| 1 | // Implementation derived from `weak` in Rust's |
| 2 | // library/std/src/sys/unix/weak.rs at revision |
| 3 | // fd0cb0cdc21dd9c06025277d772108f8d42cb25f. |
| 4 | // |
| 5 | // Ideally we should update to a newer version which doesn't need `dlsym`, |
| 6 | // however that depends on the `extern_weak` feature which is currently |
| 7 | // unstable. |
| 8 | |
| 9 | #![cfg_attr (linux_raw, allow(unsafe_code))] |
| 10 | |
| 11 | //! Support for "weak linkage" to symbols on Unix |
| 12 | //! |
| 13 | //! Some I/O operations we do in libstd require newer versions of OSes but we |
| 14 | //! need to maintain binary compatibility with older releases for now. In order |
| 15 | //! to use the new functionality when available we use this module for |
| 16 | //! detection. |
| 17 | //! |
| 18 | //! One option to use here is weak linkage, but that is unfortunately only |
| 19 | //! really workable on Linux. Hence, use dlsym to get the symbol value at |
| 20 | //! runtime. This is also done for compatibility with older versions of glibc, |
| 21 | //! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes |
| 22 | //! that we've been dynamically linked to the library the symbol comes from, |
| 23 | //! but that is currently always the case for things like libpthread/libc. |
| 24 | //! |
| 25 | //! A long time ago this used weak linkage for the `__pthread_get_minstack` |
| 26 | //! symbol, but that caused Debian to detect an unnecessarily strict versioned |
| 27 | //! dependency on libc6 (#23628). |
| 28 | |
| 29 | // There are a variety of `#[cfg]`s controlling which targets are involved in |
| 30 | // each instance of `weak!` and `syscall!`. Rather than trying to unify all of |
| 31 | // that, we'll just allow that some unix targets don't use this module at all. |
| 32 | #![allow (dead_code, unused_macros)] |
| 33 | #![allow (clippy::doc_markdown)] |
| 34 | |
| 35 | use crate::ffi::CStr; |
| 36 | use core::ffi::c_void; |
| 37 | use core::ptr::null_mut; |
| 38 | use core::sync::atomic::{self, AtomicPtr, Ordering}; |
| 39 | use core::{marker, mem}; |
| 40 | |
| 41 | const NULL: *mut c_void = null_mut(); |
| 42 | const INVALID: *mut c_void = 1 as *mut c_void; |
| 43 | |
| 44 | macro_rules! weak { |
| 45 | ($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => ( |
| 46 | #[allow(non_upper_case_globals)] |
| 47 | $vis static $name: $crate::weak::Weak<unsafe extern fn($($t),*) -> $ret> = |
| 48 | $crate::weak::Weak::new(concat!(stringify!($name), ' \0' )); |
| 49 | ) |
| 50 | } |
| 51 | |
| 52 | pub(crate) struct Weak<F> { |
| 53 | name: &'static str, |
| 54 | addr: AtomicPtr<c_void>, |
| 55 | _marker: marker::PhantomData<F>, |
| 56 | } |
| 57 | |
| 58 | impl<F> Weak<F> { |
| 59 | pub(crate) const fn new(name: &'static str) -> Self { |
| 60 | Self { |
| 61 | name, |
| 62 | addr: AtomicPtr::new(INVALID), |
| 63 | _marker: marker::PhantomData, |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | pub(crate) fn get(&self) -> Option<F> { |
| 68 | assert_eq!(mem::size_of::<F>(), mem::size_of::<usize>()); |
| 69 | unsafe { |
| 70 | // Relaxed is fine here because we fence before reading through the |
| 71 | // pointer (see the comment below). |
| 72 | match self.addr.load(Ordering::Relaxed) { |
| 73 | INVALID => self.initialize(), |
| 74 | NULL => None, |
| 75 | addr => { |
| 76 | let func = mem::transmute_copy::<*mut c_void, F>(&addr); |
| 77 | // The caller is presumably going to read through this value |
| 78 | // (by calling the function we've dlsymed). This means we'd |
| 79 | // need to have loaded it with at least C11's consume |
| 80 | // ordering in order to be guaranteed that the data we read |
| 81 | // from the pointer isn't from before the pointer was |
| 82 | // stored. Rust has no equivalent to memory_order_consume, |
| 83 | // so we use an acquire fence (sorry, ARM). |
| 84 | // |
| 85 | // Now, in practice this likely isn't needed even on CPUs |
| 86 | // where relaxed and consume mean different things. The |
| 87 | // symbols we're loading are probably present (or not) at |
| 88 | // init, and even if they aren't the runtime dynamic loader |
| 89 | // is extremely likely have sufficient barriers internally |
| 90 | // (possibly implicitly, for example the ones provided by |
| 91 | // invoking `mprotect`). |
| 92 | // |
| 93 | // That said, none of that's *guaranteed*, and so we fence. |
| 94 | atomic::fence(Ordering::Acquire); |
| 95 | Some(func) |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | // Cold because it should only happen during first-time initialization. |
| 102 | #[cold ] |
| 103 | unsafe fn initialize(&self) -> Option<F> { |
| 104 | let val = fetch(self.name); |
| 105 | // This synchronizes with the acquire fence in `get`. |
| 106 | self.addr.store(val, Ordering::Release); |
| 107 | |
| 108 | match val { |
| 109 | NULL => None, |
| 110 | addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)), |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | // To avoid having the `linux_raw` backend depend on the libc crate, just |
| 116 | // declare the few things we need in a module called `libc` so that `fetch` |
| 117 | // uses it. |
| 118 | #[cfg (linux_raw)] |
| 119 | mod libc { |
| 120 | use core::ptr; |
| 121 | use linux_raw_sys::ctypes::{c_char, c_void}; |
| 122 | |
| 123 | #[cfg (all(target_os = "android" , target_pointer_width = "32" ))] |
| 124 | pub(super) const RTLD_DEFAULT: *mut c_void = -1isize as *mut c_void; |
| 125 | #[cfg (not(all(target_os = "android" , target_pointer_width = "32" )))] |
| 126 | pub(super) const RTLD_DEFAULT: *mut c_void = ptr::null_mut(); |
| 127 | |
| 128 | unsafeextern "C" { |
| 129 | pub(super) unsafefn dlsym(handle: *mut c_void, symbol: *const c_char) -> *mut c_void; |
| 130 | } |
| 131 | |
| 132 | #[test ] |
| 133 | fn test_abi() { |
| 134 | assert_eq!(self::RTLD_DEFAULT, ::libc::RTLD_DEFAULT); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | unsafe fn fetch(name: &str) -> *mut c_void { |
| 139 | let name: &CStr = match CStr::from_bytes_with_nul(name.as_bytes()) { |
| 140 | Ok(c_str: &CStr) => c_str, |
| 141 | Err(..) => return null_mut(), |
| 142 | }; |
| 143 | libc::dlsym(handle:libc::RTLD_DEFAULT, symbol:name.as_ptr().cast()) |
| 144 | } |
| 145 | |
| 146 | #[cfg (not(linux_kernel))] |
| 147 | macro_rules! syscall { |
| 148 | (fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => ( |
| 149 | unsafe fn $name($($arg_name: $t),*) -> $ret { |
| 150 | weak! { fn $name($($t),*) -> $ret } |
| 151 | |
| 152 | if let Some(fun) = $name.get() { |
| 153 | fun($($arg_name),*) |
| 154 | } else { |
| 155 | libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS)); |
| 156 | -1 |
| 157 | } |
| 158 | } |
| 159 | ) |
| 160 | } |
| 161 | |
| 162 | #[cfg (linux_kernel)] |
| 163 | macro_rules! syscall { |
| 164 | (fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => ( |
| 165 | unsafe fn $name($($arg_name:$t),*) -> $ret { |
| 166 | // This looks like a hack, but `concat_idents` only accepts idents |
| 167 | // (not paths). |
| 168 | use libc::*; |
| 169 | |
| 170 | #[allow(dead_code)] |
| 171 | trait AsSyscallArg { |
| 172 | type SyscallArgType; |
| 173 | fn into_syscall_arg(self) -> Self::SyscallArgType; |
| 174 | } |
| 175 | |
| 176 | // Pass pointer types as pointers, to preserve provenance. |
| 177 | impl<T> AsSyscallArg for *mut T { |
| 178 | type SyscallArgType = *mut T; |
| 179 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
| 180 | } |
| 181 | impl<T> AsSyscallArg for *const T { |
| 182 | type SyscallArgType = *const T; |
| 183 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
| 184 | } |
| 185 | |
| 186 | // Pass `BorrowedFd` values as the integer value. |
| 187 | impl AsSyscallArg for $crate::fd::BorrowedFd<'_> { |
| 188 | type SyscallArgType = ::libc::c_int; |
| 189 | fn into_syscall_arg(self) -> Self::SyscallArgType { |
| 190 | $crate::fd::AsRawFd::as_raw_fd(&self) as _ |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | // Coerce integer values into `c_long`. |
| 195 | impl AsSyscallArg for i8 { |
| 196 | type SyscallArgType = ::libc::c_int; |
| 197 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
| 198 | } |
| 199 | impl AsSyscallArg for u8 { |
| 200 | type SyscallArgType = ::libc::c_int; |
| 201 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
| 202 | } |
| 203 | impl AsSyscallArg for i16 { |
| 204 | type SyscallArgType = ::libc::c_int; |
| 205 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
| 206 | } |
| 207 | impl AsSyscallArg for u16 { |
| 208 | type SyscallArgType = ::libc::c_int; |
| 209 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
| 210 | } |
| 211 | impl AsSyscallArg for i32 { |
| 212 | type SyscallArgType = ::libc::c_int; |
| 213 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
| 214 | } |
| 215 | impl AsSyscallArg for u32 { |
| 216 | type SyscallArgType = ::libc::c_uint; |
| 217 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
| 218 | } |
| 219 | impl AsSyscallArg for usize { |
| 220 | type SyscallArgType = ::libc::c_ulong; |
| 221 | fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ } |
| 222 | } |
| 223 | |
| 224 | // On 64-bit platforms, also coerce `i64` and `u64` since `c_long` |
| 225 | // is 64-bit and can hold those values. |
| 226 | #[cfg(target_pointer_width = "64" )] |
| 227 | impl AsSyscallArg for i64 { |
| 228 | type SyscallArgType = ::libc::c_long; |
| 229 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
| 230 | } |
| 231 | #[cfg(target_pointer_width = "64" )] |
| 232 | impl AsSyscallArg for u64 { |
| 233 | type SyscallArgType = ::libc::c_ulong; |
| 234 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
| 235 | } |
| 236 | |
| 237 | // `concat_idents` is [unstable], so we take an extra `sys_name` |
| 238 | // parameter and have our users do the concat for us for now. |
| 239 | // |
| 240 | // [unstable]: https://github.com/rust-lang/rust/issues/29599 |
| 241 | /* |
| 242 | syscall( |
| 243 | concat_idents!(SYS_, $name), |
| 244 | $($arg_name.into_syscall_arg()),* |
| 245 | ) as $ret |
| 246 | */ |
| 247 | |
| 248 | syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret |
| 249 | } |
| 250 | ) |
| 251 | } |
| 252 | |
| 253 | macro_rules! weakcall { |
| 254 | ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => ( |
| 255 | $vis unsafe fn $name($($arg_name: $t),*) -> $ret { |
| 256 | weak! { fn $name($($t),*) -> $ret } |
| 257 | |
| 258 | // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` |
| 259 | // interposition, but if it's not found just fail. |
| 260 | if let Some(fun) = $name.get() { |
| 261 | fun($($arg_name),*) |
| 262 | } else { |
| 263 | libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS)); |
| 264 | -1 |
| 265 | } |
| 266 | } |
| 267 | ) |
| 268 | } |
| 269 | |
| 270 | /// A combination of `weakcall` and `syscall`. Use the libc function if it's |
| 271 | /// available, and fall back to `libc::syscall` otherwise. |
| 272 | macro_rules! weak_or_syscall { |
| 273 | ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => ( |
| 274 | $vis unsafe fn $name($($arg_name: $t),*) -> $ret { |
| 275 | weak! { fn $name($($t),*) -> $ret } |
| 276 | |
| 277 | // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` |
| 278 | // interposition, but if it's not found just fail. |
| 279 | if let Some(fun) = $name.get() { |
| 280 | fun($($arg_name),*) |
| 281 | } else { |
| 282 | syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret } |
| 283 | $name($($arg_name),*) |
| 284 | } |
| 285 | } |
| 286 | ) |
| 287 | } |
| 288 | |