| 1 | #![cfg (any(feature = "std" , feature = "libm" ))] |
| 2 | |
| 3 | use core::ops::Neg; |
| 4 | |
| 5 | use crate::{Float, Num, NumCast}; |
| 6 | |
| 7 | // NOTE: These doctests have the same issue as those in src/float.rs. |
| 8 | // They're testing the inherent methods directly, and not those of `Real`. |
| 9 | |
| 10 | /// A trait for real number types that do not necessarily have |
| 11 | /// floating-point-specific characteristics such as NaN and infinity. |
| 12 | /// |
| 13 | /// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type) |
| 14 | /// for a list of data types that could meaningfully implement this trait. |
| 15 | /// |
| 16 | /// This trait is only available with the `std` feature, or with the `libm` feature otherwise. |
| 17 | pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { |
| 18 | /// Returns the smallest finite value that this type can represent. |
| 19 | /// |
| 20 | /// ``` |
| 21 | /// use num_traits::real::Real; |
| 22 | /// use std::f64; |
| 23 | /// |
| 24 | /// let x: f64 = Real::min_value(); |
| 25 | /// |
| 26 | /// assert_eq!(x, f64::MIN); |
| 27 | /// ``` |
| 28 | fn min_value() -> Self; |
| 29 | |
| 30 | /// Returns the smallest positive, normalized value that this type can represent. |
| 31 | /// |
| 32 | /// ``` |
| 33 | /// use num_traits::real::Real; |
| 34 | /// use std::f64; |
| 35 | /// |
| 36 | /// let x: f64 = Real::min_positive_value(); |
| 37 | /// |
| 38 | /// assert_eq!(x, f64::MIN_POSITIVE); |
| 39 | /// ``` |
| 40 | fn min_positive_value() -> Self; |
| 41 | |
| 42 | /// Returns epsilon, a small positive value. |
| 43 | /// |
| 44 | /// ``` |
| 45 | /// use num_traits::real::Real; |
| 46 | /// use std::f64; |
| 47 | /// |
| 48 | /// let x: f64 = Real::epsilon(); |
| 49 | /// |
| 50 | /// assert_eq!(x, f64::EPSILON); |
| 51 | /// ``` |
| 52 | /// |
| 53 | /// # Panics |
| 54 | /// |
| 55 | /// The default implementation will panic if `f32::EPSILON` cannot |
| 56 | /// be cast to `Self`. |
| 57 | fn epsilon() -> Self; |
| 58 | |
| 59 | /// Returns the largest finite value that this type can represent. |
| 60 | /// |
| 61 | /// ``` |
| 62 | /// use num_traits::real::Real; |
| 63 | /// use std::f64; |
| 64 | /// |
| 65 | /// let x: f64 = Real::max_value(); |
| 66 | /// assert_eq!(x, f64::MAX); |
| 67 | /// ``` |
| 68 | fn max_value() -> Self; |
| 69 | |
| 70 | /// Returns the largest integer less than or equal to a number. |
| 71 | /// |
| 72 | /// ``` |
| 73 | /// use num_traits::real::Real; |
| 74 | /// |
| 75 | /// let f = 3.99; |
| 76 | /// let g = 3.0; |
| 77 | /// |
| 78 | /// assert_eq!(f.floor(), 3.0); |
| 79 | /// assert_eq!(g.floor(), 3.0); |
| 80 | /// ``` |
| 81 | fn floor(self) -> Self; |
| 82 | |
| 83 | /// Returns the smallest integer greater than or equal to a number. |
| 84 | /// |
| 85 | /// ``` |
| 86 | /// use num_traits::real::Real; |
| 87 | /// |
| 88 | /// let f = 3.01; |
| 89 | /// let g = 4.0; |
| 90 | /// |
| 91 | /// assert_eq!(f.ceil(), 4.0); |
| 92 | /// assert_eq!(g.ceil(), 4.0); |
| 93 | /// ``` |
| 94 | fn ceil(self) -> Self; |
| 95 | |
| 96 | /// Returns the nearest integer to a number. Round half-way cases away from |
| 97 | /// `0.0`. |
| 98 | /// |
| 99 | /// ``` |
| 100 | /// use num_traits::real::Real; |
| 101 | /// |
| 102 | /// let f = 3.3; |
| 103 | /// let g = -3.3; |
| 104 | /// |
| 105 | /// assert_eq!(f.round(), 3.0); |
| 106 | /// assert_eq!(g.round(), -3.0); |
| 107 | /// ``` |
| 108 | fn round(self) -> Self; |
| 109 | |
| 110 | /// Return the integer part of a number. |
| 111 | /// |
| 112 | /// ``` |
| 113 | /// use num_traits::real::Real; |
| 114 | /// |
| 115 | /// let f = 3.3; |
| 116 | /// let g = -3.7; |
| 117 | /// |
| 118 | /// assert_eq!(f.trunc(), 3.0); |
| 119 | /// assert_eq!(g.trunc(), -3.0); |
| 120 | /// ``` |
| 121 | fn trunc(self) -> Self; |
| 122 | |
| 123 | /// Returns the fractional part of a number. |
| 124 | /// |
| 125 | /// ``` |
| 126 | /// use num_traits::real::Real; |
| 127 | /// |
| 128 | /// let x = 3.5; |
| 129 | /// let y = -3.5; |
| 130 | /// let abs_difference_x = (x.fract() - 0.5).abs(); |
| 131 | /// let abs_difference_y = (y.fract() - (-0.5)).abs(); |
| 132 | /// |
| 133 | /// assert!(abs_difference_x < 1e-10); |
| 134 | /// assert!(abs_difference_y < 1e-10); |
| 135 | /// ``` |
| 136 | fn fract(self) -> Self; |
| 137 | |
| 138 | /// Computes the absolute value of `self`. Returns `Float::nan()` if the |
| 139 | /// number is `Float::nan()`. |
| 140 | /// |
| 141 | /// ``` |
| 142 | /// use num_traits::real::Real; |
| 143 | /// use std::f64; |
| 144 | /// |
| 145 | /// let x = 3.5; |
| 146 | /// let y = -3.5; |
| 147 | /// |
| 148 | /// let abs_difference_x = (x.abs() - x).abs(); |
| 149 | /// let abs_difference_y = (y.abs() - (-y)).abs(); |
| 150 | /// |
| 151 | /// assert!(abs_difference_x < 1e-10); |
| 152 | /// assert!(abs_difference_y < 1e-10); |
| 153 | /// |
| 154 | /// assert!(::num_traits::Float::is_nan(f64::NAN.abs())); |
| 155 | /// ``` |
| 156 | fn abs(self) -> Self; |
| 157 | |
| 158 | /// Returns a number that represents the sign of `self`. |
| 159 | /// |
| 160 | /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` |
| 161 | /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` |
| 162 | /// - `Float::nan()` if the number is `Float::nan()` |
| 163 | /// |
| 164 | /// ``` |
| 165 | /// use num_traits::real::Real; |
| 166 | /// use std::f64; |
| 167 | /// |
| 168 | /// let f = 3.5; |
| 169 | /// |
| 170 | /// assert_eq!(f.signum(), 1.0); |
| 171 | /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); |
| 172 | /// |
| 173 | /// assert!(f64::NAN.signum().is_nan()); |
| 174 | /// ``` |
| 175 | fn signum(self) -> Self; |
| 176 | |
| 177 | /// Returns `true` if `self` is positive, including `+0.0`, |
| 178 | /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`. |
| 179 | /// |
| 180 | /// ``` |
| 181 | /// use num_traits::real::Real; |
| 182 | /// use std::f64; |
| 183 | /// |
| 184 | /// let neg_nan: f64 = -f64::NAN; |
| 185 | /// |
| 186 | /// let f = 7.0; |
| 187 | /// let g = -7.0; |
| 188 | /// |
| 189 | /// assert!(f.is_sign_positive()); |
| 190 | /// assert!(!g.is_sign_positive()); |
| 191 | /// assert!(!neg_nan.is_sign_positive()); |
| 192 | /// ``` |
| 193 | fn is_sign_positive(self) -> bool; |
| 194 | |
| 195 | /// Returns `true` if `self` is negative, including `-0.0`, |
| 196 | /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`. |
| 197 | /// |
| 198 | /// ``` |
| 199 | /// use num_traits::real::Real; |
| 200 | /// use std::f64; |
| 201 | /// |
| 202 | /// let nan: f64 = f64::NAN; |
| 203 | /// |
| 204 | /// let f = 7.0; |
| 205 | /// let g = -7.0; |
| 206 | /// |
| 207 | /// assert!(!f.is_sign_negative()); |
| 208 | /// assert!(g.is_sign_negative()); |
| 209 | /// assert!(!nan.is_sign_negative()); |
| 210 | /// ``` |
| 211 | fn is_sign_negative(self) -> bool; |
| 212 | |
| 213 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
| 214 | /// error, yielding a more accurate result than an unfused multiply-add. |
| 215 | /// |
| 216 | /// Using `mul_add` can be more performant than an unfused multiply-add if |
| 217 | /// the target architecture has a dedicated `fma` CPU instruction. |
| 218 | /// |
| 219 | /// ``` |
| 220 | /// use num_traits::real::Real; |
| 221 | /// |
| 222 | /// let m = 10.0; |
| 223 | /// let x = 4.0; |
| 224 | /// let b = 60.0; |
| 225 | /// |
| 226 | /// // 100.0 |
| 227 | /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); |
| 228 | /// |
| 229 | /// assert!(abs_difference < 1e-10); |
| 230 | /// ``` |
| 231 | fn mul_add(self, a: Self, b: Self) -> Self; |
| 232 | |
| 233 | /// Take the reciprocal (inverse) of a number, `1/x`. |
| 234 | /// |
| 235 | /// ``` |
| 236 | /// use num_traits::real::Real; |
| 237 | /// |
| 238 | /// let x = 2.0; |
| 239 | /// let abs_difference = (x.recip() - (1.0/x)).abs(); |
| 240 | /// |
| 241 | /// assert!(abs_difference < 1e-10); |
| 242 | /// ``` |
| 243 | fn recip(self) -> Self; |
| 244 | |
| 245 | /// Raise a number to an integer power. |
| 246 | /// |
| 247 | /// Using this function is generally faster than using `powf` |
| 248 | /// |
| 249 | /// ``` |
| 250 | /// use num_traits::real::Real; |
| 251 | /// |
| 252 | /// let x = 2.0; |
| 253 | /// let abs_difference = (x.powi(2) - x*x).abs(); |
| 254 | /// |
| 255 | /// assert!(abs_difference < 1e-10); |
| 256 | /// ``` |
| 257 | fn powi(self, n: i32) -> Self; |
| 258 | |
| 259 | /// Raise a number to a real number power. |
| 260 | /// |
| 261 | /// ``` |
| 262 | /// use num_traits::real::Real; |
| 263 | /// |
| 264 | /// let x = 2.0; |
| 265 | /// let abs_difference = (x.powf(2.0) - x*x).abs(); |
| 266 | /// |
| 267 | /// assert!(abs_difference < 1e-10); |
| 268 | /// ``` |
| 269 | fn powf(self, n: Self) -> Self; |
| 270 | |
| 271 | /// Take the square root of a number. |
| 272 | /// |
| 273 | /// Returns NaN if `self` is a negative floating-point number. |
| 274 | /// |
| 275 | /// # Panics |
| 276 | /// |
| 277 | /// If the implementing type doesn't support NaN, this method should panic if `self < 0`. |
| 278 | /// |
| 279 | /// ``` |
| 280 | /// use num_traits::real::Real; |
| 281 | /// |
| 282 | /// let positive = 4.0; |
| 283 | /// let negative = -4.0; |
| 284 | /// |
| 285 | /// let abs_difference = (positive.sqrt() - 2.0).abs(); |
| 286 | /// |
| 287 | /// assert!(abs_difference < 1e-10); |
| 288 | /// assert!(::num_traits::Float::is_nan(negative.sqrt())); |
| 289 | /// ``` |
| 290 | fn sqrt(self) -> Self; |
| 291 | |
| 292 | /// Returns `e^(self)`, (the exponential function). |
| 293 | /// |
| 294 | /// ``` |
| 295 | /// use num_traits::real::Real; |
| 296 | /// |
| 297 | /// let one = 1.0; |
| 298 | /// // e^1 |
| 299 | /// let e = one.exp(); |
| 300 | /// |
| 301 | /// // ln(e) - 1 == 0 |
| 302 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 303 | /// |
| 304 | /// assert!(abs_difference < 1e-10); |
| 305 | /// ``` |
| 306 | fn exp(self) -> Self; |
| 307 | |
| 308 | /// Returns `2^(self)`. |
| 309 | /// |
| 310 | /// ``` |
| 311 | /// use num_traits::real::Real; |
| 312 | /// |
| 313 | /// let f = 2.0; |
| 314 | /// |
| 315 | /// // 2^2 - 4 == 0 |
| 316 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
| 317 | /// |
| 318 | /// assert!(abs_difference < 1e-10); |
| 319 | /// ``` |
| 320 | fn exp2(self) -> Self; |
| 321 | |
| 322 | /// Returns the natural logarithm of the number. |
| 323 | /// |
| 324 | /// # Panics |
| 325 | /// |
| 326 | /// If `self <= 0` and this type does not support a NaN representation, this function should panic. |
| 327 | /// |
| 328 | /// ``` |
| 329 | /// use num_traits::real::Real; |
| 330 | /// |
| 331 | /// let one = 1.0; |
| 332 | /// // e^1 |
| 333 | /// let e = one.exp(); |
| 334 | /// |
| 335 | /// // ln(e) - 1 == 0 |
| 336 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 337 | /// |
| 338 | /// assert!(abs_difference < 1e-10); |
| 339 | /// ``` |
| 340 | fn ln(self) -> Self; |
| 341 | |
| 342 | /// Returns the logarithm of the number with respect to an arbitrary base. |
| 343 | /// |
| 344 | /// # Panics |
| 345 | /// |
| 346 | /// If `self <= 0` and this type does not support a NaN representation, this function should panic. |
| 347 | /// |
| 348 | /// ``` |
| 349 | /// use num_traits::real::Real; |
| 350 | /// |
| 351 | /// let ten = 10.0; |
| 352 | /// let two = 2.0; |
| 353 | /// |
| 354 | /// // log10(10) - 1 == 0 |
| 355 | /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); |
| 356 | /// |
| 357 | /// // log2(2) - 1 == 0 |
| 358 | /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); |
| 359 | /// |
| 360 | /// assert!(abs_difference_10 < 1e-10); |
| 361 | /// assert!(abs_difference_2 < 1e-10); |
| 362 | /// ``` |
| 363 | fn log(self, base: Self) -> Self; |
| 364 | |
| 365 | /// Returns the base 2 logarithm of the number. |
| 366 | /// |
| 367 | /// # Panics |
| 368 | /// |
| 369 | /// If `self <= 0` and this type does not support a NaN representation, this function should panic. |
| 370 | /// |
| 371 | /// ``` |
| 372 | /// use num_traits::real::Real; |
| 373 | /// |
| 374 | /// let two = 2.0; |
| 375 | /// |
| 376 | /// // log2(2) - 1 == 0 |
| 377 | /// let abs_difference = (two.log2() - 1.0).abs(); |
| 378 | /// |
| 379 | /// assert!(abs_difference < 1e-10); |
| 380 | /// ``` |
| 381 | fn log2(self) -> Self; |
| 382 | |
| 383 | /// Returns the base 10 logarithm of the number. |
| 384 | /// |
| 385 | /// # Panics |
| 386 | /// |
| 387 | /// If `self <= 0` and this type does not support a NaN representation, this function should panic. |
| 388 | /// |
| 389 | /// |
| 390 | /// ``` |
| 391 | /// use num_traits::real::Real; |
| 392 | /// |
| 393 | /// let ten = 10.0; |
| 394 | /// |
| 395 | /// // log10(10) - 1 == 0 |
| 396 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
| 397 | /// |
| 398 | /// assert!(abs_difference < 1e-10); |
| 399 | /// ``` |
| 400 | fn log10(self) -> Self; |
| 401 | |
| 402 | /// Converts radians to degrees. |
| 403 | /// |
| 404 | /// ``` |
| 405 | /// use std::f64::consts; |
| 406 | /// |
| 407 | /// let angle = consts::PI; |
| 408 | /// |
| 409 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
| 410 | /// |
| 411 | /// assert!(abs_difference < 1e-10); |
| 412 | /// ``` |
| 413 | fn to_degrees(self) -> Self; |
| 414 | |
| 415 | /// Converts degrees to radians. |
| 416 | /// |
| 417 | /// ``` |
| 418 | /// use std::f64::consts; |
| 419 | /// |
| 420 | /// let angle = 180.0_f64; |
| 421 | /// |
| 422 | /// let abs_difference = (angle.to_radians() - consts::PI).abs(); |
| 423 | /// |
| 424 | /// assert!(abs_difference < 1e-10); |
| 425 | /// ``` |
| 426 | fn to_radians(self) -> Self; |
| 427 | |
| 428 | /// Returns the maximum of the two numbers. |
| 429 | /// |
| 430 | /// ``` |
| 431 | /// use num_traits::real::Real; |
| 432 | /// |
| 433 | /// let x = 1.0; |
| 434 | /// let y = 2.0; |
| 435 | /// |
| 436 | /// assert_eq!(x.max(y), y); |
| 437 | /// ``` |
| 438 | fn max(self, other: Self) -> Self; |
| 439 | |
| 440 | /// Returns the minimum of the two numbers. |
| 441 | /// |
| 442 | /// ``` |
| 443 | /// use num_traits::real::Real; |
| 444 | /// |
| 445 | /// let x = 1.0; |
| 446 | /// let y = 2.0; |
| 447 | /// |
| 448 | /// assert_eq!(x.min(y), x); |
| 449 | /// ``` |
| 450 | fn min(self, other: Self) -> Self; |
| 451 | |
| 452 | /// The positive difference of two numbers. |
| 453 | /// |
| 454 | /// * If `self <= other`: `0:0` |
| 455 | /// * Else: `self - other` |
| 456 | /// |
| 457 | /// ``` |
| 458 | /// use num_traits::real::Real; |
| 459 | /// |
| 460 | /// let x = 3.0; |
| 461 | /// let y = -3.0; |
| 462 | /// |
| 463 | /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
| 464 | /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
| 465 | /// |
| 466 | /// assert!(abs_difference_x < 1e-10); |
| 467 | /// assert!(abs_difference_y < 1e-10); |
| 468 | /// ``` |
| 469 | fn abs_sub(self, other: Self) -> Self; |
| 470 | |
| 471 | /// Take the cubic root of a number. |
| 472 | /// |
| 473 | /// ``` |
| 474 | /// use num_traits::real::Real; |
| 475 | /// |
| 476 | /// let x = 8.0; |
| 477 | /// |
| 478 | /// // x^(1/3) - 2 == 0 |
| 479 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
| 480 | /// |
| 481 | /// assert!(abs_difference < 1e-10); |
| 482 | /// ``` |
| 483 | fn cbrt(self) -> Self; |
| 484 | |
| 485 | /// Calculate the length of the hypotenuse of a right-angle triangle given |
| 486 | /// legs of length `x` and `y`. |
| 487 | /// |
| 488 | /// ``` |
| 489 | /// use num_traits::real::Real; |
| 490 | /// |
| 491 | /// let x = 2.0; |
| 492 | /// let y = 3.0; |
| 493 | /// |
| 494 | /// // sqrt(x^2 + y^2) |
| 495 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
| 496 | /// |
| 497 | /// assert!(abs_difference < 1e-10); |
| 498 | /// ``` |
| 499 | fn hypot(self, other: Self) -> Self; |
| 500 | |
| 501 | /// Computes the sine of a number (in radians). |
| 502 | /// |
| 503 | /// ``` |
| 504 | /// use num_traits::real::Real; |
| 505 | /// use std::f64; |
| 506 | /// |
| 507 | /// let x = f64::consts::PI/2.0; |
| 508 | /// |
| 509 | /// let abs_difference = (x.sin() - 1.0).abs(); |
| 510 | /// |
| 511 | /// assert!(abs_difference < 1e-10); |
| 512 | /// ``` |
| 513 | fn sin(self) -> Self; |
| 514 | |
| 515 | /// Computes the cosine of a number (in radians). |
| 516 | /// |
| 517 | /// ``` |
| 518 | /// use num_traits::real::Real; |
| 519 | /// use std::f64; |
| 520 | /// |
| 521 | /// let x = 2.0*f64::consts::PI; |
| 522 | /// |
| 523 | /// let abs_difference = (x.cos() - 1.0).abs(); |
| 524 | /// |
| 525 | /// assert!(abs_difference < 1e-10); |
| 526 | /// ``` |
| 527 | fn cos(self) -> Self; |
| 528 | |
| 529 | /// Computes the tangent of a number (in radians). |
| 530 | /// |
| 531 | /// ``` |
| 532 | /// use num_traits::real::Real; |
| 533 | /// use std::f64; |
| 534 | /// |
| 535 | /// let x = f64::consts::PI/4.0; |
| 536 | /// let abs_difference = (x.tan() - 1.0).abs(); |
| 537 | /// |
| 538 | /// assert!(abs_difference < 1e-14); |
| 539 | /// ``` |
| 540 | fn tan(self) -> Self; |
| 541 | |
| 542 | /// Computes the arcsine of a number. Return value is in radians in |
| 543 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
| 544 | /// [-1, 1]. |
| 545 | /// |
| 546 | /// # Panics |
| 547 | /// |
| 548 | /// If this type does not support a NaN representation, this function should panic |
| 549 | /// if the number is outside the range [-1, 1]. |
| 550 | /// |
| 551 | /// ``` |
| 552 | /// use num_traits::real::Real; |
| 553 | /// use std::f64; |
| 554 | /// |
| 555 | /// let f = f64::consts::PI / 2.0; |
| 556 | /// |
| 557 | /// // asin(sin(pi/2)) |
| 558 | /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); |
| 559 | /// |
| 560 | /// assert!(abs_difference < 1e-10); |
| 561 | /// ``` |
| 562 | fn asin(self) -> Self; |
| 563 | |
| 564 | /// Computes the arccosine of a number. Return value is in radians in |
| 565 | /// the range [0, pi] or NaN if the number is outside the range |
| 566 | /// [-1, 1]. |
| 567 | /// |
| 568 | /// # Panics |
| 569 | /// |
| 570 | /// If this type does not support a NaN representation, this function should panic |
| 571 | /// if the number is outside the range [-1, 1]. |
| 572 | /// |
| 573 | /// ``` |
| 574 | /// use num_traits::real::Real; |
| 575 | /// use std::f64; |
| 576 | /// |
| 577 | /// let f = f64::consts::PI / 4.0; |
| 578 | /// |
| 579 | /// // acos(cos(pi/4)) |
| 580 | /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); |
| 581 | /// |
| 582 | /// assert!(abs_difference < 1e-10); |
| 583 | /// ``` |
| 584 | fn acos(self) -> Self; |
| 585 | |
| 586 | /// Computes the arctangent of a number. Return value is in radians in the |
| 587 | /// range [-pi/2, pi/2]; |
| 588 | /// |
| 589 | /// ``` |
| 590 | /// use num_traits::real::Real; |
| 591 | /// |
| 592 | /// let f = 1.0; |
| 593 | /// |
| 594 | /// // atan(tan(1)) |
| 595 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
| 596 | /// |
| 597 | /// assert!(abs_difference < 1e-10); |
| 598 | /// ``` |
| 599 | fn atan(self) -> Self; |
| 600 | |
| 601 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). |
| 602 | /// |
| 603 | /// * `x = 0`, `y = 0`: `0` |
| 604 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
| 605 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
| 606 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
| 607 | /// |
| 608 | /// ``` |
| 609 | /// use num_traits::real::Real; |
| 610 | /// use std::f64; |
| 611 | /// |
| 612 | /// let pi = f64::consts::PI; |
| 613 | /// // All angles from horizontal right (+x) |
| 614 | /// // 45 deg counter-clockwise |
| 615 | /// let x1 = 3.0; |
| 616 | /// let y1 = -3.0; |
| 617 | /// |
| 618 | /// // 135 deg clockwise |
| 619 | /// let x2 = -3.0; |
| 620 | /// let y2 = 3.0; |
| 621 | /// |
| 622 | /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); |
| 623 | /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); |
| 624 | /// |
| 625 | /// assert!(abs_difference_1 < 1e-10); |
| 626 | /// assert!(abs_difference_2 < 1e-10); |
| 627 | /// ``` |
| 628 | fn atan2(self, other: Self) -> Self; |
| 629 | |
| 630 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
| 631 | /// `(sin(x), cos(x))`. |
| 632 | /// |
| 633 | /// ``` |
| 634 | /// use num_traits::real::Real; |
| 635 | /// use std::f64; |
| 636 | /// |
| 637 | /// let x = f64::consts::PI/4.0; |
| 638 | /// let f = x.sin_cos(); |
| 639 | /// |
| 640 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
| 641 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
| 642 | /// |
| 643 | /// assert!(abs_difference_0 < 1e-10); |
| 644 | /// assert!(abs_difference_0 < 1e-10); |
| 645 | /// ``` |
| 646 | fn sin_cos(self) -> (Self, Self); |
| 647 | |
| 648 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
| 649 | /// number is close to zero. |
| 650 | /// |
| 651 | /// ``` |
| 652 | /// use num_traits::real::Real; |
| 653 | /// |
| 654 | /// let x = 7.0; |
| 655 | /// |
| 656 | /// // e^(ln(7)) - 1 |
| 657 | /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); |
| 658 | /// |
| 659 | /// assert!(abs_difference < 1e-10); |
| 660 | /// ``` |
| 661 | fn exp_m1(self) -> Self; |
| 662 | |
| 663 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
| 664 | /// the operations were performed separately. |
| 665 | /// |
| 666 | /// # Panics |
| 667 | /// |
| 668 | /// If this type does not support a NaN representation, this function should panic |
| 669 | /// if `self-1 <= 0`. |
| 670 | /// |
| 671 | /// ``` |
| 672 | /// use num_traits::real::Real; |
| 673 | /// use std::f64; |
| 674 | /// |
| 675 | /// let x = f64::consts::E - 1.0; |
| 676 | /// |
| 677 | /// // ln(1 + (e - 1)) == ln(e) == 1 |
| 678 | /// let abs_difference = (x.ln_1p() - 1.0).abs(); |
| 679 | /// |
| 680 | /// assert!(abs_difference < 1e-10); |
| 681 | /// ``` |
| 682 | fn ln_1p(self) -> Self; |
| 683 | |
| 684 | /// Hyperbolic sine function. |
| 685 | /// |
| 686 | /// ``` |
| 687 | /// use num_traits::real::Real; |
| 688 | /// use std::f64; |
| 689 | /// |
| 690 | /// let e = f64::consts::E; |
| 691 | /// let x = 1.0; |
| 692 | /// |
| 693 | /// let f = x.sinh(); |
| 694 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
| 695 | /// let g = (e*e - 1.0)/(2.0*e); |
| 696 | /// let abs_difference = (f - g).abs(); |
| 697 | /// |
| 698 | /// assert!(abs_difference < 1e-10); |
| 699 | /// ``` |
| 700 | fn sinh(self) -> Self; |
| 701 | |
| 702 | /// Hyperbolic cosine function. |
| 703 | /// |
| 704 | /// ``` |
| 705 | /// use num_traits::real::Real; |
| 706 | /// use std::f64; |
| 707 | /// |
| 708 | /// let e = f64::consts::E; |
| 709 | /// let x = 1.0; |
| 710 | /// let f = x.cosh(); |
| 711 | /// // Solving cosh() at 1 gives this result |
| 712 | /// let g = (e*e + 1.0)/(2.0*e); |
| 713 | /// let abs_difference = (f - g).abs(); |
| 714 | /// |
| 715 | /// // Same result |
| 716 | /// assert!(abs_difference < 1.0e-10); |
| 717 | /// ``` |
| 718 | fn cosh(self) -> Self; |
| 719 | |
| 720 | /// Hyperbolic tangent function. |
| 721 | /// |
| 722 | /// ``` |
| 723 | /// use num_traits::real::Real; |
| 724 | /// use std::f64; |
| 725 | /// |
| 726 | /// let e = f64::consts::E; |
| 727 | /// let x = 1.0; |
| 728 | /// |
| 729 | /// let f = x.tanh(); |
| 730 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
| 731 | /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); |
| 732 | /// let abs_difference = (f - g).abs(); |
| 733 | /// |
| 734 | /// assert!(abs_difference < 1.0e-10); |
| 735 | /// ``` |
| 736 | fn tanh(self) -> Self; |
| 737 | |
| 738 | /// Inverse hyperbolic sine function. |
| 739 | /// |
| 740 | /// ``` |
| 741 | /// use num_traits::real::Real; |
| 742 | /// |
| 743 | /// let x = 1.0; |
| 744 | /// let f = x.sinh().asinh(); |
| 745 | /// |
| 746 | /// let abs_difference = (f - x).abs(); |
| 747 | /// |
| 748 | /// assert!(abs_difference < 1.0e-10); |
| 749 | /// ``` |
| 750 | fn asinh(self) -> Self; |
| 751 | |
| 752 | /// Inverse hyperbolic cosine function. |
| 753 | /// |
| 754 | /// ``` |
| 755 | /// use num_traits::real::Real; |
| 756 | /// |
| 757 | /// let x = 1.0; |
| 758 | /// let f = x.cosh().acosh(); |
| 759 | /// |
| 760 | /// let abs_difference = (f - x).abs(); |
| 761 | /// |
| 762 | /// assert!(abs_difference < 1.0e-10); |
| 763 | /// ``` |
| 764 | fn acosh(self) -> Self; |
| 765 | |
| 766 | /// Inverse hyperbolic tangent function. |
| 767 | /// |
| 768 | /// ``` |
| 769 | /// use num_traits::real::Real; |
| 770 | /// use std::f64; |
| 771 | /// |
| 772 | /// let e = f64::consts::E; |
| 773 | /// let f = e.tanh().atanh(); |
| 774 | /// |
| 775 | /// let abs_difference = (f - e).abs(); |
| 776 | /// |
| 777 | /// assert!(abs_difference < 1.0e-10); |
| 778 | /// ``` |
| 779 | fn atanh(self) -> Self; |
| 780 | } |
| 781 | |
| 782 | impl<T: Float> Real for T { |
| 783 | forward! { |
| 784 | Float::min_value() -> Self; |
| 785 | Float::min_positive_value() -> Self; |
| 786 | Float::epsilon() -> Self; |
| 787 | Float::max_value() -> Self; |
| 788 | } |
| 789 | forward! { |
| 790 | Float::floor(self) -> Self; |
| 791 | Float::ceil(self) -> Self; |
| 792 | Float::round(self) -> Self; |
| 793 | Float::trunc(self) -> Self; |
| 794 | Float::fract(self) -> Self; |
| 795 | Float::abs(self) -> Self; |
| 796 | Float::signum(self) -> Self; |
| 797 | Float::is_sign_positive(self) -> bool; |
| 798 | Float::is_sign_negative(self) -> bool; |
| 799 | Float::mul_add(self, a: Self, b: Self) -> Self; |
| 800 | Float::recip(self) -> Self; |
| 801 | Float::powi(self, n: i32) -> Self; |
| 802 | Float::powf(self, n: Self) -> Self; |
| 803 | Float::sqrt(self) -> Self; |
| 804 | Float::exp(self) -> Self; |
| 805 | Float::exp2(self) -> Self; |
| 806 | Float::ln(self) -> Self; |
| 807 | Float::log(self, base: Self) -> Self; |
| 808 | Float::log2(self) -> Self; |
| 809 | Float::log10(self) -> Self; |
| 810 | Float::to_degrees(self) -> Self; |
| 811 | Float::to_radians(self) -> Self; |
| 812 | Float::max(self, other: Self) -> Self; |
| 813 | Float::min(self, other: Self) -> Self; |
| 814 | Float::abs_sub(self, other: Self) -> Self; |
| 815 | Float::cbrt(self) -> Self; |
| 816 | Float::hypot(self, other: Self) -> Self; |
| 817 | Float::sin(self) -> Self; |
| 818 | Float::cos(self) -> Self; |
| 819 | Float::tan(self) -> Self; |
| 820 | Float::asin(self) -> Self; |
| 821 | Float::acos(self) -> Self; |
| 822 | Float::atan(self) -> Self; |
| 823 | Float::atan2(self, other: Self) -> Self; |
| 824 | Float::sin_cos(self) -> (Self, Self); |
| 825 | Float::exp_m1(self) -> Self; |
| 826 | Float::ln_1p(self) -> Self; |
| 827 | Float::sinh(self) -> Self; |
| 828 | Float::cosh(self) -> Self; |
| 829 | Float::tanh(self) -> Self; |
| 830 | Float::asinh(self) -> Self; |
| 831 | Float::acosh(self) -> Self; |
| 832 | Float::atanh(self) -> Self; |
| 833 | } |
| 834 | } |
| 835 | |