1 | // Seemingly inconsequential code changes to this file can lead to measurable |
2 | // performance impact on compilation times, due at least in part to the fact |
3 | // that the layout code gets called from many instantiations of the various |
4 | // collections, resulting in having to optimize down excess IR multiple times. |
5 | // Your performance intuition is useless. Run perf. |
6 | |
7 | use crate::error::Error; |
8 | use crate::intrinsics::{unchecked_add, unchecked_mul, unchecked_sub}; |
9 | use crate::mem::SizedTypeProperties; |
10 | use crate::ptr::{Alignment, NonNull}; |
11 | use crate::{assert_unsafe_precondition, fmt, mem}; |
12 | |
13 | // While this function is used in one place and its implementation |
14 | // could be inlined, the previous attempts to do so made rustc |
15 | // slower: |
16 | // |
17 | // * https://github.com/rust-lang/rust/pull/72189 |
18 | // * https://github.com/rust-lang/rust/pull/79827 |
19 | const fn size_align<T>() -> (usize, usize) { |
20 | (size_of::<T>(), align_of::<T>()) |
21 | } |
22 | |
23 | /// Layout of a block of memory. |
24 | /// |
25 | /// An instance of `Layout` describes a particular layout of memory. |
26 | /// You build a `Layout` up as an input to give to an allocator. |
27 | /// |
28 | /// All layouts have an associated size and a power-of-two alignment. The size, when rounded up to |
29 | /// the nearest multiple of `align`, does not overflow `isize` (i.e., the rounded value will always be |
30 | /// less than or equal to `isize::MAX`). |
31 | /// |
32 | /// (Note that layouts are *not* required to have non-zero size, |
33 | /// even though `GlobalAlloc` requires that all memory requests |
34 | /// be non-zero in size. A caller must either ensure that conditions |
35 | /// like this are met, use specific allocators with looser |
36 | /// requirements, or use the more lenient `Allocator` interface.) |
37 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
38 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
39 | #[lang = "alloc_layout" ] |
40 | pub struct Layout { |
41 | // size of the requested block of memory, measured in bytes. |
42 | size: usize, |
43 | |
44 | // alignment of the requested block of memory, measured in bytes. |
45 | // we ensure that this is always a power-of-two, because API's |
46 | // like `posix_memalign` require it and it is a reasonable |
47 | // constraint to impose on Layout constructors. |
48 | // |
49 | // (However, we do not analogously require `align >= sizeof(void*)`, |
50 | // even though that is *also* a requirement of `posix_memalign`.) |
51 | align: Alignment, |
52 | } |
53 | |
54 | impl Layout { |
55 | /// Constructs a `Layout` from a given `size` and `align`, |
56 | /// or returns `LayoutError` if any of the following conditions |
57 | /// are not met: |
58 | /// |
59 | /// * `align` must not be zero, |
60 | /// |
61 | /// * `align` must be a power of two, |
62 | /// |
63 | /// * `size`, when rounded up to the nearest multiple of `align`, |
64 | /// must not overflow `isize` (i.e., the rounded value must be |
65 | /// less than or equal to `isize::MAX`). |
66 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
67 | #[rustc_const_stable (feature = "const_alloc_layout_size_align" , since = "1.50.0" )] |
68 | #[inline ] |
69 | pub const fn from_size_align(size: usize, align: usize) -> Result<Self, LayoutError> { |
70 | if Layout::is_size_align_valid(size, align) { |
71 | // SAFETY: Layout::is_size_align_valid checks the preconditions for this call. |
72 | unsafe { Ok(Layout { size, align: mem::transmute(align) }) } |
73 | } else { |
74 | Err(LayoutError) |
75 | } |
76 | } |
77 | |
78 | const fn is_size_align_valid(size: usize, align: usize) -> bool { |
79 | let Some(align) = Alignment::new(align) else { return false }; |
80 | if size > Self::max_size_for_align(align) { |
81 | return false; |
82 | } |
83 | true |
84 | } |
85 | |
86 | #[inline (always)] |
87 | const fn max_size_for_align(align: Alignment) -> usize { |
88 | // (power-of-two implies align != 0.) |
89 | |
90 | // Rounded up size is: |
91 | // size_rounded_up = (size + align - 1) & !(align - 1); |
92 | // |
93 | // We know from above that align != 0. If adding (align - 1) |
94 | // does not overflow, then rounding up will be fine. |
95 | // |
96 | // Conversely, &-masking with !(align - 1) will subtract off |
97 | // only low-order-bits. Thus if overflow occurs with the sum, |
98 | // the &-mask cannot subtract enough to undo that overflow. |
99 | // |
100 | // Above implies that checking for summation overflow is both |
101 | // necessary and sufficient. |
102 | |
103 | // SAFETY: the maximum possible alignment is `isize::MAX + 1`, |
104 | // so the subtraction cannot overflow. |
105 | unsafe { unchecked_sub(isize::MAX as usize + 1, align.as_usize()) } |
106 | } |
107 | |
108 | /// Internal helper constructor to skip revalidating alignment validity. |
109 | #[inline ] |
110 | const fn from_size_alignment(size: usize, align: Alignment) -> Result<Self, LayoutError> { |
111 | if size > Self::max_size_for_align(align) { |
112 | return Err(LayoutError); |
113 | } |
114 | |
115 | // SAFETY: Layout::size invariants checked above. |
116 | Ok(Layout { size, align }) |
117 | } |
118 | |
119 | /// Creates a layout, bypassing all checks. |
120 | /// |
121 | /// # Safety |
122 | /// |
123 | /// This function is unsafe as it does not verify the preconditions from |
124 | /// [`Layout::from_size_align`]. |
125 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
126 | #[rustc_const_stable (feature = "const_alloc_layout_unchecked" , since = "1.36.0" )] |
127 | #[must_use ] |
128 | #[inline ] |
129 | pub const unsafe fn from_size_align_unchecked(size: usize, align: usize) -> Self { |
130 | assert_unsafe_precondition!( |
131 | check_library_ub, |
132 | "Layout::from_size_align_unchecked requires that align is a power of 2 \ |
133 | and the rounded-up allocation size does not exceed isize::MAX" , |
134 | ( |
135 | size: usize = size, |
136 | align: usize = align, |
137 | ) => Layout::is_size_align_valid(size, align) |
138 | ); |
139 | // SAFETY: the caller is required to uphold the preconditions. |
140 | unsafe { Layout { size, align: mem::transmute(align) } } |
141 | } |
142 | |
143 | /// The minimum size in bytes for a memory block of this layout. |
144 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
145 | #[rustc_const_stable (feature = "const_alloc_layout_size_align" , since = "1.50.0" )] |
146 | #[must_use ] |
147 | #[inline ] |
148 | pub const fn size(&self) -> usize { |
149 | self.size |
150 | } |
151 | |
152 | /// The minimum byte alignment for a memory block of this layout. |
153 | /// |
154 | /// The returned alignment is guaranteed to be a power of two. |
155 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
156 | #[rustc_const_stable (feature = "const_alloc_layout_size_align" , since = "1.50.0" )] |
157 | #[must_use = "this returns the minimum alignment, \ |
158 | without modifying the layout" ] |
159 | #[inline ] |
160 | pub const fn align(&self) -> usize { |
161 | self.align.as_usize() |
162 | } |
163 | |
164 | /// Constructs a `Layout` suitable for holding a value of type `T`. |
165 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
166 | #[rustc_const_stable (feature = "alloc_layout_const_new" , since = "1.42.0" )] |
167 | #[must_use ] |
168 | #[inline ] |
169 | pub const fn new<T>() -> Self { |
170 | let (size, align) = size_align::<T>(); |
171 | // SAFETY: if the type is instantiated, rustc already ensures that its |
172 | // layout is valid. Use the unchecked constructor to avoid inserting a |
173 | // panicking codepath that needs to be optimized out. |
174 | unsafe { Layout::from_size_align_unchecked(size, align) } |
175 | } |
176 | |
177 | /// Produces layout describing a record that could be used to |
178 | /// allocate backing structure for `T` (which could be a trait |
179 | /// or other unsized type like a slice). |
180 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
181 | #[rustc_const_stable (feature = "const_alloc_layout" , since = "1.85.0" )] |
182 | #[must_use ] |
183 | #[inline ] |
184 | pub const fn for_value<T: ?Sized>(t: &T) -> Self { |
185 | let (size, align) = (size_of_val(t), align_of_val(t)); |
186 | // SAFETY: see rationale in `new` for why this is using the unsafe variant |
187 | unsafe { Layout::from_size_align_unchecked(size, align) } |
188 | } |
189 | |
190 | /// Produces layout describing a record that could be used to |
191 | /// allocate backing structure for `T` (which could be a trait |
192 | /// or other unsized type like a slice). |
193 | /// |
194 | /// # Safety |
195 | /// |
196 | /// This function is only safe to call if the following conditions hold: |
197 | /// |
198 | /// - If `T` is `Sized`, this function is always safe to call. |
199 | /// - If the unsized tail of `T` is: |
200 | /// - a [slice], then the length of the slice tail must be an initialized |
201 | /// integer, and the size of the *entire value* |
202 | /// (dynamic tail length + statically sized prefix) must fit in `isize`. |
203 | /// For the special case where the dynamic tail length is 0, this function |
204 | /// is safe to call. |
205 | /// - a [trait object], then the vtable part of the pointer must point |
206 | /// to a valid vtable for the type `T` acquired by an unsizing coercion, |
207 | /// and the size of the *entire value* |
208 | /// (dynamic tail length + statically sized prefix) must fit in `isize`. |
209 | /// - an (unstable) [extern type], then this function is always safe to |
210 | /// call, but may panic or otherwise return the wrong value, as the |
211 | /// extern type's layout is not known. This is the same behavior as |
212 | /// [`Layout::for_value`] on a reference to an extern type tail. |
213 | /// - otherwise, it is conservatively not allowed to call this function. |
214 | /// |
215 | /// [trait object]: ../../book/ch17-02-trait-objects.html |
216 | /// [extern type]: ../../unstable-book/language-features/extern-types.html |
217 | #[unstable (feature = "layout_for_ptr" , issue = "69835" )] |
218 | #[must_use ] |
219 | pub const unsafe fn for_value_raw<T: ?Sized>(t: *const T) -> Self { |
220 | // SAFETY: we pass along the prerequisites of these functions to the caller |
221 | let (size, align) = unsafe { (mem::size_of_val_raw(t), mem::align_of_val_raw(t)) }; |
222 | // SAFETY: see rationale in `new` for why this is using the unsafe variant |
223 | unsafe { Layout::from_size_align_unchecked(size, align) } |
224 | } |
225 | |
226 | /// Creates a `NonNull` that is dangling, but well-aligned for this Layout. |
227 | /// |
228 | /// Note that the pointer value may potentially represent a valid pointer, |
229 | /// which means this must not be used as a "not yet initialized" |
230 | /// sentinel value. Types that lazily allocate must track initialization by |
231 | /// some other means. |
232 | #[unstable (feature = "alloc_layout_extra" , issue = "55724" )] |
233 | #[must_use ] |
234 | #[inline ] |
235 | pub const fn dangling(&self) -> NonNull<u8> { |
236 | NonNull::without_provenance(self.align.as_nonzero()) |
237 | } |
238 | |
239 | /// Creates a layout describing the record that can hold a value |
240 | /// of the same layout as `self`, but that also is aligned to |
241 | /// alignment `align` (measured in bytes). |
242 | /// |
243 | /// If `self` already meets the prescribed alignment, then returns |
244 | /// `self`. |
245 | /// |
246 | /// Note that this method does not add any padding to the overall |
247 | /// size, regardless of whether the returned layout has a different |
248 | /// alignment. In other words, if `K` has size 16, `K.align_to(32)` |
249 | /// will *still* have size 16. |
250 | /// |
251 | /// Returns an error if the combination of `self.size()` and the given |
252 | /// `align` violates the conditions listed in [`Layout::from_size_align`]. |
253 | #[stable (feature = "alloc_layout_manipulation" , since = "1.44.0" )] |
254 | #[rustc_const_stable (feature = "const_alloc_layout" , since = "1.85.0" )] |
255 | #[inline ] |
256 | pub const fn align_to(&self, align: usize) -> Result<Self, LayoutError> { |
257 | if let Some(align) = Alignment::new(align) { |
258 | Layout::from_size_alignment(self.size, Alignment::max(self.align, align)) |
259 | } else { |
260 | Err(LayoutError) |
261 | } |
262 | } |
263 | |
264 | /// Returns the amount of padding we must insert after `self` |
265 | /// to ensure that the following address will satisfy `align` |
266 | /// (measured in bytes). |
267 | /// |
268 | /// e.g., if `self.size()` is 9, then `self.padding_needed_for(4)` |
269 | /// returns 3, because that is the minimum number of bytes of |
270 | /// padding required to get a 4-aligned address (assuming that the |
271 | /// corresponding memory block starts at a 4-aligned address). |
272 | /// |
273 | /// The return value of this function has no meaning if `align` is |
274 | /// not a power-of-two. |
275 | /// |
276 | /// Note that the utility of the returned value requires `align` |
277 | /// to be less than or equal to the alignment of the starting |
278 | /// address for the whole allocated block of memory. One way to |
279 | /// satisfy this constraint is to ensure `align <= self.align()`. |
280 | #[unstable (feature = "alloc_layout_extra" , issue = "55724" )] |
281 | #[must_use = "this returns the padding needed, \ |
282 | without modifying the `Layout`" ] |
283 | #[inline ] |
284 | pub const fn padding_needed_for(&self, align: usize) -> usize { |
285 | // FIXME: Can we just change the type on this to `Alignment`? |
286 | let Some(align) = Alignment::new(align) else { return usize::MAX }; |
287 | let len_rounded_up = self.size_rounded_up_to_custom_align(align); |
288 | // SAFETY: Cannot overflow because the rounded-up value is never less |
289 | unsafe { unchecked_sub(len_rounded_up, self.size) } |
290 | } |
291 | |
292 | /// Returns the smallest multiple of `align` greater than or equal to `self.size()`. |
293 | /// |
294 | /// This can return at most `Alignment::MAX` (aka `isize::MAX + 1`) |
295 | /// because the original size is at most `isize::MAX`. |
296 | #[inline ] |
297 | const fn size_rounded_up_to_custom_align(&self, align: Alignment) -> usize { |
298 | // SAFETY: |
299 | // Rounded up value is: |
300 | // size_rounded_up = (size + align - 1) & !(align - 1); |
301 | // |
302 | // The arithmetic we do here can never overflow: |
303 | // |
304 | // 1. align is guaranteed to be > 0, so align - 1 is always |
305 | // valid. |
306 | // |
307 | // 2. size is at most `isize::MAX`, so adding `align - 1` (which is at |
308 | // most `isize::MAX`) can never overflow a `usize`. |
309 | // |
310 | // 3. masking by the alignment can remove at most `align - 1`, |
311 | // which is what we just added, thus the value we return is never |
312 | // less than the original `size`. |
313 | // |
314 | // (Size 0 Align MAX is already aligned, so stays the same, but things like |
315 | // Size 1 Align MAX or Size isize::MAX Align 2 round up to `isize::MAX + 1`.) |
316 | unsafe { |
317 | let align_m1 = unchecked_sub(align.as_usize(), 1); |
318 | let size_rounded_up = unchecked_add(self.size, align_m1) & !align_m1; |
319 | size_rounded_up |
320 | } |
321 | } |
322 | |
323 | /// Creates a layout by rounding the size of this layout up to a multiple |
324 | /// of the layout's alignment. |
325 | /// |
326 | /// This is equivalent to adding the result of `padding_needed_for` |
327 | /// to the layout's current size. |
328 | #[stable (feature = "alloc_layout_manipulation" , since = "1.44.0" )] |
329 | #[rustc_const_stable (feature = "const_alloc_layout" , since = "1.85.0" )] |
330 | #[must_use = "this returns a new `Layout`, \ |
331 | without modifying the original" ] |
332 | #[inline ] |
333 | pub const fn pad_to_align(&self) -> Layout { |
334 | // This cannot overflow. Quoting from the invariant of Layout: |
335 | // > `size`, when rounded up to the nearest multiple of `align`, |
336 | // > must not overflow isize (i.e., the rounded value must be |
337 | // > less than or equal to `isize::MAX`) |
338 | let new_size = self.size_rounded_up_to_custom_align(self.align); |
339 | |
340 | // SAFETY: padded size is guaranteed to not exceed `isize::MAX`. |
341 | unsafe { Layout::from_size_align_unchecked(new_size, self.align()) } |
342 | } |
343 | |
344 | /// Creates a layout describing the record for `n` instances of |
345 | /// `self`, with a suitable amount of padding between each to |
346 | /// ensure that each instance is given its requested size and |
347 | /// alignment. On success, returns `(k, offs)` where `k` is the |
348 | /// layout of the array and `offs` is the distance between the start |
349 | /// of each element in the array. |
350 | /// |
351 | /// (That distance between elements is sometimes known as "stride".) |
352 | /// |
353 | /// On arithmetic overflow, returns `LayoutError`. |
354 | /// |
355 | /// # Examples |
356 | /// |
357 | /// ``` |
358 | /// #![feature(alloc_layout_extra)] |
359 | /// use std::alloc::Layout; |
360 | /// |
361 | /// // All rust types have a size that's a multiple of their alignment. |
362 | /// let normal = Layout::from_size_align(12, 4).unwrap(); |
363 | /// let repeated = normal.repeat(3).unwrap(); |
364 | /// assert_eq!(repeated, (Layout::from_size_align(36, 4).unwrap(), 12)); |
365 | /// |
366 | /// // But you can manually make layouts which don't meet that rule. |
367 | /// let padding_needed = Layout::from_size_align(6, 4).unwrap(); |
368 | /// let repeated = padding_needed.repeat(3).unwrap(); |
369 | /// assert_eq!(repeated, (Layout::from_size_align(24, 4).unwrap(), 8)); |
370 | /// ``` |
371 | #[unstable (feature = "alloc_layout_extra" , issue = "55724" )] |
372 | #[inline ] |
373 | pub const fn repeat(&self, n: usize) -> Result<(Self, usize), LayoutError> { |
374 | let padded = self.pad_to_align(); |
375 | if let Ok(repeated) = padded.repeat_packed(n) { |
376 | Ok((repeated, padded.size())) |
377 | } else { |
378 | Err(LayoutError) |
379 | } |
380 | } |
381 | |
382 | /// Creates a layout describing the record for `self` followed by |
383 | /// `next`, including any necessary padding to ensure that `next` |
384 | /// will be properly aligned, but *no trailing padding*. |
385 | /// |
386 | /// In order to match C representation layout `repr(C)`, you should |
387 | /// call `pad_to_align` after extending the layout with all fields. |
388 | /// (There is no way to match the default Rust representation |
389 | /// layout `repr(Rust)`, as it is unspecified.) |
390 | /// |
391 | /// Note that the alignment of the resulting layout will be the maximum of |
392 | /// those of `self` and `next`, in order to ensure alignment of both parts. |
393 | /// |
394 | /// Returns `Ok((k, offset))`, where `k` is layout of the concatenated |
395 | /// record and `offset` is the relative location, in bytes, of the |
396 | /// start of the `next` embedded within the concatenated record |
397 | /// (assuming that the record itself starts at offset 0). |
398 | /// |
399 | /// On arithmetic overflow, returns `LayoutError`. |
400 | /// |
401 | /// # Examples |
402 | /// |
403 | /// To calculate the layout of a `#[repr(C)]` structure and the offsets of |
404 | /// the fields from its fields' layouts: |
405 | /// |
406 | /// ```rust |
407 | /// # use std::alloc::{Layout, LayoutError}; |
408 | /// pub fn repr_c(fields: &[Layout]) -> Result<(Layout, Vec<usize>), LayoutError> { |
409 | /// let mut offsets = Vec::new(); |
410 | /// let mut layout = Layout::from_size_align(0, 1)?; |
411 | /// for &field in fields { |
412 | /// let (new_layout, offset) = layout.extend(field)?; |
413 | /// layout = new_layout; |
414 | /// offsets.push(offset); |
415 | /// } |
416 | /// // Remember to finalize with `pad_to_align`! |
417 | /// Ok((layout.pad_to_align(), offsets)) |
418 | /// } |
419 | /// # // test that it works |
420 | /// # #[repr (C)] struct S { a: u64, b: u32, c: u16, d: u32 } |
421 | /// # let s = Layout::new::<S>(); |
422 | /// # let u16 = Layout::new::<u16>(); |
423 | /// # let u32 = Layout::new::<u32>(); |
424 | /// # let u64 = Layout::new::<u64>(); |
425 | /// # assert_eq!(repr_c(&[u64, u32, u16, u32]), Ok((s, vec![0, 8, 12, 16]))); |
426 | /// ``` |
427 | #[stable (feature = "alloc_layout_manipulation" , since = "1.44.0" )] |
428 | #[rustc_const_stable (feature = "const_alloc_layout" , since = "1.85.0" )] |
429 | #[inline ] |
430 | pub const fn extend(&self, next: Self) -> Result<(Self, usize), LayoutError> { |
431 | let new_align = Alignment::max(self.align, next.align); |
432 | let offset = self.size_rounded_up_to_custom_align(next.align); |
433 | |
434 | // SAFETY: `offset` is at most `isize::MAX + 1` (such as from aligning |
435 | // to `Alignment::MAX`) and `next.size` is at most `isize::MAX` (from the |
436 | // `Layout` type invariant). Thus the largest possible `new_size` is |
437 | // `isize::MAX + 1 + isize::MAX`, which is `usize::MAX`, and cannot overflow. |
438 | let new_size = unsafe { unchecked_add(offset, next.size) }; |
439 | |
440 | if let Ok(layout) = Layout::from_size_alignment(new_size, new_align) { |
441 | Ok((layout, offset)) |
442 | } else { |
443 | Err(LayoutError) |
444 | } |
445 | } |
446 | |
447 | /// Creates a layout describing the record for `n` instances of |
448 | /// `self`, with no padding between each instance. |
449 | /// |
450 | /// Note that, unlike `repeat`, `repeat_packed` does not guarantee |
451 | /// that the repeated instances of `self` will be properly |
452 | /// aligned, even if a given instance of `self` is properly |
453 | /// aligned. In other words, if the layout returned by |
454 | /// `repeat_packed` is used to allocate an array, it is not |
455 | /// guaranteed that all elements in the array will be properly |
456 | /// aligned. |
457 | /// |
458 | /// On arithmetic overflow, returns `LayoutError`. |
459 | #[unstable (feature = "alloc_layout_extra" , issue = "55724" )] |
460 | #[inline ] |
461 | pub const fn repeat_packed(&self, n: usize) -> Result<Self, LayoutError> { |
462 | if let Some(size) = self.size.checked_mul(n) { |
463 | // The safe constructor is called here to enforce the isize size limit. |
464 | Layout::from_size_alignment(size, self.align) |
465 | } else { |
466 | Err(LayoutError) |
467 | } |
468 | } |
469 | |
470 | /// Creates a layout describing the record for `self` followed by |
471 | /// `next` with no additional padding between the two. Since no |
472 | /// padding is inserted, the alignment of `next` is irrelevant, |
473 | /// and is not incorporated *at all* into the resulting layout. |
474 | /// |
475 | /// On arithmetic overflow, returns `LayoutError`. |
476 | #[unstable (feature = "alloc_layout_extra" , issue = "55724" )] |
477 | #[inline ] |
478 | pub const fn extend_packed(&self, next: Self) -> Result<Self, LayoutError> { |
479 | // SAFETY: each `size` is at most `isize::MAX == usize::MAX/2`, so the |
480 | // sum is at most `usize::MAX/2*2 == usize::MAX - 1`, and cannot overflow. |
481 | let new_size = unsafe { unchecked_add(self.size, next.size) }; |
482 | // The safe constructor enforces that the new size isn't too big for the alignment |
483 | Layout::from_size_alignment(new_size, self.align) |
484 | } |
485 | |
486 | /// Creates a layout describing the record for a `[T; n]`. |
487 | /// |
488 | /// On arithmetic overflow or when the total size would exceed |
489 | /// `isize::MAX`, returns `LayoutError`. |
490 | #[stable (feature = "alloc_layout_manipulation" , since = "1.44.0" )] |
491 | #[rustc_const_stable (feature = "const_alloc_layout" , since = "1.85.0" )] |
492 | #[inline ] |
493 | pub const fn array<T>(n: usize) -> Result<Self, LayoutError> { |
494 | // Reduce the amount of code we need to monomorphize per `T`. |
495 | return inner(T::LAYOUT, n); |
496 | |
497 | #[inline ] |
498 | const fn inner(element_layout: Layout, n: usize) -> Result<Layout, LayoutError> { |
499 | let Layout { size: element_size, align } = element_layout; |
500 | |
501 | // We need to check two things about the size: |
502 | // - That the total size won't overflow a `usize`, and |
503 | // - That the total size still fits in an `isize`. |
504 | // By using division we can check them both with a single threshold. |
505 | // That'd usually be a bad idea, but thankfully here the element size |
506 | // and alignment are constants, so the compiler will fold all of it. |
507 | if element_size != 0 && n > Layout::max_size_for_align(align) / element_size { |
508 | return Err(LayoutError); |
509 | } |
510 | |
511 | // SAFETY: We just checked that we won't overflow `usize` when we multiply. |
512 | // This is a useless hint inside this function, but after inlining this helps |
513 | // deduplicate checks for whether the overall capacity is zero (e.g., in RawVec's |
514 | // allocation path) before/after this multiplication. |
515 | let array_size = unsafe { unchecked_mul(element_size, n) }; |
516 | |
517 | // SAFETY: We just checked above that the `array_size` will not |
518 | // exceed `isize::MAX` even when rounded up to the alignment. |
519 | // And `Alignment` guarantees it's a power of two. |
520 | unsafe { Ok(Layout::from_size_align_unchecked(array_size, align.as_usize())) } |
521 | } |
522 | } |
523 | } |
524 | |
525 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
526 | #[deprecated ( |
527 | since = "1.52.0" , |
528 | note = "Name does not follow std convention, use LayoutError" , |
529 | suggestion = "LayoutError" |
530 | )] |
531 | pub type LayoutErr = LayoutError; |
532 | |
533 | /// The `LayoutError` is returned when the parameters given |
534 | /// to `Layout::from_size_align` |
535 | /// or some other `Layout` constructor |
536 | /// do not satisfy its documented constraints. |
537 | #[stable (feature = "alloc_layout_error" , since = "1.50.0" )] |
538 | #[non_exhaustive ] |
539 | #[derive (Clone, PartialEq, Eq, Debug)] |
540 | pub struct LayoutError; |
541 | |
542 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
543 | impl Error for LayoutError {} |
544 | |
545 | // (we need this for downstream impl of trait Error) |
546 | #[stable (feature = "alloc_layout" , since = "1.28.0" )] |
547 | impl fmt::Display for LayoutError { |
548 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
549 | f.write_str(data:"invalid parameters to Layout::from_size_align" ) |
550 | } |
551 | } |
552 | |