty!(self) |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | #[stable(feature = "rust1" , since = "1.0.0" )] |
| 153 | impl<'a, T> Iterator for $name<'a, T> { |
| 154 | type Item = $elem; |
| 155 | |
| 156 | #[inline] |
| 157 | fn next(&mut self) -> Option<$elem> { |
| 158 | // intentionally not using the helpers because this is |
| 159 | // one of the most mono'd things in the library. |
| 160 | |
| 161 | let ptr = self.ptr; |
| 162 | let end_or_len = self.end_or_len; |
| 163 | // SAFETY: See inner comments. (For some reason having multiple |
| 164 | // block breaks inlining this -- if you can fix that please do!) |
| 165 | unsafe { |
| 166 | if T::IS_ZST { |
| 167 | let len = end_or_len.addr(); |
| 168 | if len == 0 { |
| 169 | return None; |
| 170 | } |
| 171 | // SAFETY: just checked that it's not zero, so subtracting one |
| 172 | // cannot wrap. (Ideally this would be `checked_sub`, which |
| 173 | // does the same thing internally, but as of 2025-02 that |
| 174 | // doesn't optimize quite as small in MIR.) |
| 175 | self.end_or_len = without_provenance_mut(len.unchecked_sub(1)); |
| 176 | } else { |
| 177 | // SAFETY: by type invariant, the `end_or_len` field is always |
| 178 | // non-null for a non-ZST pointee. (This transmute ensures we |
| 179 | // get `!nonnull` metadata on the load of the field.) |
| 180 | if ptr == crate::intrinsics::transmute::<$ptr, NonNull<T>>(end_or_len) { |
| 181 | return None; |
| 182 | } |
| 183 | // SAFETY: since it's not empty, per the check above, moving |
| 184 | // forward one keeps us inside the slice, and this is valid. |
| 185 | self.ptr = ptr.add(1); |
| 186 | } |
| 187 | // SAFETY: Now that we know it wasn't empty and we've moved past |
| 188 | // the first one (to avoid giving a duplicate `&mut` next time), |
| 189 | // we can give out a reference to it. |
| 190 | Some({ptr}.$into_ref()) |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | fn next_chunk<const N:usize>(&mut self) -> Result<[$elem; N], crate::array::IntoIter<$elem, N>> { |
| 195 | if T::IS_ZST { |
| 196 | return crate::array::iter_next_chunk(self); |
| 197 | } |
| 198 | let len = len!(self); |
| 199 | if len >= N { |
| 200 | // SAFETY: we are just getting an array of [T; N] and moving the pointer over a little |
| 201 | let r = unsafe { self.post_inc_start(N).cast_array().$into_ref() } |
| 202 | .$array_ref(); // must convert &[T; N] to [&T; N] |
| 203 | Ok(r) |
| 204 | } else { |
| 205 | // cant use $array_ref because theres no builtin for &mut [MU<T>; N] -> [&mut MU<T>; N] |
| 206 | // cant use copy_nonoverlapping as the $elem is of type &{mut} T instead of T |
| 207 | let mut a = [const { crate::mem::MaybeUninit::<$elem>::uninit() }; N]; |
| 208 | for into in (&mut a).into_iter().take(len) { |
| 209 | // SAFETY: take(n) limits to remainder (slice produces worse codegen) |
| 210 | into.write(unsafe { self.post_inc_start(1).$into_ref() }); |
| 211 | } |
| 212 | // SAFETY: we just initialized elements 0..len |
| 213 | unsafe { Err(crate::array::IntoIter::new_unchecked(a, 0..len)) } |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | #[inline] |
| 218 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 219 | let exact = len!(self); |
| 220 | (exact, Some(exact)) |
| 221 | } |
| 222 | |
| 223 | #[inline] |
| 224 | fn count(self) -> usize { |
| 225 | len!(self) |
| 226 | } |
| 227 | |
| 228 | #[inline] |
| 229 | fn nth(&mut self, n: usize) -> Option<$elem> { |
| 230 | if n >= len!(self) { |
| 231 | // This iterator is now empty. |
| 232 | if_zst!(mut self, |
| 233 | len => *len = 0, |
| 234 | end => self.ptr = *end, |
| 235 | ); |
| 236 | return None; |
| 237 | } |
| 238 | // SAFETY: We are in bounds. `post_inc_start` does the right thing even for ZSTs. |
| 239 | unsafe { |
| 240 | self.post_inc_start(n); |
| 241 | Some(self.next_unchecked()) |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | #[inline] |
| 246 | fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| 247 | let advance = cmp::min(len!(self), n); |
| 248 | // SAFETY: By construction, `advance` does not exceed `self.len()`. |
| 249 | unsafe { self.post_inc_start(advance) }; |
| 250 | NonZero::new(n - advance).map_or(Ok(()), Err) |
| 251 | } |
| 252 | |
| 253 | #[inline] |
| 254 | fn last(mut self) -> Option<$elem> { |
| 255 | self.next_back() |
| 256 | } |
| 257 | |
| 258 | #[inline] |
| 259 | fn fold<B, F>(self, init: B, mut f: F) -> B |
| 260 | where |
| 261 | F: FnMut(B, Self::Item) -> B, |
| 262 | { |
| 263 | // this implementation consists of the following optimizations compared to the |
| 264 | // default implementation: |
| 265 | // - do-while loop, as is llvm's preferred loop shape, |
| 266 | // see https://releases.llvm.org/16.0.0/docs/LoopTerminology.html#more-canonical-loops |
| 267 | // - bumps an index instead of a pointer since the latter case inhibits |
| 268 | // some optimizations, see #111603 |
| 269 | // - avoids Option wrapping/matching |
| 270 | if is_empty!(self) { |
| 271 | return init; |
| 272 | } |
| 273 | let mut acc = init; |
| 274 | let mut i = 0; |
| 275 | let len = len!(self); |
| 276 | loop { |
| 277 | // SAFETY: the loop iterates `i in 0..len`, which always is in bounds of |
| 278 | // the slice allocation |
| 279 | acc = f(acc, unsafe { & $( $mut_ )? *self.ptr.add(i).as_ptr() }); |
| 280 | // SAFETY: `i` can't overflow since it'll only reach usize::MAX if the |
| 281 | // slice had that length, in which case we'll break out of the loop |
| 282 | // after the increment |
| 283 | i = unsafe { i.unchecked_add(1) }; |
| 284 | if i == len { |
| 285 | break; |
| 286 | } |
| 287 | } |
| 288 | acc |
| 289 | } |
| 290 | |
| 291 | // We override the default implementation, which uses `try_fold`, |
| 292 | // because this simple implementation generates less LLVM IR and is |
| 293 | // faster to compile. |
| 294 | #[inline] |
| 295 | fn for_each<F>(mut self, mut f: F) |
| 296 | where |
| 297 | Self: Sized, |
| 298 | F: FnMut(Self::Item), |
| 299 | { |
| 300 | while let Some(x) = self.next() { |
| 301 | f(x); |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | // We override the default implementation, which uses `try_fold`, |
| 306 | // because this simple implementation generates less LLVM IR and is |
| 307 | // faster to compile. |
| 308 | #[inline] |
| 309 | fn all<F>(&mut self, mut f: F) -> bool |
| 310 | where |
| 311 | Self: Sized, |
| 312 | F: FnMut(Self::Item) -> bool, |
| 313 | { |
| 314 | while let Some(x) = self.next() { |
| 315 | if !f(x) { |
| 316 | return false; |
| 317 | } |
| 318 | } |
| 319 | true |
| 320 | } |
| 321 | |
| 322 | // We override the default implementation, which uses `try_fold`, |
| 323 | // because this simple implementation generates less LLVM IR and is |
| 324 | // faster to compile. |
| 325 | #[inline] |
| 326 | fn any<F>(&mut self, mut f: F) -> bool |
| 327 | where |
| 328 | Self: Sized, |
| 329 | F: FnMut(Self::Item) -> bool, |
| 330 | { |
| 331 | while let Some(x) = self.next() { |
| 332 | if f(x) { |
| 333 | return true; |
| 334 | } |
| 335 | } |
| 336 | false |
| 337 | } |
| 338 | |
| 339 | // We override the default implementation, which uses `try_fold`, |
| 340 | // because this simple implementation generates less LLVM IR and is |
| 341 | // faster to compile. |
| 342 | #[inline] |
| 343 | fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item> |
| 344 | where |
| 345 | Self: Sized, |
| 346 | P: FnMut(&Self::Item) -> bool, |
| 347 | { |
| 348 | while let Some(x) = self.next() { |
| 349 | if predicate(&x) { |
| 350 | return Some(x); |
| 351 | } |
| 352 | } |
| 353 | None |
| 354 | } |
| 355 | |
| 356 | // We override the default implementation, which uses `try_fold`, |
| 357 | // because this simple implementation generates less LLVM IR and is |
| 358 | // faster to compile. |
| 359 | #[inline] |
| 360 | fn find_map<B, F>(&mut self, mut f: F) -> Option<B> |
| 361 | where |
| 362 | Self: Sized, |
| 363 | F: FnMut(Self::Item) -> Option<B>, |
| 364 | { |
| 365 | while let Some(x) = self.next() { |
| 366 | if let Some(y) = f(x) { |
| 367 | return Some(y); |
| 368 | } |
| 369 | } |
| 370 | None |
| 371 | } |
| 372 | |
| 373 | // We override the default implementation, which uses `try_fold`, |
| 374 | // because this simple implementation generates less LLVM IR and is |
| 375 | // faster to compile. Also, the `assume` avoids a bounds check. |
| 376 | #[inline] |
| 377 | fn position<P>(&mut self, mut predicate: P) -> Option<usize> where |
| 378 | Self: Sized, |
| 379 | P: FnMut(Self::Item) -> bool, |
| 380 | { |
| 381 | let n = len!(self); |
| 382 | let mut i = 0; |
| 383 | while let Some(x) = self.next() { |
| 384 | if predicate(x) { |
| 385 | // SAFETY: we are guaranteed to be in bounds by the loop invariant: |
| 386 | // when `i >= n`, `self.next()` returns `None` and the loop breaks. |
| 387 | unsafe { assert_unchecked(i < n) }; |
| 388 | return Some(i); |
| 389 | } |
| 390 | i += 1; |
| 391 | } |
| 392 | None |
| 393 | } |
| 394 | |
| 395 | // We override the default implementation, which uses `try_fold`, |
| 396 | // because this simple implementation generates less LLVM IR and is |
| 397 | // faster to compile. Also, the `assume` avoids a bounds check. |
| 398 | #[inline] |
| 399 | fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where |
| 400 | P: FnMut(Self::Item) -> bool, |
| 401 | Self: Sized + ExactSizeIterator + DoubleEndedIterator |
| 402 | { |
| 403 | let n = len!(self); |
| 404 | let mut i = n; |
| 405 | while let Some(x) = self.next_back() { |
| 406 | i -= 1; |
| 407 | if predicate(x) { |
| 408 | // SAFETY: `i` must be lower than `n` since it starts at `n` |
| 409 | // and is only decreasing. |
| 410 | unsafe { assert_unchecked(i < n) }; |
| 411 | return Some(i); |
| 412 | } |
| 413 | } |
| 414 | None |
| 415 | } |
| 416 | |
| 417 | #[inline] |
| 418 | unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item { |
| 419 | // SAFETY: the caller must guarantee that `i` is in bounds of |
| 420 | // the underlying slice, so `i` cannot overflow an `isize`, and |
| 421 | // the returned references is guaranteed to refer to an element |
| 422 | // of the slice and thus guaranteed to be valid. |
| 423 | // |
| 424 | // Also note that the caller also guarantees that we're never |
| 425 | // called with the same index again, and that no other methods |
| 426 | // that will access this subslice are called, so it is valid |
| 427 | // for the returned reference to be mutable in the case of |
| 428 | // `IterMut` |
| 429 | unsafe { & $( $mut_ )? * self.ptr.as_ptr().add(idx) } |
| 430 | } |
| 431 | |
| 432 | $($extra)* |
| 433 | } |
| 434 | |
| 435 | #[stable(feature = "rust1" , since = "1.0.0" )] |
| 436 | impl<'a, T> DoubleEndedIterator for $name<'a, T> { |
| 437 | #[inline] |
| 438 | fn next_back(&mut self) -> Option<$elem> { |
| 439 | // could be implemented with slices, but this avoids bounds checks |
| 440 | |
| 441 | // SAFETY: The call to `next_back_unchecked` |
| 442 | // is safe since we check if the iterator is empty first. |
| 443 | unsafe { |
| 444 | if is_empty!(self) { |
| 445 | None |
| 446 | } else { |
| 447 | Some(self.next_back_unchecked()) |
| 448 | } |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | #[inline] |
| 453 | fn nth_back(&mut self, n: usize) -> Option<$elem> { |
| 454 | if n >= len!(self) { |
| 455 | // This iterator is now empty. |
| 456 | if_zst!(mut self, |
| 457 | len => *len = 0, |
| 458 | end => *end = self.ptr, |
| 459 | ); |
| 460 | return None; |
| 461 | } |
| 462 | // SAFETY: We are in bounds. `pre_dec_end` does the right thing even for ZSTs. |
| 463 | unsafe { |
| 464 | self.pre_dec_end(n); |
| 465 | Some(self.next_back_unchecked()) |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | #[inline] |
| 470 | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| 471 | let advance = cmp::min(len!(self), n); |
| 472 | // SAFETY: By construction, `advance` does not exceed `self.len()`. |
| 473 | unsafe { self.pre_dec_end(advance) }; |
| 474 | NonZero::new(n - advance).map_or(Ok(()), Err) |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | #[stable(feature = "fused" , since = "1.26.0" )] |
| 479 | impl<T> FusedIterator for $name<'_, T> {} |
| 480 | |
| 481 | #[unstable(feature = "trusted_len" , issue = "37572" )] |
| 482 | unsafe impl<T> TrustedLen for $name<'_, T> {} |
| 483 | |
| 484 | impl<'a, T> UncheckedIterator for $name<'a, T> { |
| 485 | #[inline] |
| 486 | unsafe fn next_unchecked(&mut self) -> $elem { |
| 487 | // SAFETY: The caller promised there's at least one more item. |
| 488 | unsafe { |
| 489 | self.post_inc_start(1).$into_ref() |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | #[stable(feature = "default_iters" , since = "1.70.0" )] |
| 495 | impl<T> Default for $name<'_, T> { |
| 496 | /// Creates an empty slice iterator. |
| 497 | /// |
| 498 | /// ``` |
| 499 | #[doc = concat!("# use core::slice::" , stringify!($name), ";" )] |
| 500 | #[doc = concat!("let iter: " , stringify!($name<'_, u8>), " = Default::default();" )] |
| 501 | /// assert_eq!(iter.len(), 0); |
| 502 | /// ``` |
| 503 | fn default() -> Self { |
| 504 | (& $( $mut_ )? []).into_iter() |
| 505 | } |
| 506 | } |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | macro_rules! forward_iterator { |
| 511 | ($name:ident: $elem:ident, $iter_of:ty) => { |
| 512 | #[stable(feature = "rust1" , since = "1.0.0" )] |
| 513 | impl<'a, $elem, P> Iterator for $name<'a, $elem, P> |
| 514 | where |
| 515 | P: FnMut(&T) -> bool, |
| 516 | { |
| 517 | type Item = $iter_of; |
| 518 | |
| 519 | #[inline] |
| 520 | fn next(&mut self) -> Option<$iter_of> { |
| 521 | self.inner.next() |
| 522 | } |
| 523 | |
| 524 | #[inline] |
| 525 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 526 | self.inner.size_hint() |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | #[stable(feature = "fused" , since = "1.26.0" )] |
| 531 | impl<'a, $elem, P> FusedIterator for $name<'a, $elem, P> where P: FnMut(&T) -> bool {} |
| 532 | }; |
| 533 | } |
| 534 | |