| 1 | //! Constants for the `f128` quadruple-precision floating point type. |
| 2 | //! |
| 3 | //! *[See also the `f128` primitive type][f128].* |
| 4 | //! |
| 5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
| 6 | //! |
| 7 | //! For the constants defined directly in this module |
| 8 | //! (as distinct from those defined in the `consts` sub-module), |
| 9 | //! new code should instead use the associated constants |
| 10 | //! defined directly on the `f128` type. |
| 11 | |
| 12 | #![unstable (feature = "f128" , issue = "116909" )] |
| 13 | |
| 14 | use crate::convert::FloatToInt; |
| 15 | use crate::num::FpCategory; |
| 16 | use crate::panic::const_assert; |
| 17 | use crate::{intrinsics, mem}; |
| 18 | |
| 19 | /// Basic mathematical constants. |
| 20 | #[unstable (feature = "f128" , issue = "116909" )] |
| 21 | pub mod consts { |
| 22 | // FIXME: replace with mathematical constants from cmath. |
| 23 | |
| 24 | /// Archimedes' constant (π) |
| 25 | #[unstable (feature = "f128" , issue = "116909" )] |
| 26 | pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128; |
| 27 | |
| 28 | /// The full circle constant (τ) |
| 29 | /// |
| 30 | /// Equal to 2π. |
| 31 | #[unstable (feature = "f128" , issue = "116909" )] |
| 32 | pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128; |
| 33 | |
| 34 | /// The golden ratio (φ) |
| 35 | #[unstable (feature = "f128" , issue = "116909" )] |
| 36 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 37 | pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128; |
| 38 | |
| 39 | /// The Euler-Mascheroni constant (γ) |
| 40 | #[unstable (feature = "f128" , issue = "116909" )] |
| 41 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 42 | pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128; |
| 43 | |
| 44 | /// π/2 |
| 45 | #[unstable (feature = "f128" , issue = "116909" )] |
| 46 | pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128; |
| 47 | |
| 48 | /// π/3 |
| 49 | #[unstable (feature = "f128" , issue = "116909" )] |
| 50 | pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128; |
| 51 | |
| 52 | /// π/4 |
| 53 | #[unstable (feature = "f128" , issue = "116909" )] |
| 54 | pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128; |
| 55 | |
| 56 | /// π/6 |
| 57 | #[unstable (feature = "f128" , issue = "116909" )] |
| 58 | pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128; |
| 59 | |
| 60 | /// π/8 |
| 61 | #[unstable (feature = "f128" , issue = "116909" )] |
| 62 | pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128; |
| 63 | |
| 64 | /// 1/π |
| 65 | #[unstable (feature = "f128" , issue = "116909" )] |
| 66 | pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128; |
| 67 | |
| 68 | /// 1/sqrt(π) |
| 69 | #[unstable (feature = "f128" , issue = "116909" )] |
| 70 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 71 | pub const FRAC_1_SQRT_PI: f128 = |
| 72 | 0.564189583547756286948079451560772585844050629328998856844086_f128; |
| 73 | |
| 74 | /// 1/sqrt(2π) |
| 75 | #[doc (alias = "FRAC_1_SQRT_TAU" )] |
| 76 | #[unstable (feature = "f128" , issue = "116909" )] |
| 77 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 78 | pub const FRAC_1_SQRT_2PI: f128 = |
| 79 | 0.398942280401432677939946059934381868475858631164934657665926_f128; |
| 80 | |
| 81 | /// 2/π |
| 82 | #[unstable (feature = "f128" , issue = "116909" )] |
| 83 | pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128; |
| 84 | |
| 85 | /// 2/sqrt(π) |
| 86 | #[unstable (feature = "f128" , issue = "116909" )] |
| 87 | pub const FRAC_2_SQRT_PI: f128 = |
| 88 | 1.12837916709551257389615890312154517168810125865799771368817_f128; |
| 89 | |
| 90 | /// sqrt(2) |
| 91 | #[unstable (feature = "f128" , issue = "116909" )] |
| 92 | pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128; |
| 93 | |
| 94 | /// 1/sqrt(2) |
| 95 | #[unstable (feature = "f128" , issue = "116909" )] |
| 96 | pub const FRAC_1_SQRT_2: f128 = |
| 97 | 0.707106781186547524400844362104849039284835937688474036588340_f128; |
| 98 | |
| 99 | /// sqrt(3) |
| 100 | #[unstable (feature = "f128" , issue = "116909" )] |
| 101 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 102 | pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128; |
| 103 | |
| 104 | /// 1/sqrt(3) |
| 105 | #[unstable (feature = "f128" , issue = "116909" )] |
| 106 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 107 | pub const FRAC_1_SQRT_3: f128 = |
| 108 | 0.577350269189625764509148780501957455647601751270126876018602_f128; |
| 109 | |
| 110 | /// Euler's number (e) |
| 111 | #[unstable (feature = "f128" , issue = "116909" )] |
| 112 | pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128; |
| 113 | |
| 114 | /// log<sub>2</sub>(10) |
| 115 | #[unstable (feature = "f128" , issue = "116909" )] |
| 116 | pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128; |
| 117 | |
| 118 | /// log<sub>2</sub>(e) |
| 119 | #[unstable (feature = "f128" , issue = "116909" )] |
| 120 | pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128; |
| 121 | |
| 122 | /// log<sub>10</sub>(2) |
| 123 | #[unstable (feature = "f128" , issue = "116909" )] |
| 124 | pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128; |
| 125 | |
| 126 | /// log<sub>10</sub>(e) |
| 127 | #[unstable (feature = "f128" , issue = "116909" )] |
| 128 | pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128; |
| 129 | |
| 130 | /// ln(2) |
| 131 | #[unstable (feature = "f128" , issue = "116909" )] |
| 132 | pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128; |
| 133 | |
| 134 | /// ln(10) |
| 135 | #[unstable (feature = "f128" , issue = "116909" )] |
| 136 | pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128; |
| 137 | } |
| 138 | |
| 139 | impl f128 { |
| 140 | // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const |
| 141 | // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE. |
| 142 | |
| 143 | /// The radix or base of the internal representation of `f128`. |
| 144 | #[unstable (feature = "f128" , issue = "116909" )] |
| 145 | pub const RADIX: u32 = 2; |
| 146 | |
| 147 | /// Number of significant digits in base 2. |
| 148 | #[unstable (feature = "f128" , issue = "116909" )] |
| 149 | pub const MANTISSA_DIGITS: u32 = 113; |
| 150 | |
| 151 | /// Approximate number of significant digits in base 10. |
| 152 | /// |
| 153 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
| 154 | /// significant digits can be converted to `f128` and back without loss. |
| 155 | /// |
| 156 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
| 157 | /// |
| 158 | /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS |
| 159 | #[unstable (feature = "f128" , issue = "116909" )] |
| 160 | pub const DIGITS: u32 = 33; |
| 161 | |
| 162 | /// [Machine epsilon] value for `f128`. |
| 163 | /// |
| 164 | /// This is the difference between `1.0` and the next larger representable number. |
| 165 | /// |
| 166 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
| 167 | /// |
| 168 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
| 169 | /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS |
| 170 | #[unstable (feature = "f128" , issue = "116909" )] |
| 171 | pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128; |
| 172 | |
| 173 | /// Smallest finite `f128` value. |
| 174 | /// |
| 175 | /// Equal to −[`MAX`]. |
| 176 | /// |
| 177 | /// [`MAX`]: f128::MAX |
| 178 | #[unstable (feature = "f128" , issue = "116909" )] |
| 179 | pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128; |
| 180 | /// Smallest positive normal `f128` value. |
| 181 | /// |
| 182 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
| 183 | /// |
| 184 | /// [`MIN_EXP`]: f128::MIN_EXP |
| 185 | #[unstable (feature = "f128" , issue = "116909" )] |
| 186 | pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128; |
| 187 | /// Largest finite `f128` value. |
| 188 | /// |
| 189 | /// Equal to |
| 190 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
| 191 | /// |
| 192 | /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS |
| 193 | /// [`MAX_EXP`]: f128::MAX_EXP |
| 194 | #[unstable (feature = "f128" , issue = "116909" )] |
| 195 | pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128; |
| 196 | |
| 197 | /// One greater than the minimum possible normal power of 2 exponent. |
| 198 | /// |
| 199 | /// If <i>x</i> = `MIN_EXP`, then normal numbers |
| 200 | /// ≥ 0.5 × 2<sup><i>x</i></sup>. |
| 201 | #[unstable (feature = "f128" , issue = "116909" )] |
| 202 | pub const MIN_EXP: i32 = -16_381; |
| 203 | /// Maximum possible power of 2 exponent. |
| 204 | /// |
| 205 | /// If <i>x</i> = `MAX_EXP`, then normal numbers |
| 206 | /// < 1 × 2<sup><i>x</i></sup>. |
| 207 | #[unstable (feature = "f128" , issue = "116909" )] |
| 208 | pub const MAX_EXP: i32 = 16_384; |
| 209 | |
| 210 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
| 211 | /// |
| 212 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
| 213 | /// |
| 214 | /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE |
| 215 | #[unstable (feature = "f128" , issue = "116909" )] |
| 216 | pub const MIN_10_EXP: i32 = -4_931; |
| 217 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
| 218 | /// |
| 219 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
| 220 | /// |
| 221 | /// [`MAX`]: f128::MAX |
| 222 | #[unstable (feature = "f128" , issue = "116909" )] |
| 223 | pub const MAX_10_EXP: i32 = 4_932; |
| 224 | |
| 225 | /// Not a Number (NaN). |
| 226 | /// |
| 227 | /// Note that IEEE 754 doesn't define just a single NaN value; |
| 228 | /// a plethora of bit patterns are considered to be NaN. |
| 229 | /// Furthermore, the standard makes a difference |
| 230 | /// between a "signaling" and a "quiet" NaN, |
| 231 | /// and allows inspecting its "payload" (the unspecified bits in the bit pattern). |
| 232 | /// This constant isn't guaranteed to equal to any specific NaN bitpattern, |
| 233 | /// and the stability of its representation over Rust versions |
| 234 | /// and target platforms isn't guaranteed. |
| 235 | #[allow (clippy::eq_op)] |
| 236 | #[rustc_diagnostic_item = "f128_nan" ] |
| 237 | #[unstable (feature = "f128" , issue = "116909" )] |
| 238 | pub const NAN: f128 = 0.0_f128 / 0.0_f128; |
| 239 | |
| 240 | /// Infinity (∞). |
| 241 | #[unstable (feature = "f128" , issue = "116909" )] |
| 242 | pub const INFINITY: f128 = 1.0_f128 / 0.0_f128; |
| 243 | |
| 244 | /// Negative infinity (−∞). |
| 245 | #[unstable (feature = "f128" , issue = "116909" )] |
| 246 | pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128; |
| 247 | |
| 248 | /// Sign bit |
| 249 | pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000; |
| 250 | |
| 251 | /// Exponent mask |
| 252 | pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000; |
| 253 | |
| 254 | /// Mantissa mask |
| 255 | pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff; |
| 256 | |
| 257 | /// Minimum representable positive value (min subnormal) |
| 258 | const TINY_BITS: u128 = 0x1; |
| 259 | |
| 260 | /// Minimum representable negative value (min negative subnormal) |
| 261 | const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK; |
| 262 | |
| 263 | /// Returns `true` if this value is NaN. |
| 264 | /// |
| 265 | /// ``` |
| 266 | /// #![feature(f128)] |
| 267 | /// # // FIXME(f16_f128): remove when `unordtf2` is available |
| 268 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 269 | /// |
| 270 | /// let nan = f128::NAN; |
| 271 | /// let f = 7.0_f128; |
| 272 | /// |
| 273 | /// assert!(nan.is_nan()); |
| 274 | /// assert!(!f.is_nan()); |
| 275 | /// # } |
| 276 | /// ``` |
| 277 | #[inline ] |
| 278 | #[must_use ] |
| 279 | #[unstable (feature = "f128" , issue = "116909" )] |
| 280 | #[allow (clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :) |
| 281 | pub const fn is_nan(self) -> bool { |
| 282 | self != self |
| 283 | } |
| 284 | |
| 285 | /// Returns `true` if this value is positive infinity or negative infinity, and |
| 286 | /// `false` otherwise. |
| 287 | /// |
| 288 | /// ``` |
| 289 | /// #![feature(f128)] |
| 290 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 291 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 292 | /// |
| 293 | /// let f = 7.0f128; |
| 294 | /// let inf = f128::INFINITY; |
| 295 | /// let neg_inf = f128::NEG_INFINITY; |
| 296 | /// let nan = f128::NAN; |
| 297 | /// |
| 298 | /// assert!(!f.is_infinite()); |
| 299 | /// assert!(!nan.is_infinite()); |
| 300 | /// |
| 301 | /// assert!(inf.is_infinite()); |
| 302 | /// assert!(neg_inf.is_infinite()); |
| 303 | /// # } |
| 304 | /// ``` |
| 305 | #[inline ] |
| 306 | #[must_use ] |
| 307 | #[unstable (feature = "f128" , issue = "116909" )] |
| 308 | pub const fn is_infinite(self) -> bool { |
| 309 | (self == f128::INFINITY) | (self == f128::NEG_INFINITY) |
| 310 | } |
| 311 | |
| 312 | /// Returns `true` if this number is neither infinite nor NaN. |
| 313 | /// |
| 314 | /// ``` |
| 315 | /// #![feature(f128)] |
| 316 | /// # // FIXME(f16_f128): remove when `lttf2` is available |
| 317 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 318 | /// |
| 319 | /// let f = 7.0f128; |
| 320 | /// let inf: f128 = f128::INFINITY; |
| 321 | /// let neg_inf: f128 = f128::NEG_INFINITY; |
| 322 | /// let nan: f128 = f128::NAN; |
| 323 | /// |
| 324 | /// assert!(f.is_finite()); |
| 325 | /// |
| 326 | /// assert!(!nan.is_finite()); |
| 327 | /// assert!(!inf.is_finite()); |
| 328 | /// assert!(!neg_inf.is_finite()); |
| 329 | /// # } |
| 330 | /// ``` |
| 331 | #[inline ] |
| 332 | #[must_use ] |
| 333 | #[unstable (feature = "f128" , issue = "116909" )] |
| 334 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 335 | pub const fn is_finite(self) -> bool { |
| 336 | // There's no need to handle NaN separately: if self is NaN, |
| 337 | // the comparison is not true, exactly as desired. |
| 338 | self.abs() < Self::INFINITY |
| 339 | } |
| 340 | |
| 341 | /// Returns `true` if the number is [subnormal]. |
| 342 | /// |
| 343 | /// ``` |
| 344 | /// #![feature(f128)] |
| 345 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 346 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 347 | /// |
| 348 | /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128 |
| 349 | /// let max = f128::MAX; |
| 350 | /// let lower_than_min = 1.0e-4960_f128; |
| 351 | /// let zero = 0.0_f128; |
| 352 | /// |
| 353 | /// assert!(!min.is_subnormal()); |
| 354 | /// assert!(!max.is_subnormal()); |
| 355 | /// |
| 356 | /// assert!(!zero.is_subnormal()); |
| 357 | /// assert!(!f128::NAN.is_subnormal()); |
| 358 | /// assert!(!f128::INFINITY.is_subnormal()); |
| 359 | /// // Values between `0` and `min` are Subnormal. |
| 360 | /// assert!(lower_than_min.is_subnormal()); |
| 361 | /// # } |
| 362 | /// ``` |
| 363 | /// |
| 364 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
| 365 | #[inline ] |
| 366 | #[must_use ] |
| 367 | #[unstable (feature = "f128" , issue = "116909" )] |
| 368 | pub const fn is_subnormal(self) -> bool { |
| 369 | matches!(self.classify(), FpCategory::Subnormal) |
| 370 | } |
| 371 | |
| 372 | /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN. |
| 373 | /// |
| 374 | /// ``` |
| 375 | /// #![feature(f128)] |
| 376 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 377 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 378 | /// |
| 379 | /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128 |
| 380 | /// let max = f128::MAX; |
| 381 | /// let lower_than_min = 1.0e-4960_f128; |
| 382 | /// let zero = 0.0_f128; |
| 383 | /// |
| 384 | /// assert!(min.is_normal()); |
| 385 | /// assert!(max.is_normal()); |
| 386 | /// |
| 387 | /// assert!(!zero.is_normal()); |
| 388 | /// assert!(!f128::NAN.is_normal()); |
| 389 | /// assert!(!f128::INFINITY.is_normal()); |
| 390 | /// // Values between `0` and `min` are Subnormal. |
| 391 | /// assert!(!lower_than_min.is_normal()); |
| 392 | /// # } |
| 393 | /// ``` |
| 394 | /// |
| 395 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
| 396 | #[inline ] |
| 397 | #[must_use ] |
| 398 | #[unstable (feature = "f128" , issue = "116909" )] |
| 399 | pub const fn is_normal(self) -> bool { |
| 400 | matches!(self.classify(), FpCategory::Normal) |
| 401 | } |
| 402 | |
| 403 | /// Returns the floating point category of the number. If only one property |
| 404 | /// is going to be tested, it is generally faster to use the specific |
| 405 | /// predicate instead. |
| 406 | /// |
| 407 | /// ``` |
| 408 | /// #![feature(f128)] |
| 409 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 410 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 411 | /// |
| 412 | /// use std::num::FpCategory; |
| 413 | /// |
| 414 | /// let num = 12.4_f128; |
| 415 | /// let inf = f128::INFINITY; |
| 416 | /// |
| 417 | /// assert_eq!(num.classify(), FpCategory::Normal); |
| 418 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| 419 | /// # } |
| 420 | /// ``` |
| 421 | #[inline ] |
| 422 | #[unstable (feature = "f128" , issue = "116909" )] |
| 423 | pub const fn classify(self) -> FpCategory { |
| 424 | let bits = self.to_bits(); |
| 425 | match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) { |
| 426 | (0, Self::EXP_MASK) => FpCategory::Infinite, |
| 427 | (_, Self::EXP_MASK) => FpCategory::Nan, |
| 428 | (0, 0) => FpCategory::Zero, |
| 429 | (_, 0) => FpCategory::Subnormal, |
| 430 | _ => FpCategory::Normal, |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
| 435 | /// positive sign bit and positive infinity. |
| 436 | /// |
| 437 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
| 438 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
| 439 | /// conserved over arithmetic operations, the result of `is_sign_positive` on |
| 440 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
| 441 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0` |
| 442 | /// if you need fully portable behavior (will return `false` for all NaNs). |
| 443 | /// |
| 444 | /// ``` |
| 445 | /// #![feature(f128)] |
| 446 | /// |
| 447 | /// let f = 7.0_f128; |
| 448 | /// let g = -7.0_f128; |
| 449 | /// |
| 450 | /// assert!(f.is_sign_positive()); |
| 451 | /// assert!(!g.is_sign_positive()); |
| 452 | /// ``` |
| 453 | #[inline ] |
| 454 | #[must_use ] |
| 455 | #[unstable (feature = "f128" , issue = "116909" )] |
| 456 | pub const fn is_sign_positive(self) -> bool { |
| 457 | !self.is_sign_negative() |
| 458 | } |
| 459 | |
| 460 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
| 461 | /// negative sign bit and negative infinity. |
| 462 | /// |
| 463 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
| 464 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
| 465 | /// conserved over arithmetic operations, the result of `is_sign_negative` on |
| 466 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
| 467 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0` |
| 468 | /// if you need fully portable behavior (will return `false` for all NaNs). |
| 469 | /// |
| 470 | /// ``` |
| 471 | /// #![feature(f128)] |
| 472 | /// |
| 473 | /// let f = 7.0_f128; |
| 474 | /// let g = -7.0_f128; |
| 475 | /// |
| 476 | /// assert!(!f.is_sign_negative()); |
| 477 | /// assert!(g.is_sign_negative()); |
| 478 | /// ``` |
| 479 | #[inline ] |
| 480 | #[must_use ] |
| 481 | #[unstable (feature = "f128" , issue = "116909" )] |
| 482 | pub const fn is_sign_negative(self) -> bool { |
| 483 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
| 484 | // applies to zeros and NaNs as well. |
| 485 | // SAFETY: This is just transmuting to get the sign bit, it's fine. |
| 486 | (self.to_bits() & (1 << 127)) != 0 |
| 487 | } |
| 488 | |
| 489 | /// Returns the least number greater than `self`. |
| 490 | /// |
| 491 | /// Let `TINY` be the smallest representable positive `f128`. Then, |
| 492 | /// - if `self.is_nan()`, this returns `self`; |
| 493 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
| 494 | /// - if `self` is `-TINY`, this returns -0.0; |
| 495 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
| 496 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
| 497 | /// - otherwise the unique least value greater than `self` is returned. |
| 498 | /// |
| 499 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
| 500 | /// is finite `x == x.next_up().next_down()` also holds. |
| 501 | /// |
| 502 | /// ```rust |
| 503 | /// #![feature(f128)] |
| 504 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 505 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 506 | /// |
| 507 | /// // f128::EPSILON is the difference between 1.0 and the next number up. |
| 508 | /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON); |
| 509 | /// // But not for most numbers. |
| 510 | /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON); |
| 511 | /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001); |
| 512 | /// # } |
| 513 | /// ``` |
| 514 | /// |
| 515 | /// This operation corresponds to IEEE-754 `nextUp`. |
| 516 | /// |
| 517 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
| 518 | /// [`INFINITY`]: Self::INFINITY |
| 519 | /// [`MIN`]: Self::MIN |
| 520 | /// [`MAX`]: Self::MAX |
| 521 | #[inline ] |
| 522 | #[doc (alias = "nextUp" )] |
| 523 | #[unstable (feature = "f128" , issue = "116909" )] |
| 524 | pub const fn next_up(self) -> Self { |
| 525 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
| 526 | // denormals to zero. This is in general unsound and unsupported, but here |
| 527 | // we do our best to still produce the correct result on such targets. |
| 528 | let bits = self.to_bits(); |
| 529 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
| 530 | return self; |
| 531 | } |
| 532 | |
| 533 | let abs = bits & !Self::SIGN_MASK; |
| 534 | let next_bits = if abs == 0 { |
| 535 | Self::TINY_BITS |
| 536 | } else if bits == abs { |
| 537 | bits + 1 |
| 538 | } else { |
| 539 | bits - 1 |
| 540 | }; |
| 541 | Self::from_bits(next_bits) |
| 542 | } |
| 543 | |
| 544 | /// Returns the greatest number less than `self`. |
| 545 | /// |
| 546 | /// Let `TINY` be the smallest representable positive `f128`. Then, |
| 547 | /// - if `self.is_nan()`, this returns `self`; |
| 548 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
| 549 | /// - if `self` is `TINY`, this returns 0.0; |
| 550 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
| 551 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
| 552 | /// - otherwise the unique greatest value less than `self` is returned. |
| 553 | /// |
| 554 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
| 555 | /// is finite `x == x.next_down().next_up()` also holds. |
| 556 | /// |
| 557 | /// ```rust |
| 558 | /// #![feature(f128)] |
| 559 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 560 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 561 | /// |
| 562 | /// let x = 1.0f128; |
| 563 | /// // Clamp value into range [0, 1). |
| 564 | /// let clamped = x.clamp(0.0, 1.0f128.next_down()); |
| 565 | /// assert!(clamped < 1.0); |
| 566 | /// assert_eq!(clamped.next_up(), 1.0); |
| 567 | /// # } |
| 568 | /// ``` |
| 569 | /// |
| 570 | /// This operation corresponds to IEEE-754 `nextDown`. |
| 571 | /// |
| 572 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
| 573 | /// [`INFINITY`]: Self::INFINITY |
| 574 | /// [`MIN`]: Self::MIN |
| 575 | /// [`MAX`]: Self::MAX |
| 576 | #[inline ] |
| 577 | #[doc (alias = "nextDown" )] |
| 578 | #[unstable (feature = "f128" , issue = "116909" )] |
| 579 | pub const fn next_down(self) -> Self { |
| 580 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
| 581 | // denormals to zero. This is in general unsound and unsupported, but here |
| 582 | // we do our best to still produce the correct result on such targets. |
| 583 | let bits = self.to_bits(); |
| 584 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
| 585 | return self; |
| 586 | } |
| 587 | |
| 588 | let abs = bits & !Self::SIGN_MASK; |
| 589 | let next_bits = if abs == 0 { |
| 590 | Self::NEG_TINY_BITS |
| 591 | } else if bits == abs { |
| 592 | bits - 1 |
| 593 | } else { |
| 594 | bits + 1 |
| 595 | }; |
| 596 | Self::from_bits(next_bits) |
| 597 | } |
| 598 | |
| 599 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
| 600 | /// |
| 601 | /// ``` |
| 602 | /// #![feature(f128)] |
| 603 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 604 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 605 | /// |
| 606 | /// let x = 2.0_f128; |
| 607 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
| 608 | /// |
| 609 | /// assert!(abs_difference <= f128::EPSILON); |
| 610 | /// # } |
| 611 | /// ``` |
| 612 | #[inline ] |
| 613 | #[unstable (feature = "f128" , issue = "116909" )] |
| 614 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 615 | pub const fn recip(self) -> Self { |
| 616 | 1.0 / self |
| 617 | } |
| 618 | |
| 619 | /// Converts radians to degrees. |
| 620 | /// |
| 621 | /// ``` |
| 622 | /// #![feature(f128)] |
| 623 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 624 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 625 | /// |
| 626 | /// let angle = std::f128::consts::PI; |
| 627 | /// |
| 628 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
| 629 | /// assert!(abs_difference <= f128::EPSILON); |
| 630 | /// # } |
| 631 | /// ``` |
| 632 | #[inline ] |
| 633 | #[unstable (feature = "f128" , issue = "116909" )] |
| 634 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 635 | pub const fn to_degrees(self) -> Self { |
| 636 | // Use a literal for better precision. |
| 637 | const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128; |
| 638 | self * PIS_IN_180 |
| 639 | } |
| 640 | |
| 641 | /// Converts degrees to radians. |
| 642 | /// |
| 643 | /// ``` |
| 644 | /// #![feature(f128)] |
| 645 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 646 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 647 | /// |
| 648 | /// let angle = 180.0f128; |
| 649 | /// |
| 650 | /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs(); |
| 651 | /// |
| 652 | /// assert!(abs_difference <= 1e-30); |
| 653 | /// # } |
| 654 | /// ``` |
| 655 | #[inline ] |
| 656 | #[unstable (feature = "f128" , issue = "116909" )] |
| 657 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 658 | pub const fn to_radians(self) -> f128 { |
| 659 | // Use a literal for better precision. |
| 660 | const RADS_PER_DEG: f128 = |
| 661 | 0.0174532925199432957692369076848861271344287188854172545609719_f128; |
| 662 | self * RADS_PER_DEG |
| 663 | } |
| 664 | |
| 665 | /// Returns the maximum of the two numbers, ignoring NaN. |
| 666 | /// |
| 667 | /// If one of the arguments is NaN, then the other argument is returned. |
| 668 | /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; |
| 669 | /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. |
| 670 | /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal |
| 671 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
| 672 | /// |
| 673 | /// ``` |
| 674 | /// #![feature(f128)] |
| 675 | /// # // Using aarch64 because `reliable_f128_math` is needed |
| 676 | /// # #[cfg (all(target_arch = "aarch64" , target_os = "linux" ))] { |
| 677 | /// |
| 678 | /// let x = 1.0f128; |
| 679 | /// let y = 2.0f128; |
| 680 | /// |
| 681 | /// assert_eq!(x.max(y), y); |
| 682 | /// # } |
| 683 | /// ``` |
| 684 | #[inline ] |
| 685 | #[unstable (feature = "f128" , issue = "116909" )] |
| 686 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 687 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 688 | pub const fn max(self, other: f128) -> f128 { |
| 689 | intrinsics::maxnumf128(self, other) |
| 690 | } |
| 691 | |
| 692 | /// Returns the minimum of the two numbers, ignoring NaN. |
| 693 | /// |
| 694 | /// If one of the arguments is NaN, then the other argument is returned. |
| 695 | /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; |
| 696 | /// this function handles all NaNs the same way and avoids minNum's problems with associativity. |
| 697 | /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal |
| 698 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
| 699 | /// |
| 700 | /// ``` |
| 701 | /// #![feature(f128)] |
| 702 | /// # // Using aarch64 because `reliable_f128_math` is needed |
| 703 | /// # #[cfg (all(target_arch = "aarch64" , target_os = "linux" ))] { |
| 704 | /// |
| 705 | /// let x = 1.0f128; |
| 706 | /// let y = 2.0f128; |
| 707 | /// |
| 708 | /// assert_eq!(x.min(y), x); |
| 709 | /// # } |
| 710 | /// ``` |
| 711 | #[inline ] |
| 712 | #[unstable (feature = "f128" , issue = "116909" )] |
| 713 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 714 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 715 | pub const fn min(self, other: f128) -> f128 { |
| 716 | intrinsics::minnumf128(self, other) |
| 717 | } |
| 718 | |
| 719 | /// Returns the maximum of the two numbers, propagating NaN. |
| 720 | /// |
| 721 | /// This returns NaN when *either* argument is NaN, as opposed to |
| 722 | /// [`f128::max`] which only returns NaN when *both* arguments are NaN. |
| 723 | /// |
| 724 | /// ``` |
| 725 | /// #![feature(f128)] |
| 726 | /// #![feature(float_minimum_maximum)] |
| 727 | /// # // Using aarch64 because `reliable_f128_math` is needed |
| 728 | /// # #[cfg (all(target_arch = "aarch64" , target_os = "linux" ))] { |
| 729 | /// |
| 730 | /// let x = 1.0f128; |
| 731 | /// let y = 2.0f128; |
| 732 | /// |
| 733 | /// assert_eq!(x.maximum(y), y); |
| 734 | /// assert!(x.maximum(f128::NAN).is_nan()); |
| 735 | /// # } |
| 736 | /// ``` |
| 737 | /// |
| 738 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater |
| 739 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
| 740 | /// Note that this follows the semantics specified in IEEE 754-2019. |
| 741 | /// |
| 742 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
| 743 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
| 744 | #[inline ] |
| 745 | #[unstable (feature = "f128" , issue = "116909" )] |
| 746 | // #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
| 747 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 748 | pub const fn maximum(self, other: f128) -> f128 { |
| 749 | if self > other { |
| 750 | self |
| 751 | } else if other > self { |
| 752 | other |
| 753 | } else if self == other { |
| 754 | if self.is_sign_positive() && other.is_sign_negative() { self } else { other } |
| 755 | } else { |
| 756 | self + other |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | /// Returns the minimum of the two numbers, propagating NaN. |
| 761 | /// |
| 762 | /// This returns NaN when *either* argument is NaN, as opposed to |
| 763 | /// [`f128::min`] which only returns NaN when *both* arguments are NaN. |
| 764 | /// |
| 765 | /// ``` |
| 766 | /// #![feature(f128)] |
| 767 | /// #![feature(float_minimum_maximum)] |
| 768 | /// # // Using aarch64 because `reliable_f128_math` is needed |
| 769 | /// # #[cfg (all(target_arch = "aarch64" , target_os = "linux" ))] { |
| 770 | /// |
| 771 | /// let x = 1.0f128; |
| 772 | /// let y = 2.0f128; |
| 773 | /// |
| 774 | /// assert_eq!(x.minimum(y), x); |
| 775 | /// assert!(x.minimum(f128::NAN).is_nan()); |
| 776 | /// # } |
| 777 | /// ``` |
| 778 | /// |
| 779 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser |
| 780 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
| 781 | /// Note that this follows the semantics specified in IEEE 754-2019. |
| 782 | /// |
| 783 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
| 784 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
| 785 | #[inline ] |
| 786 | #[unstable (feature = "f128" , issue = "116909" )] |
| 787 | // #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
| 788 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 789 | pub const fn minimum(self, other: f128) -> f128 { |
| 790 | if self < other { |
| 791 | self |
| 792 | } else if other < self { |
| 793 | other |
| 794 | } else if self == other { |
| 795 | if self.is_sign_negative() && other.is_sign_positive() { self } else { other } |
| 796 | } else { |
| 797 | // At least one input is NaN. Use `+` to perform NaN propagation and quieting. |
| 798 | self + other |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | /// Calculates the middle point of `self` and `rhs`. |
| 803 | /// |
| 804 | /// This returns NaN when *either* argument is NaN or if a combination of |
| 805 | /// +inf and -inf is provided as arguments. |
| 806 | /// |
| 807 | /// # Examples |
| 808 | /// |
| 809 | /// ``` |
| 810 | /// #![feature(f128)] |
| 811 | /// # // Using aarch64 because `reliable_f128_math` is needed |
| 812 | /// # #[cfg (all(target_arch = "aarch64" , target_os = "linux" ))] { |
| 813 | /// |
| 814 | /// assert_eq!(1f128.midpoint(4.0), 2.5); |
| 815 | /// assert_eq!((-5.5f128).midpoint(8.0), 1.25); |
| 816 | /// # } |
| 817 | /// ``` |
| 818 | #[inline ] |
| 819 | #[unstable (feature = "f128" , issue = "116909" )] |
| 820 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 821 | pub const fn midpoint(self, other: f128) -> f128 { |
| 822 | const LO: f128 = f128::MIN_POSITIVE * 2.; |
| 823 | const HI: f128 = f128::MAX / 2.; |
| 824 | |
| 825 | let (a, b) = (self, other); |
| 826 | let abs_a = a.abs(); |
| 827 | let abs_b = b.abs(); |
| 828 | |
| 829 | if abs_a <= HI && abs_b <= HI { |
| 830 | // Overflow is impossible |
| 831 | (a + b) / 2. |
| 832 | } else if abs_a < LO { |
| 833 | // Not safe to halve `a` (would underflow) |
| 834 | a + (b / 2.) |
| 835 | } else if abs_b < LO { |
| 836 | // Not safe to halve `b` (would underflow) |
| 837 | (a / 2.) + b |
| 838 | } else { |
| 839 | // Safe to halve `a` and `b` |
| 840 | (a / 2.) + (b / 2.) |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | /// Rounds toward zero and converts to any primitive integer type, |
| 845 | /// assuming that the value is finite and fits in that type. |
| 846 | /// |
| 847 | /// ``` |
| 848 | /// #![feature(f128)] |
| 849 | /// # // FIXME(f16_f128): remove when `float*itf` is available |
| 850 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 851 | /// |
| 852 | /// let value = 4.6_f128; |
| 853 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
| 854 | /// assert_eq!(rounded, 4); |
| 855 | /// |
| 856 | /// let value = -128.9_f128; |
| 857 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
| 858 | /// assert_eq!(rounded, i8::MIN); |
| 859 | /// # } |
| 860 | /// ``` |
| 861 | /// |
| 862 | /// # Safety |
| 863 | /// |
| 864 | /// The value must: |
| 865 | /// |
| 866 | /// * Not be `NaN` |
| 867 | /// * Not be infinite |
| 868 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
| 869 | #[inline ] |
| 870 | #[unstable (feature = "f128" , issue = "116909" )] |
| 871 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 872 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
| 873 | where |
| 874 | Self: FloatToInt<Int>, |
| 875 | { |
| 876 | // SAFETY: the caller must uphold the safety contract for |
| 877 | // `FloatToInt::to_int_unchecked`. |
| 878 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
| 879 | } |
| 880 | |
| 881 | /// Raw transmutation to `u128`. |
| 882 | /// |
| 883 | /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms. |
| 884 | /// |
| 885 | /// See [`from_bits`](#method.from_bits) for some discussion of the |
| 886 | /// portability of this operation (there are almost no issues). |
| 887 | /// |
| 888 | /// Note that this function is distinct from `as` casting, which attempts to |
| 889 | /// preserve the *numeric* value, and not the bitwise value. |
| 890 | /// |
| 891 | /// ``` |
| 892 | /// #![feature(f128)] |
| 893 | /// |
| 894 | /// # // FIXME(f16_f128): enable this once const casting works |
| 895 | /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting! |
| 896 | /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000); |
| 897 | /// ``` |
| 898 | #[inline ] |
| 899 | #[unstable (feature = "f128" , issue = "116909" )] |
| 900 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 901 | pub const fn to_bits(self) -> u128 { |
| 902 | // SAFETY: `u128` is a plain old datatype so we can always transmute to it. |
| 903 | unsafe { mem::transmute(self) } |
| 904 | } |
| 905 | |
| 906 | /// Raw transmutation from `u128`. |
| 907 | /// |
| 908 | /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms. |
| 909 | /// It turns out this is incredibly portable, for two reasons: |
| 910 | /// |
| 911 | /// * Floats and Ints have the same endianness on all supported platforms. |
| 912 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
| 913 | /// |
| 914 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
| 915 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
| 916 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
| 917 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
| 918 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
| 919 | /// |
| 920 | /// Rather than trying to preserve signaling-ness cross-platform, this |
| 921 | /// implementation favors preserving the exact bits. This means that |
| 922 | /// any payloads encoded in NaNs will be preserved even if the result of |
| 923 | /// this method is sent over the network from an x86 machine to a MIPS one. |
| 924 | /// |
| 925 | /// If the results of this method are only manipulated by the same |
| 926 | /// architecture that produced them, then there is no portability concern. |
| 927 | /// |
| 928 | /// If the input isn't NaN, then there is no portability concern. |
| 929 | /// |
| 930 | /// If you don't care about signalingness (very likely), then there is no |
| 931 | /// portability concern. |
| 932 | /// |
| 933 | /// Note that this function is distinct from `as` casting, which attempts to |
| 934 | /// preserve the *numeric* value, and not the bitwise value. |
| 935 | /// |
| 936 | /// ``` |
| 937 | /// #![feature(f128)] |
| 938 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 939 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 940 | /// |
| 941 | /// let v = f128::from_bits(0x40029000000000000000000000000000); |
| 942 | /// assert_eq!(v, 12.5); |
| 943 | /// # } |
| 944 | /// ``` |
| 945 | #[inline ] |
| 946 | #[must_use ] |
| 947 | #[unstable (feature = "f128" , issue = "116909" )] |
| 948 | pub const fn from_bits(v: u128) -> Self { |
| 949 | // It turns out the safety issues with sNaN were overblown! Hooray! |
| 950 | // SAFETY: `u128` is a plain old datatype so we can always transmute from it. |
| 951 | unsafe { mem::transmute(v) } |
| 952 | } |
| 953 | |
| 954 | /// Returns the memory representation of this floating point number as a byte array in |
| 955 | /// big-endian (network) byte order. |
| 956 | /// |
| 957 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 958 | /// portability of this operation (there are almost no issues). |
| 959 | /// |
| 960 | /// # Examples |
| 961 | /// |
| 962 | /// ``` |
| 963 | /// #![feature(f128)] |
| 964 | /// |
| 965 | /// let bytes = 12.5f128.to_be_bytes(); |
| 966 | /// assert_eq!( |
| 967 | /// bytes, |
| 968 | /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 969 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
| 970 | /// ); |
| 971 | /// ``` |
| 972 | #[inline ] |
| 973 | #[unstable (feature = "f128" , issue = "116909" )] |
| 974 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 975 | pub const fn to_be_bytes(self) -> [u8; 16] { |
| 976 | self.to_bits().to_be_bytes() |
| 977 | } |
| 978 | |
| 979 | /// Returns the memory representation of this floating point number as a byte array in |
| 980 | /// little-endian byte order. |
| 981 | /// |
| 982 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 983 | /// portability of this operation (there are almost no issues). |
| 984 | /// |
| 985 | /// # Examples |
| 986 | /// |
| 987 | /// ``` |
| 988 | /// #![feature(f128)] |
| 989 | /// |
| 990 | /// let bytes = 12.5f128.to_le_bytes(); |
| 991 | /// assert_eq!( |
| 992 | /// bytes, |
| 993 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 994 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40] |
| 995 | /// ); |
| 996 | /// ``` |
| 997 | #[inline ] |
| 998 | #[unstable (feature = "f128" , issue = "116909" )] |
| 999 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 1000 | pub const fn to_le_bytes(self) -> [u8; 16] { |
| 1001 | self.to_bits().to_le_bytes() |
| 1002 | } |
| 1003 | |
| 1004 | /// Returns the memory representation of this floating point number as a byte array in |
| 1005 | /// native byte order. |
| 1006 | /// |
| 1007 | /// As the target platform's native endianness is used, portable code |
| 1008 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
| 1009 | /// |
| 1010 | /// [`to_be_bytes`]: f128::to_be_bytes |
| 1011 | /// [`to_le_bytes`]: f128::to_le_bytes |
| 1012 | /// |
| 1013 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1014 | /// portability of this operation (there are almost no issues). |
| 1015 | /// |
| 1016 | /// # Examples |
| 1017 | /// |
| 1018 | /// ``` |
| 1019 | /// #![feature(f128)] |
| 1020 | /// |
| 1021 | /// let bytes = 12.5f128.to_ne_bytes(); |
| 1022 | /// assert_eq!( |
| 1023 | /// bytes, |
| 1024 | /// if cfg!(target_endian = "big" ) { |
| 1025 | /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 1026 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
| 1027 | /// } else { |
| 1028 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 1029 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40] |
| 1030 | /// } |
| 1031 | /// ); |
| 1032 | /// ``` |
| 1033 | #[inline ] |
| 1034 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1035 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 1036 | pub const fn to_ne_bytes(self) -> [u8; 16] { |
| 1037 | self.to_bits().to_ne_bytes() |
| 1038 | } |
| 1039 | |
| 1040 | /// Creates a floating point value from its representation as a byte array in big endian. |
| 1041 | /// |
| 1042 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1043 | /// portability of this operation (there are almost no issues). |
| 1044 | /// |
| 1045 | /// # Examples |
| 1046 | /// |
| 1047 | /// ``` |
| 1048 | /// #![feature(f128)] |
| 1049 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 1050 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1051 | /// |
| 1052 | /// let value = f128::from_be_bytes( |
| 1053 | /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 1054 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
| 1055 | /// ); |
| 1056 | /// assert_eq!(value, 12.5); |
| 1057 | /// # } |
| 1058 | /// ``` |
| 1059 | #[inline ] |
| 1060 | #[must_use ] |
| 1061 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1062 | pub const fn from_be_bytes(bytes: [u8; 16]) -> Self { |
| 1063 | Self::from_bits(u128::from_be_bytes(bytes)) |
| 1064 | } |
| 1065 | |
| 1066 | /// Creates a floating point value from its representation as a byte array in little endian. |
| 1067 | /// |
| 1068 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1069 | /// portability of this operation (there are almost no issues). |
| 1070 | /// |
| 1071 | /// # Examples |
| 1072 | /// |
| 1073 | /// ``` |
| 1074 | /// #![feature(f128)] |
| 1075 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 1076 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1077 | /// |
| 1078 | /// let value = f128::from_le_bytes( |
| 1079 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 1080 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40] |
| 1081 | /// ); |
| 1082 | /// assert_eq!(value, 12.5); |
| 1083 | /// # } |
| 1084 | /// ``` |
| 1085 | #[inline ] |
| 1086 | #[must_use ] |
| 1087 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1088 | pub const fn from_le_bytes(bytes: [u8; 16]) -> Self { |
| 1089 | Self::from_bits(u128::from_le_bytes(bytes)) |
| 1090 | } |
| 1091 | |
| 1092 | /// Creates a floating point value from its representation as a byte array in native endian. |
| 1093 | /// |
| 1094 | /// As the target platform's native endianness is used, portable code |
| 1095 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
| 1096 | /// appropriate instead. |
| 1097 | /// |
| 1098 | /// [`from_be_bytes`]: f128::from_be_bytes |
| 1099 | /// [`from_le_bytes`]: f128::from_le_bytes |
| 1100 | /// |
| 1101 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1102 | /// portability of this operation (there are almost no issues). |
| 1103 | /// |
| 1104 | /// # Examples |
| 1105 | /// |
| 1106 | /// ``` |
| 1107 | /// #![feature(f128)] |
| 1108 | /// # // FIXME(f16_f128): remove when `eqtf2` is available |
| 1109 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1110 | /// |
| 1111 | /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big" ) { |
| 1112 | /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 1113 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
| 1114 | /// } else { |
| 1115 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 1116 | /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40] |
| 1117 | /// }); |
| 1118 | /// assert_eq!(value, 12.5); |
| 1119 | /// # } |
| 1120 | /// ``` |
| 1121 | #[inline ] |
| 1122 | #[must_use ] |
| 1123 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1124 | pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self { |
| 1125 | Self::from_bits(u128::from_ne_bytes(bytes)) |
| 1126 | } |
| 1127 | |
| 1128 | /// Returns the ordering between `self` and `other`. |
| 1129 | /// |
| 1130 | /// Unlike the standard partial comparison between floating point numbers, |
| 1131 | /// this comparison always produces an ordering in accordance to |
| 1132 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| 1133 | /// floating point standard. The values are ordered in the following sequence: |
| 1134 | /// |
| 1135 | /// - negative quiet NaN |
| 1136 | /// - negative signaling NaN |
| 1137 | /// - negative infinity |
| 1138 | /// - negative numbers |
| 1139 | /// - negative subnormal numbers |
| 1140 | /// - negative zero |
| 1141 | /// - positive zero |
| 1142 | /// - positive subnormal numbers |
| 1143 | /// - positive numbers |
| 1144 | /// - positive infinity |
| 1145 | /// - positive signaling NaN |
| 1146 | /// - positive quiet NaN. |
| 1147 | /// |
| 1148 | /// The ordering established by this function does not always agree with the |
| 1149 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example, |
| 1150 | /// they consider negative and positive zero equal, while `total_cmp` |
| 1151 | /// doesn't. |
| 1152 | /// |
| 1153 | /// The interpretation of the signaling NaN bit follows the definition in |
| 1154 | /// the IEEE 754 standard, which may not match the interpretation by some of |
| 1155 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
| 1156 | /// |
| 1157 | /// # Example |
| 1158 | /// |
| 1159 | /// ``` |
| 1160 | /// #![feature(f128)] |
| 1161 | /// |
| 1162 | /// struct GoodBoy { |
| 1163 | /// name: &'static str, |
| 1164 | /// weight: f128, |
| 1165 | /// } |
| 1166 | /// |
| 1167 | /// let mut bois = vec![ |
| 1168 | /// GoodBoy { name: "Pucci" , weight: 0.1 }, |
| 1169 | /// GoodBoy { name: "Woofer" , weight: 99.0 }, |
| 1170 | /// GoodBoy { name: "Yapper" , weight: 10.0 }, |
| 1171 | /// GoodBoy { name: "Chonk" , weight: f128::INFINITY }, |
| 1172 | /// GoodBoy { name: "Abs. Unit" , weight: f128::NAN }, |
| 1173 | /// GoodBoy { name: "Floaty" , weight: -5.0 }, |
| 1174 | /// ]; |
| 1175 | /// |
| 1176 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
| 1177 | /// |
| 1178 | /// // `f128::NAN` could be positive or negative, which will affect the sort order. |
| 1179 | /// if f128::NAN.is_sign_negative() { |
| 1180 | /// bois.into_iter().map(|b| b.weight) |
| 1181 | /// .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter()) |
| 1182 | /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits())) |
| 1183 | /// } else { |
| 1184 | /// bois.into_iter().map(|b| b.weight) |
| 1185 | /// .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter()) |
| 1186 | /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits())) |
| 1187 | /// } |
| 1188 | /// ``` |
| 1189 | #[inline ] |
| 1190 | #[must_use ] |
| 1191 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1192 | pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
| 1193 | let mut left = self.to_bits() as i128; |
| 1194 | let mut right = other.to_bits() as i128; |
| 1195 | |
| 1196 | // In case of negatives, flip all the bits except the sign |
| 1197 | // to achieve a similar layout as two's complement integers |
| 1198 | // |
| 1199 | // Why does this work? IEEE 754 floats consist of three fields: |
| 1200 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
| 1201 | // fields as a whole have the property that their bitwise order is |
| 1202 | // equal to the numeric magnitude where the magnitude is defined. |
| 1203 | // The magnitude is not normally defined on NaN values, but |
| 1204 | // IEEE 754 totalOrder defines the NaN values also to follow the |
| 1205 | // bitwise order. This leads to order explained in the doc comment. |
| 1206 | // However, the representation of magnitude is the same for negative |
| 1207 | // and positive numbers – only the sign bit is different. |
| 1208 | // To easily compare the floats as signed integers, we need to |
| 1209 | // flip the exponent and mantissa bits in case of negative numbers. |
| 1210 | // We effectively convert the numbers to "two's complement" form. |
| 1211 | // |
| 1212 | // To do the flipping, we construct a mask and XOR against it. |
| 1213 | // We branchlessly calculate an "all-ones except for the sign bit" |
| 1214 | // mask from negative-signed values: right shifting sign-extends |
| 1215 | // the integer, so we "fill" the mask with sign bits, and then |
| 1216 | // convert to unsigned to push one more zero bit. |
| 1217 | // On positive values, the mask is all zeros, so it's a no-op. |
| 1218 | left ^= (((left >> 127) as u128) >> 1) as i128; |
| 1219 | right ^= (((right >> 127) as u128) >> 1) as i128; |
| 1220 | |
| 1221 | left.cmp(&right) |
| 1222 | } |
| 1223 | |
| 1224 | /// Restrict a value to a certain interval unless it is NaN. |
| 1225 | /// |
| 1226 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
| 1227 | /// less than `min`. Otherwise this returns `self`. |
| 1228 | /// |
| 1229 | /// Note that this function returns NaN if the initial value was NaN as |
| 1230 | /// well. |
| 1231 | /// |
| 1232 | /// # Panics |
| 1233 | /// |
| 1234 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
| 1235 | /// |
| 1236 | /// # Examples |
| 1237 | /// |
| 1238 | /// ``` |
| 1239 | /// #![feature(f128)] |
| 1240 | /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available |
| 1241 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1242 | /// |
| 1243 | /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0); |
| 1244 | /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0); |
| 1245 | /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0); |
| 1246 | /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan()); |
| 1247 | /// # } |
| 1248 | /// ``` |
| 1249 | #[inline ] |
| 1250 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1251 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1252 | pub const fn clamp(mut self, min: f128, max: f128) -> f128 { |
| 1253 | const_assert!( |
| 1254 | min <= max, |
| 1255 | "min > max, or either was NaN" , |
| 1256 | "min > max, or either was NaN. min = {min:?}, max = {max:?}" , |
| 1257 | min: f128, |
| 1258 | max: f128, |
| 1259 | ); |
| 1260 | |
| 1261 | if self < min { |
| 1262 | self = min; |
| 1263 | } |
| 1264 | if self > max { |
| 1265 | self = max; |
| 1266 | } |
| 1267 | self |
| 1268 | } |
| 1269 | |
| 1270 | /// Computes the absolute value of `self`. |
| 1271 | /// |
| 1272 | /// This function always returns the precise result. |
| 1273 | /// |
| 1274 | /// # Examples |
| 1275 | /// |
| 1276 | /// ``` |
| 1277 | /// #![feature(f128)] |
| 1278 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1279 | /// |
| 1280 | /// let x = 3.5_f128; |
| 1281 | /// let y = -3.5_f128; |
| 1282 | /// |
| 1283 | /// assert_eq!(x.abs(), x); |
| 1284 | /// assert_eq!(y.abs(), -y); |
| 1285 | /// |
| 1286 | /// assert!(f128::NAN.abs().is_nan()); |
| 1287 | /// # } |
| 1288 | /// ``` |
| 1289 | #[inline ] |
| 1290 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1291 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 1292 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1293 | pub const fn abs(self) -> Self { |
| 1294 | // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available |
| 1295 | // We don't do this now because LLVM has lowering bugs for f128 math. |
| 1296 | Self::from_bits(self.to_bits() & !(1 << 127)) |
| 1297 | } |
| 1298 | |
| 1299 | /// Returns a number that represents the sign of `self`. |
| 1300 | /// |
| 1301 | /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
| 1302 | /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
| 1303 | /// - NaN if the number is NaN |
| 1304 | /// |
| 1305 | /// # Examples |
| 1306 | /// |
| 1307 | /// ``` |
| 1308 | /// #![feature(f128)] |
| 1309 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1310 | /// |
| 1311 | /// let f = 3.5_f128; |
| 1312 | /// |
| 1313 | /// assert_eq!(f.signum(), 1.0); |
| 1314 | /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0); |
| 1315 | /// |
| 1316 | /// assert!(f128::NAN.signum().is_nan()); |
| 1317 | /// # } |
| 1318 | /// ``` |
| 1319 | #[inline ] |
| 1320 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1321 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 1322 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1323 | pub const fn signum(self) -> f128 { |
| 1324 | if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) } |
| 1325 | } |
| 1326 | |
| 1327 | /// Returns a number composed of the magnitude of `self` and the sign of |
| 1328 | /// `sign`. |
| 1329 | /// |
| 1330 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
| 1331 | /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is |
| 1332 | /// returned. |
| 1333 | /// |
| 1334 | /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note |
| 1335 | /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust |
| 1336 | /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the |
| 1337 | /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable |
| 1338 | /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more |
| 1339 | /// info. |
| 1340 | /// |
| 1341 | /// # Examples |
| 1342 | /// |
| 1343 | /// ``` |
| 1344 | /// #![feature(f128)] |
| 1345 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1346 | /// |
| 1347 | /// let f = 3.5_f128; |
| 1348 | /// |
| 1349 | /// assert_eq!(f.copysign(0.42), 3.5_f128); |
| 1350 | /// assert_eq!(f.copysign(-0.42), -3.5_f128); |
| 1351 | /// assert_eq!((-f).copysign(0.42), 3.5_f128); |
| 1352 | /// assert_eq!((-f).copysign(-0.42), -3.5_f128); |
| 1353 | /// |
| 1354 | /// assert!(f128::NAN.copysign(1.0).is_nan()); |
| 1355 | /// # } |
| 1356 | /// ``` |
| 1357 | #[inline ] |
| 1358 | #[unstable (feature = "f128" , issue = "116909" )] |
| 1359 | #[rustc_const_unstable (feature = "f128" , issue = "116909" )] |
| 1360 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1361 | pub const fn copysign(self, sign: f128) -> f128 { |
| 1362 | // SAFETY: this is actually a safe intrinsic |
| 1363 | unsafe { intrinsics::copysignf128(self, sign) } |
| 1364 | } |
| 1365 | } |
| 1366 | |