1 | use crate::core::resolve::Ns; |
2 | use crate::core::*; |
3 | use crate::names::{resolve_error, Namespace}; |
4 | use crate::token::{Id, Index}; |
5 | use crate::Error; |
6 | use std::collections::HashMap; |
7 | |
8 | pub fn resolve<'a>(fields: &mut Vec<ModuleField<'a>>) -> Result<Resolver<'a>, Error> { |
9 | let mut resolver: Resolver<'_> = Resolver::default(); |
10 | resolver.process(fields)?; |
11 | Ok(resolver) |
12 | } |
13 | |
14 | /// Context structure used to perform name resolution. |
15 | #[derive (Default)] |
16 | pub struct Resolver<'a> { |
17 | // Namespaces within each module. Note that each namespace carries with it |
18 | // information about the signature of the item in that namespace. The |
19 | // signature is later used to synthesize the type of a module and inject |
20 | // type annotations if necessary. |
21 | funcs: Namespace<'a>, |
22 | globals: Namespace<'a>, |
23 | tables: Namespace<'a>, |
24 | memories: Namespace<'a>, |
25 | types: Namespace<'a>, |
26 | tags: Namespace<'a>, |
27 | datas: Namespace<'a>, |
28 | elems: Namespace<'a>, |
29 | fields: HashMap<u32, Namespace<'a>>, |
30 | type_info: Vec<TypeInfo<'a>>, |
31 | } |
32 | |
33 | impl<'a> Resolver<'a> { |
34 | fn process(&mut self, fields: &mut Vec<ModuleField<'a>>) -> Result<(), Error> { |
35 | // Number everything in the module, recording what names correspond to |
36 | // what indices. |
37 | for field in fields.iter_mut() { |
38 | self.register(field)?; |
39 | } |
40 | |
41 | // Then we can replace all our `Index::Id` instances with `Index::Num` |
42 | // in the AST. Note that this also recurses into nested modules. |
43 | for field in fields.iter_mut() { |
44 | self.resolve_field(field)?; |
45 | } |
46 | Ok(()) |
47 | } |
48 | |
49 | fn register_type(&mut self, ty: &Type<'a>) -> Result<(), Error> { |
50 | let type_index = self.types.register(ty.id, "type" )?; |
51 | |
52 | match &ty.def.kind { |
53 | // For GC structure types we need to be sure to populate the |
54 | // field namespace here as well. |
55 | // |
56 | // The field namespace is relative to the struct fields are defined in |
57 | InnerTypeKind::Struct(r#struct) => { |
58 | for (i, field) in r#struct.fields.iter().enumerate() { |
59 | if let Some(id) = field.id { |
60 | self.fields |
61 | .entry(type_index) |
62 | .or_insert(Namespace::default()) |
63 | .register_specific(id, i as u32, "field" )?; |
64 | } |
65 | } |
66 | } |
67 | |
68 | InnerTypeKind::Array(_) | InnerTypeKind::Func(_) | InnerTypeKind::Cont(_) => {} |
69 | } |
70 | |
71 | // Record function signatures as we see them to so we can |
72 | // generate errors for mismatches in references such as |
73 | // `call_indirect`. |
74 | match &ty.def.kind { |
75 | InnerTypeKind::Func(f) => { |
76 | let params = f.params.iter().map(|p| p.2).collect(); |
77 | let results = f.results.clone(); |
78 | self.type_info.push(TypeInfo::Func { params, results }); |
79 | } |
80 | _ => self.type_info.push(TypeInfo::Other), |
81 | } |
82 | |
83 | Ok(()) |
84 | } |
85 | |
86 | fn register(&mut self, item: &ModuleField<'a>) -> Result<(), Error> { |
87 | match item { |
88 | ModuleField::Import(i) => match &i.item.kind { |
89 | ItemKind::Func(_) => self.funcs.register(i.item.id, "func" )?, |
90 | ItemKind::Memory(_) => self.memories.register(i.item.id, "memory" )?, |
91 | ItemKind::Table(_) => self.tables.register(i.item.id, "table" )?, |
92 | ItemKind::Global(_) => self.globals.register(i.item.id, "global" )?, |
93 | ItemKind::Tag(_) => self.tags.register(i.item.id, "tag" )?, |
94 | }, |
95 | ModuleField::Global(i) => self.globals.register(i.id, "global" )?, |
96 | ModuleField::Memory(i) => self.memories.register(i.id, "memory" )?, |
97 | ModuleField::Func(i) => self.funcs.register(i.id, "func" )?, |
98 | ModuleField::Table(i) => self.tables.register(i.id, "table" )?, |
99 | |
100 | ModuleField::Type(i) => { |
101 | return self.register_type(i); |
102 | } |
103 | ModuleField::Rec(i) => { |
104 | for ty in &i.types { |
105 | self.register_type(ty)?; |
106 | } |
107 | return Ok(()); |
108 | } |
109 | ModuleField::Elem(e) => self.elems.register(e.id, "elem" )?, |
110 | ModuleField::Data(d) => self.datas.register(d.id, "data" )?, |
111 | ModuleField::Tag(t) => self.tags.register(t.id, "tag" )?, |
112 | |
113 | // These fields don't define any items in any index space. |
114 | ModuleField::Export(_) | ModuleField::Start(_) | ModuleField::Custom(_) => { |
115 | return Ok(()) |
116 | } |
117 | }; |
118 | |
119 | Ok(()) |
120 | } |
121 | |
122 | fn resolve_field(&self, field: &mut ModuleField<'a>) -> Result<(), Error> { |
123 | match field { |
124 | ModuleField::Import(i) => { |
125 | self.resolve_item_sig(&mut i.item)?; |
126 | Ok(()) |
127 | } |
128 | |
129 | ModuleField::Type(ty) => self.resolve_type(ty), |
130 | ModuleField::Rec(rec) => { |
131 | for ty in &mut rec.types { |
132 | self.resolve_type(ty)?; |
133 | } |
134 | Ok(()) |
135 | } |
136 | |
137 | ModuleField::Func(f) => { |
138 | let (idx, inline) = self.resolve_type_use(&mut f.ty)?; |
139 | let n = match idx { |
140 | Index::Num(n, _) => *n, |
141 | Index::Id(_) => panic!("expected `Num`" ), |
142 | }; |
143 | if let FuncKind::Inline { locals, expression } = &mut f.kind { |
144 | // Resolve (ref T) in locals |
145 | for local in locals.iter_mut() { |
146 | self.resolve_valtype(&mut local.ty)?; |
147 | } |
148 | |
149 | // Build a scope with a local namespace for the function |
150 | // body |
151 | let mut scope = Namespace::default(); |
152 | |
153 | // Parameters come first in the scope... |
154 | if let Some(inline) = &inline { |
155 | for (id, _, _) in inline.params.iter() { |
156 | scope.register(*id, "local" )?; |
157 | } |
158 | } else if let Some(TypeInfo::Func { params, .. }) = |
159 | self.type_info.get(n as usize) |
160 | { |
161 | for _ in 0..params.len() { |
162 | scope.register(None, "local" )?; |
163 | } |
164 | } |
165 | |
166 | // .. followed by locals themselves |
167 | for local in locals.iter() { |
168 | scope.register(local.id, "local" )?; |
169 | } |
170 | |
171 | // Initialize the expression resolver with this scope |
172 | let mut resolver = ExprResolver::new(self, scope); |
173 | |
174 | // and then we can resolve the expression! |
175 | resolver.resolve(expression)?; |
176 | |
177 | // specifically save the original `sig`, if it was present, |
178 | // because that's what we're using for local names. |
179 | f.ty.inline = inline; |
180 | } |
181 | Ok(()) |
182 | } |
183 | |
184 | ModuleField::Elem(e) => { |
185 | match &mut e.kind { |
186 | ElemKind::Active { table, offset } => { |
187 | if let Some(table) = table { |
188 | self.resolve(table, Ns::Table)?; |
189 | } |
190 | self.resolve_expr(offset)?; |
191 | } |
192 | ElemKind::Passive { .. } | ElemKind::Declared { .. } => {} |
193 | } |
194 | match &mut e.payload { |
195 | ElemPayload::Indices(elems) => { |
196 | for idx in elems { |
197 | self.resolve(idx, Ns::Func)?; |
198 | } |
199 | } |
200 | ElemPayload::Exprs { exprs, ty } => { |
201 | for expr in exprs { |
202 | self.resolve_expr(expr)?; |
203 | } |
204 | self.resolve_heaptype(&mut ty.heap)?; |
205 | } |
206 | } |
207 | Ok(()) |
208 | } |
209 | |
210 | ModuleField::Data(d) => { |
211 | if let DataKind::Active { memory, offset } = &mut d.kind { |
212 | self.resolve(memory, Ns::Memory)?; |
213 | self.resolve_expr(offset)?; |
214 | } |
215 | Ok(()) |
216 | } |
217 | |
218 | ModuleField::Start(i) => { |
219 | self.resolve(i, Ns::Func)?; |
220 | Ok(()) |
221 | } |
222 | |
223 | ModuleField::Export(e) => { |
224 | self.resolve( |
225 | &mut e.item, |
226 | match e.kind { |
227 | ExportKind::Func => Ns::Func, |
228 | ExportKind::Table => Ns::Table, |
229 | ExportKind::Memory => Ns::Memory, |
230 | ExportKind::Global => Ns::Global, |
231 | ExportKind::Tag => Ns::Tag, |
232 | }, |
233 | )?; |
234 | Ok(()) |
235 | } |
236 | |
237 | ModuleField::Global(g) => { |
238 | self.resolve_valtype(&mut g.ty.ty)?; |
239 | if let GlobalKind::Inline(expr) = &mut g.kind { |
240 | self.resolve_expr(expr)?; |
241 | } |
242 | Ok(()) |
243 | } |
244 | |
245 | ModuleField::Tag(t) => { |
246 | match &mut t.ty { |
247 | TagType::Exception(ty) => { |
248 | self.resolve_type_use(ty)?; |
249 | } |
250 | } |
251 | Ok(()) |
252 | } |
253 | |
254 | ModuleField::Table(t) => { |
255 | if let TableKind::Normal { ty, init_expr } = &mut t.kind { |
256 | self.resolve_heaptype(&mut ty.elem.heap)?; |
257 | if let Some(init_expr) = init_expr { |
258 | self.resolve_expr(init_expr)?; |
259 | } |
260 | } |
261 | Ok(()) |
262 | } |
263 | |
264 | ModuleField::Memory(_) | ModuleField::Custom(_) => Ok(()), |
265 | } |
266 | } |
267 | |
268 | fn resolve_item_sig(&self, item: &mut ItemSig<'a>) -> Result<(), Error> { |
269 | match &mut item.kind { |
270 | ItemKind::Func(t) | ItemKind::Tag(TagType::Exception(t)) => { |
271 | self.resolve_type_use(t)?; |
272 | } |
273 | ItemKind::Global(t) => self.resolve_valtype(&mut t.ty)?, |
274 | ItemKind::Table(t) => { |
275 | self.resolve_heaptype(&mut t.elem.heap)?; |
276 | } |
277 | ItemKind::Memory(_) => {} |
278 | } |
279 | Ok(()) |
280 | } |
281 | |
282 | fn resolve_type_use<'b, T>( |
283 | &self, |
284 | ty: &'b mut TypeUse<'a, T>, |
285 | ) -> Result<(&'b Index<'a>, Option<T>), Error> |
286 | where |
287 | T: TypeReference<'a>, |
288 | { |
289 | let idx = ty.index.as_mut().unwrap(); |
290 | self.resolve(idx, Ns::Type)?; |
291 | |
292 | // If the type was listed inline *and* it was specified via a type index |
293 | // we need to assert they're the same. |
294 | // |
295 | // Note that we resolve the type first to transform all names to |
296 | // indices to ensure that all the indices line up. |
297 | if let Some(inline) = &mut ty.inline { |
298 | inline.resolve(self)?; |
299 | inline.check_matches(idx, self)?; |
300 | } |
301 | |
302 | Ok((idx, ty.inline.take())) |
303 | } |
304 | |
305 | fn resolve_expr(&self, expr: &mut Expression<'a>) -> Result<(), Error> { |
306 | ExprResolver::new(self, Namespace::default()).resolve(expr) |
307 | } |
308 | |
309 | pub fn resolve(&self, idx: &mut Index<'a>, ns: Ns) -> Result<u32, Error> { |
310 | match ns { |
311 | Ns::Func => self.funcs.resolve(idx, "func" ), |
312 | Ns::Table => self.tables.resolve(idx, "table" ), |
313 | Ns::Global => self.globals.resolve(idx, "global" ), |
314 | Ns::Memory => self.memories.resolve(idx, "memory" ), |
315 | Ns::Tag => self.tags.resolve(idx, "tag" ), |
316 | Ns::Type => self.types.resolve(idx, "type" ), |
317 | } |
318 | } |
319 | |
320 | fn resolve_type(&self, ty: &mut Type<'a>) -> Result<(), Error> { |
321 | ResolveCoreType::resolve_type(&mut &*self, ty) |
322 | } |
323 | |
324 | fn resolve_valtype(&self, ty: &mut ValType<'a>) -> Result<(), Error> { |
325 | ResolveCoreType::resolve_valtype(&mut &*self, ty) |
326 | } |
327 | |
328 | fn resolve_heaptype(&self, ty: &mut HeapType<'a>) -> Result<(), Error> { |
329 | ResolveCoreType::resolve_heaptype(&mut &*self, ty) |
330 | } |
331 | } |
332 | |
333 | #[derive (Debug, Clone)] |
334 | struct ExprBlock<'a> { |
335 | // The label of the block |
336 | label: Option<Id<'a>>, |
337 | // Whether this block pushed a new scope for resolving locals |
338 | pushed_scope: bool, |
339 | } |
340 | |
341 | struct ExprResolver<'a, 'b> { |
342 | resolver: &'b Resolver<'a>, |
343 | // Scopes tracks the local namespace and dynamically grows as we enter/exit |
344 | // `let` blocks |
345 | scopes: Vec<Namespace<'a>>, |
346 | blocks: Vec<ExprBlock<'a>>, |
347 | } |
348 | |
349 | impl<'a, 'b> ExprResolver<'a, 'b> { |
350 | fn new(resolver: &'b Resolver<'a>, initial_scope: Namespace<'a>) -> ExprResolver<'a, 'b> { |
351 | ExprResolver { |
352 | resolver, |
353 | scopes: vec![initial_scope], |
354 | blocks: Vec::new(), |
355 | } |
356 | } |
357 | |
358 | fn resolve(&mut self, expr: &mut Expression<'a>) -> Result<(), Error> { |
359 | for instr in expr.instrs.iter_mut() { |
360 | self.resolve_instr(instr)?; |
361 | } |
362 | Ok(()) |
363 | } |
364 | |
365 | fn resolve_block_type(&mut self, bt: &mut BlockType<'a>) -> Result<(), Error> { |
366 | // If the index is specified on this block type then that's the source |
367 | // of resolution and the resolver step here will verify the inline type |
368 | // matches. Note that indexes may come from the source text itself but |
369 | // may also come from being injected as part of the type expansion phase |
370 | // of resolution. |
371 | // |
372 | // If no type is present then that means that the inline type is not |
373 | // present or has 0-1 results. In that case the nested value types are |
374 | // resolved, if they're there, to get encoded later on. |
375 | if bt.ty.index.is_some() { |
376 | self.resolver.resolve_type_use(&mut bt.ty)?; |
377 | } else if let Some(inline) = &mut bt.ty.inline { |
378 | inline.resolve(self.resolver)?; |
379 | } |
380 | |
381 | Ok(()) |
382 | } |
383 | |
384 | fn resolve_instr(&mut self, instr: &mut Instruction<'a>) -> Result<(), Error> { |
385 | use Instruction::*; |
386 | |
387 | if let Some(m) = instr.memarg_mut() { |
388 | self.resolver.resolve(&mut m.memory, Ns::Memory)?; |
389 | } |
390 | |
391 | match instr { |
392 | MemorySize(i) | MemoryGrow(i) | MemoryFill(i) | MemoryDiscard(i) => { |
393 | self.resolver.resolve(&mut i.mem, Ns::Memory)?; |
394 | } |
395 | MemoryInit(i) => { |
396 | self.resolver.datas.resolve(&mut i.data, "data" )?; |
397 | self.resolver.resolve(&mut i.mem, Ns::Memory)?; |
398 | } |
399 | MemoryCopy(i) => { |
400 | self.resolver.resolve(&mut i.src, Ns::Memory)?; |
401 | self.resolver.resolve(&mut i.dst, Ns::Memory)?; |
402 | } |
403 | DataDrop(i) => { |
404 | self.resolver.datas.resolve(i, "data" )?; |
405 | } |
406 | |
407 | TableInit(i) => { |
408 | self.resolver.elems.resolve(&mut i.elem, "elem" )?; |
409 | self.resolver.resolve(&mut i.table, Ns::Table)?; |
410 | } |
411 | ElemDrop(i) => { |
412 | self.resolver.elems.resolve(i, "elem" )?; |
413 | } |
414 | |
415 | TableCopy(i) => { |
416 | self.resolver.resolve(&mut i.dst, Ns::Table)?; |
417 | self.resolver.resolve(&mut i.src, Ns::Table)?; |
418 | } |
419 | |
420 | TableFill(i) | TableSet(i) | TableGet(i) | TableSize(i) | TableGrow(i) => { |
421 | self.resolver.resolve(&mut i.dst, Ns::Table)?; |
422 | } |
423 | |
424 | TableAtomicGet(i) |
425 | | TableAtomicSet(i) |
426 | | TableAtomicRmwXchg(i) |
427 | | TableAtomicRmwCmpxchg(i) => { |
428 | self.resolver.resolve(&mut i.inner.dst, Ns::Table)?; |
429 | } |
430 | |
431 | GlobalSet(i) | GlobalGet(i) => { |
432 | self.resolver.resolve(i, Ns::Global)?; |
433 | } |
434 | |
435 | GlobalAtomicSet(i) |
436 | | GlobalAtomicGet(i) |
437 | | GlobalAtomicRmwAdd(i) |
438 | | GlobalAtomicRmwSub(i) |
439 | | GlobalAtomicRmwAnd(i) |
440 | | GlobalAtomicRmwOr(i) |
441 | | GlobalAtomicRmwXor(i) |
442 | | GlobalAtomicRmwXchg(i) |
443 | | GlobalAtomicRmwCmpxchg(i) => { |
444 | self.resolver.resolve(&mut i.inner, Ns::Global)?; |
445 | } |
446 | |
447 | LocalSet(i) | LocalGet(i) | LocalTee(i) => { |
448 | assert!(self.scopes.len() > 0); |
449 | // Resolve a local by iterating over scopes from most recent |
450 | // to less recent. This allows locals added by `let` blocks to |
451 | // shadow less recent locals. |
452 | for (depth, scope) in self.scopes.iter().enumerate().rev() { |
453 | if let Err(e) = scope.resolve(i, "local" ) { |
454 | if depth == 0 { |
455 | // There are no more scopes left, report this as |
456 | // the result |
457 | return Err(e); |
458 | } |
459 | } else { |
460 | break; |
461 | } |
462 | } |
463 | // We must have taken the `break` and resolved the local |
464 | assert!(i.is_resolved()); |
465 | } |
466 | |
467 | Call(i) | RefFunc(i) | ReturnCall(i) => { |
468 | self.resolver.resolve(i, Ns::Func)?; |
469 | } |
470 | |
471 | CallIndirect(c) | ReturnCallIndirect(c) => { |
472 | self.resolver.resolve(&mut c.table, Ns::Table)?; |
473 | self.resolver.resolve_type_use(&mut c.ty)?; |
474 | } |
475 | |
476 | CallRef(i) | ReturnCallRef(i) => { |
477 | self.resolver.resolve(i, Ns::Type)?; |
478 | } |
479 | |
480 | Block(bt) | If(bt) | Loop(bt) | Try(bt) => { |
481 | self.blocks.push(ExprBlock { |
482 | label: bt.label, |
483 | pushed_scope: false, |
484 | }); |
485 | self.resolve_block_type(bt)?; |
486 | } |
487 | TryTable(try_table) => { |
488 | self.resolve_block_type(&mut try_table.block)?; |
489 | for catch in &mut try_table.catches { |
490 | if let Some(tag) = catch.kind.tag_index_mut() { |
491 | self.resolver.resolve(tag, Ns::Tag)?; |
492 | } |
493 | self.resolve_label(&mut catch.label)?; |
494 | } |
495 | self.blocks.push(ExprBlock { |
496 | label: try_table.block.label, |
497 | pushed_scope: false, |
498 | }); |
499 | } |
500 | |
501 | // On `End` instructions we pop a label from the stack, and for both |
502 | // `End` and `Else` instructions if they have labels listed we |
503 | // verify that they match the label at the beginning of the block. |
504 | Else(_) | End(_) => { |
505 | let (matching_block, label) = match &instr { |
506 | Else(label) => (self.blocks.last().cloned(), label), |
507 | End(label) => (self.blocks.pop(), label), |
508 | _ => unreachable!(), |
509 | }; |
510 | let matching_block = match matching_block { |
511 | Some(l) => l, |
512 | None => return Ok(()), |
513 | }; |
514 | |
515 | // Reset the local scopes to before this block was entered |
516 | if matching_block.pushed_scope { |
517 | if let End(_) = instr { |
518 | self.scopes.pop(); |
519 | } |
520 | } |
521 | |
522 | let label = match label { |
523 | Some(l) => l, |
524 | None => return Ok(()), |
525 | }; |
526 | if Some(*label) == matching_block.label { |
527 | return Ok(()); |
528 | } |
529 | return Err(Error::new( |
530 | label.span(), |
531 | "mismatching labels between end and block" .to_string(), |
532 | )); |
533 | } |
534 | |
535 | Br(i) | BrIf(i) | BrOnNull(i) | BrOnNonNull(i) => { |
536 | self.resolve_label(i)?; |
537 | } |
538 | |
539 | BrTable(i) => { |
540 | for label in i.labels.iter_mut() { |
541 | self.resolve_label(label)?; |
542 | } |
543 | self.resolve_label(&mut i.default)?; |
544 | } |
545 | |
546 | Throw(i) | Catch(i) => { |
547 | self.resolver.resolve(i, Ns::Tag)?; |
548 | } |
549 | |
550 | Rethrow(i) => { |
551 | self.resolve_label(i)?; |
552 | } |
553 | |
554 | Delegate(i) => { |
555 | // Since a delegate starts counting one layer out from the |
556 | // current try-delegate block, we pop before we resolve labels. |
557 | self.blocks.pop(); |
558 | self.resolve_label(i)?; |
559 | } |
560 | |
561 | Select(s) => { |
562 | if let Some(list) = &mut s.tys { |
563 | for ty in list { |
564 | self.resolver.resolve_valtype(ty)?; |
565 | } |
566 | } |
567 | } |
568 | |
569 | RefTest(i) => { |
570 | self.resolver.resolve_reftype(&mut i.r#type)?; |
571 | } |
572 | RefCast(i) => { |
573 | self.resolver.resolve_reftype(&mut i.r#type)?; |
574 | } |
575 | BrOnCast(i) => { |
576 | self.resolve_label(&mut i.label)?; |
577 | self.resolver.resolve_reftype(&mut i.to_type)?; |
578 | self.resolver.resolve_reftype(&mut i.from_type)?; |
579 | } |
580 | BrOnCastFail(i) => { |
581 | self.resolve_label(&mut i.label)?; |
582 | self.resolver.resolve_reftype(&mut i.to_type)?; |
583 | self.resolver.resolve_reftype(&mut i.from_type)?; |
584 | } |
585 | |
586 | StructNew(i) | StructNewDefault(i) | ArrayNew(i) | ArrayNewDefault(i) | ArrayGet(i) |
587 | | ArrayGetS(i) | ArrayGetU(i) | ArraySet(i) => { |
588 | self.resolver.resolve(i, Ns::Type)?; |
589 | } |
590 | |
591 | StructSet(s) | StructGet(s) | StructGetS(s) | StructGetU(s) => { |
592 | self.resolve_field(s)?; |
593 | } |
594 | |
595 | StructAtomicGet(s) |
596 | | StructAtomicGetS(s) |
597 | | StructAtomicGetU(s) |
598 | | StructAtomicSet(s) |
599 | | StructAtomicRmwAdd(s) |
600 | | StructAtomicRmwSub(s) |
601 | | StructAtomicRmwAnd(s) |
602 | | StructAtomicRmwOr(s) |
603 | | StructAtomicRmwXor(s) |
604 | | StructAtomicRmwXchg(s) |
605 | | StructAtomicRmwCmpxchg(s) => { |
606 | self.resolve_field(&mut s.inner)?; |
607 | } |
608 | |
609 | ArrayNewFixed(a) => { |
610 | self.resolver.resolve(&mut a.array, Ns::Type)?; |
611 | } |
612 | ArrayNewData(a) => { |
613 | self.resolver.resolve(&mut a.array, Ns::Type)?; |
614 | self.resolver.datas.resolve(&mut a.data_idx, "data" )?; |
615 | } |
616 | ArrayNewElem(a) => { |
617 | self.resolver.resolve(&mut a.array, Ns::Type)?; |
618 | self.resolver.elems.resolve(&mut a.elem_idx, "elem" )?; |
619 | } |
620 | ArrayFill(a) => { |
621 | self.resolver.resolve(&mut a.array, Ns::Type)?; |
622 | } |
623 | ArrayCopy(a) => { |
624 | self.resolver.resolve(&mut a.dest_array, Ns::Type)?; |
625 | self.resolver.resolve(&mut a.src_array, Ns::Type)?; |
626 | } |
627 | ArrayInitData(a) => { |
628 | self.resolver.resolve(&mut a.array, Ns::Type)?; |
629 | self.resolver.datas.resolve(&mut a.segment, "data" )?; |
630 | } |
631 | ArrayInitElem(a) => { |
632 | self.resolver.resolve(&mut a.array, Ns::Type)?; |
633 | self.resolver.elems.resolve(&mut a.segment, "elem" )?; |
634 | } |
635 | |
636 | ArrayAtomicGet(i) |
637 | | ArrayAtomicGetS(i) |
638 | | ArrayAtomicGetU(i) |
639 | | ArrayAtomicSet(i) |
640 | | ArrayAtomicRmwAdd(i) |
641 | | ArrayAtomicRmwSub(i) |
642 | | ArrayAtomicRmwAnd(i) |
643 | | ArrayAtomicRmwOr(i) |
644 | | ArrayAtomicRmwXor(i) |
645 | | ArrayAtomicRmwXchg(i) |
646 | | ArrayAtomicRmwCmpxchg(i) => { |
647 | self.resolver.resolve(&mut i.inner, Ns::Type)?; |
648 | } |
649 | |
650 | RefNull(ty) => self.resolver.resolve_heaptype(ty)?, |
651 | |
652 | ContNew(ty) => { |
653 | self.resolver.resolve(ty, Ns::Type)?; |
654 | } |
655 | ContBind(cb) => { |
656 | self.resolver.resolve(&mut cb.argument_index, Ns::Type)?; |
657 | self.resolver.resolve(&mut cb.result_index, Ns::Type)?; |
658 | } |
659 | Suspend(ty) => { |
660 | self.resolver.resolve(ty, Ns::Tag)?; |
661 | } |
662 | Resume(r) => { |
663 | self.resolver.resolve(&mut r.type_index, Ns::Type)?; |
664 | self.resolve_resume_table(&mut r.table)?; |
665 | } |
666 | ResumeThrow(rt) => { |
667 | self.resolver.resolve(&mut rt.type_index, Ns::Type)?; |
668 | self.resolver.resolve(&mut rt.tag_index, Ns::Tag)?; |
669 | self.resolve_resume_table(&mut rt.table)?; |
670 | } |
671 | Switch(s) => { |
672 | self.resolver.resolve(&mut s.type_index, Ns::Type)?; |
673 | self.resolver.resolve(&mut s.tag_index, Ns::Tag)?; |
674 | } |
675 | |
676 | _ => {} |
677 | } |
678 | Ok(()) |
679 | } |
680 | |
681 | fn resolve_resume_table(&self, table: &mut ResumeTable<'a>) -> Result<(), Error> { |
682 | for handle in &mut table.handlers { |
683 | match handle { |
684 | Handle::OnLabel { tag, label } => { |
685 | self.resolver.resolve(tag, Ns::Tag)?; |
686 | self.resolve_label(label)?; |
687 | } |
688 | Handle::OnSwitch { tag } => { |
689 | self.resolver.resolve(tag, Ns::Tag)?; |
690 | } |
691 | } |
692 | } |
693 | Ok(()) |
694 | } |
695 | |
696 | fn resolve_label(&self, label: &mut Index<'a>) -> Result<(), Error> { |
697 | let id = match label { |
698 | Index::Num(..) => return Ok(()), |
699 | Index::Id(id) => *id, |
700 | }; |
701 | let idx = self |
702 | .blocks |
703 | .iter() |
704 | .rev() |
705 | .enumerate() |
706 | .filter_map(|(i, b)| b.label.map(|l| (i, l))) |
707 | .find(|(_, l)| *l == id); |
708 | match idx { |
709 | Some((idx, _)) => { |
710 | *label = Index::Num(idx as u32, id.span()); |
711 | Ok(()) |
712 | } |
713 | None => Err(resolve_error(id, "label" )), |
714 | } |
715 | } |
716 | |
717 | fn resolve_field(&self, s: &mut StructAccess<'a>) -> Result<(), Error> { |
718 | let type_index = self.resolver.resolve(&mut s.r#struct, Ns::Type)?; |
719 | if let Index::Id(field_id) = s.field { |
720 | self.resolver |
721 | .fields |
722 | .get(&type_index) |
723 | .ok_or(Error::new(field_id.span(), format!("accessing a named field ` {}` in a struct without named fields, type index {}" , field_id.name(), type_index)))? |
724 | .resolve(&mut s.field, "field" )?; |
725 | } |
726 | Ok(()) |
727 | } |
728 | } |
729 | |
730 | enum TypeInfo<'a> { |
731 | Func { |
732 | params: Box<[ValType<'a>]>, |
733 | results: Box<[ValType<'a>]>, |
734 | }, |
735 | Other, |
736 | } |
737 | |
738 | trait TypeReference<'a> { |
739 | fn check_matches(&mut self, idx: &Index<'a>, cx: &Resolver<'a>) -> Result<(), Error>; |
740 | fn resolve(&mut self, cx: &Resolver<'a>) -> Result<(), Error>; |
741 | } |
742 | |
743 | impl<'a> TypeReference<'a> for FunctionType<'a> { |
744 | fn check_matches(&mut self, idx: &Index<'a>, cx: &Resolver<'a>) -> Result<(), Error> { |
745 | let n = match idx { |
746 | Index::Num(n, _) => *n, |
747 | Index::Id(_) => panic!("expected `Num`" ), |
748 | }; |
749 | let (params, results) = match cx.type_info.get(n as usize) { |
750 | Some(TypeInfo::Func { params, results }) => (params, results), |
751 | _ => return Ok(()), |
752 | }; |
753 | |
754 | // Here we need to check that the inline type listed (ourselves) matches |
755 | // what was listed in the module itself (the `params` and `results` |
756 | // above). The listed values in `types` are not resolved yet, although |
757 | // we should be resolved. In any case we do name resolution |
758 | // opportunistically here to see if the values are equal. |
759 | |
760 | let types_not_equal = |a: &ValType, b: &ValType| { |
761 | let mut a = *a; |
762 | let mut b = *b; |
763 | drop((&cx).resolve_valtype(&mut a)); |
764 | drop((&cx).resolve_valtype(&mut b)); |
765 | a != b |
766 | }; |
767 | |
768 | let not_equal = params.len() != self.params.len() |
769 | || results.len() != self.results.len() |
770 | || params |
771 | .iter() |
772 | .zip(self.params.iter()) |
773 | .any(|(a, (_, _, b))| types_not_equal(a, b)) |
774 | || results |
775 | .iter() |
776 | .zip(self.results.iter()) |
777 | .any(|(a, b)| types_not_equal(a, b)); |
778 | if not_equal { |
779 | return Err(Error::new( |
780 | idx.span(), |
781 | format!("inline function type doesn't match type reference" ), |
782 | )); |
783 | } |
784 | |
785 | Ok(()) |
786 | } |
787 | |
788 | fn resolve(&mut self, cx: &Resolver<'a>) -> Result<(), Error> { |
789 | (&mut &*cx).resolve_type_func(self) |
790 | } |
791 | } |
792 | |
793 | pub(crate) trait ResolveCoreType<'a> { |
794 | fn resolve_type_name(&mut self, name: &mut Index<'a>) -> Result<u32, Error>; |
795 | |
796 | fn resolve_type(&mut self, ty: &mut Type<'a>) -> Result<(), Error> { |
797 | self.resolve_type_def(&mut ty.def)?; |
798 | Ok(()) |
799 | } |
800 | |
801 | fn resolve_type_def(&mut self, ty: &mut TypeDef<'a>) -> Result<(), Error> { |
802 | if let Some(parent) = &mut ty.parent { |
803 | self.resolve_type_name(parent)?; |
804 | } |
805 | match &mut ty.kind { |
806 | InnerTypeKind::Func(func) => self.resolve_type_func(func), |
807 | InnerTypeKind::Struct(struct_) => { |
808 | for field in &mut struct_.fields { |
809 | self.resolve_storagetype(&mut field.ty)?; |
810 | } |
811 | Ok(()) |
812 | } |
813 | InnerTypeKind::Array(array) => self.resolve_storagetype(&mut array.ty), |
814 | InnerTypeKind::Cont(cont) => { |
815 | self.resolve_type_name(&mut cont.0)?; |
816 | Ok(()) |
817 | } |
818 | } |
819 | } |
820 | |
821 | fn resolve_type_func(&mut self, ty: &mut FunctionType<'a>) -> Result<(), Error> { |
822 | // Resolve the (ref T) value types in the final function type |
823 | for param in ty.params.iter_mut() { |
824 | self.resolve_valtype(&mut param.2)?; |
825 | } |
826 | for result in ty.results.iter_mut() { |
827 | self.resolve_valtype(result)?; |
828 | } |
829 | Ok(()) |
830 | } |
831 | |
832 | fn resolve_valtype(&mut self, ty: &mut ValType<'a>) -> Result<(), Error> { |
833 | match ty { |
834 | ValType::Ref(ty) => self.resolve_reftype(ty), |
835 | ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => Ok(()), |
836 | } |
837 | } |
838 | |
839 | fn resolve_reftype(&mut self, ty: &mut RefType<'a>) -> Result<(), Error> { |
840 | self.resolve_heaptype(&mut ty.heap) |
841 | } |
842 | |
843 | fn resolve_heaptype(&mut self, ty: &mut HeapType<'a>) -> Result<(), Error> { |
844 | match ty { |
845 | HeapType::Concrete(i) => { |
846 | self.resolve_type_name(i)?; |
847 | } |
848 | HeapType::Abstract { .. } => {} |
849 | } |
850 | Ok(()) |
851 | } |
852 | |
853 | fn resolve_storagetype(&mut self, ty: &mut StorageType<'a>) -> Result<(), Error> { |
854 | match ty { |
855 | StorageType::Val(ty) => self.resolve_valtype(ty), |
856 | StorageType::I8 | StorageType::I16 => Ok(()), |
857 | } |
858 | } |
859 | } |
860 | |
861 | impl<'a> ResolveCoreType<'a> for &Resolver<'a> { |
862 | fn resolve_type_name(&mut self, name: &mut Index<'a>) -> Result<u32, Error> { |
863 | self.resolve(idx:name, Ns::Type) |
864 | } |
865 | } |
866 | |