| 1 | use crate::float::Float; |
| 2 | use crate::int::{CastInto, DInt, HInt, Int, MinInt}; |
| 3 | |
| 4 | fn mul<F: Float>(a: F, b: F) -> F |
| 5 | where |
| 6 | u32: CastInto<F::Int>, |
| 7 | F::Int: CastInto<u32>, |
| 8 | i32: CastInto<F::Int>, |
| 9 | F::Int: CastInto<i32>, |
| 10 | F::Int: HInt, |
| 11 | { |
| 12 | let one = F::Int::ONE; |
| 13 | let zero = F::Int::ZERO; |
| 14 | |
| 15 | let bits = F::BITS; |
| 16 | let significand_bits = F::SIG_BITS; |
| 17 | let max_exponent = F::EXP_SAT; |
| 18 | |
| 19 | let exponent_bias = F::EXP_BIAS; |
| 20 | |
| 21 | let implicit_bit = F::IMPLICIT_BIT; |
| 22 | let significand_mask = F::SIG_MASK; |
| 23 | let sign_bit = F::SIGN_MASK; |
| 24 | let abs_mask = sign_bit - one; |
| 25 | let exponent_mask = F::EXP_MASK; |
| 26 | let inf_rep = exponent_mask; |
| 27 | let quiet_bit = implicit_bit >> 1; |
| 28 | let qnan_rep = exponent_mask | quiet_bit; |
| 29 | let exponent_bits = F::EXP_BITS; |
| 30 | |
| 31 | let a_rep = a.to_bits(); |
| 32 | let b_rep = b.to_bits(); |
| 33 | |
| 34 | let a_exponent = (a_rep >> significand_bits) & max_exponent.cast(); |
| 35 | let b_exponent = (b_rep >> significand_bits) & max_exponent.cast(); |
| 36 | let product_sign = (a_rep ^ b_rep) & sign_bit; |
| 37 | |
| 38 | let mut a_significand = a_rep & significand_mask; |
| 39 | let mut b_significand = b_rep & significand_mask; |
| 40 | let mut scale = 0; |
| 41 | |
| 42 | // Detect if a or b is zero, denormal, infinity, or NaN. |
| 43 | if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast() |
| 44 | || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast() |
| 45 | { |
| 46 | let a_abs = a_rep & abs_mask; |
| 47 | let b_abs = b_rep & abs_mask; |
| 48 | |
| 49 | // NaN + anything = qNaN |
| 50 | if a_abs > inf_rep { |
| 51 | return F::from_bits(a_rep | quiet_bit); |
| 52 | } |
| 53 | // anything + NaN = qNaN |
| 54 | if b_abs > inf_rep { |
| 55 | return F::from_bits(b_rep | quiet_bit); |
| 56 | } |
| 57 | |
| 58 | if a_abs == inf_rep { |
| 59 | if b_abs != zero { |
| 60 | // infinity * non-zero = +/- infinity |
| 61 | return F::from_bits(a_abs | product_sign); |
| 62 | } else { |
| 63 | // infinity * zero = NaN |
| 64 | return F::from_bits(qnan_rep); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | if b_abs == inf_rep { |
| 69 | if a_abs != zero { |
| 70 | // infinity * non-zero = +/- infinity |
| 71 | return F::from_bits(b_abs | product_sign); |
| 72 | } else { |
| 73 | // infinity * zero = NaN |
| 74 | return F::from_bits(qnan_rep); |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | // zero * anything = +/- zero |
| 79 | if a_abs == zero { |
| 80 | return F::from_bits(product_sign); |
| 81 | } |
| 82 | |
| 83 | // anything * zero = +/- zero |
| 84 | if b_abs == zero { |
| 85 | return F::from_bits(product_sign); |
| 86 | } |
| 87 | |
| 88 | // one or both of a or b is denormal, the other (if applicable) is a |
| 89 | // normal number. Renormalize one or both of a and b, and set scale to |
| 90 | // include the necessary exponent adjustment. |
| 91 | if a_abs < implicit_bit { |
| 92 | let (exponent, significand) = F::normalize(a_significand); |
| 93 | scale += exponent; |
| 94 | a_significand = significand; |
| 95 | } |
| 96 | |
| 97 | if b_abs < implicit_bit { |
| 98 | let (exponent, significand) = F::normalize(b_significand); |
| 99 | scale += exponent; |
| 100 | b_significand = significand; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | // Or in the implicit significand bit. (If we fell through from the |
| 105 | // denormal path it was already set by normalize( ), but setting it twice |
| 106 | // won't hurt anything.) |
| 107 | a_significand |= implicit_bit; |
| 108 | b_significand |= implicit_bit; |
| 109 | |
| 110 | // Get the significand of a*b. Before multiplying the significands, shift |
| 111 | // one of them left to left-align it in the field. Thus, the product will |
| 112 | // have (exponentBits + 2) integral digits, all but two of which must be |
| 113 | // zero. Normalizing this result is just a conditional left-shift by one |
| 114 | // and bumping the exponent accordingly. |
| 115 | let (mut product_low, mut product_high) = a_significand |
| 116 | .widen_mul(b_significand << exponent_bits) |
| 117 | .lo_hi(); |
| 118 | |
| 119 | let a_exponent_i32: i32 = a_exponent.cast(); |
| 120 | let b_exponent_i32: i32 = b_exponent.cast(); |
| 121 | let mut product_exponent: i32 = a_exponent_i32 |
| 122 | .wrapping_add(b_exponent_i32) |
| 123 | .wrapping_add(scale) |
| 124 | .wrapping_sub(exponent_bias as i32); |
| 125 | |
| 126 | // Normalize the significand, adjust exponent if needed. |
| 127 | if (product_high & implicit_bit) != zero { |
| 128 | product_exponent = product_exponent.wrapping_add(1); |
| 129 | } else { |
| 130 | product_high = (product_high << 1) | (product_low >> (bits - 1)); |
| 131 | product_low <<= 1; |
| 132 | } |
| 133 | |
| 134 | // If we have overflowed the type, return +/- infinity. |
| 135 | if product_exponent >= max_exponent as i32 { |
| 136 | return F::from_bits(inf_rep | product_sign); |
| 137 | } |
| 138 | |
| 139 | if product_exponent <= 0 { |
| 140 | // Result is denormal before rounding |
| 141 | // |
| 142 | // If the result is so small that it just underflows to zero, return |
| 143 | // a zero of the appropriate sign. Mathematically there is no need to |
| 144 | // handle this case separately, but we make it a special case to |
| 145 | // simplify the shift logic. |
| 146 | let shift = one.wrapping_sub(product_exponent.cast()).cast(); |
| 147 | if shift >= bits { |
| 148 | return F::from_bits(product_sign); |
| 149 | } |
| 150 | |
| 151 | // Otherwise, shift the significand of the result so that the round |
| 152 | // bit is the high bit of `product_low`. |
| 153 | // Ensure one of the non-highest bits in `product_low` is set if the shifted out bit are |
| 154 | // not all zero so that the result is correctly rounded below. |
| 155 | let sticky = product_low << (bits - shift) != zero; |
| 156 | product_low = |
| 157 | (product_high << (bits - shift)) | (product_low >> shift) | (sticky as u32).cast(); |
| 158 | product_high >>= shift; |
| 159 | } else { |
| 160 | // Result is normal before rounding; insert the exponent. |
| 161 | product_high &= significand_mask; |
| 162 | product_high |= product_exponent.cast() << significand_bits; |
| 163 | } |
| 164 | |
| 165 | // Insert the sign of the result: |
| 166 | product_high |= product_sign; |
| 167 | |
| 168 | // Final rounding. The final result may overflow to infinity, or underflow |
| 169 | // to zero, but those are the correct results in those cases. We use the |
| 170 | // default IEEE-754 round-to-nearest, ties-to-even rounding mode. |
| 171 | if product_low > sign_bit { |
| 172 | product_high += one; |
| 173 | } |
| 174 | |
| 175 | if product_low == sign_bit { |
| 176 | product_high += product_high & one; |
| 177 | } |
| 178 | |
| 179 | F::from_bits(product_high) |
| 180 | } |
| 181 | |
| 182 | intrinsics! { |
| 183 | #[avr_skip] |
| 184 | #[aapcs_on_arm] |
| 185 | #[arm_aeabi_alias = __aeabi_fmul] |
| 186 | pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 { |
| 187 | mul(a, b) |
| 188 | } |
| 189 | |
| 190 | #[avr_skip] |
| 191 | #[aapcs_on_arm] |
| 192 | #[arm_aeabi_alias = __aeabi_dmul] |
| 193 | pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 { |
| 194 | mul(a, b) |
| 195 | } |
| 196 | |
| 197 | #[ppc_alias = __mulkf3] |
| 198 | #[cfg (f128_enabled)] |
| 199 | pub extern "C" fn __multf3(a: f128, b: f128) -> f128 { |
| 200 | mul(a, b) |
| 201 | } |
| 202 | } |
| 203 | |