1 | //! A concurrent multi-producer multi-consumer queue. |
2 | //! |
3 | //! There are two kinds of queues: |
4 | //! |
5 | //! 1. [Bounded] queue with limited capacity. |
6 | //! 2. [Unbounded] queue with unlimited capacity. |
7 | //! |
8 | //! Queues also have the capability to get [closed] at any point. When closed, no more items can be |
9 | //! pushed into the queue, although the remaining items can still be popped. |
10 | //! |
11 | //! These features make it easy to build channels similar to [`std::sync::mpsc`] on top of this |
12 | //! crate. |
13 | //! |
14 | //! # Examples |
15 | //! |
16 | //! ``` |
17 | //! use concurrent_queue::ConcurrentQueue; |
18 | //! |
19 | //! let q = ConcurrentQueue::unbounded(); |
20 | //! q.push(1).unwrap(); |
21 | //! q.push(2).unwrap(); |
22 | //! |
23 | //! assert_eq!(q.pop(), Ok(1)); |
24 | //! assert_eq!(q.pop(), Ok(2)); |
25 | //! ``` |
26 | //! |
27 | //! # Features |
28 | //! |
29 | //! `concurrent-queue` uses an `std` default feature. With this feature enabled, this crate will |
30 | //! use [`std::thread::yield_now`] to avoid busy waiting in tight loops. However, with this |
31 | //! feature disabled, [`core::hint::spin_loop`] will be used instead. Disabling `std` will allow |
32 | //! this crate to be used on `no_std` platforms at the potential expense of more busy waiting. |
33 | //! |
34 | //! There is also a `portable-atomic` feature, which uses a polyfill from the |
35 | //! [`portable-atomic`] crate to provide atomic operations on platforms that do not support them. |
36 | //! See the [`README`] for the [`portable-atomic`] crate for more information on how to use it. |
37 | //! Note that even with this feature enabled, `concurrent-queue` still requires a global allocator |
38 | //! to be available. See the documentation for the [`std::alloc::GlobalAlloc`] trait for more |
39 | //! information. |
40 | //! |
41 | //! [Bounded]: `ConcurrentQueue::bounded()` |
42 | //! [Unbounded]: `ConcurrentQueue::unbounded()` |
43 | //! [closed]: `ConcurrentQueue::close()` |
44 | //! [`portable-atomic`]: https://crates.io/crates/portable-atomic |
45 | //! [`README`]: https://github.com/taiki-e/portable-atomic/blob/main/README.md#optional-cfg |
46 | |
47 | #![warn (missing_docs, missing_debug_implementations, rust_2018_idioms)] |
48 | #![no_std ] |
49 | #![doc ( |
50 | html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png" |
51 | )] |
52 | #![doc ( |
53 | html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png" |
54 | )] |
55 | |
56 | extern crate alloc; |
57 | #[cfg (feature = "std" )] |
58 | extern crate std; |
59 | |
60 | use core::fmt; |
61 | use core::panic::{RefUnwindSafe, UnwindSafe}; |
62 | use sync::atomic::{self, Ordering}; |
63 | |
64 | #[cfg (feature = "std" )] |
65 | use std::error; |
66 | |
67 | use crate::bounded::Bounded; |
68 | use crate::single::Single; |
69 | use crate::sync::busy_wait; |
70 | use crate::unbounded::Unbounded; |
71 | |
72 | mod bounded; |
73 | mod single; |
74 | mod unbounded; |
75 | |
76 | mod sync; |
77 | |
78 | /// Make the given function const if the given condition is true. |
79 | macro_rules! const_fn { |
80 | ( |
81 | const_if: #[cfg($($cfg:tt)+)]; |
82 | $(#[$($attr:tt)*])* |
83 | $vis:vis const fn $($rest:tt)* |
84 | ) => { |
85 | #[cfg($($cfg)+)] |
86 | $(#[$($attr)*])* |
87 | $vis const fn $($rest)* |
88 | #[cfg(not($($cfg)+))] |
89 | $(#[$($attr)*])* |
90 | $vis fn $($rest)* |
91 | }; |
92 | } |
93 | |
94 | pub(crate) use const_fn; |
95 | |
96 | /// A concurrent queue. |
97 | /// |
98 | /// # Examples |
99 | /// |
100 | /// ``` |
101 | /// use concurrent_queue::{ConcurrentQueue, PopError, PushError}; |
102 | /// |
103 | /// let q = ConcurrentQueue::bounded(2); |
104 | /// |
105 | /// assert_eq!(q.push('a' ), Ok(())); |
106 | /// assert_eq!(q.push('b' ), Ok(())); |
107 | /// assert_eq!(q.push('c' ), Err(PushError::Full('c' ))); |
108 | /// |
109 | /// assert_eq!(q.pop(), Ok('a' )); |
110 | /// assert_eq!(q.pop(), Ok('b' )); |
111 | /// assert_eq!(q.pop(), Err(PopError::Empty)); |
112 | /// ``` |
113 | pub struct ConcurrentQueue<T>(Inner<T>); |
114 | |
115 | unsafe impl<T: Send> Send for ConcurrentQueue<T> {} |
116 | unsafe impl<T: Send> Sync for ConcurrentQueue<T> {} |
117 | |
118 | impl<T> UnwindSafe for ConcurrentQueue<T> {} |
119 | impl<T> RefUnwindSafe for ConcurrentQueue<T> {} |
120 | |
121 | #[allow (clippy::large_enum_variant)] |
122 | enum Inner<T> { |
123 | Single(Single<T>), |
124 | Bounded(Bounded<T>), |
125 | Unbounded(Unbounded<T>), |
126 | } |
127 | |
128 | impl<T> ConcurrentQueue<T> { |
129 | /// Creates a new bounded queue. |
130 | /// |
131 | /// The queue allocates enough space for `cap` items. |
132 | /// |
133 | /// # Panics |
134 | /// |
135 | /// If the capacity is zero, this constructor will panic. |
136 | /// |
137 | /// # Examples |
138 | /// |
139 | /// ``` |
140 | /// use concurrent_queue::ConcurrentQueue; |
141 | /// |
142 | /// let q = ConcurrentQueue::<i32>::bounded(100); |
143 | /// ``` |
144 | pub fn bounded(cap: usize) -> ConcurrentQueue<T> { |
145 | if cap == 1 { |
146 | ConcurrentQueue(Inner::Single(Single::new())) |
147 | } else { |
148 | ConcurrentQueue(Inner::Bounded(Bounded::new(cap))) |
149 | } |
150 | } |
151 | |
152 | const_fn!( |
153 | const_if: #[cfg(not(loom))]; |
154 | /// Creates a new unbounded queue. |
155 | /// |
156 | /// # Examples |
157 | /// |
158 | /// ``` |
159 | /// use concurrent_queue::ConcurrentQueue; |
160 | /// |
161 | /// let q = ConcurrentQueue::<i32>::unbounded(); |
162 | /// ``` |
163 | pub const fn unbounded() -> ConcurrentQueue<T> { |
164 | ConcurrentQueue(Inner::Unbounded(Unbounded::new())) |
165 | } |
166 | ); |
167 | |
168 | /// Attempts to push an item into the queue. |
169 | /// |
170 | /// If the queue is full or closed, the item is returned back as an error. |
171 | /// |
172 | /// # Examples |
173 | /// |
174 | /// ``` |
175 | /// use concurrent_queue::{ConcurrentQueue, PushError}; |
176 | /// |
177 | /// let q = ConcurrentQueue::bounded(1); |
178 | /// |
179 | /// // Push succeeds because there is space in the queue. |
180 | /// assert_eq!(q.push(10), Ok(())); |
181 | /// |
182 | /// // Push errors because the queue is now full. |
183 | /// assert_eq!(q.push(20), Err(PushError::Full(20))); |
184 | /// |
185 | /// // Close the queue, which will prevent further pushes. |
186 | /// q.close(); |
187 | /// |
188 | /// // Pushing now errors indicating the queue is closed. |
189 | /// assert_eq!(q.push(20), Err(PushError::Closed(20))); |
190 | /// |
191 | /// // Pop the single item in the queue. |
192 | /// assert_eq!(q.pop(), Ok(10)); |
193 | /// |
194 | /// // Even though there is space, no more items can be pushed. |
195 | /// assert_eq!(q.push(20), Err(PushError::Closed(20))); |
196 | /// ``` |
197 | pub fn push(&self, value: T) -> Result<(), PushError<T>> { |
198 | match &self.0 { |
199 | Inner::Single(q) => q.push(value), |
200 | Inner::Bounded(q) => q.push(value), |
201 | Inner::Unbounded(q) => q.push(value), |
202 | } |
203 | } |
204 | |
205 | /// Push an element into the queue, potentially displacing another element. |
206 | /// |
207 | /// Attempts to push an element into the queue. If the queue is full, one item from the |
208 | /// queue is replaced with the provided item. The displaced item is returned as `Some(T)`. |
209 | /// If the queue is closed, an error is returned. |
210 | /// |
211 | /// # Examples |
212 | /// |
213 | /// ``` |
214 | /// use concurrent_queue::{ConcurrentQueue, ForcePushError, PushError}; |
215 | /// |
216 | /// let q = ConcurrentQueue::bounded(3); |
217 | /// |
218 | /// // We can push to the queue. |
219 | /// for i in 1..=3 { |
220 | /// assert_eq!(q.force_push(i), Ok(None)); |
221 | /// } |
222 | /// |
223 | /// // Push errors because the queue is now full. |
224 | /// assert_eq!(q.push(4), Err(PushError::Full(4))); |
225 | /// |
226 | /// // Pushing a new value replaces the old ones. |
227 | /// assert_eq!(q.force_push(5), Ok(Some(1))); |
228 | /// assert_eq!(q.force_push(6), Ok(Some(2))); |
229 | /// |
230 | /// // Close the queue to stop further pushes. |
231 | /// q.close(); |
232 | /// |
233 | /// // Pushing will return an error. |
234 | /// assert_eq!(q.force_push(7), Err(ForcePushError(7))); |
235 | /// |
236 | /// // Popping items will return the force-pushed ones. |
237 | /// assert_eq!(q.pop(), Ok(3)); |
238 | /// assert_eq!(q.pop(), Ok(5)); |
239 | /// assert_eq!(q.pop(), Ok(6)); |
240 | /// ``` |
241 | pub fn force_push(&self, value: T) -> Result<Option<T>, ForcePushError<T>> { |
242 | match &self.0 { |
243 | Inner::Single(q) => q.force_push(value), |
244 | Inner::Bounded(q) => q.force_push(value), |
245 | Inner::Unbounded(q) => match q.push(value) { |
246 | Ok(()) => Ok(None), |
247 | Err(PushError::Closed(value)) => Err(ForcePushError(value)), |
248 | Err(PushError::Full(_)) => unreachable!(), |
249 | }, |
250 | } |
251 | } |
252 | |
253 | /// Attempts to pop an item from the queue. |
254 | /// |
255 | /// If the queue is empty, an error is returned. |
256 | /// |
257 | /// # Examples |
258 | /// |
259 | /// ``` |
260 | /// use concurrent_queue::{ConcurrentQueue, PopError}; |
261 | /// |
262 | /// let q = ConcurrentQueue::bounded(1); |
263 | /// |
264 | /// // Pop errors when the queue is empty. |
265 | /// assert_eq!(q.pop(), Err(PopError::Empty)); |
266 | /// |
267 | /// // Push one item and close the queue. |
268 | /// assert_eq!(q.push(10), Ok(())); |
269 | /// q.close(); |
270 | /// |
271 | /// // Remaining items can be popped. |
272 | /// assert_eq!(q.pop(), Ok(10)); |
273 | /// |
274 | /// // Again, pop errors when the queue is empty, |
275 | /// // but now also indicates that the queue is closed. |
276 | /// assert_eq!(q.pop(), Err(PopError::Closed)); |
277 | /// ``` |
278 | pub fn pop(&self) -> Result<T, PopError> { |
279 | match &self.0 { |
280 | Inner::Single(q) => q.pop(), |
281 | Inner::Bounded(q) => q.pop(), |
282 | Inner::Unbounded(q) => q.pop(), |
283 | } |
284 | } |
285 | |
286 | /// Get an iterator over the items in the queue. |
287 | /// |
288 | /// The iterator will continue until the queue is empty or closed. It will never block; |
289 | /// if the queue is empty, the iterator will return `None`. If new items are pushed into |
290 | /// the queue, the iterator may return `Some` in the future after returning `None`. |
291 | /// |
292 | /// # Examples |
293 | /// |
294 | /// ``` |
295 | /// use concurrent_queue::ConcurrentQueue; |
296 | /// |
297 | /// let q = ConcurrentQueue::bounded(5); |
298 | /// q.push(1).unwrap(); |
299 | /// q.push(2).unwrap(); |
300 | /// q.push(3).unwrap(); |
301 | /// |
302 | /// let mut iter = q.try_iter(); |
303 | /// assert_eq!(iter.by_ref().sum::<i32>(), 6); |
304 | /// assert_eq!(iter.next(), None); |
305 | /// |
306 | /// // Pushing more items will make them available to the iterator. |
307 | /// q.push(4).unwrap(); |
308 | /// assert_eq!(iter.next(), Some(4)); |
309 | /// assert_eq!(iter.next(), None); |
310 | /// ``` |
311 | pub fn try_iter(&self) -> TryIter<'_, T> { |
312 | TryIter { queue: self } |
313 | } |
314 | |
315 | /// Returns `true` if the queue is empty. |
316 | /// |
317 | /// # Examples |
318 | /// |
319 | /// ``` |
320 | /// use concurrent_queue::ConcurrentQueue; |
321 | /// |
322 | /// let q = ConcurrentQueue::<i32>::unbounded(); |
323 | /// |
324 | /// assert!(q.is_empty()); |
325 | /// q.push(1).unwrap(); |
326 | /// assert!(!q.is_empty()); |
327 | /// ``` |
328 | pub fn is_empty(&self) -> bool { |
329 | match &self.0 { |
330 | Inner::Single(q) => q.is_empty(), |
331 | Inner::Bounded(q) => q.is_empty(), |
332 | Inner::Unbounded(q) => q.is_empty(), |
333 | } |
334 | } |
335 | |
336 | /// Returns `true` if the queue is full. |
337 | /// |
338 | /// An unbounded queue is never full. |
339 | /// |
340 | /// # Examples |
341 | /// |
342 | /// ``` |
343 | /// use concurrent_queue::ConcurrentQueue; |
344 | /// |
345 | /// let q = ConcurrentQueue::bounded(1); |
346 | /// |
347 | /// assert!(!q.is_full()); |
348 | /// q.push(1).unwrap(); |
349 | /// assert!(q.is_full()); |
350 | /// ``` |
351 | pub fn is_full(&self) -> bool { |
352 | match &self.0 { |
353 | Inner::Single(q) => q.is_full(), |
354 | Inner::Bounded(q) => q.is_full(), |
355 | Inner::Unbounded(q) => q.is_full(), |
356 | } |
357 | } |
358 | |
359 | /// Returns the number of items in the queue. |
360 | /// |
361 | /// # Examples |
362 | /// |
363 | /// ``` |
364 | /// use concurrent_queue::ConcurrentQueue; |
365 | /// |
366 | /// let q = ConcurrentQueue::unbounded(); |
367 | /// assert_eq!(q.len(), 0); |
368 | /// |
369 | /// assert_eq!(q.push(10), Ok(())); |
370 | /// assert_eq!(q.len(), 1); |
371 | /// |
372 | /// assert_eq!(q.push(20), Ok(())); |
373 | /// assert_eq!(q.len(), 2); |
374 | /// ``` |
375 | pub fn len(&self) -> usize { |
376 | match &self.0 { |
377 | Inner::Single(q) => q.len(), |
378 | Inner::Bounded(q) => q.len(), |
379 | Inner::Unbounded(q) => q.len(), |
380 | } |
381 | } |
382 | |
383 | /// Returns the capacity of the queue. |
384 | /// |
385 | /// Unbounded queues have infinite capacity, represented as [`None`]. |
386 | /// |
387 | /// # Examples |
388 | /// |
389 | /// ``` |
390 | /// use concurrent_queue::ConcurrentQueue; |
391 | /// |
392 | /// let q = ConcurrentQueue::<i32>::bounded(7); |
393 | /// assert_eq!(q.capacity(), Some(7)); |
394 | /// |
395 | /// let q = ConcurrentQueue::<i32>::unbounded(); |
396 | /// assert_eq!(q.capacity(), None); |
397 | /// ``` |
398 | pub fn capacity(&self) -> Option<usize> { |
399 | match &self.0 { |
400 | Inner::Single(_) => Some(1), |
401 | Inner::Bounded(q) => Some(q.capacity()), |
402 | Inner::Unbounded(_) => None, |
403 | } |
404 | } |
405 | |
406 | /// Closes the queue. |
407 | /// |
408 | /// Returns `true` if this call closed the queue, or `false` if it was already closed. |
409 | /// |
410 | /// When a queue is closed, no more items can be pushed but the remaining items can still be |
411 | /// popped. |
412 | /// |
413 | /// # Examples |
414 | /// |
415 | /// ``` |
416 | /// use concurrent_queue::{ConcurrentQueue, PopError, PushError}; |
417 | /// |
418 | /// let q = ConcurrentQueue::unbounded(); |
419 | /// assert_eq!(q.push(10), Ok(())); |
420 | /// |
421 | /// assert!(q.close()); // `true` because this call closes the queue. |
422 | /// assert!(!q.close()); // `false` because the queue is already closed. |
423 | /// |
424 | /// // Cannot push any more items when closed. |
425 | /// assert_eq!(q.push(20), Err(PushError::Closed(20))); |
426 | /// |
427 | /// // Remaining items can still be popped. |
428 | /// assert_eq!(q.pop(), Ok(10)); |
429 | /// |
430 | /// // When no more items are present, the error is `Closed`. |
431 | /// assert_eq!(q.pop(), Err(PopError::Closed)); |
432 | /// ``` |
433 | pub fn close(&self) -> bool { |
434 | match &self.0 { |
435 | Inner::Single(q) => q.close(), |
436 | Inner::Bounded(q) => q.close(), |
437 | Inner::Unbounded(q) => q.close(), |
438 | } |
439 | } |
440 | |
441 | /// Returns `true` if the queue is closed. |
442 | /// |
443 | /// # Examples |
444 | /// |
445 | /// ``` |
446 | /// use concurrent_queue::ConcurrentQueue; |
447 | /// |
448 | /// let q = ConcurrentQueue::<i32>::unbounded(); |
449 | /// |
450 | /// assert!(!q.is_closed()); |
451 | /// q.close(); |
452 | /// assert!(q.is_closed()); |
453 | /// ``` |
454 | pub fn is_closed(&self) -> bool { |
455 | match &self.0 { |
456 | Inner::Single(q) => q.is_closed(), |
457 | Inner::Bounded(q) => q.is_closed(), |
458 | Inner::Unbounded(q) => q.is_closed(), |
459 | } |
460 | } |
461 | } |
462 | |
463 | impl<T> fmt::Debug for ConcurrentQueue<T> { |
464 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
465 | f&mut DebugStruct<'_, '_>.debug_struct("ConcurrentQueue" ) |
466 | .field("len" , &self.len()) |
467 | .field("capacity" , &self.capacity()) |
468 | .field(name:"is_closed" , &self.is_closed()) |
469 | .finish() |
470 | } |
471 | } |
472 | |
473 | /// An iterator that pops items from a [`ConcurrentQueue`]. |
474 | /// |
475 | /// This iterator will never block; it will return `None` once the queue has |
476 | /// been exhausted. Calling `next` after `None` may yield `Some(item)` if more items |
477 | /// are pushed to the queue. |
478 | #[must_use = "iterators are lazy and do nothing unless consumed" ] |
479 | #[derive (Clone)] |
480 | pub struct TryIter<'a, T> { |
481 | queue: &'a ConcurrentQueue<T>, |
482 | } |
483 | |
484 | impl<T> fmt::Debug for TryIter<'_, T> { |
485 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
486 | f.debug_tuple(name:"Iter" ).field(&self.queue).finish() |
487 | } |
488 | } |
489 | |
490 | impl<T> Iterator for TryIter<'_, T> { |
491 | type Item = T; |
492 | |
493 | fn next(&mut self) -> Option<Self::Item> { |
494 | self.queue.pop().ok() |
495 | } |
496 | } |
497 | |
498 | /// Error which occurs when popping from an empty queue. |
499 | #[derive (Clone, Copy, Eq, PartialEq)] |
500 | pub enum PopError { |
501 | /// The queue is empty but not closed. |
502 | Empty, |
503 | |
504 | /// The queue is empty and closed. |
505 | Closed, |
506 | } |
507 | |
508 | impl PopError { |
509 | /// Returns `true` if the queue is empty but not closed. |
510 | pub fn is_empty(&self) -> bool { |
511 | match self { |
512 | PopError::Empty => true, |
513 | PopError::Closed => false, |
514 | } |
515 | } |
516 | |
517 | /// Returns `true` if the queue is empty and closed. |
518 | pub fn is_closed(&self) -> bool { |
519 | match self { |
520 | PopError::Empty => false, |
521 | PopError::Closed => true, |
522 | } |
523 | } |
524 | } |
525 | |
526 | #[cfg (feature = "std" )] |
527 | impl error::Error for PopError {} |
528 | |
529 | impl fmt::Debug for PopError { |
530 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
531 | match self { |
532 | PopError::Empty => write!(f, "Empty" ), |
533 | PopError::Closed => write!(f, "Closed" ), |
534 | } |
535 | } |
536 | } |
537 | |
538 | impl fmt::Display for PopError { |
539 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
540 | match self { |
541 | PopError::Empty => write!(f, "Empty" ), |
542 | PopError::Closed => write!(f, "Closed" ), |
543 | } |
544 | } |
545 | } |
546 | |
547 | /// Error which occurs when pushing into a full or closed queue. |
548 | #[derive (Clone, Copy, Eq, PartialEq)] |
549 | pub enum PushError<T> { |
550 | /// The queue is full but not closed. |
551 | Full(T), |
552 | |
553 | /// The queue is closed. |
554 | Closed(T), |
555 | } |
556 | |
557 | impl<T> PushError<T> { |
558 | /// Unwraps the item that couldn't be pushed. |
559 | pub fn into_inner(self) -> T { |
560 | match self { |
561 | PushError::Full(t) => t, |
562 | PushError::Closed(t) => t, |
563 | } |
564 | } |
565 | |
566 | /// Returns `true` if the queue is full but not closed. |
567 | pub fn is_full(&self) -> bool { |
568 | match self { |
569 | PushError::Full(_) => true, |
570 | PushError::Closed(_) => false, |
571 | } |
572 | } |
573 | |
574 | /// Returns `true` if the queue is closed. |
575 | pub fn is_closed(&self) -> bool { |
576 | match self { |
577 | PushError::Full(_) => false, |
578 | PushError::Closed(_) => true, |
579 | } |
580 | } |
581 | } |
582 | |
583 | #[cfg (feature = "std" )] |
584 | impl<T: fmt::Debug> error::Error for PushError<T> {} |
585 | |
586 | impl<T: fmt::Debug> fmt::Debug for PushError<T> { |
587 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
588 | match self { |
589 | PushError::Full(t: &T) => f.debug_tuple(name:"Full" ).field(t).finish(), |
590 | PushError::Closed(t: &T) => f.debug_tuple(name:"Closed" ).field(t).finish(), |
591 | } |
592 | } |
593 | } |
594 | |
595 | impl<T> fmt::Display for PushError<T> { |
596 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
597 | match self { |
598 | PushError::Full(_) => write!(f, "Full" ), |
599 | PushError::Closed(_) => write!(f, "Closed" ), |
600 | } |
601 | } |
602 | } |
603 | |
604 | /// Error that occurs when force-pushing into a full queue. |
605 | #[derive (Clone, Copy, PartialEq, Eq)] |
606 | pub struct ForcePushError<T>(pub T); |
607 | |
608 | impl<T> ForcePushError<T> { |
609 | /// Return the inner value that failed to be force-pushed. |
610 | pub fn into_inner(self) -> T { |
611 | self.0 |
612 | } |
613 | } |
614 | |
615 | impl<T: fmt::Debug> fmt::Debug for ForcePushError<T> { |
616 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
617 | f.debug_tuple(name:"ForcePushError" ).field(&self.0).finish() |
618 | } |
619 | } |
620 | |
621 | impl<T> fmt::Display for ForcePushError<T> { |
622 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
623 | write!(f, "Closed" ) |
624 | } |
625 | } |
626 | |
627 | #[cfg (feature = "std" )] |
628 | impl<T: fmt::Debug> error::Error for ForcePushError<T> {} |
629 | |
630 | /// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster. |
631 | #[inline ] |
632 | fn full_fence() { |
633 | #[cfg (all(any(target_arch = "x86" , target_arch = "x86_64" ), not(miri), not(loom)))] |
634 | { |
635 | use core::{arch::asm, cell::UnsafeCell}; |
636 | // HACK(stjepang): On x86 architectures there are two different ways of executing |
637 | // a `SeqCst` fence. |
638 | // |
639 | // 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction. |
640 | // 2. A `lock <op>` instruction. |
641 | // |
642 | // Both instructions have the effect of a full barrier, but empirical benchmarks have shown |
643 | // that the second one is sometimes a bit faster. |
644 | let a = UnsafeCell::new(0_usize); |
645 | // It is common to use `lock or` here, but when using a local variable, `lock not`, which |
646 | // does not change the flag, should be slightly more efficient. |
647 | // Refs: https://www.felixcloutier.com/x86/not |
648 | unsafe { |
649 | #[cfg (target_pointer_width = "64" )] |
650 | asm!("lock not qword ptr [{ 0}]" , in(reg) a.get(), options(nostack, preserves_flags)); |
651 | #[cfg (target_pointer_width = "32" )] |
652 | asm!("lock not dword ptr [{0:e}]" , in(reg) a.get(), options(nostack, preserves_flags)); |
653 | } |
654 | return; |
655 | } |
656 | #[allow (unreachable_code)] |
657 | { |
658 | atomic::fence(Ordering::SeqCst); |
659 | } |
660 | } |
661 | |