| 1 | //! Constants for the `f128` quadruple-precision floating point type. |
| 2 | //! |
| 3 | //! *[See also the `f128` primitive type](primitive@f128).* |
| 4 | //! |
| 5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
| 6 | |
| 7 | #![unstable (feature = "f128" , issue = "116909" )] |
| 8 | #![doc (test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))] |
| 9 | |
| 10 | #[unstable (feature = "f128" , issue = "116909" )] |
| 11 | pub use core::f128::consts; |
| 12 | |
| 13 | #[cfg (not(test))] |
| 14 | use crate::intrinsics; |
| 15 | #[cfg (not(test))] |
| 16 | use crate::sys::cmath; |
| 17 | |
| 18 | #[cfg (not(test))] |
| 19 | impl f128 { |
| 20 | /// Raises a number to a floating point power. |
| 21 | /// |
| 22 | /// # Unspecified precision |
| 23 | /// |
| 24 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 25 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 26 | /// |
| 27 | /// # Examples |
| 28 | /// |
| 29 | /// ``` |
| 30 | /// #![feature(f128)] |
| 31 | /// # #[cfg (not(miri))] |
| 32 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 33 | /// |
| 34 | /// let x = 2.0_f128; |
| 35 | /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); |
| 36 | /// assert!(abs_difference <= f128::EPSILON); |
| 37 | /// |
| 38 | /// assert_eq!(f128::powf(1.0, f128::NAN), 1.0); |
| 39 | /// assert_eq!(f128::powf(f128::NAN, 0.0), 1.0); |
| 40 | /// # } |
| 41 | /// ``` |
| 42 | #[inline ] |
| 43 | #[rustc_allow_incoherent_impl ] |
| 44 | #[unstable (feature = "f128" , issue = "116909" )] |
| 45 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 46 | pub fn powf(self, n: f128) -> f128 { |
| 47 | unsafe { intrinsics::powf128(self, n) } |
| 48 | } |
| 49 | |
| 50 | /// Returns `e^(self)`, (the exponential function). |
| 51 | /// |
| 52 | /// # Unspecified precision |
| 53 | /// |
| 54 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 55 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 56 | /// |
| 57 | /// # Examples |
| 58 | /// |
| 59 | /// ``` |
| 60 | /// #![feature(f128)] |
| 61 | /// # #[cfg (not(miri))] |
| 62 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 63 | /// |
| 64 | /// let one = 1.0f128; |
| 65 | /// // e^1 |
| 66 | /// let e = one.exp(); |
| 67 | /// |
| 68 | /// // ln(e) - 1 == 0 |
| 69 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 70 | /// |
| 71 | /// assert!(abs_difference <= f128::EPSILON); |
| 72 | /// # } |
| 73 | /// ``` |
| 74 | #[inline ] |
| 75 | #[rustc_allow_incoherent_impl ] |
| 76 | #[unstable (feature = "f128" , issue = "116909" )] |
| 77 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 78 | pub fn exp(self) -> f128 { |
| 79 | unsafe { intrinsics::expf128(self) } |
| 80 | } |
| 81 | |
| 82 | /// Returns `2^(self)`. |
| 83 | /// |
| 84 | /// # Unspecified precision |
| 85 | /// |
| 86 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 87 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 88 | /// |
| 89 | /// # Examples |
| 90 | /// |
| 91 | /// ``` |
| 92 | /// #![feature(f128)] |
| 93 | /// # #[cfg (not(miri))] |
| 94 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 95 | /// |
| 96 | /// let f = 2.0f128; |
| 97 | /// |
| 98 | /// // 2^2 - 4 == 0 |
| 99 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
| 100 | /// |
| 101 | /// assert!(abs_difference <= f128::EPSILON); |
| 102 | /// # } |
| 103 | /// ``` |
| 104 | #[inline ] |
| 105 | #[rustc_allow_incoherent_impl ] |
| 106 | #[unstable (feature = "f128" , issue = "116909" )] |
| 107 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 108 | pub fn exp2(self) -> f128 { |
| 109 | unsafe { intrinsics::exp2f128(self) } |
| 110 | } |
| 111 | |
| 112 | /// Returns the natural logarithm of the number. |
| 113 | /// |
| 114 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 115 | /// |
| 116 | /// # Unspecified precision |
| 117 | /// |
| 118 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 119 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 120 | /// |
| 121 | /// # Examples |
| 122 | /// |
| 123 | /// ``` |
| 124 | /// #![feature(f128)] |
| 125 | /// # #[cfg (not(miri))] |
| 126 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 127 | /// |
| 128 | /// let one = 1.0f128; |
| 129 | /// // e^1 |
| 130 | /// let e = one.exp(); |
| 131 | /// |
| 132 | /// // ln(e) - 1 == 0 |
| 133 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 134 | /// |
| 135 | /// assert!(abs_difference <= f128::EPSILON); |
| 136 | /// # } |
| 137 | /// ``` |
| 138 | /// |
| 139 | /// Non-positive values: |
| 140 | /// ``` |
| 141 | /// #![feature(f128)] |
| 142 | /// # #[cfg (not(miri))] |
| 143 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 144 | /// |
| 145 | /// assert_eq!(0_f128.ln(), f128::NEG_INFINITY); |
| 146 | /// assert!((-42_f128).ln().is_nan()); |
| 147 | /// # } |
| 148 | /// ``` |
| 149 | #[inline ] |
| 150 | #[rustc_allow_incoherent_impl ] |
| 151 | #[unstable (feature = "f128" , issue = "116909" )] |
| 152 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 153 | pub fn ln(self) -> f128 { |
| 154 | unsafe { intrinsics::logf128(self) } |
| 155 | } |
| 156 | |
| 157 | /// Returns the logarithm of the number with respect to an arbitrary base. |
| 158 | /// |
| 159 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 160 | /// |
| 161 | /// The result might not be correctly rounded owing to implementation details; |
| 162 | /// `self.log2()` can produce more accurate results for base 2, and |
| 163 | /// `self.log10()` can produce more accurate results for base 10. |
| 164 | /// |
| 165 | /// # Unspecified precision |
| 166 | /// |
| 167 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 168 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 169 | /// |
| 170 | /// # Examples |
| 171 | /// |
| 172 | /// ``` |
| 173 | /// #![feature(f128)] |
| 174 | /// # #[cfg (not(miri))] |
| 175 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 176 | /// |
| 177 | /// let five = 5.0f128; |
| 178 | /// |
| 179 | /// // log5(5) - 1 == 0 |
| 180 | /// let abs_difference = (five.log(5.0) - 1.0).abs(); |
| 181 | /// |
| 182 | /// assert!(abs_difference <= f128::EPSILON); |
| 183 | /// # } |
| 184 | /// ``` |
| 185 | /// |
| 186 | /// Non-positive values: |
| 187 | /// ``` |
| 188 | /// #![feature(f128)] |
| 189 | /// # #[cfg (not(miri))] |
| 190 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 191 | /// |
| 192 | /// assert_eq!(0_f128.log(10.0), f128::NEG_INFINITY); |
| 193 | /// assert!((-42_f128).log(10.0).is_nan()); |
| 194 | /// # } |
| 195 | /// ``` |
| 196 | #[inline ] |
| 197 | #[rustc_allow_incoherent_impl ] |
| 198 | #[unstable (feature = "f128" , issue = "116909" )] |
| 199 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 200 | pub fn log(self, base: f128) -> f128 { |
| 201 | self.ln() / base.ln() |
| 202 | } |
| 203 | |
| 204 | /// Returns the base 2 logarithm of the number. |
| 205 | /// |
| 206 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 207 | /// |
| 208 | /// # Unspecified precision |
| 209 | /// |
| 210 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 211 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 212 | /// |
| 213 | /// # Examples |
| 214 | /// |
| 215 | /// ``` |
| 216 | /// #![feature(f128)] |
| 217 | /// # #[cfg (not(miri))] |
| 218 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 219 | /// |
| 220 | /// let two = 2.0f128; |
| 221 | /// |
| 222 | /// // log2(2) - 1 == 0 |
| 223 | /// let abs_difference = (two.log2() - 1.0).abs(); |
| 224 | /// |
| 225 | /// assert!(abs_difference <= f128::EPSILON); |
| 226 | /// # } |
| 227 | /// ``` |
| 228 | /// |
| 229 | /// Non-positive values: |
| 230 | /// ``` |
| 231 | /// #![feature(f128)] |
| 232 | /// # #[cfg (not(miri))] |
| 233 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 234 | /// |
| 235 | /// assert_eq!(0_f128.log2(), f128::NEG_INFINITY); |
| 236 | /// assert!((-42_f128).log2().is_nan()); |
| 237 | /// # } |
| 238 | /// ``` |
| 239 | #[inline ] |
| 240 | #[rustc_allow_incoherent_impl ] |
| 241 | #[unstable (feature = "f128" , issue = "116909" )] |
| 242 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 243 | pub fn log2(self) -> f128 { |
| 244 | unsafe { intrinsics::log2f128(self) } |
| 245 | } |
| 246 | |
| 247 | /// Returns the base 10 logarithm of the number. |
| 248 | /// |
| 249 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 250 | /// |
| 251 | /// # Unspecified precision |
| 252 | /// |
| 253 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 254 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 255 | /// |
| 256 | /// # Examples |
| 257 | /// |
| 258 | /// ``` |
| 259 | /// #![feature(f128)] |
| 260 | /// # #[cfg (not(miri))] |
| 261 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 262 | /// |
| 263 | /// let ten = 10.0f128; |
| 264 | /// |
| 265 | /// // log10(10) - 1 == 0 |
| 266 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
| 267 | /// |
| 268 | /// assert!(abs_difference <= f128::EPSILON); |
| 269 | /// # } |
| 270 | /// ``` |
| 271 | /// |
| 272 | /// Non-positive values: |
| 273 | /// ``` |
| 274 | /// #![feature(f128)] |
| 275 | /// # #[cfg (not(miri))] |
| 276 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 277 | /// |
| 278 | /// assert_eq!(0_f128.log10(), f128::NEG_INFINITY); |
| 279 | /// assert!((-42_f128).log10().is_nan()); |
| 280 | /// # } |
| 281 | /// ``` |
| 282 | #[inline ] |
| 283 | #[rustc_allow_incoherent_impl ] |
| 284 | #[unstable (feature = "f128" , issue = "116909" )] |
| 285 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 286 | pub fn log10(self) -> f128 { |
| 287 | unsafe { intrinsics::log10f128(self) } |
| 288 | } |
| 289 | |
| 290 | /// Returns the cube root of a number. |
| 291 | /// |
| 292 | /// # Unspecified precision |
| 293 | /// |
| 294 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 295 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 296 | /// |
| 297 | /// |
| 298 | /// This function currently corresponds to the `cbrtf128` from libc on Unix |
| 299 | /// and Windows. Note that this might change in the future. |
| 300 | /// |
| 301 | /// # Examples |
| 302 | /// |
| 303 | /// ``` |
| 304 | /// #![feature(f128)] |
| 305 | /// # #[cfg (not(miri))] |
| 306 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 307 | /// |
| 308 | /// let x = 8.0f128; |
| 309 | /// |
| 310 | /// // x^(1/3) - 2 == 0 |
| 311 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
| 312 | /// |
| 313 | /// assert!(abs_difference <= f128::EPSILON); |
| 314 | /// # } |
| 315 | /// ``` |
| 316 | #[inline ] |
| 317 | #[rustc_allow_incoherent_impl ] |
| 318 | #[unstable (feature = "f128" , issue = "116909" )] |
| 319 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 320 | pub fn cbrt(self) -> f128 { |
| 321 | cmath::cbrtf128(self) |
| 322 | } |
| 323 | |
| 324 | /// Compute the distance between the origin and a point (`x`, `y`) on the |
| 325 | /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a |
| 326 | /// right-angle triangle with other sides having length `x.abs()` and |
| 327 | /// `y.abs()`. |
| 328 | /// |
| 329 | /// # Unspecified precision |
| 330 | /// |
| 331 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 332 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 333 | /// |
| 334 | /// |
| 335 | /// This function currently corresponds to the `hypotf128` from libc on Unix |
| 336 | /// and Windows. Note that this might change in the future. |
| 337 | /// |
| 338 | /// # Examples |
| 339 | /// |
| 340 | /// ``` |
| 341 | /// #![feature(f128)] |
| 342 | /// # #[cfg (not(miri))] |
| 343 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 344 | /// |
| 345 | /// let x = 2.0f128; |
| 346 | /// let y = 3.0f128; |
| 347 | /// |
| 348 | /// // sqrt(x^2 + y^2) |
| 349 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
| 350 | /// |
| 351 | /// assert!(abs_difference <= f128::EPSILON); |
| 352 | /// # } |
| 353 | /// ``` |
| 354 | #[inline ] |
| 355 | #[rustc_allow_incoherent_impl ] |
| 356 | #[unstable (feature = "f128" , issue = "116909" )] |
| 357 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 358 | pub fn hypot(self, other: f128) -> f128 { |
| 359 | cmath::hypotf128(self, other) |
| 360 | } |
| 361 | |
| 362 | /// Computes the sine of a number (in radians). |
| 363 | /// |
| 364 | /// # Unspecified precision |
| 365 | /// |
| 366 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 367 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 368 | /// |
| 369 | /// # Examples |
| 370 | /// |
| 371 | /// ``` |
| 372 | /// #![feature(f128)] |
| 373 | /// # #[cfg (not(miri))] |
| 374 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 375 | /// |
| 376 | /// let x = std::f128::consts::FRAC_PI_2; |
| 377 | /// |
| 378 | /// let abs_difference = (x.sin() - 1.0).abs(); |
| 379 | /// |
| 380 | /// assert!(abs_difference <= f128::EPSILON); |
| 381 | /// # } |
| 382 | /// ``` |
| 383 | #[inline ] |
| 384 | #[rustc_allow_incoherent_impl ] |
| 385 | #[unstable (feature = "f128" , issue = "116909" )] |
| 386 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 387 | pub fn sin(self) -> f128 { |
| 388 | unsafe { intrinsics::sinf128(self) } |
| 389 | } |
| 390 | |
| 391 | /// Computes the cosine of a number (in radians). |
| 392 | /// |
| 393 | /// # Unspecified precision |
| 394 | /// |
| 395 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 396 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 397 | /// |
| 398 | /// # Examples |
| 399 | /// |
| 400 | /// ``` |
| 401 | /// #![feature(f128)] |
| 402 | /// # #[cfg (not(miri))] |
| 403 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 404 | /// |
| 405 | /// let x = 2.0 * std::f128::consts::PI; |
| 406 | /// |
| 407 | /// let abs_difference = (x.cos() - 1.0).abs(); |
| 408 | /// |
| 409 | /// assert!(abs_difference <= f128::EPSILON); |
| 410 | /// # } |
| 411 | /// ``` |
| 412 | #[inline ] |
| 413 | #[rustc_allow_incoherent_impl ] |
| 414 | #[unstable (feature = "f128" , issue = "116909" )] |
| 415 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 416 | pub fn cos(self) -> f128 { |
| 417 | unsafe { intrinsics::cosf128(self) } |
| 418 | } |
| 419 | |
| 420 | /// Computes the tangent of a number (in radians). |
| 421 | /// |
| 422 | /// # Unspecified precision |
| 423 | /// |
| 424 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 425 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 426 | /// |
| 427 | /// This function currently corresponds to the `tanf128` from libc on Unix and |
| 428 | /// Windows. Note that this might change in the future. |
| 429 | /// |
| 430 | /// # Examples |
| 431 | /// |
| 432 | /// ``` |
| 433 | /// #![feature(f128)] |
| 434 | /// # #[cfg (not(miri))] |
| 435 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 436 | /// |
| 437 | /// let x = std::f128::consts::FRAC_PI_4; |
| 438 | /// let abs_difference = (x.tan() - 1.0).abs(); |
| 439 | /// |
| 440 | /// assert!(abs_difference <= f128::EPSILON); |
| 441 | /// # } |
| 442 | /// ``` |
| 443 | #[inline ] |
| 444 | #[rustc_allow_incoherent_impl ] |
| 445 | #[unstable (feature = "f128" , issue = "116909" )] |
| 446 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 447 | pub fn tan(self) -> f128 { |
| 448 | cmath::tanf128(self) |
| 449 | } |
| 450 | |
| 451 | /// Computes the arcsine of a number. Return value is in radians in |
| 452 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
| 453 | /// [-1, 1]. |
| 454 | /// |
| 455 | /// # Unspecified precision |
| 456 | /// |
| 457 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 458 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 459 | /// |
| 460 | /// This function currently corresponds to the `asinf128` from libc on Unix |
| 461 | /// and Windows. Note that this might change in the future. |
| 462 | /// |
| 463 | /// # Examples |
| 464 | /// |
| 465 | /// ``` |
| 466 | /// #![feature(f128)] |
| 467 | /// # #[cfg (not(miri))] |
| 468 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 469 | /// |
| 470 | /// let f = std::f128::consts::FRAC_PI_2; |
| 471 | /// |
| 472 | /// // asin(sin(pi/2)) |
| 473 | /// let abs_difference = (f.sin().asin() - std::f128::consts::FRAC_PI_2).abs(); |
| 474 | /// |
| 475 | /// assert!(abs_difference <= f128::EPSILON); |
| 476 | /// # } |
| 477 | /// ``` |
| 478 | #[inline ] |
| 479 | #[doc (alias = "arcsin" )] |
| 480 | #[rustc_allow_incoherent_impl ] |
| 481 | #[unstable (feature = "f128" , issue = "116909" )] |
| 482 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 483 | pub fn asin(self) -> f128 { |
| 484 | cmath::asinf128(self) |
| 485 | } |
| 486 | |
| 487 | /// Computes the arccosine of a number. Return value is in radians in |
| 488 | /// the range [0, pi] or NaN if the number is outside the range |
| 489 | /// [-1, 1]. |
| 490 | /// |
| 491 | /// # Unspecified precision |
| 492 | /// |
| 493 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 494 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 495 | /// |
| 496 | /// This function currently corresponds to the `acosf128` from libc on Unix |
| 497 | /// and Windows. Note that this might change in the future. |
| 498 | /// |
| 499 | /// # Examples |
| 500 | /// |
| 501 | /// ``` |
| 502 | /// #![feature(f128)] |
| 503 | /// # #[cfg (not(miri))] |
| 504 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 505 | /// |
| 506 | /// let f = std::f128::consts::FRAC_PI_4; |
| 507 | /// |
| 508 | /// // acos(cos(pi/4)) |
| 509 | /// let abs_difference = (f.cos().acos() - std::f128::consts::FRAC_PI_4).abs(); |
| 510 | /// |
| 511 | /// assert!(abs_difference <= f128::EPSILON); |
| 512 | /// # } |
| 513 | /// ``` |
| 514 | #[inline ] |
| 515 | #[doc (alias = "arccos" )] |
| 516 | #[rustc_allow_incoherent_impl ] |
| 517 | #[unstable (feature = "f128" , issue = "116909" )] |
| 518 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 519 | pub fn acos(self) -> f128 { |
| 520 | cmath::acosf128(self) |
| 521 | } |
| 522 | |
| 523 | /// Computes the arctangent of a number. Return value is in radians in the |
| 524 | /// range [-pi/2, pi/2]; |
| 525 | /// |
| 526 | /// # Unspecified precision |
| 527 | /// |
| 528 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 529 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 530 | /// |
| 531 | /// This function currently corresponds to the `atanf128` from libc on Unix |
| 532 | /// and Windows. Note that this might change in the future. |
| 533 | /// |
| 534 | /// # Examples |
| 535 | /// |
| 536 | /// ``` |
| 537 | /// #![feature(f128)] |
| 538 | /// # #[cfg (not(miri))] |
| 539 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 540 | /// |
| 541 | /// let f = 1.0f128; |
| 542 | /// |
| 543 | /// // atan(tan(1)) |
| 544 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
| 545 | /// |
| 546 | /// assert!(abs_difference <= f128::EPSILON); |
| 547 | /// # } |
| 548 | /// ``` |
| 549 | #[inline ] |
| 550 | #[doc (alias = "arctan" )] |
| 551 | #[rustc_allow_incoherent_impl ] |
| 552 | #[unstable (feature = "f128" , issue = "116909" )] |
| 553 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 554 | pub fn atan(self) -> f128 { |
| 555 | cmath::atanf128(self) |
| 556 | } |
| 557 | |
| 558 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. |
| 559 | /// |
| 560 | /// * `x = 0`, `y = 0`: `0` |
| 561 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
| 562 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
| 563 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
| 564 | /// |
| 565 | /// # Unspecified precision |
| 566 | /// |
| 567 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 568 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 569 | /// |
| 570 | /// This function currently corresponds to the `atan2f128` from libc on Unix |
| 571 | /// and Windows. Note that this might change in the future. |
| 572 | /// |
| 573 | /// # Examples |
| 574 | /// |
| 575 | /// ``` |
| 576 | /// #![feature(f128)] |
| 577 | /// # #[cfg (not(miri))] |
| 578 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 579 | /// |
| 580 | /// // Positive angles measured counter-clockwise |
| 581 | /// // from positive x axis |
| 582 | /// // -pi/4 radians (45 deg clockwise) |
| 583 | /// let x1 = 3.0f128; |
| 584 | /// let y1 = -3.0f128; |
| 585 | /// |
| 586 | /// // 3pi/4 radians (135 deg counter-clockwise) |
| 587 | /// let x2 = -3.0f128; |
| 588 | /// let y2 = 3.0f128; |
| 589 | /// |
| 590 | /// let abs_difference_1 = (y1.atan2(x1) - (-std::f128::consts::FRAC_PI_4)).abs(); |
| 591 | /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f128::consts::FRAC_PI_4)).abs(); |
| 592 | /// |
| 593 | /// assert!(abs_difference_1 <= f128::EPSILON); |
| 594 | /// assert!(abs_difference_2 <= f128::EPSILON); |
| 595 | /// # } |
| 596 | /// ``` |
| 597 | #[inline ] |
| 598 | #[rustc_allow_incoherent_impl ] |
| 599 | #[unstable (feature = "f128" , issue = "116909" )] |
| 600 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 601 | pub fn atan2(self, other: f128) -> f128 { |
| 602 | cmath::atan2f128(self, other) |
| 603 | } |
| 604 | |
| 605 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
| 606 | /// `(sin(x), cos(x))`. |
| 607 | /// |
| 608 | /// # Unspecified precision |
| 609 | /// |
| 610 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 611 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 612 | /// |
| 613 | /// This function currently corresponds to the `(f128::sin(x), |
| 614 | /// f128::cos(x))`. Note that this might change in the future. |
| 615 | /// |
| 616 | /// # Examples |
| 617 | /// |
| 618 | /// ``` |
| 619 | /// #![feature(f128)] |
| 620 | /// # #[cfg (not(miri))] |
| 621 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 622 | /// |
| 623 | /// let x = std::f128::consts::FRAC_PI_4; |
| 624 | /// let f = x.sin_cos(); |
| 625 | /// |
| 626 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
| 627 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
| 628 | /// |
| 629 | /// assert!(abs_difference_0 <= f128::EPSILON); |
| 630 | /// assert!(abs_difference_1 <= f128::EPSILON); |
| 631 | /// # } |
| 632 | /// ``` |
| 633 | #[inline ] |
| 634 | #[doc (alias = "sincos" )] |
| 635 | #[rustc_allow_incoherent_impl ] |
| 636 | #[unstable (feature = "f128" , issue = "116909" )] |
| 637 | pub fn sin_cos(self) -> (f128, f128) { |
| 638 | (self.sin(), self.cos()) |
| 639 | } |
| 640 | |
| 641 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
| 642 | /// number is close to zero. |
| 643 | /// |
| 644 | /// # Unspecified precision |
| 645 | /// |
| 646 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 647 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 648 | /// |
| 649 | /// This function currently corresponds to the `expm1f128` from libc on Unix |
| 650 | /// and Windows. Note that this might change in the future. |
| 651 | /// |
| 652 | /// # Examples |
| 653 | /// |
| 654 | /// ``` |
| 655 | /// #![feature(f128)] |
| 656 | /// # #[cfg (not(miri))] |
| 657 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 658 | /// |
| 659 | /// let x = 1e-8_f128; |
| 660 | /// |
| 661 | /// // for very small x, e^x is approximately 1 + x + x^2 / 2 |
| 662 | /// let approx = x + x * x / 2.0; |
| 663 | /// let abs_difference = (x.exp_m1() - approx).abs(); |
| 664 | /// |
| 665 | /// assert!(abs_difference < 1e-10); |
| 666 | /// # } |
| 667 | /// ``` |
| 668 | #[inline ] |
| 669 | #[rustc_allow_incoherent_impl ] |
| 670 | #[unstable (feature = "f128" , issue = "116909" )] |
| 671 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 672 | pub fn exp_m1(self) -> f128 { |
| 673 | cmath::expm1f128(self) |
| 674 | } |
| 675 | |
| 676 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
| 677 | /// the operations were performed separately. |
| 678 | /// |
| 679 | /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`. |
| 680 | /// |
| 681 | /// # Unspecified precision |
| 682 | /// |
| 683 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 684 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 685 | /// |
| 686 | /// This function currently corresponds to the `log1pf128` from libc on Unix |
| 687 | /// and Windows. Note that this might change in the future. |
| 688 | /// |
| 689 | /// # Examples |
| 690 | /// |
| 691 | /// ``` |
| 692 | /// #![feature(f128)] |
| 693 | /// # #[cfg (not(miri))] |
| 694 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 695 | /// |
| 696 | /// let x = 1e-8_f128; |
| 697 | /// |
| 698 | /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 |
| 699 | /// let approx = x - x * x / 2.0; |
| 700 | /// let abs_difference = (x.ln_1p() - approx).abs(); |
| 701 | /// |
| 702 | /// assert!(abs_difference < 1e-10); |
| 703 | /// # } |
| 704 | /// ``` |
| 705 | /// |
| 706 | /// Out-of-range values: |
| 707 | /// ``` |
| 708 | /// #![feature(f128)] |
| 709 | /// # #[cfg (not(miri))] |
| 710 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 711 | /// |
| 712 | /// assert_eq!((-1.0_f128).ln_1p(), f128::NEG_INFINITY); |
| 713 | /// assert!((-2.0_f128).ln_1p().is_nan()); |
| 714 | /// # } |
| 715 | /// ``` |
| 716 | #[inline ] |
| 717 | #[doc (alias = "log1p" )] |
| 718 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 719 | #[rustc_allow_incoherent_impl ] |
| 720 | #[unstable (feature = "f128" , issue = "116909" )] |
| 721 | pub fn ln_1p(self) -> f128 { |
| 722 | cmath::log1pf128(self) |
| 723 | } |
| 724 | |
| 725 | /// Hyperbolic sine function. |
| 726 | /// |
| 727 | /// # Unspecified precision |
| 728 | /// |
| 729 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 730 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 731 | /// |
| 732 | /// This function currently corresponds to the `sinhf128` from libc on Unix |
| 733 | /// and Windows. Note that this might change in the future. |
| 734 | /// |
| 735 | /// # Examples |
| 736 | /// |
| 737 | /// ``` |
| 738 | /// #![feature(f128)] |
| 739 | /// # #[cfg (not(miri))] |
| 740 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 741 | /// |
| 742 | /// let e = std::f128::consts::E; |
| 743 | /// let x = 1.0f128; |
| 744 | /// |
| 745 | /// let f = x.sinh(); |
| 746 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
| 747 | /// let g = ((e * e) - 1.0) / (2.0 * e); |
| 748 | /// let abs_difference = (f - g).abs(); |
| 749 | /// |
| 750 | /// assert!(abs_difference <= f128::EPSILON); |
| 751 | /// # } |
| 752 | /// ``` |
| 753 | #[inline ] |
| 754 | #[rustc_allow_incoherent_impl ] |
| 755 | #[unstable (feature = "f128" , issue = "116909" )] |
| 756 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 757 | pub fn sinh(self) -> f128 { |
| 758 | cmath::sinhf128(self) |
| 759 | } |
| 760 | |
| 761 | /// Hyperbolic cosine function. |
| 762 | /// |
| 763 | /// # Unspecified precision |
| 764 | /// |
| 765 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 766 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 767 | /// |
| 768 | /// This function currently corresponds to the `coshf128` from libc on Unix |
| 769 | /// and Windows. Note that this might change in the future. |
| 770 | /// |
| 771 | /// # Examples |
| 772 | /// |
| 773 | /// ``` |
| 774 | /// #![feature(f128)] |
| 775 | /// # #[cfg (not(miri))] |
| 776 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 777 | /// |
| 778 | /// let e = std::f128::consts::E; |
| 779 | /// let x = 1.0f128; |
| 780 | /// let f = x.cosh(); |
| 781 | /// // Solving cosh() at 1 gives this result |
| 782 | /// let g = ((e * e) + 1.0) / (2.0 * e); |
| 783 | /// let abs_difference = (f - g).abs(); |
| 784 | /// |
| 785 | /// // Same result |
| 786 | /// assert!(abs_difference <= f128::EPSILON); |
| 787 | /// # } |
| 788 | /// ``` |
| 789 | #[inline ] |
| 790 | #[rustc_allow_incoherent_impl ] |
| 791 | #[unstable (feature = "f128" , issue = "116909" )] |
| 792 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 793 | pub fn cosh(self) -> f128 { |
| 794 | cmath::coshf128(self) |
| 795 | } |
| 796 | |
| 797 | /// Hyperbolic tangent function. |
| 798 | /// |
| 799 | /// # Unspecified precision |
| 800 | /// |
| 801 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 802 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 803 | /// |
| 804 | /// This function currently corresponds to the `tanhf128` from libc on Unix |
| 805 | /// and Windows. Note that this might change in the future. |
| 806 | /// |
| 807 | /// # Examples |
| 808 | /// |
| 809 | /// ``` |
| 810 | /// #![feature(f128)] |
| 811 | /// # #[cfg (not(miri))] |
| 812 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 813 | /// |
| 814 | /// let e = std::f128::consts::E; |
| 815 | /// let x = 1.0f128; |
| 816 | /// |
| 817 | /// let f = x.tanh(); |
| 818 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
| 819 | /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); |
| 820 | /// let abs_difference = (f - g).abs(); |
| 821 | /// |
| 822 | /// assert!(abs_difference <= f128::EPSILON); |
| 823 | /// # } |
| 824 | /// ``` |
| 825 | #[inline ] |
| 826 | #[rustc_allow_incoherent_impl ] |
| 827 | #[unstable (feature = "f128" , issue = "116909" )] |
| 828 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 829 | pub fn tanh(self) -> f128 { |
| 830 | cmath::tanhf128(self) |
| 831 | } |
| 832 | |
| 833 | /// Inverse hyperbolic sine function. |
| 834 | /// |
| 835 | /// # Unspecified precision |
| 836 | /// |
| 837 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 838 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 839 | /// |
| 840 | /// # Examples |
| 841 | /// |
| 842 | /// ``` |
| 843 | /// #![feature(f128)] |
| 844 | /// # #[cfg (not(miri))] |
| 845 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 846 | /// |
| 847 | /// let x = 1.0f128; |
| 848 | /// let f = x.sinh().asinh(); |
| 849 | /// |
| 850 | /// let abs_difference = (f - x).abs(); |
| 851 | /// |
| 852 | /// assert!(abs_difference <= f128::EPSILON); |
| 853 | /// # } |
| 854 | /// ``` |
| 855 | #[inline ] |
| 856 | #[doc (alias = "arcsinh" )] |
| 857 | #[rustc_allow_incoherent_impl ] |
| 858 | #[unstable (feature = "f128" , issue = "116909" )] |
| 859 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 860 | pub fn asinh(self) -> f128 { |
| 861 | let ax = self.abs(); |
| 862 | let ix = 1.0 / ax; |
| 863 | (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) |
| 864 | } |
| 865 | |
| 866 | /// Inverse hyperbolic cosine function. |
| 867 | /// |
| 868 | /// # Unspecified precision |
| 869 | /// |
| 870 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 871 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 872 | /// |
| 873 | /// # Examples |
| 874 | /// |
| 875 | /// ``` |
| 876 | /// #![feature(f128)] |
| 877 | /// # #[cfg (not(miri))] |
| 878 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 879 | /// |
| 880 | /// let x = 1.0f128; |
| 881 | /// let f = x.cosh().acosh(); |
| 882 | /// |
| 883 | /// let abs_difference = (f - x).abs(); |
| 884 | /// |
| 885 | /// assert!(abs_difference <= f128::EPSILON); |
| 886 | /// # } |
| 887 | /// ``` |
| 888 | #[inline ] |
| 889 | #[doc (alias = "arccosh" )] |
| 890 | #[rustc_allow_incoherent_impl ] |
| 891 | #[unstable (feature = "f128" , issue = "116909" )] |
| 892 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 893 | pub fn acosh(self) -> f128 { |
| 894 | if self < 1.0 { |
| 895 | Self::NAN |
| 896 | } else { |
| 897 | (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | /// Inverse hyperbolic tangent function. |
| 902 | /// |
| 903 | /// # Unspecified precision |
| 904 | /// |
| 905 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 906 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 907 | /// |
| 908 | /// # Examples |
| 909 | /// |
| 910 | /// ``` |
| 911 | /// #![feature(f128)] |
| 912 | /// # #[cfg (not(miri))] |
| 913 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 914 | /// |
| 915 | /// let e = std::f128::consts::E; |
| 916 | /// let f = e.tanh().atanh(); |
| 917 | /// |
| 918 | /// let abs_difference = (f - e).abs(); |
| 919 | /// |
| 920 | /// assert!(abs_difference <= 1e-5); |
| 921 | /// # } |
| 922 | /// ``` |
| 923 | #[inline ] |
| 924 | #[doc (alias = "arctanh" )] |
| 925 | #[rustc_allow_incoherent_impl ] |
| 926 | #[unstable (feature = "f128" , issue = "116909" )] |
| 927 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 928 | pub fn atanh(self) -> f128 { |
| 929 | 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() |
| 930 | } |
| 931 | |
| 932 | /// Gamma function. |
| 933 | /// |
| 934 | /// # Unspecified precision |
| 935 | /// |
| 936 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 937 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 938 | /// |
| 939 | /// This function currently corresponds to the `tgammaf128` from libc on Unix |
| 940 | /// and Windows. Note that this might change in the future. |
| 941 | /// |
| 942 | /// # Examples |
| 943 | /// |
| 944 | /// ``` |
| 945 | /// #![feature(f128)] |
| 946 | /// #![feature(float_gamma)] |
| 947 | /// # #[cfg (not(miri))] |
| 948 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 949 | /// |
| 950 | /// let x = 5.0f128; |
| 951 | /// |
| 952 | /// let abs_difference = (x.gamma() - 24.0).abs(); |
| 953 | /// |
| 954 | /// assert!(abs_difference <= f128::EPSILON); |
| 955 | /// # } |
| 956 | /// ``` |
| 957 | #[inline ] |
| 958 | #[rustc_allow_incoherent_impl ] |
| 959 | #[unstable (feature = "f128" , issue = "116909" )] |
| 960 | // #[unstable(feature = "float_gamma", issue = "99842")] |
| 961 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 962 | pub fn gamma(self) -> f128 { |
| 963 | cmath::tgammaf128(self) |
| 964 | } |
| 965 | |
| 966 | /// Natural logarithm of the absolute value of the gamma function |
| 967 | /// |
| 968 | /// The integer part of the tuple indicates the sign of the gamma function. |
| 969 | /// |
| 970 | /// # Unspecified precision |
| 971 | /// |
| 972 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 973 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 974 | /// |
| 975 | /// This function currently corresponds to the `lgammaf128_r` from libc on Unix |
| 976 | /// and Windows. Note that this might change in the future. |
| 977 | /// |
| 978 | /// # Examples |
| 979 | /// |
| 980 | /// ``` |
| 981 | /// #![feature(f128)] |
| 982 | /// #![feature(float_gamma)] |
| 983 | /// # #[cfg (not(miri))] |
| 984 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 985 | /// |
| 986 | /// let x = 2.0f128; |
| 987 | /// |
| 988 | /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); |
| 989 | /// |
| 990 | /// assert!(abs_difference <= f128::EPSILON); |
| 991 | /// # } |
| 992 | /// ``` |
| 993 | #[inline ] |
| 994 | #[rustc_allow_incoherent_impl ] |
| 995 | #[unstable (feature = "f128" , issue = "116909" )] |
| 996 | // #[unstable(feature = "float_gamma", issue = "99842")] |
| 997 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 998 | pub fn ln_gamma(self) -> (f128, i32) { |
| 999 | let mut signgamp: i32 = 0; |
| 1000 | let x = cmath::lgammaf128_r(self, &mut signgamp); |
| 1001 | (x, signgamp) |
| 1002 | } |
| 1003 | |
| 1004 | /// Error function. |
| 1005 | /// |
| 1006 | /// # Unspecified precision |
| 1007 | /// |
| 1008 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 1009 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 1010 | /// |
| 1011 | /// This function currently corresponds to the `erff128` from libc on Unix |
| 1012 | /// and Windows. Note that this might change in the future. |
| 1013 | /// |
| 1014 | /// # Examples |
| 1015 | /// |
| 1016 | /// ``` |
| 1017 | /// #![feature(f128)] |
| 1018 | /// #![feature(float_erf)] |
| 1019 | /// # #[cfg (not(miri))] |
| 1020 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 1021 | /// /// The error function relates what percent of a normal distribution lies |
| 1022 | /// /// within `x` standard deviations (scaled by `1/sqrt(2)`). |
| 1023 | /// fn within_standard_deviations(x: f128) -> f128 { |
| 1024 | /// (x * std::f128::consts::FRAC_1_SQRT_2).erf() * 100.0 |
| 1025 | /// } |
| 1026 | /// |
| 1027 | /// // 68% of a normal distribution is within one standard deviation |
| 1028 | /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.01); |
| 1029 | /// // 95% of a normal distribution is within two standard deviations |
| 1030 | /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.01); |
| 1031 | /// // 99.7% of a normal distribution is within three standard deviations |
| 1032 | /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.01); |
| 1033 | /// # } |
| 1034 | /// ``` |
| 1035 | #[rustc_allow_incoherent_impl ] |
| 1036 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1037 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1038 | // #[unstable(feature = "float_erf", issue = "136321")] |
| 1039 | #[inline ] |
| 1040 | pub fn erf(self) -> f128 { |
| 1041 | cmath::erff128(self) |
| 1042 | } |
| 1043 | |
| 1044 | /// Complementary error function. |
| 1045 | /// |
| 1046 | /// # Unspecified precision |
| 1047 | /// |
| 1048 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 1049 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 1050 | /// |
| 1051 | /// This function currently corresponds to the `erfcf128` from libc on Unix |
| 1052 | /// and Windows. Note that this might change in the future. |
| 1053 | /// |
| 1054 | /// # Examples |
| 1055 | /// |
| 1056 | /// ``` |
| 1057 | /// #![feature(f128)] |
| 1058 | /// #![feature(float_erf)] |
| 1059 | /// # #[cfg (not(miri))] |
| 1060 | /// # #[cfg (target_has_reliable_f128_math)] { |
| 1061 | /// let x: f128 = 0.123; |
| 1062 | /// |
| 1063 | /// let one = x.erf() + x.erfc(); |
| 1064 | /// let abs_difference = (one - 1.0).abs(); |
| 1065 | /// |
| 1066 | /// assert!(abs_difference <= f128::EPSILON); |
| 1067 | /// # } |
| 1068 | /// ``` |
| 1069 | #[rustc_allow_incoherent_impl ] |
| 1070 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1071 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1072 | // #[unstable(feature = "float_erf", issue = "136321")] |
| 1073 | #[inline ] |
| 1074 | pub fn erfc(self) -> f128 { |
| 1075 | cmath::erfcf128(self) |
| 1076 | } |
| 1077 | } |
| 1078 | |