| 1 | #![allow (unreachable_code)] |
| 2 | |
| 3 | use crate::float::Float; |
| 4 | use crate::int::MinInt; |
| 5 | |
| 6 | #[derive (Clone, Copy)] |
| 7 | enum Result { |
| 8 | Less, |
| 9 | Equal, |
| 10 | Greater, |
| 11 | Unordered, |
| 12 | } |
| 13 | |
| 14 | impl Result { |
| 15 | fn to_le_abi(self) -> i32 { |
| 16 | match self { |
| 17 | Result::Less => -1, |
| 18 | Result::Equal => 0, |
| 19 | Result::Greater => 1, |
| 20 | Result::Unordered => 1, |
| 21 | } |
| 22 | } |
| 23 | |
| 24 | fn to_ge_abi(self) -> i32 { |
| 25 | match self { |
| 26 | Result::Less => -1, |
| 27 | Result::Equal => 0, |
| 28 | Result::Greater => 1, |
| 29 | Result::Unordered => -1, |
| 30 | } |
| 31 | } |
| 32 | } |
| 33 | |
| 34 | fn cmp<F: Float>(a: F, b: F) -> Result { |
| 35 | let one = F::Int::ONE; |
| 36 | let zero = F::Int::ZERO; |
| 37 | let szero = F::SignedInt::ZERO; |
| 38 | |
| 39 | let sign_bit = F::SIGN_MASK as F::Int; |
| 40 | let abs_mask = sign_bit - one; |
| 41 | let exponent_mask = F::EXP_MASK; |
| 42 | let inf_rep = exponent_mask; |
| 43 | |
| 44 | let a_rep = a.to_bits(); |
| 45 | let b_rep = b.to_bits(); |
| 46 | let a_abs = a_rep & abs_mask; |
| 47 | let b_abs = b_rep & abs_mask; |
| 48 | |
| 49 | // If either a or b is NaN, they are unordered. |
| 50 | if a_abs > inf_rep || b_abs > inf_rep { |
| 51 | return Result::Unordered; |
| 52 | } |
| 53 | |
| 54 | // If a and b are both zeros, they are equal. |
| 55 | if a_abs | b_abs == zero { |
| 56 | return Result::Equal; |
| 57 | } |
| 58 | |
| 59 | let a_srep = a.to_bits_signed(); |
| 60 | let b_srep = b.to_bits_signed(); |
| 61 | |
| 62 | // If at least one of a and b is positive, we get the same result comparing |
| 63 | // a and b as signed integers as we would with a fp_ting-point compare. |
| 64 | if a_srep & b_srep >= szero { |
| 65 | if a_srep < b_srep { |
| 66 | Result::Less |
| 67 | } else if a_srep == b_srep { |
| 68 | Result::Equal |
| 69 | } else { |
| 70 | Result::Greater |
| 71 | } |
| 72 | // Otherwise, both are negative, so we need to flip the sense of the |
| 73 | // comparison to get the correct result. (This assumes a twos- or ones- |
| 74 | // complement integer representation; if integers are represented in a |
| 75 | // sign-magnitude representation, then this flip is incorrect). |
| 76 | } else if a_srep > b_srep { |
| 77 | Result::Less |
| 78 | } else if a_srep == b_srep { |
| 79 | Result::Equal |
| 80 | } else { |
| 81 | Result::Greater |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | fn unord<F: Float>(a: F, b: F) -> bool { |
| 86 | let one: ::Int = F::Int::ONE; |
| 87 | |
| 88 | let sign_bit: ::Int = F::SIGN_MASK as F::Int; |
| 89 | let abs_mask: ::Int = sign_bit - one; |
| 90 | let exponent_mask: ::Int = F::EXP_MASK; |
| 91 | let inf_rep: ::Int = exponent_mask; |
| 92 | |
| 93 | let a_rep: ::Int = a.to_bits(); |
| 94 | let b_rep: ::Int = b.to_bits(); |
| 95 | let a_abs: ::Int = a_rep & abs_mask; |
| 96 | let b_abs: ::Int = b_rep & abs_mask; |
| 97 | |
| 98 | a_abs > inf_rep || b_abs > inf_rep |
| 99 | } |
| 100 | |
| 101 | intrinsics! { |
| 102 | #[avr_skip] |
| 103 | pub extern "C" fn __lesf2(a: f32, b: f32) -> i32 { |
| 104 | cmp(a, b).to_le_abi() |
| 105 | } |
| 106 | |
| 107 | #[avr_skip] |
| 108 | pub extern "C" fn __gesf2(a: f32, b: f32) -> i32 { |
| 109 | cmp(a, b).to_ge_abi() |
| 110 | } |
| 111 | |
| 112 | #[avr_skip] |
| 113 | #[arm_aeabi_alias = __aeabi_fcmpun] |
| 114 | pub extern "C" fn __unordsf2(a: f32, b: f32) -> i32 { |
| 115 | unord(a, b) as i32 |
| 116 | } |
| 117 | |
| 118 | #[avr_skip] |
| 119 | pub extern "C" fn __eqsf2(a: f32, b: f32) -> i32 { |
| 120 | cmp(a, b).to_le_abi() |
| 121 | } |
| 122 | |
| 123 | #[avr_skip] |
| 124 | pub extern "C" fn __ltsf2(a: f32, b: f32) -> i32 { |
| 125 | cmp(a, b).to_le_abi() |
| 126 | } |
| 127 | |
| 128 | #[avr_skip] |
| 129 | pub extern "C" fn __nesf2(a: f32, b: f32) -> i32 { |
| 130 | cmp(a, b).to_le_abi() |
| 131 | } |
| 132 | |
| 133 | #[avr_skip] |
| 134 | pub extern "C" fn __gtsf2(a: f32, b: f32) -> i32 { |
| 135 | cmp(a, b).to_ge_abi() |
| 136 | } |
| 137 | |
| 138 | #[avr_skip] |
| 139 | pub extern "C" fn __ledf2(a: f64, b: f64) -> i32 { |
| 140 | cmp(a, b).to_le_abi() |
| 141 | } |
| 142 | |
| 143 | #[avr_skip] |
| 144 | pub extern "C" fn __gedf2(a: f64, b: f64) -> i32 { |
| 145 | cmp(a, b).to_ge_abi() |
| 146 | } |
| 147 | |
| 148 | #[avr_skip] |
| 149 | #[arm_aeabi_alias = __aeabi_dcmpun] |
| 150 | pub extern "C" fn __unorddf2(a: f64, b: f64) -> i32 { |
| 151 | unord(a, b) as i32 |
| 152 | } |
| 153 | |
| 154 | #[avr_skip] |
| 155 | pub extern "C" fn __eqdf2(a: f64, b: f64) -> i32 { |
| 156 | cmp(a, b).to_le_abi() |
| 157 | } |
| 158 | |
| 159 | #[avr_skip] |
| 160 | pub extern "C" fn __ltdf2(a: f64, b: f64) -> i32 { |
| 161 | cmp(a, b).to_le_abi() |
| 162 | } |
| 163 | |
| 164 | #[avr_skip] |
| 165 | pub extern "C" fn __nedf2(a: f64, b: f64) -> i32 { |
| 166 | cmp(a, b).to_le_abi() |
| 167 | } |
| 168 | |
| 169 | #[avr_skip] |
| 170 | pub extern "C" fn __gtdf2(a: f64, b: f64) -> i32 { |
| 171 | cmp(a, b).to_ge_abi() |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | #[cfg (f128_enabled)] |
| 176 | intrinsics! { |
| 177 | #[avr_skip] |
| 178 | #[ppc_alias = __lekf2] |
| 179 | pub extern "C" fn __letf2(a: f128, b: f128) -> i32 { |
| 180 | cmp(a, b).to_le_abi() |
| 181 | } |
| 182 | |
| 183 | #[avr_skip] |
| 184 | #[ppc_alias = __gekf2] |
| 185 | pub extern "C" fn __getf2(a: f128, b: f128) -> i32 { |
| 186 | cmp(a, b).to_ge_abi() |
| 187 | } |
| 188 | |
| 189 | #[avr_skip] |
| 190 | #[ppc_alias = __unordkf2] |
| 191 | pub extern "C" fn __unordtf2(a: f128, b: f128) -> i32 { |
| 192 | unord(a, b) as i32 |
| 193 | } |
| 194 | |
| 195 | #[avr_skip] |
| 196 | #[ppc_alias = __eqkf2] |
| 197 | pub extern "C" fn __eqtf2(a: f128, b: f128) -> i32 { |
| 198 | cmp(a, b).to_le_abi() |
| 199 | } |
| 200 | |
| 201 | #[avr_skip] |
| 202 | #[ppc_alias = __ltkf2] |
| 203 | pub extern "C" fn __lttf2(a: f128, b: f128) -> i32 { |
| 204 | cmp(a, b).to_le_abi() |
| 205 | } |
| 206 | |
| 207 | #[avr_skip] |
| 208 | #[ppc_alias = __nekf2] |
| 209 | pub extern "C" fn __netf2(a: f128, b: f128) -> i32 { |
| 210 | cmp(a, b).to_le_abi() |
| 211 | } |
| 212 | |
| 213 | #[avr_skip] |
| 214 | #[ppc_alias = __gtkf2] |
| 215 | pub extern "C" fn __gttf2(a: f128, b: f128) -> i32 { |
| 216 | cmp(a, b).to_ge_abi() |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | #[cfg (target_arch = "arm" )] |
| 221 | intrinsics! { |
| 222 | pub extern "aapcs" fn __aeabi_fcmple(a: f32, b: f32) -> i32 { |
| 223 | (__lesf2(a, b) <= 0) as i32 |
| 224 | } |
| 225 | |
| 226 | pub extern "aapcs" fn __aeabi_fcmpge(a: f32, b: f32) -> i32 { |
| 227 | (__gesf2(a, b) >= 0) as i32 |
| 228 | } |
| 229 | |
| 230 | pub extern "aapcs" fn __aeabi_fcmpeq(a: f32, b: f32) -> i32 { |
| 231 | (__eqsf2(a, b) == 0) as i32 |
| 232 | } |
| 233 | |
| 234 | pub extern "aapcs" fn __aeabi_fcmplt(a: f32, b: f32) -> i32 { |
| 235 | (__ltsf2(a, b) < 0) as i32 |
| 236 | } |
| 237 | |
| 238 | pub extern "aapcs" fn __aeabi_fcmpgt(a: f32, b: f32) -> i32 { |
| 239 | (__gtsf2(a, b) > 0) as i32 |
| 240 | } |
| 241 | |
| 242 | pub extern "aapcs" fn __aeabi_dcmple(a: f64, b: f64) -> i32 { |
| 243 | (__ledf2(a, b) <= 0) as i32 |
| 244 | } |
| 245 | |
| 246 | pub extern "aapcs" fn __aeabi_dcmpge(a: f64, b: f64) -> i32 { |
| 247 | (__gedf2(a, b) >= 0) as i32 |
| 248 | } |
| 249 | |
| 250 | pub extern "aapcs" fn __aeabi_dcmpeq(a: f64, b: f64) -> i32 { |
| 251 | (__eqdf2(a, b) == 0) as i32 |
| 252 | } |
| 253 | |
| 254 | pub extern "aapcs" fn __aeabi_dcmplt(a: f64, b: f64) -> i32 { |
| 255 | (__ltdf2(a, b) < 0) as i32 |
| 256 | } |
| 257 | |
| 258 | pub extern "aapcs" fn __aeabi_dcmpgt(a: f64, b: f64) -> i32 { |
| 259 | (__gtdf2(a, b) > 0) as i32 |
| 260 | } |
| 261 | } |
| 262 | |