| 1 | use crate::num::NonZero; |
| 2 | use crate::ops::{ControlFlow, Try}; |
| 3 | |
| 4 | /// An iterator able to yield elements from both ends. |
| 5 | /// |
| 6 | /// Something that implements `DoubleEndedIterator` has one extra capability |
| 7 | /// over something that implements [`Iterator`]: the ability to also take |
| 8 | /// `Item`s from the back, as well as the front. |
| 9 | /// |
| 10 | /// It is important to note that both back and forth work on the same range, |
| 11 | /// and do not cross: iteration is over when they meet in the middle. |
| 12 | /// |
| 13 | /// In a similar fashion to the [`Iterator`] protocol, once a |
| 14 | /// `DoubleEndedIterator` returns [`None`] from a [`next_back()`], calling it |
| 15 | /// again may or may not ever return [`Some`] again. [`next()`] and |
| 16 | /// [`next_back()`] are interchangeable for this purpose. |
| 17 | /// |
| 18 | /// [`next_back()`]: DoubleEndedIterator::next_back |
| 19 | /// [`next()`]: Iterator::next |
| 20 | /// |
| 21 | /// # Examples |
| 22 | /// |
| 23 | /// Basic usage: |
| 24 | /// |
| 25 | /// ``` |
| 26 | /// let numbers = vec![1, 2, 3, 4, 5, 6]; |
| 27 | /// |
| 28 | /// let mut iter = numbers.iter(); |
| 29 | /// |
| 30 | /// assert_eq!(Some(&1), iter.next()); |
| 31 | /// assert_eq!(Some(&6), iter.next_back()); |
| 32 | /// assert_eq!(Some(&5), iter.next_back()); |
| 33 | /// assert_eq!(Some(&2), iter.next()); |
| 34 | /// assert_eq!(Some(&3), iter.next()); |
| 35 | /// assert_eq!(Some(&4), iter.next()); |
| 36 | /// assert_eq!(None, iter.next()); |
| 37 | /// assert_eq!(None, iter.next_back()); |
| 38 | /// ``` |
| 39 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 40 | #[rustc_diagnostic_item = "DoubleEndedIterator" ] |
| 41 | pub trait DoubleEndedIterator: Iterator { |
| 42 | /// Removes and returns an element from the end of the iterator. |
| 43 | /// |
| 44 | /// Returns `None` when there are no more elements. |
| 45 | /// |
| 46 | /// The [trait-level] docs contain more details. |
| 47 | /// |
| 48 | /// [trait-level]: DoubleEndedIterator |
| 49 | /// |
| 50 | /// # Examples |
| 51 | /// |
| 52 | /// Basic usage: |
| 53 | /// |
| 54 | /// ``` |
| 55 | /// let numbers = vec![1, 2, 3, 4, 5, 6]; |
| 56 | /// |
| 57 | /// let mut iter = numbers.iter(); |
| 58 | /// |
| 59 | /// assert_eq!(Some(&1), iter.next()); |
| 60 | /// assert_eq!(Some(&6), iter.next_back()); |
| 61 | /// assert_eq!(Some(&5), iter.next_back()); |
| 62 | /// assert_eq!(Some(&2), iter.next()); |
| 63 | /// assert_eq!(Some(&3), iter.next()); |
| 64 | /// assert_eq!(Some(&4), iter.next()); |
| 65 | /// assert_eq!(None, iter.next()); |
| 66 | /// assert_eq!(None, iter.next_back()); |
| 67 | /// ``` |
| 68 | /// |
| 69 | /// # Remarks |
| 70 | /// |
| 71 | /// The elements yielded by `DoubleEndedIterator`'s methods may differ from |
| 72 | /// the ones yielded by [`Iterator`]'s methods: |
| 73 | /// |
| 74 | /// ``` |
| 75 | /// let vec = vec![(1, 'a' ), (1, 'b' ), (1, 'c' ), (2, 'a' ), (2, 'b' )]; |
| 76 | /// let uniq_by_fst_comp = || { |
| 77 | /// let mut seen = std::collections::HashSet::new(); |
| 78 | /// vec.iter().copied().filter(move |x| seen.insert(x.0)) |
| 79 | /// }; |
| 80 | /// |
| 81 | /// assert_eq!(uniq_by_fst_comp().last(), Some((2, 'a' ))); |
| 82 | /// assert_eq!(uniq_by_fst_comp().next_back(), Some((2, 'b' ))); |
| 83 | /// |
| 84 | /// assert_eq!( |
| 85 | /// uniq_by_fst_comp().fold(vec![], |mut v, x| {v.push(x); v}), |
| 86 | /// vec![(1, 'a' ), (2, 'a' )] |
| 87 | /// ); |
| 88 | /// assert_eq!( |
| 89 | /// uniq_by_fst_comp().rfold(vec![], |mut v, x| {v.push(x); v}), |
| 90 | /// vec![(2, 'b' ), (1, 'c' )] |
| 91 | /// ); |
| 92 | /// ``` |
| 93 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 94 | fn next_back(&mut self) -> Option<Self::Item>; |
| 95 | |
| 96 | /// Advances the iterator from the back by `n` elements. |
| 97 | /// |
| 98 | /// `advance_back_by` is the reverse version of [`advance_by`]. This method will |
| 99 | /// eagerly skip `n` elements starting from the back by calling [`next_back`] up |
| 100 | /// to `n` times until [`None`] is encountered. |
| 101 | /// |
| 102 | /// `advance_back_by(n)` will return `Ok(())` if the iterator successfully advances by |
| 103 | /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered, where `k` |
| 104 | /// is remaining number of steps that could not be advanced because the iterator ran out. |
| 105 | /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`. |
| 106 | /// Otherwise, `k` is always less than `n`. |
| 107 | /// |
| 108 | /// Calling `advance_back_by(0)` can do meaningful work, for example [`Flatten`] can advance its |
| 109 | /// outer iterator until it finds an inner iterator that is not empty, which then often |
| 110 | /// allows it to return a more accurate `size_hint()` than in its initial state. |
| 111 | /// |
| 112 | /// [`advance_by`]: Iterator::advance_by |
| 113 | /// [`Flatten`]: crate::iter::Flatten |
| 114 | /// [`next_back`]: DoubleEndedIterator::next_back |
| 115 | /// |
| 116 | /// # Examples |
| 117 | /// |
| 118 | /// Basic usage: |
| 119 | /// |
| 120 | /// ``` |
| 121 | /// #![feature(iter_advance_by)] |
| 122 | /// |
| 123 | /// use std::num::NonZero; |
| 124 | /// |
| 125 | /// let a = [3, 4, 5, 6]; |
| 126 | /// let mut iter = a.iter(); |
| 127 | /// |
| 128 | /// assert_eq!(iter.advance_back_by(2), Ok(())); |
| 129 | /// assert_eq!(iter.next_back(), Some(&4)); |
| 130 | /// assert_eq!(iter.advance_back_by(0), Ok(())); |
| 131 | /// assert_eq!(iter.advance_back_by(100), Err(NonZero::new(99).unwrap())); // only `&3` was skipped |
| 132 | /// ``` |
| 133 | /// |
| 134 | /// [`Ok(())`]: Ok |
| 135 | /// [`Err(k)`]: Err |
| 136 | #[inline ] |
| 137 | #[unstable (feature = "iter_advance_by" , reason = "recently added" , issue = "77404" )] |
| 138 | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| 139 | for i in 0..n { |
| 140 | if self.next_back().is_none() { |
| 141 | // SAFETY: `i` is always less than `n`. |
| 142 | return Err(unsafe { NonZero::new_unchecked(n - i) }); |
| 143 | } |
| 144 | } |
| 145 | Ok(()) |
| 146 | } |
| 147 | |
| 148 | /// Returns the `n`th element from the end of the iterator. |
| 149 | /// |
| 150 | /// This is essentially the reversed version of [`Iterator::nth()`]. |
| 151 | /// Although like most indexing operations, the count starts from zero, so |
| 152 | /// `nth_back(0)` returns the first value from the end, `nth_back(1)` the |
| 153 | /// second, and so on. |
| 154 | /// |
| 155 | /// Note that all elements between the end and the returned element will be |
| 156 | /// consumed, including the returned element. This also means that calling |
| 157 | /// `nth_back(0)` multiple times on the same iterator will return different |
| 158 | /// elements. |
| 159 | /// |
| 160 | /// `nth_back()` will return [`None`] if `n` is greater than or equal to the |
| 161 | /// length of the iterator. |
| 162 | /// |
| 163 | /// # Examples |
| 164 | /// |
| 165 | /// Basic usage: |
| 166 | /// |
| 167 | /// ``` |
| 168 | /// let a = [1, 2, 3]; |
| 169 | /// assert_eq!(a.iter().nth_back(2), Some(&1)); |
| 170 | /// ``` |
| 171 | /// |
| 172 | /// Calling `nth_back()` multiple times doesn't rewind the iterator: |
| 173 | /// |
| 174 | /// ``` |
| 175 | /// let a = [1, 2, 3]; |
| 176 | /// |
| 177 | /// let mut iter = a.iter(); |
| 178 | /// |
| 179 | /// assert_eq!(iter.nth_back(1), Some(&2)); |
| 180 | /// assert_eq!(iter.nth_back(1), None); |
| 181 | /// ``` |
| 182 | /// |
| 183 | /// Returning `None` if there are less than `n + 1` elements: |
| 184 | /// |
| 185 | /// ``` |
| 186 | /// let a = [1, 2, 3]; |
| 187 | /// assert_eq!(a.iter().nth_back(10), None); |
| 188 | /// ``` |
| 189 | #[inline ] |
| 190 | #[stable (feature = "iter_nth_back" , since = "1.37.0" )] |
| 191 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
| 192 | if self.advance_back_by(n).is_err() { |
| 193 | return None; |
| 194 | } |
| 195 | self.next_back() |
| 196 | } |
| 197 | |
| 198 | /// This is the reverse version of [`Iterator::try_fold()`]: it takes |
| 199 | /// elements starting from the back of the iterator. |
| 200 | /// |
| 201 | /// # Examples |
| 202 | /// |
| 203 | /// Basic usage: |
| 204 | /// |
| 205 | /// ``` |
| 206 | /// let a = ["1" , "2" , "3" ]; |
| 207 | /// let sum = a.iter() |
| 208 | /// .map(|&s| s.parse::<i32>()) |
| 209 | /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y))); |
| 210 | /// assert_eq!(sum, Ok(6)); |
| 211 | /// ``` |
| 212 | /// |
| 213 | /// Short-circuiting: |
| 214 | /// |
| 215 | /// ``` |
| 216 | /// let a = ["1" , "rust" , "3" ]; |
| 217 | /// let mut it = a.iter(); |
| 218 | /// let sum = it |
| 219 | /// .by_ref() |
| 220 | /// .map(|&s| s.parse::<i32>()) |
| 221 | /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y))); |
| 222 | /// assert!(sum.is_err()); |
| 223 | /// |
| 224 | /// // Because it short-circuited, the remaining elements are still |
| 225 | /// // available through the iterator. |
| 226 | /// assert_eq!(it.next_back(), Some(&"1" )); |
| 227 | /// ``` |
| 228 | #[inline ] |
| 229 | #[stable (feature = "iterator_try_fold" , since = "1.27.0" )] |
| 230 | fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R |
| 231 | where |
| 232 | Self: Sized, |
| 233 | F: FnMut(B, Self::Item) -> R, |
| 234 | R: Try<Output = B>, |
| 235 | { |
| 236 | let mut accum = init; |
| 237 | while let Some(x) = self.next_back() { |
| 238 | accum = f(accum, x)?; |
| 239 | } |
| 240 | try { accum } |
| 241 | } |
| 242 | |
| 243 | /// An iterator method that reduces the iterator's elements to a single, |
| 244 | /// final value, starting from the back. |
| 245 | /// |
| 246 | /// This is the reverse version of [`Iterator::fold()`]: it takes elements |
| 247 | /// starting from the back of the iterator. |
| 248 | /// |
| 249 | /// `rfold()` takes two arguments: an initial value, and a closure with two |
| 250 | /// arguments: an 'accumulator', and an element. The closure returns the value that |
| 251 | /// the accumulator should have for the next iteration. |
| 252 | /// |
| 253 | /// The initial value is the value the accumulator will have on the first |
| 254 | /// call. |
| 255 | /// |
| 256 | /// After applying this closure to every element of the iterator, `rfold()` |
| 257 | /// returns the accumulator. |
| 258 | /// |
| 259 | /// This operation is sometimes called 'reduce' or 'inject'. |
| 260 | /// |
| 261 | /// Folding is useful whenever you have a collection of something, and want |
| 262 | /// to produce a single value from it. |
| 263 | /// |
| 264 | /// Note: `rfold()` combines elements in a *right-associative* fashion. For associative |
| 265 | /// operators like `+`, the order the elements are combined in is not important, but for non-associative |
| 266 | /// operators like `-` the order will affect the final result. |
| 267 | /// For a *left-associative* version of `rfold()`, see [`Iterator::fold()`]. |
| 268 | /// |
| 269 | /// # Examples |
| 270 | /// |
| 271 | /// Basic usage: |
| 272 | /// |
| 273 | /// ``` |
| 274 | /// let a = [1, 2, 3]; |
| 275 | /// |
| 276 | /// // the sum of all of the elements of a |
| 277 | /// let sum = a.iter() |
| 278 | /// .rfold(0, |acc, &x| acc + x); |
| 279 | /// |
| 280 | /// assert_eq!(sum, 6); |
| 281 | /// ``` |
| 282 | /// |
| 283 | /// This example demonstrates the right-associative nature of `rfold()`: |
| 284 | /// it builds a string, starting with an initial value |
| 285 | /// and continuing with each element from the back until the front: |
| 286 | /// |
| 287 | /// ``` |
| 288 | /// let numbers = [1, 2, 3, 4, 5]; |
| 289 | /// |
| 290 | /// let zero = "0" .to_string(); |
| 291 | /// |
| 292 | /// let result = numbers.iter().rfold(zero, |acc, &x| { |
| 293 | /// format!("({x} + {acc})" ) |
| 294 | /// }); |
| 295 | /// |
| 296 | /// assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))" ); |
| 297 | /// ``` |
| 298 | #[doc (alias = "foldr" )] |
| 299 | #[inline ] |
| 300 | #[stable (feature = "iter_rfold" , since = "1.27.0" )] |
| 301 | fn rfold<B, F>(mut self, init: B, mut f: F) -> B |
| 302 | where |
| 303 | Self: Sized, |
| 304 | F: FnMut(B, Self::Item) -> B, |
| 305 | { |
| 306 | let mut accum = init; |
| 307 | while let Some(x) = self.next_back() { |
| 308 | accum = f(accum, x); |
| 309 | } |
| 310 | accum |
| 311 | } |
| 312 | |
| 313 | /// Searches for an element of an iterator from the back that satisfies a predicate. |
| 314 | /// |
| 315 | /// `rfind()` takes a closure that returns `true` or `false`. It applies |
| 316 | /// this closure to each element of the iterator, starting at the end, and if any |
| 317 | /// of them return `true`, then `rfind()` returns [`Some(element)`]. If they all return |
| 318 | /// `false`, it returns [`None`]. |
| 319 | /// |
| 320 | /// `rfind()` is short-circuiting; in other words, it will stop processing |
| 321 | /// as soon as the closure returns `true`. |
| 322 | /// |
| 323 | /// Because `rfind()` takes a reference, and many iterators iterate over |
| 324 | /// references, this leads to a possibly confusing situation where the |
| 325 | /// argument is a double reference. You can see this effect in the |
| 326 | /// examples below, with `&&x`. |
| 327 | /// |
| 328 | /// [`Some(element)`]: Some |
| 329 | /// |
| 330 | /// # Examples |
| 331 | /// |
| 332 | /// Basic usage: |
| 333 | /// |
| 334 | /// ``` |
| 335 | /// let a = [1, 2, 3]; |
| 336 | /// |
| 337 | /// assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2)); |
| 338 | /// |
| 339 | /// assert_eq!(a.iter().rfind(|&&x| x == 5), None); |
| 340 | /// ``` |
| 341 | /// |
| 342 | /// Stopping at the first `true`: |
| 343 | /// |
| 344 | /// ``` |
| 345 | /// let a = [1, 2, 3]; |
| 346 | /// |
| 347 | /// let mut iter = a.iter(); |
| 348 | /// |
| 349 | /// assert_eq!(iter.rfind(|&&x| x == 2), Some(&2)); |
| 350 | /// |
| 351 | /// // we can still use `iter`, as there are more elements. |
| 352 | /// assert_eq!(iter.next_back(), Some(&1)); |
| 353 | /// ``` |
| 354 | #[inline ] |
| 355 | #[stable (feature = "iter_rfind" , since = "1.27.0" )] |
| 356 | fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item> |
| 357 | where |
| 358 | Self: Sized, |
| 359 | P: FnMut(&Self::Item) -> bool, |
| 360 | { |
| 361 | #[inline ] |
| 362 | fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> { |
| 363 | move |(), x| { |
| 364 | if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | self.try_rfold((), check(predicate)).break_value() |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 373 | impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I { |
| 374 | fn next_back(&mut self) -> Option<I::Item> { |
| 375 | (**self).next_back() |
| 376 | } |
| 377 | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| 378 | (**self).advance_back_by(n) |
| 379 | } |
| 380 | fn nth_back(&mut self, n: usize) -> Option<I::Item> { |
| 381 | (**self).nth_back(n) |
| 382 | } |
| 383 | fn rfold<B, F>(self, init: B, f: F) -> B |
| 384 | where |
| 385 | F: FnMut(B, Self::Item) -> B, |
| 386 | { |
| 387 | self.spec_rfold(init, f) |
| 388 | } |
| 389 | fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R |
| 390 | where |
| 391 | F: FnMut(B, Self::Item) -> R, |
| 392 | R: Try<Output = B>, |
| 393 | { |
| 394 | self.spec_try_rfold(init, f) |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /// Helper trait to specialize `rfold` and `rtry_fold` for `&mut I where I: Sized` |
| 399 | trait DoubleEndedIteratorRefSpec: DoubleEndedIterator { |
| 400 | fn spec_rfold<B, F>(self, init: B, f: F) -> B |
| 401 | where |
| 402 | F: FnMut(B, Self::Item) -> B; |
| 403 | |
| 404 | fn spec_try_rfold<B, F, R>(&mut self, init: B, f: F) -> R |
| 405 | where |
| 406 | F: FnMut(B, Self::Item) -> R, |
| 407 | R: Try<Output = B>; |
| 408 | } |
| 409 | |
| 410 | impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIteratorRefSpec for &mut I { |
| 411 | default fn spec_rfold<B, F>(self, init: B, mut f: F) -> B |
| 412 | where |
| 413 | F: FnMut(B, Self::Item) -> B, |
| 414 | { |
| 415 | let mut accum: B = init; |
| 416 | while let Some(x: ::Item) = self.next_back() { |
| 417 | accum = f(accum, x); |
| 418 | } |
| 419 | accum |
| 420 | } |
| 421 | |
| 422 | default fn spec_try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R |
| 423 | where |
| 424 | F: FnMut(B, Self::Item) -> R, |
| 425 | R: Try<Output = B>, |
| 426 | { |
| 427 | let mut accum: B = init; |
| 428 | while let Some(x: ::Item) = self.next_back() { |
| 429 | accum = f(accum, x)?; |
| 430 | } |
| 431 | try { accum } |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | impl<I: DoubleEndedIterator> DoubleEndedIteratorRefSpec for &mut I { |
| 436 | impl_fold_via_try_fold! { spec_rfold -> spec_try_rfold } |
| 437 | |
| 438 | fn spec_try_rfold<B, F, R>(&mut self, init: B, f: F) -> R |
| 439 | where |
| 440 | F: FnMut(B, Self::Item) -> R, |
| 441 | R: Try<Output = B>, |
| 442 | { |
| 443 | (**self).try_rfold(init, f) |
| 444 | } |
| 445 | } |
| 446 | |