| 1 | //! Custom arbitrary-precision number (bignum) implementation. |
| 2 | //! |
| 3 | //! This is designed to avoid the heap allocation at expense of stack memory. |
| 4 | //! The most used bignum type, `Big32x40`, is limited by 32 × 40 = 1,280 bits |
| 5 | //! and will take at most 160 bytes of stack memory. This is more than enough |
| 6 | //! for round-tripping all possible finite `f64` values. |
| 7 | //! |
| 8 | //! In principle it is possible to have multiple bignum types for different |
| 9 | //! inputs, but we don't do so to avoid the code bloat. Each bignum is still |
| 10 | //! tracked for the actual usages, so it normally doesn't matter. |
| 11 | |
| 12 | // This module is only for dec2flt and flt2dec, and only public because of coretests. |
| 13 | // It is not intended to ever be stabilized. |
| 14 | #![doc (hidden)] |
| 15 | #![unstable ( |
| 16 | feature = "core_private_bignum" , |
| 17 | reason = "internal routines only exposed for testing" , |
| 18 | issue = "none" |
| 19 | )] |
| 20 | #![macro_use ] |
| 21 | |
| 22 | /// Arithmetic operations required by bignums. |
| 23 | pub trait FullOps: Sized { |
| 24 | /// Returns `(carry', v')` such that `carry' * 2^W + v' = self * other + other2 + carry`, |
| 25 | /// where `W` is the number of bits in `Self`. |
| 26 | fn full_mul_add(self, other: Self, other2: Self, carry: Self) -> (Self /* carry */, Self); |
| 27 | |
| 28 | /// Returns `(quo, rem)` such that `borrow * 2^W + self = quo * other + rem` |
| 29 | /// and `0 <= rem < other`, where `W` is the number of bits in `Self`. |
| 30 | fn full_div_rem(self, other: Self, borrow: Self) |
| 31 | -> (Self /* quotient */, Self /* remainder */); |
| 32 | } |
| 33 | |
| 34 | macro_rules! impl_full_ops { |
| 35 | ($($ty:ty: add($addfn:path), mul/div($bigty:ident);)*) => ( |
| 36 | $( |
| 37 | impl FullOps for $ty { |
| 38 | fn full_mul_add(self, other: $ty, other2: $ty, carry: $ty) -> ($ty, $ty) { |
| 39 | // This cannot overflow; |
| 40 | // the output is between `0` and `2^nbits * (2^nbits - 1)`. |
| 41 | let v = (self as $bigty) * (other as $bigty) + (other2 as $bigty) + |
| 42 | (carry as $bigty); |
| 43 | ((v >> <$ty>::BITS) as $ty, v as $ty) |
| 44 | } |
| 45 | |
| 46 | fn full_div_rem(self, other: $ty, borrow: $ty) -> ($ty, $ty) { |
| 47 | debug_assert!(borrow < other); |
| 48 | // This cannot overflow; the output is between `0` and `other * (2^nbits - 1)`. |
| 49 | let lhs = ((borrow as $bigty) << <$ty>::BITS) | (self as $bigty); |
| 50 | let rhs = other as $bigty; |
| 51 | ((lhs / rhs) as $ty, (lhs % rhs) as $ty) |
| 52 | } |
| 53 | } |
| 54 | )* |
| 55 | ) |
| 56 | } |
| 57 | |
| 58 | impl_full_ops! { |
| 59 | u8: add(intrinsics::u8_add_with_overflow), mul/div(u16); |
| 60 | u16: add(intrinsics::u16_add_with_overflow), mul/div(u32); |
| 61 | u32: add(intrinsics::u32_add_with_overflow), mul/div(u64); |
| 62 | // See RFC #521 for enabling this. |
| 63 | // u64: add(intrinsics::u64_add_with_overflow), mul/div(u128); |
| 64 | } |
| 65 | |
| 66 | /// Table of powers of 5 representable in digits. Specifically, the largest {u8, u16, u32} value |
| 67 | /// that's a power of five, plus the corresponding exponent. Used in `mul_pow5`. |
| 68 | const SMALL_POW5: [(u64, usize); 3] = [(125, 3), (15625, 6), (1_220_703_125, 13)]; |
| 69 | |
| 70 | macro_rules! define_bignum { |
| 71 | ($name:ident: type=$ty:ty, n=$n:expr) => { |
| 72 | /// Stack-allocated arbitrary-precision (up to certain limit) integer. |
| 73 | /// |
| 74 | /// This is backed by a fixed-size array of given type ("digit"). |
| 75 | /// While the array is not very large (normally some hundred bytes), |
| 76 | /// copying it recklessly may result in the performance hit. |
| 77 | /// Thus this is intentionally not `Copy`. |
| 78 | /// |
| 79 | /// All operations available to bignums panic in the case of overflows. |
| 80 | /// The caller is responsible to use large enough bignum types. |
| 81 | pub struct $name { |
| 82 | /// One plus the offset to the maximum "digit" in use. |
| 83 | /// This does not decrease, so be aware of the computation order. |
| 84 | /// `base[size..]` should be zero. |
| 85 | size: usize, |
| 86 | /// Digits. `[a, b, c, ...]` represents `a + b*2^W + c*2^(2W) + ...` |
| 87 | /// where `W` is the number of bits in the digit type. |
| 88 | base: [$ty; $n], |
| 89 | } |
| 90 | |
| 91 | impl $name { |
| 92 | /// Makes a bignum from one digit. |
| 93 | pub fn from_small(v: $ty) -> $name { |
| 94 | let mut base = [0; $n]; |
| 95 | base[0] = v; |
| 96 | $name { size: 1, base } |
| 97 | } |
| 98 | |
| 99 | /// Makes a bignum from `u64` value. |
| 100 | pub fn from_u64(mut v: u64) -> $name { |
| 101 | let mut base = [0; $n]; |
| 102 | let mut sz = 0; |
| 103 | while v > 0 { |
| 104 | base[sz] = v as $ty; |
| 105 | v >>= <$ty>::BITS; |
| 106 | sz += 1; |
| 107 | } |
| 108 | $name { size: sz, base } |
| 109 | } |
| 110 | |
| 111 | /// Returns the internal digits as a slice `[a, b, c, ...]` such that the numeric |
| 112 | /// value is `a + b * 2^W + c * 2^(2W) + ...` where `W` is the number of bits in |
| 113 | /// the digit type. |
| 114 | pub fn digits(&self) -> &[$ty] { |
| 115 | &self.base[..self.size] |
| 116 | } |
| 117 | |
| 118 | /// Returns the `i`-th bit where bit 0 is the least significant one. |
| 119 | /// In other words, the bit with weight `2^i`. |
| 120 | pub fn get_bit(&self, i: usize) -> u8 { |
| 121 | let digitbits = <$ty>::BITS as usize; |
| 122 | let d = i / digitbits; |
| 123 | let b = i % digitbits; |
| 124 | ((self.base[d] >> b) & 1) as u8 |
| 125 | } |
| 126 | |
| 127 | /// Returns `true` if the bignum is zero. |
| 128 | pub fn is_zero(&self) -> bool { |
| 129 | self.digits().iter().all(|&v| v == 0) |
| 130 | } |
| 131 | |
| 132 | /// Returns the number of bits necessary to represent this value. Note that zero |
| 133 | /// is considered to need 0 bits. |
| 134 | pub fn bit_length(&self) -> usize { |
| 135 | let digitbits = <$ty>::BITS as usize; |
| 136 | let digits = self.digits(); |
| 137 | // Find the most significant non-zero digit. |
| 138 | let msd = digits.iter().rposition(|&x| x != 0); |
| 139 | match msd { |
| 140 | Some(msd) => msd * digitbits + digits[msd].ilog2() as usize + 1, |
| 141 | // There are no non-zero digits, i.e., the number is zero. |
| 142 | _ => 0, |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | /// Adds `other` to itself and returns its own mutable reference. |
| 147 | pub fn add<'a>(&'a mut self, other: &$name) -> &'a mut $name { |
| 148 | use crate::{cmp, iter}; |
| 149 | |
| 150 | let mut sz = cmp::max(self.size, other.size); |
| 151 | let mut carry = false; |
| 152 | for (a, b) in iter::zip(&mut self.base[..sz], &other.base[..sz]) { |
| 153 | let (v, c) = (*a).carrying_add(*b, carry); |
| 154 | *a = v; |
| 155 | carry = c; |
| 156 | } |
| 157 | if carry { |
| 158 | self.base[sz] = 1; |
| 159 | sz += 1; |
| 160 | } |
| 161 | self.size = sz; |
| 162 | self |
| 163 | } |
| 164 | |
| 165 | pub fn add_small(&mut self, other: $ty) -> &mut $name { |
| 166 | let (v, mut carry) = self.base[0].carrying_add(other, false); |
| 167 | self.base[0] = v; |
| 168 | let mut i = 1; |
| 169 | while carry { |
| 170 | let (v, c) = self.base[i].carrying_add(0, carry); |
| 171 | self.base[i] = v; |
| 172 | carry = c; |
| 173 | i += 1; |
| 174 | } |
| 175 | if i > self.size { |
| 176 | self.size = i; |
| 177 | } |
| 178 | self |
| 179 | } |
| 180 | |
| 181 | /// Subtracts `other` from itself and returns its own mutable reference. |
| 182 | pub fn sub<'a>(&'a mut self, other: &$name) -> &'a mut $name { |
| 183 | use crate::{cmp, iter}; |
| 184 | |
| 185 | let sz = cmp::max(self.size, other.size); |
| 186 | let mut noborrow = true; |
| 187 | for (a, b) in iter::zip(&mut self.base[..sz], &other.base[..sz]) { |
| 188 | let (v, c) = (*a).carrying_add(!*b, noborrow); |
| 189 | *a = v; |
| 190 | noborrow = c; |
| 191 | } |
| 192 | assert!(noborrow); |
| 193 | self.size = sz; |
| 194 | self |
| 195 | } |
| 196 | |
| 197 | /// Multiplies itself by a digit-sized `other` and returns its own |
| 198 | /// mutable reference. |
| 199 | pub fn mul_small(&mut self, other: $ty) -> &mut $name { |
| 200 | let mut sz = self.size; |
| 201 | let mut carry = 0; |
| 202 | for a in &mut self.base[..sz] { |
| 203 | let (v, c) = (*a).carrying_mul(other, carry); |
| 204 | *a = v; |
| 205 | carry = c; |
| 206 | } |
| 207 | if carry > 0 { |
| 208 | self.base[sz] = carry; |
| 209 | sz += 1; |
| 210 | } |
| 211 | self.size = sz; |
| 212 | self |
| 213 | } |
| 214 | |
| 215 | /// Multiplies itself by `2^bits` and returns its own mutable reference. |
| 216 | pub fn mul_pow2(&mut self, bits: usize) -> &mut $name { |
| 217 | let digitbits = <$ty>::BITS as usize; |
| 218 | let digits = bits / digitbits; |
| 219 | let bits = bits % digitbits; |
| 220 | |
| 221 | assert!(digits < $n); |
| 222 | debug_assert!(self.base[$n - digits..].iter().all(|&v| v == 0)); |
| 223 | debug_assert!(bits == 0 || (self.base[$n - digits - 1] >> (digitbits - bits)) == 0); |
| 224 | |
| 225 | // shift by `digits * digitbits` bits |
| 226 | for i in (0..self.size).rev() { |
| 227 | self.base[i + digits] = self.base[i]; |
| 228 | } |
| 229 | for i in 0..digits { |
| 230 | self.base[i] = 0; |
| 231 | } |
| 232 | |
| 233 | // shift by `bits` bits |
| 234 | let mut sz = self.size + digits; |
| 235 | if bits > 0 { |
| 236 | let last = sz; |
| 237 | let overflow = self.base[last - 1] >> (digitbits - bits); |
| 238 | if overflow > 0 { |
| 239 | self.base[last] = overflow; |
| 240 | sz += 1; |
| 241 | } |
| 242 | for i in (digits + 1..last).rev() { |
| 243 | self.base[i] = |
| 244 | (self.base[i] << bits) | (self.base[i - 1] >> (digitbits - bits)); |
| 245 | } |
| 246 | self.base[digits] <<= bits; |
| 247 | // self.base[..digits] is zero, no need to shift |
| 248 | } |
| 249 | |
| 250 | self.size = sz; |
| 251 | self |
| 252 | } |
| 253 | |
| 254 | /// Multiplies itself by `5^e` and returns its own mutable reference. |
| 255 | pub fn mul_pow5(&mut self, mut e: usize) -> &mut $name { |
| 256 | use crate::num::bignum::SMALL_POW5; |
| 257 | |
| 258 | // There are exactly n trailing zeros on 2^n, and the only relevant digit sizes |
| 259 | // are consecutive powers of two, so this is well suited index for the table. |
| 260 | let table_index = size_of::<$ty>().trailing_zeros() as usize; |
| 261 | let (small_power, small_e) = SMALL_POW5[table_index]; |
| 262 | let small_power = small_power as $ty; |
| 263 | |
| 264 | // Multiply with the largest single-digit power as long as possible ... |
| 265 | while e >= small_e { |
| 266 | self.mul_small(small_power); |
| 267 | e -= small_e; |
| 268 | } |
| 269 | |
| 270 | // ... then finish off the remainder. |
| 271 | let mut rest_power = 1; |
| 272 | for _ in 0..e { |
| 273 | rest_power *= 5; |
| 274 | } |
| 275 | self.mul_small(rest_power); |
| 276 | |
| 277 | self |
| 278 | } |
| 279 | |
| 280 | /// Multiplies itself by a number described by `other[0] + other[1] * 2^W + |
| 281 | /// other[2] * 2^(2W) + ...` (where `W` is the number of bits in the digit type) |
| 282 | /// and returns its own mutable reference. |
| 283 | pub fn mul_digits<'a>(&'a mut self, other: &[$ty]) -> &'a mut $name { |
| 284 | // the internal routine. works best when aa.len() <= bb.len(). |
| 285 | fn mul_inner(ret: &mut [$ty; $n], aa: &[$ty], bb: &[$ty]) -> usize { |
| 286 | use crate::num::bignum::FullOps; |
| 287 | |
| 288 | let mut retsz = 0; |
| 289 | for (i, &a) in aa.iter().enumerate() { |
| 290 | if a == 0 { |
| 291 | continue; |
| 292 | } |
| 293 | let mut sz = bb.len(); |
| 294 | let mut carry = 0; |
| 295 | for (j, &b) in bb.iter().enumerate() { |
| 296 | let (c, v) = a.full_mul_add(b, ret[i + j], carry); |
| 297 | ret[i + j] = v; |
| 298 | carry = c; |
| 299 | } |
| 300 | if carry > 0 { |
| 301 | ret[i + sz] = carry; |
| 302 | sz += 1; |
| 303 | } |
| 304 | if retsz < i + sz { |
| 305 | retsz = i + sz; |
| 306 | } |
| 307 | } |
| 308 | retsz |
| 309 | } |
| 310 | |
| 311 | let mut ret = [0; $n]; |
| 312 | let retsz = if self.size < other.len() { |
| 313 | mul_inner(&mut ret, &self.digits(), other) |
| 314 | } else { |
| 315 | mul_inner(&mut ret, other, &self.digits()) |
| 316 | }; |
| 317 | self.base = ret; |
| 318 | self.size = retsz; |
| 319 | self |
| 320 | } |
| 321 | |
| 322 | /// Divides itself by a digit-sized `other` and returns its own |
| 323 | /// mutable reference *and* the remainder. |
| 324 | pub fn div_rem_small(&mut self, other: $ty) -> (&mut $name, $ty) { |
| 325 | use crate::num::bignum::FullOps; |
| 326 | |
| 327 | assert!(other > 0); |
| 328 | |
| 329 | let sz = self.size; |
| 330 | let mut borrow = 0; |
| 331 | for a in self.base[..sz].iter_mut().rev() { |
| 332 | let (q, r) = (*a).full_div_rem(other, borrow); |
| 333 | *a = q; |
| 334 | borrow = r; |
| 335 | } |
| 336 | (self, borrow) |
| 337 | } |
| 338 | |
| 339 | /// Divide self by another bignum, overwriting `q` with the quotient and `r` with the |
| 340 | /// remainder. |
| 341 | pub fn div_rem(&self, d: &$name, q: &mut $name, r: &mut $name) { |
| 342 | // Stupid slow base-2 long division taken from |
| 343 | // https://en.wikipedia.org/wiki/Division_algorithm |
| 344 | // FIXME use a greater base ($ty) for the long division. |
| 345 | assert!(!d.is_zero()); |
| 346 | let digitbits = <$ty>::BITS as usize; |
| 347 | for digit in &mut q.base[..] { |
| 348 | *digit = 0; |
| 349 | } |
| 350 | for digit in &mut r.base[..] { |
| 351 | *digit = 0; |
| 352 | } |
| 353 | r.size = d.size; |
| 354 | q.size = 1; |
| 355 | let mut q_is_zero = true; |
| 356 | let end = self.bit_length(); |
| 357 | for i in (0..end).rev() { |
| 358 | r.mul_pow2(1); |
| 359 | r.base[0] |= self.get_bit(i) as $ty; |
| 360 | if &*r >= d { |
| 361 | r.sub(d); |
| 362 | // Set bit `i` of q to 1. |
| 363 | let digit_idx = i / digitbits; |
| 364 | let bit_idx = i % digitbits; |
| 365 | if q_is_zero { |
| 366 | q.size = digit_idx + 1; |
| 367 | q_is_zero = false; |
| 368 | } |
| 369 | q.base[digit_idx] |= 1 << bit_idx; |
| 370 | } |
| 371 | } |
| 372 | debug_assert!(q.base[q.size..].iter().all(|&d| d == 0)); |
| 373 | debug_assert!(r.base[r.size..].iter().all(|&d| d == 0)); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | impl crate::cmp::PartialEq for $name { |
| 378 | fn eq(&self, other: &$name) -> bool { |
| 379 | self.base[..] == other.base[..] |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | impl crate::cmp::Eq for $name {} |
| 384 | |
| 385 | impl crate::cmp::PartialOrd for $name { |
| 386 | fn partial_cmp(&self, other: &$name) -> crate::option::Option<crate::cmp::Ordering> { |
| 387 | crate::option::Option::Some(self.cmp(other)) |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | impl crate::cmp::Ord for $name { |
| 392 | fn cmp(&self, other: &$name) -> crate::cmp::Ordering { |
| 393 | use crate::cmp::max; |
| 394 | let sz = max(self.size, other.size); |
| 395 | let lhs = self.base[..sz].iter().cloned().rev(); |
| 396 | let rhs = other.base[..sz].iter().cloned().rev(); |
| 397 | lhs.cmp(rhs) |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | impl crate::clone::Clone for $name { |
| 402 | fn clone(&self) -> Self { |
| 403 | Self { size: self.size, base: self.base } |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | impl crate::clone::UseCloned for $name {} |
| 408 | |
| 409 | impl crate::fmt::Debug for $name { |
| 410 | fn fmt(&self, f: &mut crate::fmt::Formatter<'_>) -> crate::fmt::Result { |
| 411 | let sz = if self.size < 1 { 1 } else { self.size }; |
| 412 | let digitlen = <$ty>::BITS as usize / 4; |
| 413 | |
| 414 | write!(f, "{:#x}" , self.base[sz - 1])?; |
| 415 | for &v in self.base[..sz - 1].iter().rev() { |
| 416 | write!(f, "_{:01$x}" , v, digitlen)?; |
| 417 | } |
| 418 | crate::result::Result::Ok(()) |
| 419 | } |
| 420 | } |
| 421 | }; |
| 422 | } |
| 423 | |
| 424 | /// The digit type for `Big32x40`. |
| 425 | pub type Digit32 = u32; |
| 426 | |
| 427 | define_bignum!(Big32x40: type=Digit32, n=40); |
| 428 | |
| 429 | // this one is used for testing only. |
| 430 | #[doc (hidden)] |
| 431 | pub mod tests { |
| 432 | define_bignum!(Big8x3: type=u8, n=3); |
| 433 | } |
| 434 | |