1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5//! Zero-copy vector abstractions for arbitrary types, backed by byte slices.
6//!
7//! `zerovec` enables a far wider range of types — beyond just `&[u8]` and `&str` — to participate in
8//! zero-copy deserialization from byte slices. It is `serde` compatible and comes equipped with
9//! proc macros
10//!
11//! Clients upgrading to `zerovec` benefit from zero heap allocations when deserializing
12//! read-only data.
13//!
14//! This crate has four main types:
15//!
16//! - [`ZeroVec<'a, T>`] (and [`ZeroSlice<T>`](ZeroSlice)) for fixed-width types like `u32`
17//! - [`VarZeroVec<'a, T>`] (and [`VarZeroSlice<T>`](ZeroSlice)) for variable-width types like `str`
18//! - [`ZeroMap<'a, K, V>`] to map from `K` to `V`
19//! - [`ZeroMap2d<'a, K0, K1, V>`] to map from the pair `(K0, K1)` to `V`
20//!
21//! The first two are intended as close-to-drop-in replacements for `Vec<T>` in Serde structs. The third and fourth are
22//! intended as a replacement for `HashMap` or [`LiteMap`](docs.rs/litemap). When used with Serde derives, **be sure to apply
23//! `#[serde(borrow)]` to these types**, same as one would for [`Cow<'a, T>`].
24//!
25//! [`ZeroVec<'a, T>`], [`VarZeroVec<'a, T>`], [`ZeroMap<'a, K, V>`], and [`ZeroMap2d<'a, K0, K1, V>`] all behave like
26//! [`Cow<'a, T>`] in that they abstract over either borrowed or owned data. When performing deserialization
27//! from human-readable formats (like `json` and `xml`), typically these types will allocate and fully own their data, whereas if deserializing
28//! from binary formats like `bincode` and `postcard`, these types will borrow data directly from the buffer being deserialized from,
29//! avoiding allocations and only performing validity checks. As such, this crate can be pretty fast (see [below](#Performance) for more information)
30//! on deserialization.
31//!
32//! See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for details on how this crate
33//! works under the hood.
34//!
35//! # Cargo features
36//!
37//! This crate has several optional Cargo features:
38//! - `serde`: Allows serializing and deserializing `zerovec`'s abstractions via [`serde`](https://docs.rs/serde)
39//! - `yoke`: Enables implementations of `Yokeable` from the [`yoke`](https://docs.rs/yoke/) crate, which is also useful
40//! in situations involving a lot of zero-copy deserialization.
41//! - `derive`: Makes it easier to use custom types in these collections by providing the [`#[make_ule]`](crate::make_ule) and
42//! [`#[make_varule]`](crate::make_varule) proc macros, which generate appropriate [`ULE`](crate::ule::ULE) and
43//! [`VarULE`](crate::ule::VarULE)-conformant types for a given "normal" type.
44//! - `std`: Enabled `std::Error` implementations for error types. This crate is by default `no_std` with a dependency on `alloc`.
45//!
46//! [`ZeroVec<'a, T>`]: ZeroVec
47//! [`VarZeroVec<'a, T>`]: VarZeroVec
48//! [`ZeroMap<'a, K, V>`]: ZeroMap
49//! [`ZeroMap2d<'a, K0, K1, V>`]: ZeroMap2d
50//! [`Cow<'a, T>`]: alloc::borrow::Cow
51//!
52//! # Examples
53//!
54//! Serialize and deserialize a struct with ZeroVec and VarZeroVec with Bincode:
55//!
56//! ```
57//! # #[cfg(feature = "serde")] {
58//! use zerovec::{VarZeroVec, ZeroVec};
59//!
60//! // This example requires the "serde" feature
61//! #[derive(serde::Serialize, serde::Deserialize)]
62//! pub struct DataStruct<'data> {
63//! #[serde(borrow)]
64//! nums: ZeroVec<'data, u32>,
65//! #[serde(borrow)]
66//! chars: ZeroVec<'data, char>,
67//! #[serde(borrow)]
68//! strs: VarZeroVec<'data, str>,
69//! }
70//!
71//! let data = DataStruct {
72//! nums: ZeroVec::from_slice_or_alloc(&[211, 281, 421, 461]),
73//! chars: ZeroVec::alloc_from_slice(&['ö', '冇', 'म']),
74//! strs: VarZeroVec::from(&["hello", "world"]),
75//! };
76//! let bincode_bytes =
77//! bincode::serialize(&data).expect("Serialization should be successful");
78//! assert_eq!(bincode_bytes.len(), 67);
79//!
80//! let deserialized: DataStruct = bincode::deserialize(&bincode_bytes)
81//! .expect("Deserialization should be successful");
82//! assert_eq!(deserialized.nums.first(), Some(211));
83//! assert_eq!(deserialized.chars.get(1), Some('冇'));
84//! assert_eq!(deserialized.strs.get(1), Some("world"));
85//! // The deserialization will not have allocated anything
86//! assert!(!deserialized.nums.is_owned());
87//! # } // feature = "serde"
88//! ```
89//!
90//! Use custom types inside of ZeroVec:
91//!
92//! ```rust
93//! # #[cfg(all(feature = "serde", feature = "derive"))] {
94//! use zerovec::{ZeroVec, VarZeroVec, ZeroMap};
95//! use std::borrow::Cow;
96//! use zerovec::ule::encode_varule_to_box;
97//!
98//! // custom fixed-size ULE type for ZeroVec
99//! #[zerovec::make_ule(DateULE)]
100//! #[derive(Copy, Clone, PartialEq, Eq, Ord, PartialOrd, serde::Serialize, serde::Deserialize)]
101//! struct Date {
102//! y: u64,
103//! m: u8,
104//! d: u8
105//! }
106//!
107//! // custom variable sized VarULE type for VarZeroVec
108//! #[zerovec::make_varule(PersonULE)]
109//! #[zerovec::derive(Serialize, Deserialize)] // add Serde impls to PersonULE
110//! #[derive(Clone, PartialEq, Eq, Ord, PartialOrd, serde::Serialize, serde::Deserialize)]
111//! struct Person<'a> {
112//! birthday: Date,
113//! favorite_character: char,
114//! #[serde(borrow)]
115//! name: Cow<'a, str>,
116//! }
117//!
118//! #[derive(serde::Serialize, serde::Deserialize)]
119//! struct Data<'a> {
120//! #[serde(borrow)]
121//! important_dates: ZeroVec<'a, Date>,
122//! // note: VarZeroVec always must reference the ULE type directly
123//! #[serde(borrow)]
124//! important_people: VarZeroVec<'a, PersonULE>,
125//! #[serde(borrow)]
126//! birthdays_to_people: ZeroMap<'a, Date, PersonULE>
127//! }
128//!
129//!
130//! let person1 = Person {
131//! birthday: Date { y: 1990, m: 9, d: 7},
132//! favorite_character: 'π',
133//! name: Cow::from("Kate")
134//! };
135//! let person2 = Person {
136//! birthday: Date { y: 1960, m: 5, d: 25},
137//! favorite_character: '冇',
138//! name: Cow::from("Jesse")
139//! };
140//!
141//! let important_dates = ZeroVec::alloc_from_slice(&[Date { y: 1943, m: 3, d: 20}, Date { y: 1976, m: 8, d: 2}, Date { y: 1998, m: 2, d: 15}]);
142//! let important_people = VarZeroVec::from(&[&person1, &person2]);
143//! let mut birthdays_to_people: ZeroMap<Date, PersonULE> = ZeroMap::new();
144//! // `.insert_var_v()` is slightly more convenient over `.insert()` for custom ULE types
145//! birthdays_to_people.insert_var_v(&person1.birthday, &person1);
146//! birthdays_to_people.insert_var_v(&person2.birthday, &person2);
147//!
148//! let data = Data { important_dates, important_people, birthdays_to_people };
149//!
150//! let bincode_bytes = bincode::serialize(&data)
151//! .expect("Serialization should be successful");
152//! assert_eq!(bincode_bytes.len(), 168);
153//!
154//! let deserialized: Data = bincode::deserialize(&bincode_bytes)
155//! .expect("Deserialization should be successful");
156//!
157//! assert_eq!(deserialized.important_dates.get(0).unwrap().y, 1943);
158//! assert_eq!(&deserialized.important_people.get(1).unwrap().name, "Jesse");
159//! assert_eq!(&deserialized.important_people.get(0).unwrap().name, "Kate");
160//! assert_eq!(&deserialized.birthdays_to_people.get(&person1.birthday).unwrap().name, "Kate");
161//!
162//! } // feature = serde and derive
163//! ```
164//!
165//! # Performance
166//!
167//! `zerovec` is designed for fast deserialization from byte buffers with zero memory allocations
168//! while minimizing performance regressions for common vector operations.
169//!
170//! Benchmark results on x86_64:
171//!
172//! | Operation | `Vec<T>` | `zerovec` |
173//! |---|---|---|
174//! | Deserialize vec of 100 `u32` | 233.18 ns | 14.120 ns |
175//! | Compute sum of vec of 100 `u32` (read every element) | 8.7472 ns | 10.775 ns |
176//! | Binary search vec of 1000 `u32` 50 times | 442.80 ns | 472.51 ns |
177//! | Deserialize vec of 100 strings | 7.3740 μs\* | 1.4495 μs |
178//! | Count chars in vec of 100 strings (read every element) | 747.50 ns | 955.28 ns |
179//! | Binary search vec of 500 strings 10 times | 466.09 ns | 790.33 ns |
180//!
181//! \* *This result is reported for `Vec<String>`. However, Serde also supports deserializing to the partially-zero-copy `Vec<&str>`; this gives 1.8420 μs, much faster than `Vec<String>` but a bit slower than `zerovec`.*
182//!
183//! | Operation | `HashMap<K,V>` | `LiteMap<K,V>` | `ZeroMap<K,V>` |
184//! |---|---|---|---|
185//! | Deserialize a small map | 2.72 μs | 1.28 μs | 480 ns |
186//! | Deserialize a large map | 50.5 ms | 18.3 ms | 3.74 ms |
187//! | Look up from a small deserialized map | 49 ns | 42 ns | 54 ns |
188//! | Look up from a large deserialized map | 51 ns | 155 ns | 213 ns |
189//!
190//! Small = 16 elements, large = 131,072 elements. Maps contain `<String, String>`.
191//!
192//! The benches used to generate the above table can be found in the `benches` directory in the project repository.
193//! `zeromap` benches are named by convention, e.g. `zeromap/deserialize/small`, `zeromap/lookup/large`. The type
194//! is appended for baseline comparisons, e.g. `zeromap/lookup/small/hashmap`.
195
196// https://github.com/unicode-org/icu4x/blob/main/docs/process/boilerplate.md#library-annotations
197#![cfg_attr(not(any(test, feature = "std")), no_std)]
198#![cfg_attr(
199 not(test),
200 deny(
201 clippy::indexing_slicing,
202 clippy::unwrap_used,
203 clippy::expect_used,
204 clippy::panic,
205 clippy::exhaustive_structs,
206 clippy::exhaustive_enums,
207 missing_debug_implementations,
208 )
209)]
210// this crate does a lot of nuanced lifetime manipulation, being explicit
211// is better here.
212#![allow(clippy::needless_lifetimes)]
213
214extern crate alloc;
215
216mod error;
217mod flexzerovec;
218#[cfg(feature = "hashmap")]
219pub mod hashmap;
220mod map;
221mod map2d;
222#[cfg(test)]
223pub mod samples;
224mod varzerovec;
225mod zerovec;
226
227// This must be after `mod zerovec` for some impls on `ZeroSlice<RawBytesULE>`
228// to show up in the right spot in the docs
229pub mod ule;
230
231#[cfg(feature = "yoke")]
232mod yoke_impls;
233mod zerofrom_impls;
234
235pub use crate::error::ZeroVecError;
236#[cfg(feature = "hashmap")]
237pub use crate::hashmap::ZeroHashMap;
238pub use crate::map::map::ZeroMap;
239pub use crate::map2d::map::ZeroMap2d;
240pub use crate::varzerovec::{slice::VarZeroSlice, vec::VarZeroVec};
241pub use crate::zerovec::{ZeroSlice, ZeroVec};
242
243pub(crate) use flexzerovec::chunk_to_usize;
244
245#[doc(hidden)]
246pub mod __zerovec_internal_reexport {
247 pub use zerofrom::ZeroFrom;
248
249 pub use alloc::boxed;
250
251 #[cfg(feature = "serde")]
252 pub use serde;
253}
254
255pub mod maps {
256 //! This module contains additional utility types and traits for working with
257 //! [`ZeroMap`] and [`ZeroMap2d`]. See their docs for more details on the general purpose
258 //! of these types.
259 //!
260 //! [`ZeroMapBorrowed`] and [`ZeroMap2dBorrowed`] are versions of [`ZeroMap`] and [`ZeroMap2d`]
261 //! that can be used when you wish to guarantee that the map data is always borrowed, leading to
262 //! relaxed lifetime constraints.
263 //!
264 //! The [`ZeroMapKV`] trait is required to be implemented on any type that needs to be used
265 //! within a map type. [`ZeroVecLike`] and [`MutableZeroVecLike`] are traits used in the
266 //! internal workings of the map types, and should typically not be used or implemented by
267 //! users of this crate.
268 #[doc(no_inline)]
269 pub use crate::map::ZeroMap;
270 pub use crate::map::ZeroMapBorrowed;
271
272 #[doc(no_inline)]
273 pub use crate::map2d::ZeroMap2d;
274 pub use crate::map2d::ZeroMap2dBorrowed;
275
276 pub use crate::map::{MutableZeroVecLike, ZeroMapKV, ZeroVecLike};
277
278 pub use crate::map2d::ZeroMap2dCursor;
279}
280
281pub mod vecs {
282 //! This module contains additional utility types for working with
283 //! [`ZeroVec`] and [`VarZeroVec`]. See their docs for more details on the general purpose
284 //! of these types.
285 //!
286 //! [`ZeroSlice`] and [`VarZeroSlice`] provide slice-like versions of the vector types
287 //! for use behind references and in custom ULE types.
288 //!
289 //! [`VarZeroVecOwned`] is a special owned/mutable version of [`VarZeroVec`], allowing
290 //! direct manipulation of the backing buffer.
291
292 #[doc(no_inline)]
293 pub use crate::zerovec::{ZeroSlice, ZeroVec};
294
295 #[doc(no_inline)]
296 pub use crate::varzerovec::{VarZeroSlice, VarZeroVec};
297
298 pub use crate::varzerovec::{Index16, Index32, VarZeroVecFormat, VarZeroVecOwned};
299
300 pub use crate::flexzerovec::{FlexZeroSlice, FlexZeroVec, FlexZeroVecOwned};
301}
302
303// Proc macro reexports
304//
305// These exist so that our docs can use intra-doc links.
306// Due to quirks of how rustdoc does documentation on reexports, these must be in this module and not reexported from
307// a submodule
308
309/// Generate a corresponding [`ULE`] type and the relevant [`AsULE`] implementations for this type
310///
311/// This can be attached to structs containing only [`AsULE`] types, or C-like enums that have `#[repr(u8)]`
312/// and all explicit discriminants.
313///
314/// The type must be [`Copy`], [`PartialEq`], and [`Eq`].
315///
316/// `#[make_ule]` will automatically derive the following traits on the [`ULE`] type:
317///
318/// - [`Ord`] and [`PartialOrd`]
319/// - [`ZeroMapKV`]
320///
321/// To disable one of the automatic derives, use `#[zerovec::skip_derive(...)]` like so: `#[zerovec::skip_derive(ZeroMapKV)]`.
322/// `Ord` and `PartialOrd` are implemented as a unit and can only be disabled as a group with `#[zerovec::skip_derive(Ord)]`.
323///
324/// The following traits are available to derive, but not automatic:
325///
326/// - [`Debug`]
327///
328/// To enable one of these additional derives, use `#[zerovec::derive(...)]` like so: `#[zerovec::derive(Debug)]`.
329///
330/// In most cases these derives will defer to the impl of the same trait on the current type, so such impls must exist.
331///
332/// For enums, this attribute will generate a crate-public `fn new_from_u8(value: u8) -> Option<Self>`
333/// method on the main type that allows one to construct the value from a u8. If this method is desired
334/// to be more public, it should be wrapped.
335///
336/// [`ULE`]: ule::ULE
337/// [`AsULE`]: ule::AsULE
338/// [`ZeroMapKV`]: maps::ZeroMapKV
339///
340/// # Example
341///
342/// ```rust
343/// use zerovec::ZeroVec;
344///
345/// #[zerovec::make_ule(DateULE)]
346/// #[derive(
347/// Copy,
348/// Clone,
349/// PartialEq,
350/// Eq,
351/// Ord,
352/// PartialOrd,
353/// serde::Serialize,
354/// serde::Deserialize,
355/// )]
356/// struct Date {
357/// y: u64,
358/// m: u8,
359/// d: u8,
360/// }
361///
362/// #[derive(serde::Serialize, serde::Deserialize)]
363/// struct Dates<'a> {
364/// #[serde(borrow)]
365/// dates: ZeroVec<'a, Date>,
366/// }
367///
368/// let dates = Dates {
369/// dates: ZeroVec::alloc_from_slice(&[
370/// Date {
371/// y: 1985,
372/// m: 9,
373/// d: 3,
374/// },
375/// Date {
376/// y: 1970,
377/// m: 2,
378/// d: 20,
379/// },
380/// Date {
381/// y: 1990,
382/// m: 6,
383/// d: 13,
384/// },
385/// ]),
386/// };
387///
388/// let bincode_bytes =
389/// bincode::serialize(&dates).expect("Serialization should be successful");
390///
391/// // Will deserialize without allocations
392/// let deserialized: Dates = bincode::deserialize(&bincode_bytes)
393/// .expect("Deserialization should be successful");
394///
395/// assert_eq!(deserialized.dates.get(1).unwrap().y, 1970);
396/// assert_eq!(deserialized.dates.get(2).unwrap().d, 13);
397/// ```
398#[cfg(feature = "derive")]
399pub use zerovec_derive::make_ule;
400
401/// Generate a corresponding [`VarULE`] type and the relevant [`EncodeAsVarULE`]/[`zerofrom::ZeroFrom`]
402/// implementations for this type
403///
404/// This can be attached to structs containing only [`AsULE`] types with the last fields being
405/// [`Cow<'a, str>`](alloc::borrow::Cow), [`ZeroSlice`], or [`VarZeroSlice`]. If there is more than one such field, it will be represented
406/// using [`MultiFieldsULE`](crate::ule::MultiFieldsULE) and getters will be generated. Other VarULE fields will be detected if they are
407/// tagged with `#[zerovec::varule(NameOfVarULETy)]`.
408///
409/// The type must be [`PartialEq`] and [`Eq`].
410///
411/// [`EncodeAsVarULE`] and [`zerofrom::ZeroFrom`] are useful for avoiding the need to deal with
412/// the [`VarULE`] type directly. In particular, it is recommended to use [`zerofrom::ZeroFrom`]
413/// to convert the [`VarULE`] type back to this type in a cheap, zero-copy way (see the example below
414/// for more details).
415///
416/// `#[make_varule]` will automatically derive the following traits on the [`VarULE`] type:
417///
418/// - [`Ord`] and [`PartialOrd`]
419/// - [`ZeroMapKV`]
420///
421/// To disable one of the automatic derives, use `#[zerovec::skip_derive(...)]` like so: `#[zerovec::skip_derive(ZeroMapKV)]`.
422/// `Ord` and `PartialOrd` are implemented as a unit and can only be disabled as a group with `#[zerovec::skip_derive(Ord)]`.
423///
424/// The following traits are available to derive, but not automatic:
425///
426/// - [`Debug`]
427/// - [`Serialize`](serde::Serialize)
428/// - [`Deserialize`](serde::Deserialize)
429///
430/// To enable one of these additional derives, use `#[zerovec::derive(...)]` like so: `#[zerovec::derive(Debug)]`.
431///
432/// In most cases these derives will defer to the impl of the same trait on the current type, so such impls must exist.
433///
434/// This implementation will also by default autogenerate [`Ord`] and [`PartialOrd`] on the [`VarULE`] type based on
435/// the implementation on `Self`. You can opt out of this with `#[zerovec::skip_derive(Ord)]`
436///
437/// Note that this implementation will autogenerate [`EncodeAsVarULE`] impls for _both_ `Self` and `&Self`
438/// for convenience. This allows for a little more flexibility encoding slices.
439///
440/// [`EncodeAsVarULE`]: ule::EncodeAsVarULE
441/// [`VarULE`]: ule::VarULE
442/// [`ULE`]: ule::ULE
443/// [`AsULE`]: ule::AsULE
444/// [`ZeroMapKV`]: maps::ZeroMapKV
445///
446/// # Example
447///
448/// ```rust
449/// use std::borrow::Cow;
450/// use zerofrom::ZeroFrom;
451/// use zerovec::ule::encode_varule_to_box;
452/// use zerovec::{VarZeroVec, ZeroMap, ZeroVec};
453///
454/// // custom fixed-size ULE type for ZeroVec
455/// #[zerovec::make_ule(DateULE)]
456/// #[derive(Copy, Clone, PartialEq, Eq, Ord, PartialOrd, serde::Serialize, serde::Deserialize)]
457/// struct Date {
458/// y: u64,
459/// m: u8,
460/// d: u8,
461/// }
462///
463/// // custom variable sized VarULE type for VarZeroVec
464/// #[zerovec::make_varule(PersonULE)]
465/// #[zerovec::derive(Serialize, Deserialize)]
466/// #[derive(Clone, PartialEq, Eq, Ord, PartialOrd, serde::Serialize, serde::Deserialize)]
467/// struct Person<'a> {
468/// birthday: Date,
469/// favorite_character: char,
470/// #[serde(borrow)]
471/// name: Cow<'a, str>,
472/// }
473///
474/// #[derive(serde::Serialize, serde::Deserialize)]
475/// struct Data<'a> {
476/// // note: VarZeroVec always must reference the ULE type directly
477/// #[serde(borrow)]
478/// important_people: VarZeroVec<'a, PersonULE>,
479/// }
480///
481/// let person1 = Person {
482/// birthday: Date {
483/// y: 1990,
484/// m: 9,
485/// d: 7,
486/// },
487/// favorite_character: 'π',
488/// name: Cow::from("Kate"),
489/// };
490/// let person2 = Person {
491/// birthday: Date {
492/// y: 1960,
493/// m: 5,
494/// d: 25,
495/// },
496/// favorite_character: '冇',
497/// name: Cow::from("Jesse"),
498/// };
499///
500/// let important_people = VarZeroVec::from(&[person1, person2]);
501/// let data = Data { important_people };
502///
503/// let bincode_bytes = bincode::serialize(&data).expect("Serialization should be successful");
504///
505/// // Will deserialize without allocations
506/// let deserialized: Data =
507/// bincode::deserialize(&bincode_bytes).expect("Deserialization should be successful");
508///
509/// assert_eq!(&deserialized.important_people.get(1).unwrap().name, "Jesse");
510/// assert_eq!(&deserialized.important_people.get(0).unwrap().name, "Kate");
511///
512/// // Since VarZeroVec produces PersonULE types, it's convenient to use ZeroFrom
513/// // to recoup Person values in a zero-copy way
514/// let person_converted: Person =
515/// ZeroFrom::zero_from(deserialized.important_people.get(1).unwrap());
516/// assert_eq!(person_converted.name, "Jesse");
517/// assert_eq!(person_converted.birthday.y, 1960);
518/// ```
519#[cfg(feature = "derive")]
520pub use zerovec_derive::make_varule;
521
522#[cfg(test)]
523mod tests {
524 use super::*;
525 use core::mem::size_of;
526
527 /// Checks that the size of the type is one of the given sizes.
528 /// The size might differ across Rust versions or channels.
529 macro_rules! check_size_of {
530 ($sizes:pat, $type:path) => {
531 assert!(
532 matches!(size_of::<$type>(), $sizes),
533 concat!(stringify!($type), " is of size {}"),
534 size_of::<$type>()
535 );
536 };
537 }
538
539 #[test]
540 fn check_sizes() {
541 check_size_of!(24, ZeroVec<u8>);
542 check_size_of!(24, ZeroVec<u32>);
543 check_size_of!(32 | 24, VarZeroVec<[u8]>);
544 check_size_of!(32 | 24, VarZeroVec<str>);
545 check_size_of!(48, ZeroMap<u32, u32>);
546 check_size_of!(56 | 48, ZeroMap<u32, str>);
547 check_size_of!(56 | 48, ZeroMap<str, u32>);
548 check_size_of!(64 | 48, ZeroMap<str, str>);
549 check_size_of!(120 | 96, ZeroMap2d<str, str, str>);
550 check_size_of!(32 | 24, vecs::FlexZeroVec);
551
552 check_size_of!(32, Option<ZeroVec<u8>>);
553 check_size_of!(32, Option<VarZeroVec<str>>);
554 check_size_of!(64 | 56, Option<ZeroMap<str, str>>);
555 check_size_of!(120 | 104, Option<ZeroMap2d<str, str, str>>);
556 check_size_of!(32, Option<vecs::FlexZeroVec>);
557 }
558}
559