| 1 | //! Constants for the `f16` half-precision floating point type. |
| 2 | //! |
| 3 | //! *[See also the `f16` primitive type][f16].* |
| 4 | //! |
| 5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
| 6 | //! |
| 7 | //! For the constants defined directly in this module |
| 8 | //! (as distinct from those defined in the `consts` sub-module), |
| 9 | //! new code should instead use the associated constants |
| 10 | //! defined directly on the `f16` type. |
| 11 | |
| 12 | #![unstable (feature = "f16" , issue = "116909" )] |
| 13 | |
| 14 | use crate::convert::FloatToInt; |
| 15 | use crate::num::FpCategory; |
| 16 | use crate::panic::const_assert; |
| 17 | use crate::{intrinsics, mem}; |
| 18 | |
| 19 | /// Basic mathematical constants. |
| 20 | #[unstable (feature = "f16" , issue = "116909" )] |
| 21 | pub mod consts { |
| 22 | // FIXME: replace with mathematical constants from cmath. |
| 23 | |
| 24 | /// Archimedes' constant (π) |
| 25 | #[unstable (feature = "f16" , issue = "116909" )] |
| 26 | pub const PI: f16 = 3.14159265358979323846264338327950288_f16; |
| 27 | |
| 28 | /// The full circle constant (τ) |
| 29 | /// |
| 30 | /// Equal to 2π. |
| 31 | #[unstable (feature = "f16" , issue = "116909" )] |
| 32 | pub const TAU: f16 = 6.28318530717958647692528676655900577_f16; |
| 33 | |
| 34 | /// The golden ratio (φ) |
| 35 | #[unstable (feature = "f16" , issue = "116909" )] |
| 36 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 37 | pub const PHI: f16 = 1.618033988749894848204586834365638118_f16; |
| 38 | |
| 39 | /// The Euler-Mascheroni constant (γ) |
| 40 | #[unstable (feature = "f16" , issue = "116909" )] |
| 41 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 42 | pub const EGAMMA: f16 = 0.577215664901532860606512090082402431_f16; |
| 43 | |
| 44 | /// π/2 |
| 45 | #[unstable (feature = "f16" , issue = "116909" )] |
| 46 | pub const FRAC_PI_2: f16 = 1.57079632679489661923132169163975144_f16; |
| 47 | |
| 48 | /// π/3 |
| 49 | #[unstable (feature = "f16" , issue = "116909" )] |
| 50 | pub const FRAC_PI_3: f16 = 1.04719755119659774615421446109316763_f16; |
| 51 | |
| 52 | /// π/4 |
| 53 | #[unstable (feature = "f16" , issue = "116909" )] |
| 54 | pub const FRAC_PI_4: f16 = 0.785398163397448309615660845819875721_f16; |
| 55 | |
| 56 | /// π/6 |
| 57 | #[unstable (feature = "f16" , issue = "116909" )] |
| 58 | pub const FRAC_PI_6: f16 = 0.52359877559829887307710723054658381_f16; |
| 59 | |
| 60 | /// π/8 |
| 61 | #[unstable (feature = "f16" , issue = "116909" )] |
| 62 | pub const FRAC_PI_8: f16 = 0.39269908169872415480783042290993786_f16; |
| 63 | |
| 64 | /// 1/π |
| 65 | #[unstable (feature = "f16" , issue = "116909" )] |
| 66 | pub const FRAC_1_PI: f16 = 0.318309886183790671537767526745028724_f16; |
| 67 | |
| 68 | /// 1/sqrt(π) |
| 69 | #[unstable (feature = "f16" , issue = "116909" )] |
| 70 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 71 | pub const FRAC_1_SQRT_PI: f16 = 0.564189583547756286948079451560772586_f16; |
| 72 | |
| 73 | /// 1/sqrt(2π) |
| 74 | #[doc (alias = "FRAC_1_SQRT_TAU" )] |
| 75 | #[unstable (feature = "f16" , issue = "116909" )] |
| 76 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 77 | pub const FRAC_1_SQRT_2PI: f16 = 0.398942280401432677939946059934381868_f16; |
| 78 | |
| 79 | /// 2/π |
| 80 | #[unstable (feature = "f16" , issue = "116909" )] |
| 81 | pub const FRAC_2_PI: f16 = 0.636619772367581343075535053490057448_f16; |
| 82 | |
| 83 | /// 2/sqrt(π) |
| 84 | #[unstable (feature = "f16" , issue = "116909" )] |
| 85 | pub const FRAC_2_SQRT_PI: f16 = 1.12837916709551257389615890312154517_f16; |
| 86 | |
| 87 | /// sqrt(2) |
| 88 | #[unstable (feature = "f16" , issue = "116909" )] |
| 89 | pub const SQRT_2: f16 = 1.41421356237309504880168872420969808_f16; |
| 90 | |
| 91 | /// 1/sqrt(2) |
| 92 | #[unstable (feature = "f16" , issue = "116909" )] |
| 93 | pub const FRAC_1_SQRT_2: f16 = 0.707106781186547524400844362104849039_f16; |
| 94 | |
| 95 | /// sqrt(3) |
| 96 | #[unstable (feature = "f16" , issue = "116909" )] |
| 97 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 98 | pub const SQRT_3: f16 = 1.732050807568877293527446341505872367_f16; |
| 99 | |
| 100 | /// 1/sqrt(3) |
| 101 | #[unstable (feature = "f16" , issue = "116909" )] |
| 102 | // Also, #[unstable(feature = "more_float_constants", issue = "103883")] |
| 103 | pub const FRAC_1_SQRT_3: f16 = 0.577350269189625764509148780501957456_f16; |
| 104 | |
| 105 | /// Euler's number (e) |
| 106 | #[unstable (feature = "f16" , issue = "116909" )] |
| 107 | pub const E: f16 = 2.71828182845904523536028747135266250_f16; |
| 108 | |
| 109 | /// log<sub>2</sub>(10) |
| 110 | #[unstable (feature = "f16" , issue = "116909" )] |
| 111 | pub const LOG2_10: f16 = 3.32192809488736234787031942948939018_f16; |
| 112 | |
| 113 | /// log<sub>2</sub>(e) |
| 114 | #[unstable (feature = "f16" , issue = "116909" )] |
| 115 | pub const LOG2_E: f16 = 1.44269504088896340735992468100189214_f16; |
| 116 | |
| 117 | /// log<sub>10</sub>(2) |
| 118 | #[unstable (feature = "f16" , issue = "116909" )] |
| 119 | pub const LOG10_2: f16 = 0.301029995663981195213738894724493027_f16; |
| 120 | |
| 121 | /// log<sub>10</sub>(e) |
| 122 | #[unstable (feature = "f16" , issue = "116909" )] |
| 123 | pub const LOG10_E: f16 = 0.434294481903251827651128918916605082_f16; |
| 124 | |
| 125 | /// ln(2) |
| 126 | #[unstable (feature = "f16" , issue = "116909" )] |
| 127 | pub const LN_2: f16 = 0.693147180559945309417232121458176568_f16; |
| 128 | |
| 129 | /// ln(10) |
| 130 | #[unstable (feature = "f16" , issue = "116909" )] |
| 131 | pub const LN_10: f16 = 2.30258509299404568401799145468436421_f16; |
| 132 | } |
| 133 | |
| 134 | impl f16 { |
| 135 | // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const |
| 136 | // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE. |
| 137 | |
| 138 | /// The radix or base of the internal representation of `f16`. |
| 139 | #[unstable (feature = "f16" , issue = "116909" )] |
| 140 | pub const RADIX: u32 = 2; |
| 141 | |
| 142 | /// Number of significant digits in base 2. |
| 143 | #[unstable (feature = "f16" , issue = "116909" )] |
| 144 | pub const MANTISSA_DIGITS: u32 = 11; |
| 145 | |
| 146 | /// Approximate number of significant digits in base 10. |
| 147 | /// |
| 148 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
| 149 | /// significant digits can be converted to `f16` and back without loss. |
| 150 | /// |
| 151 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
| 152 | /// |
| 153 | /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS |
| 154 | #[unstable (feature = "f16" , issue = "116909" )] |
| 155 | pub const DIGITS: u32 = 3; |
| 156 | |
| 157 | /// [Machine epsilon] value for `f16`. |
| 158 | /// |
| 159 | /// This is the difference between `1.0` and the next larger representable number. |
| 160 | /// |
| 161 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
| 162 | /// |
| 163 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
| 164 | /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS |
| 165 | #[unstable (feature = "f16" , issue = "116909" )] |
| 166 | pub const EPSILON: f16 = 9.7656e-4_f16; |
| 167 | |
| 168 | /// Smallest finite `f16` value. |
| 169 | /// |
| 170 | /// Equal to −[`MAX`]. |
| 171 | /// |
| 172 | /// [`MAX`]: f16::MAX |
| 173 | #[unstable (feature = "f16" , issue = "116909" )] |
| 174 | pub const MIN: f16 = -6.5504e+4_f16; |
| 175 | /// Smallest positive normal `f16` value. |
| 176 | /// |
| 177 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
| 178 | /// |
| 179 | /// [`MIN_EXP`]: f16::MIN_EXP |
| 180 | #[unstable (feature = "f16" , issue = "116909" )] |
| 181 | pub const MIN_POSITIVE: f16 = 6.1035e-5_f16; |
| 182 | /// Largest finite `f16` value. |
| 183 | /// |
| 184 | /// Equal to |
| 185 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
| 186 | /// |
| 187 | /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS |
| 188 | /// [`MAX_EXP`]: f16::MAX_EXP |
| 189 | #[unstable (feature = "f16" , issue = "116909" )] |
| 190 | pub const MAX: f16 = 6.5504e+4_f16; |
| 191 | |
| 192 | /// One greater than the minimum possible normal power of 2 exponent. |
| 193 | /// |
| 194 | /// If <i>x</i> = `MIN_EXP`, then normal numbers |
| 195 | /// ≥ 0.5 × 2<sup><i>x</i></sup>. |
| 196 | #[unstable (feature = "f16" , issue = "116909" )] |
| 197 | pub const MIN_EXP: i32 = -13; |
| 198 | /// Maximum possible power of 2 exponent. |
| 199 | /// |
| 200 | /// If <i>x</i> = `MAX_EXP`, then normal numbers |
| 201 | /// < 1 × 2<sup><i>x</i></sup>. |
| 202 | #[unstable (feature = "f16" , issue = "116909" )] |
| 203 | pub const MAX_EXP: i32 = 16; |
| 204 | |
| 205 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
| 206 | /// |
| 207 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
| 208 | /// |
| 209 | /// [`MIN_POSITIVE`]: f16::MIN_POSITIVE |
| 210 | #[unstable (feature = "f16" , issue = "116909" )] |
| 211 | pub const MIN_10_EXP: i32 = -4; |
| 212 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
| 213 | /// |
| 214 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
| 215 | /// |
| 216 | /// [`MAX`]: f16::MAX |
| 217 | #[unstable (feature = "f16" , issue = "116909" )] |
| 218 | pub const MAX_10_EXP: i32 = 4; |
| 219 | |
| 220 | /// Not a Number (NaN). |
| 221 | /// |
| 222 | /// Note that IEEE 754 doesn't define just a single NaN value; |
| 223 | /// a plethora of bit patterns are considered to be NaN. |
| 224 | /// Furthermore, the standard makes a difference |
| 225 | /// between a "signaling" and a "quiet" NaN, |
| 226 | /// and allows inspecting its "payload" (the unspecified bits in the bit pattern). |
| 227 | /// This constant isn't guaranteed to equal to any specific NaN bitpattern, |
| 228 | /// and the stability of its representation over Rust versions |
| 229 | /// and target platforms isn't guaranteed. |
| 230 | #[allow (clippy::eq_op)] |
| 231 | #[rustc_diagnostic_item = "f16_nan" ] |
| 232 | #[unstable (feature = "f16" , issue = "116909" )] |
| 233 | pub const NAN: f16 = 0.0_f16 / 0.0_f16; |
| 234 | |
| 235 | /// Infinity (∞). |
| 236 | #[unstable (feature = "f16" , issue = "116909" )] |
| 237 | pub const INFINITY: f16 = 1.0_f16 / 0.0_f16; |
| 238 | |
| 239 | /// Negative infinity (−∞). |
| 240 | #[unstable (feature = "f16" , issue = "116909" )] |
| 241 | pub const NEG_INFINITY: f16 = -1.0_f16 / 0.0_f16; |
| 242 | |
| 243 | /// Sign bit |
| 244 | pub(crate) const SIGN_MASK: u16 = 0x8000; |
| 245 | |
| 246 | /// Exponent mask |
| 247 | pub(crate) const EXP_MASK: u16 = 0x7c00; |
| 248 | |
| 249 | /// Mantissa mask |
| 250 | pub(crate) const MAN_MASK: u16 = 0x03ff; |
| 251 | |
| 252 | /// Minimum representable positive value (min subnormal) |
| 253 | const TINY_BITS: u16 = 0x1; |
| 254 | |
| 255 | /// Minimum representable negative value (min negative subnormal) |
| 256 | const NEG_TINY_BITS: u16 = Self::TINY_BITS | Self::SIGN_MASK; |
| 257 | |
| 258 | /// Returns `true` if this value is NaN. |
| 259 | /// |
| 260 | /// ``` |
| 261 | /// #![feature(f16)] |
| 262 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 263 | /// |
| 264 | /// let nan = f16::NAN; |
| 265 | /// let f = 7.0_f16; |
| 266 | /// |
| 267 | /// assert!(nan.is_nan()); |
| 268 | /// assert!(!f.is_nan()); |
| 269 | /// # } |
| 270 | /// ``` |
| 271 | #[inline ] |
| 272 | #[must_use ] |
| 273 | #[unstable (feature = "f16" , issue = "116909" )] |
| 274 | #[allow (clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :) |
| 275 | pub const fn is_nan(self) -> bool { |
| 276 | self != self |
| 277 | } |
| 278 | |
| 279 | /// Returns `true` if this value is positive infinity or negative infinity, and |
| 280 | /// `false` otherwise. |
| 281 | /// |
| 282 | /// ``` |
| 283 | /// #![feature(f16)] |
| 284 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 285 | /// |
| 286 | /// let f = 7.0f16; |
| 287 | /// let inf = f16::INFINITY; |
| 288 | /// let neg_inf = f16::NEG_INFINITY; |
| 289 | /// let nan = f16::NAN; |
| 290 | /// |
| 291 | /// assert!(!f.is_infinite()); |
| 292 | /// assert!(!nan.is_infinite()); |
| 293 | /// |
| 294 | /// assert!(inf.is_infinite()); |
| 295 | /// assert!(neg_inf.is_infinite()); |
| 296 | /// # } |
| 297 | /// ``` |
| 298 | #[inline ] |
| 299 | #[must_use ] |
| 300 | #[unstable (feature = "f16" , issue = "116909" )] |
| 301 | pub const fn is_infinite(self) -> bool { |
| 302 | (self == f16::INFINITY) | (self == f16::NEG_INFINITY) |
| 303 | } |
| 304 | |
| 305 | /// Returns `true` if this number is neither infinite nor NaN. |
| 306 | /// |
| 307 | /// ``` |
| 308 | /// #![feature(f16)] |
| 309 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 310 | /// |
| 311 | /// let f = 7.0f16; |
| 312 | /// let inf: f16 = f16::INFINITY; |
| 313 | /// let neg_inf: f16 = f16::NEG_INFINITY; |
| 314 | /// let nan: f16 = f16::NAN; |
| 315 | /// |
| 316 | /// assert!(f.is_finite()); |
| 317 | /// |
| 318 | /// assert!(!nan.is_finite()); |
| 319 | /// assert!(!inf.is_finite()); |
| 320 | /// assert!(!neg_inf.is_finite()); |
| 321 | /// # } |
| 322 | /// ``` |
| 323 | #[inline ] |
| 324 | #[must_use ] |
| 325 | #[unstable (feature = "f16" , issue = "116909" )] |
| 326 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 327 | pub const fn is_finite(self) -> bool { |
| 328 | // There's no need to handle NaN separately: if self is NaN, |
| 329 | // the comparison is not true, exactly as desired. |
| 330 | self.abs() < Self::INFINITY |
| 331 | } |
| 332 | |
| 333 | /// Returns `true` if the number is [subnormal]. |
| 334 | /// |
| 335 | /// ``` |
| 336 | /// #![feature(f16)] |
| 337 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 338 | /// |
| 339 | /// let min = f16::MIN_POSITIVE; // 6.1035e-5 |
| 340 | /// let max = f16::MAX; |
| 341 | /// let lower_than_min = 1.0e-7_f16; |
| 342 | /// let zero = 0.0_f16; |
| 343 | /// |
| 344 | /// assert!(!min.is_subnormal()); |
| 345 | /// assert!(!max.is_subnormal()); |
| 346 | /// |
| 347 | /// assert!(!zero.is_subnormal()); |
| 348 | /// assert!(!f16::NAN.is_subnormal()); |
| 349 | /// assert!(!f16::INFINITY.is_subnormal()); |
| 350 | /// // Values between `0` and `min` are Subnormal. |
| 351 | /// assert!(lower_than_min.is_subnormal()); |
| 352 | /// # } |
| 353 | /// ``` |
| 354 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
| 355 | #[inline ] |
| 356 | #[must_use ] |
| 357 | #[unstable (feature = "f16" , issue = "116909" )] |
| 358 | pub const fn is_subnormal(self) -> bool { |
| 359 | matches!(self.classify(), FpCategory::Subnormal) |
| 360 | } |
| 361 | |
| 362 | /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN. |
| 363 | /// |
| 364 | /// ``` |
| 365 | /// #![feature(f16)] |
| 366 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 367 | /// |
| 368 | /// let min = f16::MIN_POSITIVE; // 6.1035e-5 |
| 369 | /// let max = f16::MAX; |
| 370 | /// let lower_than_min = 1.0e-7_f16; |
| 371 | /// let zero = 0.0_f16; |
| 372 | /// |
| 373 | /// assert!(min.is_normal()); |
| 374 | /// assert!(max.is_normal()); |
| 375 | /// |
| 376 | /// assert!(!zero.is_normal()); |
| 377 | /// assert!(!f16::NAN.is_normal()); |
| 378 | /// assert!(!f16::INFINITY.is_normal()); |
| 379 | /// // Values between `0` and `min` are Subnormal. |
| 380 | /// assert!(!lower_than_min.is_normal()); |
| 381 | /// # } |
| 382 | /// ``` |
| 383 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
| 384 | #[inline ] |
| 385 | #[must_use ] |
| 386 | #[unstable (feature = "f16" , issue = "116909" )] |
| 387 | pub const fn is_normal(self) -> bool { |
| 388 | matches!(self.classify(), FpCategory::Normal) |
| 389 | } |
| 390 | |
| 391 | /// Returns the floating point category of the number. If only one property |
| 392 | /// is going to be tested, it is generally faster to use the specific |
| 393 | /// predicate instead. |
| 394 | /// |
| 395 | /// ``` |
| 396 | /// #![feature(f16)] |
| 397 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 398 | /// |
| 399 | /// use std::num::FpCategory; |
| 400 | /// |
| 401 | /// let num = 12.4_f16; |
| 402 | /// let inf = f16::INFINITY; |
| 403 | /// |
| 404 | /// assert_eq!(num.classify(), FpCategory::Normal); |
| 405 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| 406 | /// # } |
| 407 | /// ``` |
| 408 | #[inline ] |
| 409 | #[unstable (feature = "f16" , issue = "116909" )] |
| 410 | pub const fn classify(self) -> FpCategory { |
| 411 | let b = self.to_bits(); |
| 412 | match (b & Self::MAN_MASK, b & Self::EXP_MASK) { |
| 413 | (0, Self::EXP_MASK) => FpCategory::Infinite, |
| 414 | (_, Self::EXP_MASK) => FpCategory::Nan, |
| 415 | (0, 0) => FpCategory::Zero, |
| 416 | (_, 0) => FpCategory::Subnormal, |
| 417 | _ => FpCategory::Normal, |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
| 422 | /// positive sign bit and positive infinity. |
| 423 | /// |
| 424 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
| 425 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
| 426 | /// conserved over arithmetic operations, the result of `is_sign_positive` on |
| 427 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
| 428 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0` |
| 429 | /// if you need fully portable behavior (will return `false` for all NaNs). |
| 430 | /// |
| 431 | /// ``` |
| 432 | /// #![feature(f16)] |
| 433 | /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374 |
| 434 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 435 | /// |
| 436 | /// let f = 7.0_f16; |
| 437 | /// let g = -7.0_f16; |
| 438 | /// |
| 439 | /// assert!(f.is_sign_positive()); |
| 440 | /// assert!(!g.is_sign_positive()); |
| 441 | /// # } |
| 442 | /// ``` |
| 443 | #[inline ] |
| 444 | #[must_use ] |
| 445 | #[unstable (feature = "f16" , issue = "116909" )] |
| 446 | pub const fn is_sign_positive(self) -> bool { |
| 447 | !self.is_sign_negative() |
| 448 | } |
| 449 | |
| 450 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
| 451 | /// negative sign bit and negative infinity. |
| 452 | /// |
| 453 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
| 454 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
| 455 | /// conserved over arithmetic operations, the result of `is_sign_negative` on |
| 456 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
| 457 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0` |
| 458 | /// if you need fully portable behavior (will return `false` for all NaNs). |
| 459 | /// |
| 460 | /// ``` |
| 461 | /// #![feature(f16)] |
| 462 | /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374 |
| 463 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 464 | /// |
| 465 | /// let f = 7.0_f16; |
| 466 | /// let g = -7.0_f16; |
| 467 | /// |
| 468 | /// assert!(!f.is_sign_negative()); |
| 469 | /// assert!(g.is_sign_negative()); |
| 470 | /// # } |
| 471 | /// ``` |
| 472 | #[inline ] |
| 473 | #[must_use ] |
| 474 | #[unstable (feature = "f16" , issue = "116909" )] |
| 475 | pub const fn is_sign_negative(self) -> bool { |
| 476 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
| 477 | // applies to zeros and NaNs as well. |
| 478 | // SAFETY: This is just transmuting to get the sign bit, it's fine. |
| 479 | (self.to_bits() & (1 << 15)) != 0 |
| 480 | } |
| 481 | |
| 482 | /// Returns the least number greater than `self`. |
| 483 | /// |
| 484 | /// Let `TINY` be the smallest representable positive `f16`. Then, |
| 485 | /// - if `self.is_nan()`, this returns `self`; |
| 486 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
| 487 | /// - if `self` is `-TINY`, this returns -0.0; |
| 488 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
| 489 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
| 490 | /// - otherwise the unique least value greater than `self` is returned. |
| 491 | /// |
| 492 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
| 493 | /// is finite `x == x.next_up().next_down()` also holds. |
| 494 | /// |
| 495 | /// ```rust |
| 496 | /// #![feature(f16)] |
| 497 | /// # // FIXME(f16_f128): ABI issues on MSVC |
| 498 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 499 | /// |
| 500 | /// // f16::EPSILON is the difference between 1.0 and the next number up. |
| 501 | /// assert_eq!(1.0f16.next_up(), 1.0 + f16::EPSILON); |
| 502 | /// // But not for most numbers. |
| 503 | /// assert!(0.1f16.next_up() < 0.1 + f16::EPSILON); |
| 504 | /// assert_eq!(4356f16.next_up(), 4360.0); |
| 505 | /// # } |
| 506 | /// ``` |
| 507 | /// |
| 508 | /// This operation corresponds to IEEE-754 `nextUp`. |
| 509 | /// |
| 510 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
| 511 | /// [`INFINITY`]: Self::INFINITY |
| 512 | /// [`MIN`]: Self::MIN |
| 513 | /// [`MAX`]: Self::MAX |
| 514 | #[inline ] |
| 515 | #[doc (alias = "nextUp" )] |
| 516 | #[unstable (feature = "f16" , issue = "116909" )] |
| 517 | pub const fn next_up(self) -> Self { |
| 518 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
| 519 | // denormals to zero. This is in general unsound and unsupported, but here |
| 520 | // we do our best to still produce the correct result on such targets. |
| 521 | let bits = self.to_bits(); |
| 522 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
| 523 | return self; |
| 524 | } |
| 525 | |
| 526 | let abs = bits & !Self::SIGN_MASK; |
| 527 | let next_bits = if abs == 0 { |
| 528 | Self::TINY_BITS |
| 529 | } else if bits == abs { |
| 530 | bits + 1 |
| 531 | } else { |
| 532 | bits - 1 |
| 533 | }; |
| 534 | Self::from_bits(next_bits) |
| 535 | } |
| 536 | |
| 537 | /// Returns the greatest number less than `self`. |
| 538 | /// |
| 539 | /// Let `TINY` be the smallest representable positive `f16`. Then, |
| 540 | /// - if `self.is_nan()`, this returns `self`; |
| 541 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
| 542 | /// - if `self` is `TINY`, this returns 0.0; |
| 543 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
| 544 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
| 545 | /// - otherwise the unique greatest value less than `self` is returned. |
| 546 | /// |
| 547 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
| 548 | /// is finite `x == x.next_down().next_up()` also holds. |
| 549 | /// |
| 550 | /// ```rust |
| 551 | /// #![feature(f16)] |
| 552 | /// # // FIXME(f16_f128): ABI issues on MSVC |
| 553 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 554 | /// |
| 555 | /// let x = 1.0f16; |
| 556 | /// // Clamp value into range [0, 1). |
| 557 | /// let clamped = x.clamp(0.0, 1.0f16.next_down()); |
| 558 | /// assert!(clamped < 1.0); |
| 559 | /// assert_eq!(clamped.next_up(), 1.0); |
| 560 | /// # } |
| 561 | /// ``` |
| 562 | /// |
| 563 | /// This operation corresponds to IEEE-754 `nextDown`. |
| 564 | /// |
| 565 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
| 566 | /// [`INFINITY`]: Self::INFINITY |
| 567 | /// [`MIN`]: Self::MIN |
| 568 | /// [`MAX`]: Self::MAX |
| 569 | #[inline ] |
| 570 | #[doc (alias = "nextDown" )] |
| 571 | #[unstable (feature = "f16" , issue = "116909" )] |
| 572 | pub const fn next_down(self) -> Self { |
| 573 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
| 574 | // denormals to zero. This is in general unsound and unsupported, but here |
| 575 | // we do our best to still produce the correct result on such targets. |
| 576 | let bits = self.to_bits(); |
| 577 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
| 578 | return self; |
| 579 | } |
| 580 | |
| 581 | let abs = bits & !Self::SIGN_MASK; |
| 582 | let next_bits = if abs == 0 { |
| 583 | Self::NEG_TINY_BITS |
| 584 | } else if bits == abs { |
| 585 | bits - 1 |
| 586 | } else { |
| 587 | bits + 1 |
| 588 | }; |
| 589 | Self::from_bits(next_bits) |
| 590 | } |
| 591 | |
| 592 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
| 593 | /// |
| 594 | /// ``` |
| 595 | /// #![feature(f16)] |
| 596 | /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms |
| 597 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 598 | /// |
| 599 | /// let x = 2.0_f16; |
| 600 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
| 601 | /// |
| 602 | /// assert!(abs_difference <= f16::EPSILON); |
| 603 | /// # } |
| 604 | /// ``` |
| 605 | #[inline ] |
| 606 | #[unstable (feature = "f16" , issue = "116909" )] |
| 607 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 608 | pub const fn recip(self) -> Self { |
| 609 | 1.0 / self |
| 610 | } |
| 611 | |
| 612 | /// Converts radians to degrees. |
| 613 | /// |
| 614 | /// ``` |
| 615 | /// #![feature(f16)] |
| 616 | /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms |
| 617 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 618 | /// |
| 619 | /// let angle = std::f16::consts::PI; |
| 620 | /// |
| 621 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
| 622 | /// assert!(abs_difference <= 0.5); |
| 623 | /// # } |
| 624 | /// ``` |
| 625 | #[inline ] |
| 626 | #[unstable (feature = "f16" , issue = "116909" )] |
| 627 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 628 | pub const fn to_degrees(self) -> Self { |
| 629 | // Use a literal for better precision. |
| 630 | const PIS_IN_180: f16 = 57.2957795130823208767981548141051703_f16; |
| 631 | self * PIS_IN_180 |
| 632 | } |
| 633 | |
| 634 | /// Converts degrees to radians. |
| 635 | /// |
| 636 | /// ``` |
| 637 | /// #![feature(f16)] |
| 638 | /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms |
| 639 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 640 | /// |
| 641 | /// let angle = 180.0f16; |
| 642 | /// |
| 643 | /// let abs_difference = (angle.to_radians() - std::f16::consts::PI).abs(); |
| 644 | /// |
| 645 | /// assert!(abs_difference <= 0.01); |
| 646 | /// # } |
| 647 | /// ``` |
| 648 | #[inline ] |
| 649 | #[unstable (feature = "f16" , issue = "116909" )] |
| 650 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 651 | pub const fn to_radians(self) -> f16 { |
| 652 | // Use a literal for better precision. |
| 653 | const RADS_PER_DEG: f16 = 0.017453292519943295769236907684886_f16; |
| 654 | self * RADS_PER_DEG |
| 655 | } |
| 656 | |
| 657 | /// Returns the maximum of the two numbers, ignoring NaN. |
| 658 | /// |
| 659 | /// If one of the arguments is NaN, then the other argument is returned. |
| 660 | /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; |
| 661 | /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. |
| 662 | /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal |
| 663 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
| 664 | /// |
| 665 | /// ``` |
| 666 | /// #![feature(f16)] |
| 667 | /// # #[cfg (target_arch = "aarch64" )] { // FIXME(f16_F128): rust-lang/rust#123885 |
| 668 | /// |
| 669 | /// let x = 1.0f16; |
| 670 | /// let y = 2.0f16; |
| 671 | /// |
| 672 | /// assert_eq!(x.max(y), y); |
| 673 | /// # } |
| 674 | /// ``` |
| 675 | #[inline ] |
| 676 | #[unstable (feature = "f16" , issue = "116909" )] |
| 677 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 678 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 679 | pub const fn max(self, other: f16) -> f16 { |
| 680 | intrinsics::maxnumf16(self, other) |
| 681 | } |
| 682 | |
| 683 | /// Returns the minimum of the two numbers, ignoring NaN. |
| 684 | /// |
| 685 | /// If one of the arguments is NaN, then the other argument is returned. |
| 686 | /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; |
| 687 | /// this function handles all NaNs the same way and avoids minNum's problems with associativity. |
| 688 | /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal |
| 689 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
| 690 | /// |
| 691 | /// ``` |
| 692 | /// #![feature(f16)] |
| 693 | /// # #[cfg (target_arch = "aarch64" )] { // FIXME(f16_F128): rust-lang/rust#123885 |
| 694 | /// |
| 695 | /// let x = 1.0f16; |
| 696 | /// let y = 2.0f16; |
| 697 | /// |
| 698 | /// assert_eq!(x.min(y), x); |
| 699 | /// # } |
| 700 | /// ``` |
| 701 | #[inline ] |
| 702 | #[unstable (feature = "f16" , issue = "116909" )] |
| 703 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 704 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 705 | pub const fn min(self, other: f16) -> f16 { |
| 706 | intrinsics::minnumf16(self, other) |
| 707 | } |
| 708 | |
| 709 | /// Returns the maximum of the two numbers, propagating NaN. |
| 710 | /// |
| 711 | /// This returns NaN when *either* argument is NaN, as opposed to |
| 712 | /// [`f16::max`] which only returns NaN when *both* arguments are NaN. |
| 713 | /// |
| 714 | /// ``` |
| 715 | /// #![feature(f16)] |
| 716 | /// #![feature(float_minimum_maximum)] |
| 717 | /// # #[cfg (target_arch = "aarch64" )] { // FIXME(f16_F128): rust-lang/rust#123885 |
| 718 | /// |
| 719 | /// let x = 1.0f16; |
| 720 | /// let y = 2.0f16; |
| 721 | /// |
| 722 | /// assert_eq!(x.maximum(y), y); |
| 723 | /// assert!(x.maximum(f16::NAN).is_nan()); |
| 724 | /// # } |
| 725 | /// ``` |
| 726 | /// |
| 727 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater |
| 728 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
| 729 | /// Note that this follows the semantics specified in IEEE 754-2019. |
| 730 | /// |
| 731 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
| 732 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
| 733 | #[inline ] |
| 734 | #[unstable (feature = "f16" , issue = "116909" )] |
| 735 | // #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
| 736 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 737 | pub const fn maximum(self, other: f16) -> f16 { |
| 738 | if self > other { |
| 739 | self |
| 740 | } else if other > self { |
| 741 | other |
| 742 | } else if self == other { |
| 743 | if self.is_sign_positive() && other.is_sign_negative() { self } else { other } |
| 744 | } else { |
| 745 | self + other |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | /// Returns the minimum of the two numbers, propagating NaN. |
| 750 | /// |
| 751 | /// This returns NaN when *either* argument is NaN, as opposed to |
| 752 | /// [`f16::min`] which only returns NaN when *both* arguments are NaN. |
| 753 | /// |
| 754 | /// ``` |
| 755 | /// #![feature(f16)] |
| 756 | /// #![feature(float_minimum_maximum)] |
| 757 | /// # #[cfg (target_arch = "aarch64" )] { // FIXME(f16_F128): rust-lang/rust#123885 |
| 758 | /// |
| 759 | /// let x = 1.0f16; |
| 760 | /// let y = 2.0f16; |
| 761 | /// |
| 762 | /// assert_eq!(x.minimum(y), x); |
| 763 | /// assert!(x.minimum(f16::NAN).is_nan()); |
| 764 | /// # } |
| 765 | /// ``` |
| 766 | /// |
| 767 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser |
| 768 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
| 769 | /// Note that this follows the semantics specified in IEEE 754-2019. |
| 770 | /// |
| 771 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
| 772 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
| 773 | #[inline ] |
| 774 | #[unstable (feature = "f16" , issue = "116909" )] |
| 775 | // #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
| 776 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
| 777 | pub const fn minimum(self, other: f16) -> f16 { |
| 778 | if self < other { |
| 779 | self |
| 780 | } else if other < self { |
| 781 | other |
| 782 | } else if self == other { |
| 783 | if self.is_sign_negative() && other.is_sign_positive() { self } else { other } |
| 784 | } else { |
| 785 | // At least one input is NaN. Use `+` to perform NaN propagation and quieting. |
| 786 | self + other |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | /// Calculates the middle point of `self` and `rhs`. |
| 791 | /// |
| 792 | /// This returns NaN when *either* argument is NaN or if a combination of |
| 793 | /// +inf and -inf is provided as arguments. |
| 794 | /// |
| 795 | /// # Examples |
| 796 | /// |
| 797 | /// ``` |
| 798 | /// #![feature(f16)] |
| 799 | /// # #[cfg (target_arch = "aarch64" )] { // FIXME(f16_F128): rust-lang/rust#123885 |
| 800 | /// |
| 801 | /// assert_eq!(1f16.midpoint(4.0), 2.5); |
| 802 | /// assert_eq!((-5.5f16).midpoint(8.0), 1.25); |
| 803 | /// # } |
| 804 | /// ``` |
| 805 | #[inline ] |
| 806 | #[unstable (feature = "f16" , issue = "116909" )] |
| 807 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 808 | pub const fn midpoint(self, other: f16) -> f16 { |
| 809 | const LO: f16 = f16::MIN_POSITIVE * 2.; |
| 810 | const HI: f16 = f16::MAX / 2.; |
| 811 | |
| 812 | let (a, b) = (self, other); |
| 813 | let abs_a = a.abs(); |
| 814 | let abs_b = b.abs(); |
| 815 | |
| 816 | if abs_a <= HI && abs_b <= HI { |
| 817 | // Overflow is impossible |
| 818 | (a + b) / 2. |
| 819 | } else if abs_a < LO { |
| 820 | // Not safe to halve `a` (would underflow) |
| 821 | a + (b / 2.) |
| 822 | } else if abs_b < LO { |
| 823 | // Not safe to halve `b` (would underflow) |
| 824 | (a / 2.) + b |
| 825 | } else { |
| 826 | // Safe to halve `a` and `b` |
| 827 | (a / 2.) + (b / 2.) |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | /// Rounds toward zero and converts to any primitive integer type, |
| 832 | /// assuming that the value is finite and fits in that type. |
| 833 | /// |
| 834 | /// ``` |
| 835 | /// #![feature(f16)] |
| 836 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 837 | /// |
| 838 | /// let value = 4.6_f16; |
| 839 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
| 840 | /// assert_eq!(rounded, 4); |
| 841 | /// |
| 842 | /// let value = -128.9_f16; |
| 843 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
| 844 | /// assert_eq!(rounded, i8::MIN); |
| 845 | /// # } |
| 846 | /// ``` |
| 847 | /// |
| 848 | /// # Safety |
| 849 | /// |
| 850 | /// The value must: |
| 851 | /// |
| 852 | /// * Not be `NaN` |
| 853 | /// * Not be infinite |
| 854 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
| 855 | #[inline ] |
| 856 | #[unstable (feature = "f16" , issue = "116909" )] |
| 857 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 858 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
| 859 | where |
| 860 | Self: FloatToInt<Int>, |
| 861 | { |
| 862 | // SAFETY: the caller must uphold the safety contract for |
| 863 | // `FloatToInt::to_int_unchecked`. |
| 864 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
| 865 | } |
| 866 | |
| 867 | /// Raw transmutation to `u16`. |
| 868 | /// |
| 869 | /// This is currently identical to `transmute::<f16, u16>(self)` on all platforms. |
| 870 | /// |
| 871 | /// See [`from_bits`](#method.from_bits) for some discussion of the |
| 872 | /// portability of this operation (there are almost no issues). |
| 873 | /// |
| 874 | /// Note that this function is distinct from `as` casting, which attempts to |
| 875 | /// preserve the *numeric* value, and not the bitwise value. |
| 876 | /// |
| 877 | /// ``` |
| 878 | /// #![feature(f16)] |
| 879 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 880 | /// |
| 881 | /// # // FIXME(f16_f128): enable this once const casting works |
| 882 | /// # // assert_ne!((1f16).to_bits(), 1f16 as u128); // to_bits() is not casting! |
| 883 | /// assert_eq!((12.5f16).to_bits(), 0x4a40); |
| 884 | /// # } |
| 885 | /// ``` |
| 886 | #[inline ] |
| 887 | #[unstable (feature = "f16" , issue = "116909" )] |
| 888 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 889 | pub const fn to_bits(self) -> u16 { |
| 890 | // SAFETY: `u16` is a plain old datatype so we can always transmute to it. |
| 891 | unsafe { mem::transmute(self) } |
| 892 | } |
| 893 | |
| 894 | /// Raw transmutation from `u16`. |
| 895 | /// |
| 896 | /// This is currently identical to `transmute::<u16, f16>(v)` on all platforms. |
| 897 | /// It turns out this is incredibly portable, for two reasons: |
| 898 | /// |
| 899 | /// * Floats and Ints have the same endianness on all supported platforms. |
| 900 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
| 901 | /// |
| 902 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
| 903 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
| 904 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
| 905 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
| 906 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
| 907 | /// |
| 908 | /// Rather than trying to preserve signaling-ness cross-platform, this |
| 909 | /// implementation favors preserving the exact bits. This means that |
| 910 | /// any payloads encoded in NaNs will be preserved even if the result of |
| 911 | /// this method is sent over the network from an x86 machine to a MIPS one. |
| 912 | /// |
| 913 | /// If the results of this method are only manipulated by the same |
| 914 | /// architecture that produced them, then there is no portability concern. |
| 915 | /// |
| 916 | /// If the input isn't NaN, then there is no portability concern. |
| 917 | /// |
| 918 | /// If you don't care about signalingness (very likely), then there is no |
| 919 | /// portability concern. |
| 920 | /// |
| 921 | /// Note that this function is distinct from `as` casting, which attempts to |
| 922 | /// preserve the *numeric* value, and not the bitwise value. |
| 923 | /// |
| 924 | /// ``` |
| 925 | /// #![feature(f16)] |
| 926 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 927 | /// |
| 928 | /// let v = f16::from_bits(0x4a40); |
| 929 | /// assert_eq!(v, 12.5); |
| 930 | /// # } |
| 931 | /// ``` |
| 932 | #[inline ] |
| 933 | #[must_use ] |
| 934 | #[unstable (feature = "f16" , issue = "116909" )] |
| 935 | pub const fn from_bits(v: u16) -> Self { |
| 936 | // It turns out the safety issues with sNaN were overblown! Hooray! |
| 937 | // SAFETY: `u16` is a plain old datatype so we can always transmute from it. |
| 938 | unsafe { mem::transmute(v) } |
| 939 | } |
| 940 | |
| 941 | /// Returns the memory representation of this floating point number as a byte array in |
| 942 | /// big-endian (network) byte order. |
| 943 | /// |
| 944 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 945 | /// portability of this operation (there are almost no issues). |
| 946 | /// |
| 947 | /// # Examples |
| 948 | /// |
| 949 | /// ``` |
| 950 | /// #![feature(f16)] |
| 951 | /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374 |
| 952 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 953 | /// |
| 954 | /// let bytes = 12.5f16.to_be_bytes(); |
| 955 | /// assert_eq!(bytes, [0x4a, 0x40]); |
| 956 | /// # } |
| 957 | /// ``` |
| 958 | #[inline ] |
| 959 | #[unstable (feature = "f16" , issue = "116909" )] |
| 960 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 961 | pub const fn to_be_bytes(self) -> [u8; 2] { |
| 962 | self.to_bits().to_be_bytes() |
| 963 | } |
| 964 | |
| 965 | /// Returns the memory representation of this floating point number as a byte array in |
| 966 | /// little-endian byte order. |
| 967 | /// |
| 968 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 969 | /// portability of this operation (there are almost no issues). |
| 970 | /// |
| 971 | /// # Examples |
| 972 | /// |
| 973 | /// ``` |
| 974 | /// #![feature(f16)] |
| 975 | /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374 |
| 976 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 977 | /// |
| 978 | /// let bytes = 12.5f16.to_le_bytes(); |
| 979 | /// assert_eq!(bytes, [0x40, 0x4a]); |
| 980 | /// # } |
| 981 | /// ``` |
| 982 | #[inline ] |
| 983 | #[unstable (feature = "f16" , issue = "116909" )] |
| 984 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 985 | pub const fn to_le_bytes(self) -> [u8; 2] { |
| 986 | self.to_bits().to_le_bytes() |
| 987 | } |
| 988 | |
| 989 | /// Returns the memory representation of this floating point number as a byte array in |
| 990 | /// native byte order. |
| 991 | /// |
| 992 | /// As the target platform's native endianness is used, portable code |
| 993 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
| 994 | /// |
| 995 | /// [`to_be_bytes`]: f16::to_be_bytes |
| 996 | /// [`to_le_bytes`]: f16::to_le_bytes |
| 997 | /// |
| 998 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 999 | /// portability of this operation (there are almost no issues). |
| 1000 | /// |
| 1001 | /// # Examples |
| 1002 | /// |
| 1003 | /// ``` |
| 1004 | /// #![feature(f16)] |
| 1005 | /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374 |
| 1006 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1007 | /// |
| 1008 | /// let bytes = 12.5f16.to_ne_bytes(); |
| 1009 | /// assert_eq!( |
| 1010 | /// bytes, |
| 1011 | /// if cfg!(target_endian = "big" ) { |
| 1012 | /// [0x4a, 0x40] |
| 1013 | /// } else { |
| 1014 | /// [0x40, 0x4a] |
| 1015 | /// } |
| 1016 | /// ); |
| 1017 | /// # } |
| 1018 | /// ``` |
| 1019 | #[inline ] |
| 1020 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1021 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
| 1022 | pub const fn to_ne_bytes(self) -> [u8; 2] { |
| 1023 | self.to_bits().to_ne_bytes() |
| 1024 | } |
| 1025 | |
| 1026 | /// Creates a floating point value from its representation as a byte array in big endian. |
| 1027 | /// |
| 1028 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1029 | /// portability of this operation (there are almost no issues). |
| 1030 | /// |
| 1031 | /// # Examples |
| 1032 | /// |
| 1033 | /// ``` |
| 1034 | /// #![feature(f16)] |
| 1035 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1036 | /// |
| 1037 | /// let value = f16::from_be_bytes([0x4a, 0x40]); |
| 1038 | /// assert_eq!(value, 12.5); |
| 1039 | /// # } |
| 1040 | /// ``` |
| 1041 | #[inline ] |
| 1042 | #[must_use ] |
| 1043 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1044 | pub const fn from_be_bytes(bytes: [u8; 2]) -> Self { |
| 1045 | Self::from_bits(u16::from_be_bytes(bytes)) |
| 1046 | } |
| 1047 | |
| 1048 | /// Creates a floating point value from its representation as a byte array in little endian. |
| 1049 | /// |
| 1050 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1051 | /// portability of this operation (there are almost no issues). |
| 1052 | /// |
| 1053 | /// # Examples |
| 1054 | /// |
| 1055 | /// ``` |
| 1056 | /// #![feature(f16)] |
| 1057 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1058 | /// |
| 1059 | /// let value = f16::from_le_bytes([0x40, 0x4a]); |
| 1060 | /// assert_eq!(value, 12.5); |
| 1061 | /// # } |
| 1062 | /// ``` |
| 1063 | #[inline ] |
| 1064 | #[must_use ] |
| 1065 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1066 | pub const fn from_le_bytes(bytes: [u8; 2]) -> Self { |
| 1067 | Self::from_bits(u16::from_le_bytes(bytes)) |
| 1068 | } |
| 1069 | |
| 1070 | /// Creates a floating point value from its representation as a byte array in native endian. |
| 1071 | /// |
| 1072 | /// As the target platform's native endianness is used, portable code |
| 1073 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
| 1074 | /// appropriate instead. |
| 1075 | /// |
| 1076 | /// [`from_be_bytes`]: f16::from_be_bytes |
| 1077 | /// [`from_le_bytes`]: f16::from_le_bytes |
| 1078 | /// |
| 1079 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
| 1080 | /// portability of this operation (there are almost no issues). |
| 1081 | /// |
| 1082 | /// # Examples |
| 1083 | /// |
| 1084 | /// ``` |
| 1085 | /// #![feature(f16)] |
| 1086 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1087 | /// |
| 1088 | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big" ) { |
| 1089 | /// [0x4a, 0x40] |
| 1090 | /// } else { |
| 1091 | /// [0x40, 0x4a] |
| 1092 | /// }); |
| 1093 | /// assert_eq!(value, 12.5); |
| 1094 | /// # } |
| 1095 | /// ``` |
| 1096 | #[inline ] |
| 1097 | #[must_use ] |
| 1098 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1099 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self { |
| 1100 | Self::from_bits(u16::from_ne_bytes(bytes)) |
| 1101 | } |
| 1102 | |
| 1103 | /// Returns the ordering between `self` and `other`. |
| 1104 | /// |
| 1105 | /// Unlike the standard partial comparison between floating point numbers, |
| 1106 | /// this comparison always produces an ordering in accordance to |
| 1107 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| 1108 | /// floating point standard. The values are ordered in the following sequence: |
| 1109 | /// |
| 1110 | /// - negative quiet NaN |
| 1111 | /// - negative signaling NaN |
| 1112 | /// - negative infinity |
| 1113 | /// - negative numbers |
| 1114 | /// - negative subnormal numbers |
| 1115 | /// - negative zero |
| 1116 | /// - positive zero |
| 1117 | /// - positive subnormal numbers |
| 1118 | /// - positive numbers |
| 1119 | /// - positive infinity |
| 1120 | /// - positive signaling NaN |
| 1121 | /// - positive quiet NaN. |
| 1122 | /// |
| 1123 | /// The ordering established by this function does not always agree with the |
| 1124 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example, |
| 1125 | /// they consider negative and positive zero equal, while `total_cmp` |
| 1126 | /// doesn't. |
| 1127 | /// |
| 1128 | /// The interpretation of the signaling NaN bit follows the definition in |
| 1129 | /// the IEEE 754 standard, which may not match the interpretation by some of |
| 1130 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
| 1131 | /// |
| 1132 | /// # Example |
| 1133 | /// |
| 1134 | /// ``` |
| 1135 | /// #![feature(f16)] |
| 1136 | /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms |
| 1137 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1138 | /// |
| 1139 | /// struct GoodBoy { |
| 1140 | /// name: &'static str, |
| 1141 | /// weight: f16, |
| 1142 | /// } |
| 1143 | /// |
| 1144 | /// let mut bois = vec![ |
| 1145 | /// GoodBoy { name: "Pucci" , weight: 0.1 }, |
| 1146 | /// GoodBoy { name: "Woofer" , weight: 99.0 }, |
| 1147 | /// GoodBoy { name: "Yapper" , weight: 10.0 }, |
| 1148 | /// GoodBoy { name: "Chonk" , weight: f16::INFINITY }, |
| 1149 | /// GoodBoy { name: "Abs. Unit" , weight: f16::NAN }, |
| 1150 | /// GoodBoy { name: "Floaty" , weight: -5.0 }, |
| 1151 | /// ]; |
| 1152 | /// |
| 1153 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
| 1154 | /// |
| 1155 | /// // `f16::NAN` could be positive or negative, which will affect the sort order. |
| 1156 | /// if f16::NAN.is_sign_negative() { |
| 1157 | /// bois.into_iter().map(|b| b.weight) |
| 1158 | /// .zip([f16::NAN, -5.0, 0.1, 10.0, 99.0, f16::INFINITY].iter()) |
| 1159 | /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits())) |
| 1160 | /// } else { |
| 1161 | /// bois.into_iter().map(|b| b.weight) |
| 1162 | /// .zip([-5.0, 0.1, 10.0, 99.0, f16::INFINITY, f16::NAN].iter()) |
| 1163 | /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits())) |
| 1164 | /// } |
| 1165 | /// # } |
| 1166 | /// ``` |
| 1167 | #[inline ] |
| 1168 | #[must_use ] |
| 1169 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1170 | pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
| 1171 | let mut left = self.to_bits() as i16; |
| 1172 | let mut right = other.to_bits() as i16; |
| 1173 | |
| 1174 | // In case of negatives, flip all the bits except the sign |
| 1175 | // to achieve a similar layout as two's complement integers |
| 1176 | // |
| 1177 | // Why does this work? IEEE 754 floats consist of three fields: |
| 1178 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
| 1179 | // fields as a whole have the property that their bitwise order is |
| 1180 | // equal to the numeric magnitude where the magnitude is defined. |
| 1181 | // The magnitude is not normally defined on NaN values, but |
| 1182 | // IEEE 754 totalOrder defines the NaN values also to follow the |
| 1183 | // bitwise order. This leads to order explained in the doc comment. |
| 1184 | // However, the representation of magnitude is the same for negative |
| 1185 | // and positive numbers – only the sign bit is different. |
| 1186 | // To easily compare the floats as signed integers, we need to |
| 1187 | // flip the exponent and mantissa bits in case of negative numbers. |
| 1188 | // We effectively convert the numbers to "two's complement" form. |
| 1189 | // |
| 1190 | // To do the flipping, we construct a mask and XOR against it. |
| 1191 | // We branchlessly calculate an "all-ones except for the sign bit" |
| 1192 | // mask from negative-signed values: right shifting sign-extends |
| 1193 | // the integer, so we "fill" the mask with sign bits, and then |
| 1194 | // convert to unsigned to push one more zero bit. |
| 1195 | // On positive values, the mask is all zeros, so it's a no-op. |
| 1196 | left ^= (((left >> 15) as u16) >> 1) as i16; |
| 1197 | right ^= (((right >> 15) as u16) >> 1) as i16; |
| 1198 | |
| 1199 | left.cmp(&right) |
| 1200 | } |
| 1201 | |
| 1202 | /// Restrict a value to a certain interval unless it is NaN. |
| 1203 | /// |
| 1204 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
| 1205 | /// less than `min`. Otherwise this returns `self`. |
| 1206 | /// |
| 1207 | /// Note that this function returns NaN if the initial value was NaN as |
| 1208 | /// well. |
| 1209 | /// |
| 1210 | /// # Panics |
| 1211 | /// |
| 1212 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
| 1213 | /// |
| 1214 | /// # Examples |
| 1215 | /// |
| 1216 | /// ``` |
| 1217 | /// #![feature(f16)] |
| 1218 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1219 | /// |
| 1220 | /// assert!((-3.0f16).clamp(-2.0, 1.0) == -2.0); |
| 1221 | /// assert!((0.0f16).clamp(-2.0, 1.0) == 0.0); |
| 1222 | /// assert!((2.0f16).clamp(-2.0, 1.0) == 1.0); |
| 1223 | /// assert!((f16::NAN).clamp(-2.0, 1.0).is_nan()); |
| 1224 | /// # } |
| 1225 | /// ``` |
| 1226 | #[inline ] |
| 1227 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1228 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1229 | pub const fn clamp(mut self, min: f16, max: f16) -> f16 { |
| 1230 | const_assert!( |
| 1231 | min <= max, |
| 1232 | "min > max, or either was NaN" , |
| 1233 | "min > max, or either was NaN. min = {min:?}, max = {max:?}" , |
| 1234 | min: f16, |
| 1235 | max: f16, |
| 1236 | ); |
| 1237 | |
| 1238 | if self < min { |
| 1239 | self = min; |
| 1240 | } |
| 1241 | if self > max { |
| 1242 | self = max; |
| 1243 | } |
| 1244 | self |
| 1245 | } |
| 1246 | |
| 1247 | /// Computes the absolute value of `self`. |
| 1248 | /// |
| 1249 | /// This function always returns the precise result. |
| 1250 | /// |
| 1251 | /// # Examples |
| 1252 | /// |
| 1253 | /// ``` |
| 1254 | /// #![feature(f16)] |
| 1255 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1256 | /// |
| 1257 | /// let x = 3.5_f16; |
| 1258 | /// let y = -3.5_f16; |
| 1259 | /// |
| 1260 | /// assert_eq!(x.abs(), x); |
| 1261 | /// assert_eq!(y.abs(), -y); |
| 1262 | /// |
| 1263 | /// assert!(f16::NAN.abs().is_nan()); |
| 1264 | /// # } |
| 1265 | /// ``` |
| 1266 | #[inline ] |
| 1267 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1268 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1269 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1270 | pub const fn abs(self) -> Self { |
| 1271 | // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available |
| 1272 | Self::from_bits(self.to_bits() & !(1 << 15)) |
| 1273 | } |
| 1274 | |
| 1275 | /// Returns a number that represents the sign of `self`. |
| 1276 | /// |
| 1277 | /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
| 1278 | /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
| 1279 | /// - NaN if the number is NaN |
| 1280 | /// |
| 1281 | /// # Examples |
| 1282 | /// |
| 1283 | /// ``` |
| 1284 | /// #![feature(f16)] |
| 1285 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1286 | /// |
| 1287 | /// let f = 3.5_f16; |
| 1288 | /// |
| 1289 | /// assert_eq!(f.signum(), 1.0); |
| 1290 | /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0); |
| 1291 | /// |
| 1292 | /// assert!(f16::NAN.signum().is_nan()); |
| 1293 | /// # } |
| 1294 | /// ``` |
| 1295 | #[inline ] |
| 1296 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1297 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1298 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1299 | pub const fn signum(self) -> f16 { |
| 1300 | if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) } |
| 1301 | } |
| 1302 | |
| 1303 | /// Returns a number composed of the magnitude of `self` and the sign of |
| 1304 | /// `sign`. |
| 1305 | /// |
| 1306 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
| 1307 | /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is |
| 1308 | /// returned. |
| 1309 | /// |
| 1310 | /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note |
| 1311 | /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust |
| 1312 | /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the |
| 1313 | /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable |
| 1314 | /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more |
| 1315 | /// info. |
| 1316 | /// |
| 1317 | /// # Examples |
| 1318 | /// |
| 1319 | /// ``` |
| 1320 | /// #![feature(f16)] |
| 1321 | /// # #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] { |
| 1322 | /// |
| 1323 | /// let f = 3.5_f16; |
| 1324 | /// |
| 1325 | /// assert_eq!(f.copysign(0.42), 3.5_f16); |
| 1326 | /// assert_eq!(f.copysign(-0.42), -3.5_f16); |
| 1327 | /// assert_eq!((-f).copysign(0.42), 3.5_f16); |
| 1328 | /// assert_eq!((-f).copysign(-0.42), -3.5_f16); |
| 1329 | /// |
| 1330 | /// assert!(f16::NAN.copysign(1.0).is_nan()); |
| 1331 | /// # } |
| 1332 | /// ``` |
| 1333 | #[inline ] |
| 1334 | #[unstable (feature = "f16" , issue = "116909" )] |
| 1335 | #[rustc_const_unstable (feature = "f16" , issue = "116909" )] |
| 1336 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1337 | pub const fn copysign(self, sign: f16) -> f16 { |
| 1338 | // SAFETY: this is actually a safe intrinsic |
| 1339 | unsafe { intrinsics::copysignf16(self, sign) } |
| 1340 | } |
| 1341 | } |
| 1342 | |