1 | //! Constants for the `f32` single-precision floating point type. |
2 | //! |
3 | //! *[See also the `f32` primitive type][f32].* |
4 | //! |
5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
6 | //! |
7 | //! For the constants defined directly in this module |
8 | //! (as distinct from those defined in the `consts` sub-module), |
9 | //! new code should instead use the associated constants |
10 | //! defined directly on the `f32` type. |
11 | |
12 | #![stable (feature = "rust1" , since = "1.0.0" )] |
13 | |
14 | use crate::convert::FloatToInt; |
15 | #[cfg (not(test))] |
16 | use crate::intrinsics; |
17 | use crate::mem; |
18 | use crate::num::FpCategory; |
19 | |
20 | /// The radix or base of the internal representation of `f32`. |
21 | /// Use [`f32::RADIX`] instead. |
22 | /// |
23 | /// # Examples |
24 | /// |
25 | /// ```rust |
26 | /// // deprecated way |
27 | /// # #[allow (deprecated, deprecated_in_future)] |
28 | /// let r = std::f32::RADIX; |
29 | /// |
30 | /// // intended way |
31 | /// let r = f32::RADIX; |
32 | /// ``` |
33 | #[stable (feature = "rust1" , since = "1.0.0" )] |
34 | #[deprecated (since = "TBD" , note = "replaced by the `RADIX` associated constant on `f32`" )] |
35 | pub const RADIX: u32 = f32::RADIX; |
36 | |
37 | /// Number of significant digits in base 2. |
38 | /// Use [`f32::MANTISSA_DIGITS`] instead. |
39 | /// |
40 | /// # Examples |
41 | /// |
42 | /// ```rust |
43 | /// // deprecated way |
44 | /// # #[allow (deprecated, deprecated_in_future)] |
45 | /// let d = std::f32::MANTISSA_DIGITS; |
46 | /// |
47 | /// // intended way |
48 | /// let d = f32::MANTISSA_DIGITS; |
49 | /// ``` |
50 | #[stable (feature = "rust1" , since = "1.0.0" )] |
51 | #[deprecated ( |
52 | since = "TBD" , |
53 | note = "replaced by the `MANTISSA_DIGITS` associated constant on `f32`" |
54 | )] |
55 | pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS; |
56 | |
57 | /// Approximate number of significant digits in base 10. |
58 | /// Use [`f32::DIGITS`] instead. |
59 | /// |
60 | /// # Examples |
61 | /// |
62 | /// ```rust |
63 | /// // deprecated way |
64 | /// # #[allow (deprecated, deprecated_in_future)] |
65 | /// let d = std::f32::DIGITS; |
66 | /// |
67 | /// // intended way |
68 | /// let d = f32::DIGITS; |
69 | /// ``` |
70 | #[stable (feature = "rust1" , since = "1.0.0" )] |
71 | #[deprecated (since = "TBD" , note = "replaced by the `DIGITS` associated constant on `f32`" )] |
72 | pub const DIGITS: u32 = f32::DIGITS; |
73 | |
74 | /// [Machine epsilon] value for `f32`. |
75 | /// Use [`f32::EPSILON`] instead. |
76 | /// |
77 | /// This is the difference between `1.0` and the next larger representable number. |
78 | /// |
79 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
80 | /// |
81 | /// # Examples |
82 | /// |
83 | /// ```rust |
84 | /// // deprecated way |
85 | /// # #[allow (deprecated, deprecated_in_future)] |
86 | /// let e = std::f32::EPSILON; |
87 | /// |
88 | /// // intended way |
89 | /// let e = f32::EPSILON; |
90 | /// ``` |
91 | #[stable (feature = "rust1" , since = "1.0.0" )] |
92 | #[deprecated (since = "TBD" , note = "replaced by the `EPSILON` associated constant on `f32`" )] |
93 | pub const EPSILON: f32 = f32::EPSILON; |
94 | |
95 | /// Smallest finite `f32` value. |
96 | /// Use [`f32::MIN`] instead. |
97 | /// |
98 | /// # Examples |
99 | /// |
100 | /// ```rust |
101 | /// // deprecated way |
102 | /// # #[allow (deprecated, deprecated_in_future)] |
103 | /// let min = std::f32::MIN; |
104 | /// |
105 | /// // intended way |
106 | /// let min = f32::MIN; |
107 | /// ``` |
108 | #[stable (feature = "rust1" , since = "1.0.0" )] |
109 | #[deprecated (since = "TBD" , note = "replaced by the `MIN` associated constant on `f32`" )] |
110 | pub const MIN: f32 = f32::MIN; |
111 | |
112 | /// Smallest positive normal `f32` value. |
113 | /// Use [`f32::MIN_POSITIVE`] instead. |
114 | /// |
115 | /// # Examples |
116 | /// |
117 | /// ```rust |
118 | /// // deprecated way |
119 | /// # #[allow (deprecated, deprecated_in_future)] |
120 | /// let min = std::f32::MIN_POSITIVE; |
121 | /// |
122 | /// // intended way |
123 | /// let min = f32::MIN_POSITIVE; |
124 | /// ``` |
125 | #[stable (feature = "rust1" , since = "1.0.0" )] |
126 | #[deprecated (since = "TBD" , note = "replaced by the `MIN_POSITIVE` associated constant on `f32`" )] |
127 | pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE; |
128 | |
129 | /// Largest finite `f32` value. |
130 | /// Use [`f32::MAX`] instead. |
131 | /// |
132 | /// # Examples |
133 | /// |
134 | /// ```rust |
135 | /// // deprecated way |
136 | /// # #[allow (deprecated, deprecated_in_future)] |
137 | /// let max = std::f32::MAX; |
138 | /// |
139 | /// // intended way |
140 | /// let max = f32::MAX; |
141 | /// ``` |
142 | #[stable (feature = "rust1" , since = "1.0.0" )] |
143 | #[deprecated (since = "TBD" , note = "replaced by the `MAX` associated constant on `f32`" )] |
144 | pub const MAX: f32 = f32::MAX; |
145 | |
146 | /// One greater than the minimum possible normal power of 2 exponent. |
147 | /// Use [`f32::MIN_EXP`] instead. |
148 | /// |
149 | /// # Examples |
150 | /// |
151 | /// ```rust |
152 | /// // deprecated way |
153 | /// # #[allow (deprecated, deprecated_in_future)] |
154 | /// let min = std::f32::MIN_EXP; |
155 | /// |
156 | /// // intended way |
157 | /// let min = f32::MIN_EXP; |
158 | /// ``` |
159 | #[stable (feature = "rust1" , since = "1.0.0" )] |
160 | #[deprecated (since = "TBD" , note = "replaced by the `MIN_EXP` associated constant on `f32`" )] |
161 | pub const MIN_EXP: i32 = f32::MIN_EXP; |
162 | |
163 | /// Maximum possible power of 2 exponent. |
164 | /// Use [`f32::MAX_EXP`] instead. |
165 | /// |
166 | /// # Examples |
167 | /// |
168 | /// ```rust |
169 | /// // deprecated way |
170 | /// # #[allow (deprecated, deprecated_in_future)] |
171 | /// let max = std::f32::MAX_EXP; |
172 | /// |
173 | /// // intended way |
174 | /// let max = f32::MAX_EXP; |
175 | /// ``` |
176 | #[stable (feature = "rust1" , since = "1.0.0" )] |
177 | #[deprecated (since = "TBD" , note = "replaced by the `MAX_EXP` associated constant on `f32`" )] |
178 | pub const MAX_EXP: i32 = f32::MAX_EXP; |
179 | |
180 | /// Minimum possible normal power of 10 exponent. |
181 | /// Use [`f32::MIN_10_EXP`] instead. |
182 | /// |
183 | /// # Examples |
184 | /// |
185 | /// ```rust |
186 | /// // deprecated way |
187 | /// # #[allow (deprecated, deprecated_in_future)] |
188 | /// let min = std::f32::MIN_10_EXP; |
189 | /// |
190 | /// // intended way |
191 | /// let min = f32::MIN_10_EXP; |
192 | /// ``` |
193 | #[stable (feature = "rust1" , since = "1.0.0" )] |
194 | #[deprecated (since = "TBD" , note = "replaced by the `MIN_10_EXP` associated constant on `f32`" )] |
195 | pub const MIN_10_EXP: i32 = f32::MIN_10_EXP; |
196 | |
197 | /// Maximum possible power of 10 exponent. |
198 | /// Use [`f32::MAX_10_EXP`] instead. |
199 | /// |
200 | /// # Examples |
201 | /// |
202 | /// ```rust |
203 | /// // deprecated way |
204 | /// # #[allow (deprecated, deprecated_in_future)] |
205 | /// let max = std::f32::MAX_10_EXP; |
206 | /// |
207 | /// // intended way |
208 | /// let max = f32::MAX_10_EXP; |
209 | /// ``` |
210 | #[stable (feature = "rust1" , since = "1.0.0" )] |
211 | #[deprecated (since = "TBD" , note = "replaced by the `MAX_10_EXP` associated constant on `f32`" )] |
212 | pub const MAX_10_EXP: i32 = f32::MAX_10_EXP; |
213 | |
214 | /// Not a Number (NaN). |
215 | /// Use [`f32::NAN`] instead. |
216 | /// |
217 | /// # Examples |
218 | /// |
219 | /// ```rust |
220 | /// // deprecated way |
221 | /// # #[allow (deprecated, deprecated_in_future)] |
222 | /// let nan = std::f32::NAN; |
223 | /// |
224 | /// // intended way |
225 | /// let nan = f32::NAN; |
226 | /// ``` |
227 | #[stable (feature = "rust1" , since = "1.0.0" )] |
228 | #[deprecated (since = "TBD" , note = "replaced by the `NAN` associated constant on `f32`" )] |
229 | pub const NAN: f32 = f32::NAN; |
230 | |
231 | /// Infinity (∞). |
232 | /// Use [`f32::INFINITY`] instead. |
233 | /// |
234 | /// # Examples |
235 | /// |
236 | /// ```rust |
237 | /// // deprecated way |
238 | /// # #[allow (deprecated, deprecated_in_future)] |
239 | /// let inf = std::f32::INFINITY; |
240 | /// |
241 | /// // intended way |
242 | /// let inf = f32::INFINITY; |
243 | /// ``` |
244 | #[stable (feature = "rust1" , since = "1.0.0" )] |
245 | #[deprecated (since = "TBD" , note = "replaced by the `INFINITY` associated constant on `f32`" )] |
246 | pub const INFINITY: f32 = f32::INFINITY; |
247 | |
248 | /// Negative infinity (−∞). |
249 | /// Use [`f32::NEG_INFINITY`] instead. |
250 | /// |
251 | /// # Examples |
252 | /// |
253 | /// ```rust |
254 | /// // deprecated way |
255 | /// # #[allow (deprecated, deprecated_in_future)] |
256 | /// let ninf = std::f32::NEG_INFINITY; |
257 | /// |
258 | /// // intended way |
259 | /// let ninf = f32::NEG_INFINITY; |
260 | /// ``` |
261 | #[stable (feature = "rust1" , since = "1.0.0" )] |
262 | #[deprecated (since = "TBD" , note = "replaced by the `NEG_INFINITY` associated constant on `f32`" )] |
263 | pub const NEG_INFINITY: f32 = f32::NEG_INFINITY; |
264 | |
265 | /// Basic mathematical constants. |
266 | #[stable (feature = "rust1" , since = "1.0.0" )] |
267 | pub mod consts { |
268 | // FIXME: replace with mathematical constants from cmath. |
269 | |
270 | /// Archimedes' constant (π) |
271 | #[stable (feature = "rust1" , since = "1.0.0" )] |
272 | pub const PI: f32 = 3.14159265358979323846264338327950288_f32; |
273 | |
274 | /// The full circle constant (τ) |
275 | /// |
276 | /// Equal to 2π. |
277 | #[stable (feature = "tau_constant" , since = "1.47.0" )] |
278 | pub const TAU: f32 = 6.28318530717958647692528676655900577_f32; |
279 | |
280 | /// The golden ratio (φ) |
281 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
282 | pub const PHI: f32 = 1.618033988749894848204586834365638118_f32; |
283 | |
284 | /// The Euler-Mascheroni constant (γ) |
285 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
286 | pub const EGAMMA: f32 = 0.577215664901532860606512090082402431_f32; |
287 | |
288 | /// π/2 |
289 | #[stable (feature = "rust1" , since = "1.0.0" )] |
290 | pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32; |
291 | |
292 | /// π/3 |
293 | #[stable (feature = "rust1" , since = "1.0.0" )] |
294 | pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32; |
295 | |
296 | /// π/4 |
297 | #[stable (feature = "rust1" , since = "1.0.0" )] |
298 | pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32; |
299 | |
300 | /// π/6 |
301 | #[stable (feature = "rust1" , since = "1.0.0" )] |
302 | pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32; |
303 | |
304 | /// π/8 |
305 | #[stable (feature = "rust1" , since = "1.0.0" )] |
306 | pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32; |
307 | |
308 | /// 1/π |
309 | #[stable (feature = "rust1" , since = "1.0.0" )] |
310 | pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32; |
311 | |
312 | /// 1/sqrt(π) |
313 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
314 | pub const FRAC_1_SQRT_PI: f32 = 0.564189583547756286948079451560772586_f32; |
315 | |
316 | /// 2/π |
317 | #[stable (feature = "rust1" , since = "1.0.0" )] |
318 | pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32; |
319 | |
320 | /// 2/sqrt(π) |
321 | #[stable (feature = "rust1" , since = "1.0.0" )] |
322 | pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32; |
323 | |
324 | /// sqrt(2) |
325 | #[stable (feature = "rust1" , since = "1.0.0" )] |
326 | pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32; |
327 | |
328 | /// 1/sqrt(2) |
329 | #[stable (feature = "rust1" , since = "1.0.0" )] |
330 | pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32; |
331 | |
332 | /// sqrt(3) |
333 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
334 | pub const SQRT_3: f32 = 1.732050807568877293527446341505872367_f32; |
335 | |
336 | /// 1/sqrt(3) |
337 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
338 | pub const FRAC_1_SQRT_3: f32 = 0.577350269189625764509148780501957456_f32; |
339 | |
340 | /// Euler's number (e) |
341 | #[stable (feature = "rust1" , since = "1.0.0" )] |
342 | pub const E: f32 = 2.71828182845904523536028747135266250_f32; |
343 | |
344 | /// log<sub>2</sub>(e) |
345 | #[stable (feature = "rust1" , since = "1.0.0" )] |
346 | pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32; |
347 | |
348 | /// log<sub>2</sub>(10) |
349 | #[stable (feature = "extra_log_consts" , since = "1.43.0" )] |
350 | pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32; |
351 | |
352 | /// log<sub>10</sub>(e) |
353 | #[stable (feature = "rust1" , since = "1.0.0" )] |
354 | pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32; |
355 | |
356 | /// log<sub>10</sub>(2) |
357 | #[stable (feature = "extra_log_consts" , since = "1.43.0" )] |
358 | pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32; |
359 | |
360 | /// ln(2) |
361 | #[stable (feature = "rust1" , since = "1.0.0" )] |
362 | pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32; |
363 | |
364 | /// ln(10) |
365 | #[stable (feature = "rust1" , since = "1.0.0" )] |
366 | pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32; |
367 | } |
368 | |
369 | #[cfg (not(test))] |
370 | impl f32 { |
371 | /// The radix or base of the internal representation of `f32`. |
372 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
373 | pub const RADIX: u32 = 2; |
374 | |
375 | /// Number of significant digits in base 2. |
376 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
377 | pub const MANTISSA_DIGITS: u32 = 24; |
378 | |
379 | /// Approximate number of significant digits in base 10. |
380 | /// |
381 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
382 | /// significant digits can be converted to `f32` and back without loss. |
383 | /// |
384 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
385 | /// |
386 | /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS |
387 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
388 | pub const DIGITS: u32 = 6; |
389 | |
390 | /// [Machine epsilon] value for `f32`. |
391 | /// |
392 | /// This is the difference between `1.0` and the next larger representable number. |
393 | /// |
394 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
395 | /// |
396 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
397 | /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS |
398 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
399 | pub const EPSILON: f32 = 1.19209290e-07_f32; |
400 | |
401 | /// Smallest finite `f32` value. |
402 | /// |
403 | /// Equal to −[`MAX`]. |
404 | /// |
405 | /// [`MAX`]: f32::MAX |
406 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
407 | pub const MIN: f32 = -3.40282347e+38_f32; |
408 | /// Smallest positive normal `f32` value. |
409 | /// |
410 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
411 | /// |
412 | /// [`MIN_EXP`]: f32::MIN_EXP |
413 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
414 | pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32; |
415 | /// Largest finite `f32` value. |
416 | /// |
417 | /// Equal to |
418 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
419 | /// |
420 | /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS |
421 | /// [`MAX_EXP`]: f32::MAX_EXP |
422 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
423 | pub const MAX: f32 = 3.40282347e+38_f32; |
424 | |
425 | /// One greater than the minimum possible normal power of 2 exponent. |
426 | /// |
427 | /// If <i>x</i> = `MIN_EXP`, then normal numbers |
428 | /// ≥ 0.5 × 2<sup><i>x</i></sup>. |
429 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
430 | pub const MIN_EXP: i32 = -125; |
431 | /// Maximum possible power of 2 exponent. |
432 | /// |
433 | /// If <i>x</i> = `MAX_EXP`, then normal numbers |
434 | /// < 1 × 2<sup><i>x</i></sup>. |
435 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
436 | pub const MAX_EXP: i32 = 128; |
437 | |
438 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
439 | /// |
440 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
441 | /// |
442 | /// [`MIN_POSITIVE`]: f32::MIN_POSITIVE |
443 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
444 | pub const MIN_10_EXP: i32 = -37; |
445 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
446 | /// |
447 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
448 | /// |
449 | /// [`MAX`]: f32::MAX |
450 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
451 | pub const MAX_10_EXP: i32 = 38; |
452 | |
453 | /// Not a Number (NaN). |
454 | /// |
455 | /// Note that IEEE 754 doesn't define just a single NaN value; |
456 | /// a plethora of bit patterns are considered to be NaN. |
457 | /// Furthermore, the standard makes a difference |
458 | /// between a "signaling" and a "quiet" NaN, |
459 | /// and allows inspecting its "payload" (the unspecified bits in the bit pattern). |
460 | /// This constant isn't guaranteed to equal to any specific NaN bitpattern, |
461 | /// and the stability of its representation over Rust versions |
462 | /// and target platforms isn't guaranteed. |
463 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
464 | #[rustc_diagnostic_item = "f32_nan" ] |
465 | pub const NAN: f32 = 0.0_f32 / 0.0_f32; |
466 | /// Infinity (∞). |
467 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
468 | pub const INFINITY: f32 = 1.0_f32 / 0.0_f32; |
469 | /// Negative infinity (−∞). |
470 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
471 | pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32; |
472 | |
473 | /// Returns `true` if this value is NaN. |
474 | /// |
475 | /// ``` |
476 | /// let nan = f32::NAN; |
477 | /// let f = 7.0_f32; |
478 | /// |
479 | /// assert!(nan.is_nan()); |
480 | /// assert!(!f.is_nan()); |
481 | /// ``` |
482 | #[must_use ] |
483 | #[stable (feature = "rust1" , since = "1.0.0" )] |
484 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
485 | #[inline ] |
486 | pub const fn is_nan(self) -> bool { |
487 | self != self |
488 | } |
489 | |
490 | // FIXME(#50145): `abs` is publicly unavailable in core due to |
491 | // concerns about portability, so this implementation is for |
492 | // private use internally. |
493 | #[inline ] |
494 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
495 | pub(crate) const fn abs_private(self) -> f32 { |
496 | // SAFETY: This transmutation is fine. Probably. For the reasons std is using it. |
497 | unsafe { mem::transmute::<u32, f32>(mem::transmute::<f32, u32>(self) & 0x7fff_ffff) } |
498 | } |
499 | |
500 | /// Returns `true` if this value is positive infinity or negative infinity, and |
501 | /// `false` otherwise. |
502 | /// |
503 | /// ``` |
504 | /// let f = 7.0f32; |
505 | /// let inf = f32::INFINITY; |
506 | /// let neg_inf = f32::NEG_INFINITY; |
507 | /// let nan = f32::NAN; |
508 | /// |
509 | /// assert!(!f.is_infinite()); |
510 | /// assert!(!nan.is_infinite()); |
511 | /// |
512 | /// assert!(inf.is_infinite()); |
513 | /// assert!(neg_inf.is_infinite()); |
514 | /// ``` |
515 | #[must_use ] |
516 | #[stable (feature = "rust1" , since = "1.0.0" )] |
517 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
518 | #[inline ] |
519 | pub const fn is_infinite(self) -> bool { |
520 | // Getting clever with transmutation can result in incorrect answers on some FPUs |
521 | // FIXME: alter the Rust <-> Rust calling convention to prevent this problem. |
522 | // See https://github.com/rust-lang/rust/issues/72327 |
523 | (self == f32::INFINITY) | (self == f32::NEG_INFINITY) |
524 | } |
525 | |
526 | /// Returns `true` if this number is neither infinite nor NaN. |
527 | /// |
528 | /// ``` |
529 | /// let f = 7.0f32; |
530 | /// let inf = f32::INFINITY; |
531 | /// let neg_inf = f32::NEG_INFINITY; |
532 | /// let nan = f32::NAN; |
533 | /// |
534 | /// assert!(f.is_finite()); |
535 | /// |
536 | /// assert!(!nan.is_finite()); |
537 | /// assert!(!inf.is_finite()); |
538 | /// assert!(!neg_inf.is_finite()); |
539 | /// ``` |
540 | #[must_use ] |
541 | #[stable (feature = "rust1" , since = "1.0.0" )] |
542 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
543 | #[inline ] |
544 | pub const fn is_finite(self) -> bool { |
545 | // There's no need to handle NaN separately: if self is NaN, |
546 | // the comparison is not true, exactly as desired. |
547 | self.abs_private() < Self::INFINITY |
548 | } |
549 | |
550 | /// Returns `true` if the number is [subnormal]. |
551 | /// |
552 | /// ``` |
553 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
554 | /// let max = f32::MAX; |
555 | /// let lower_than_min = 1.0e-40_f32; |
556 | /// let zero = 0.0_f32; |
557 | /// |
558 | /// assert!(!min.is_subnormal()); |
559 | /// assert!(!max.is_subnormal()); |
560 | /// |
561 | /// assert!(!zero.is_subnormal()); |
562 | /// assert!(!f32::NAN.is_subnormal()); |
563 | /// assert!(!f32::INFINITY.is_subnormal()); |
564 | /// // Values between `0` and `min` are Subnormal. |
565 | /// assert!(lower_than_min.is_subnormal()); |
566 | /// ``` |
567 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
568 | #[must_use ] |
569 | #[stable (feature = "is_subnormal" , since = "1.53.0" )] |
570 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
571 | #[inline ] |
572 | pub const fn is_subnormal(self) -> bool { |
573 | matches!(self.classify(), FpCategory::Subnormal) |
574 | } |
575 | |
576 | /// Returns `true` if the number is neither zero, infinite, |
577 | /// [subnormal], or NaN. |
578 | /// |
579 | /// ``` |
580 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
581 | /// let max = f32::MAX; |
582 | /// let lower_than_min = 1.0e-40_f32; |
583 | /// let zero = 0.0_f32; |
584 | /// |
585 | /// assert!(min.is_normal()); |
586 | /// assert!(max.is_normal()); |
587 | /// |
588 | /// assert!(!zero.is_normal()); |
589 | /// assert!(!f32::NAN.is_normal()); |
590 | /// assert!(!f32::INFINITY.is_normal()); |
591 | /// // Values between `0` and `min` are Subnormal. |
592 | /// assert!(!lower_than_min.is_normal()); |
593 | /// ``` |
594 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
595 | #[must_use ] |
596 | #[stable (feature = "rust1" , since = "1.0.0" )] |
597 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
598 | #[inline ] |
599 | pub const fn is_normal(self) -> bool { |
600 | matches!(self.classify(), FpCategory::Normal) |
601 | } |
602 | |
603 | /// Returns the floating point category of the number. If only one property |
604 | /// is going to be tested, it is generally faster to use the specific |
605 | /// predicate instead. |
606 | /// |
607 | /// ``` |
608 | /// use std::num::FpCategory; |
609 | /// |
610 | /// let num = 12.4_f32; |
611 | /// let inf = f32::INFINITY; |
612 | /// |
613 | /// assert_eq!(num.classify(), FpCategory::Normal); |
614 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
615 | /// ``` |
616 | #[stable (feature = "rust1" , since = "1.0.0" )] |
617 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
618 | pub const fn classify(self) -> FpCategory { |
619 | // A previous implementation tried to only use bitmask-based checks, |
620 | // using f32::to_bits to transmute the float to its bit repr and match on that. |
621 | // Unfortunately, floating point numbers can be much worse than that. |
622 | // This also needs to not result in recursive evaluations of f64::to_bits. |
623 | // |
624 | // On some processors, in some cases, LLVM will "helpfully" lower floating point ops, |
625 | // in spite of a request for them using f32 and f64, to things like x87 operations. |
626 | // These have an f64's mantissa, but can have a larger than normal exponent. |
627 | // FIXME(jubilee): Using x87 operations is never necessary in order to function |
628 | // on x86 processors for Rust-to-Rust calls, so this issue should not happen. |
629 | // Code generation should be adjusted to use non-C calling conventions, avoiding this. |
630 | // |
631 | if self.is_infinite() { |
632 | // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask. |
633 | FpCategory::Infinite |
634 | } else if self.is_nan() { |
635 | // And it may not be NaN, as it can simply be an "overextended" finite value. |
636 | FpCategory::Nan |
637 | } else { |
638 | // However, std can't simply compare to zero to check for zero, either, |
639 | // as correctness requires avoiding equality tests that may be Subnormal == -0.0 |
640 | // because it may be wrong under "denormals are zero" and "flush to zero" modes. |
641 | // Most of std's targets don't use those, but they are used for thumbv7neon. |
642 | // So, this does use bitpattern matching for the rest. |
643 | |
644 | // SAFETY: f32 to u32 is fine. Usually. |
645 | // If classify has gotten this far, the value is definitely in one of these categories. |
646 | unsafe { f32::partial_classify(self) } |
647 | } |
648 | } |
649 | |
650 | // This doesn't actually return a right answer for NaN on purpose, |
651 | // seeing as how it cannot correctly discern between a floating point NaN, |
652 | // and some normal floating point numbers truncated from an x87 FPU. |
653 | // FIXME(jubilee): This probably could at least answer things correctly for Infinity, |
654 | // like the f64 version does, but I need to run more checks on how things go on x86. |
655 | // I fear losing mantissa data that would have answered that differently. |
656 | // |
657 | // # Safety |
658 | // This requires making sure you call this function for values it answers correctly on, |
659 | // otherwise it returns a wrong answer. This is not important for memory safety per se, |
660 | // but getting floats correct is important for not accidentally leaking const eval |
661 | // runtime-deviating logic which may or may not be acceptable. |
662 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
663 | const unsafe fn partial_classify(self) -> FpCategory { |
664 | const EXP_MASK: u32 = 0x7f800000; |
665 | const MAN_MASK: u32 = 0x007fffff; |
666 | |
667 | // SAFETY: The caller is not asking questions for which this will tell lies. |
668 | let b = unsafe { mem::transmute::<f32, u32>(self) }; |
669 | match (b & MAN_MASK, b & EXP_MASK) { |
670 | (0, 0) => FpCategory::Zero, |
671 | (_, 0) => FpCategory::Subnormal, |
672 | _ => FpCategory::Normal, |
673 | } |
674 | } |
675 | |
676 | // This operates on bits, and only bits, so it can ignore concerns about weird FPUs. |
677 | // FIXME(jubilee): In a just world, this would be the entire impl for classify, |
678 | // plus a transmute. We do not live in a just world, but we can make it more so. |
679 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
680 | const fn classify_bits(b: u32) -> FpCategory { |
681 | const EXP_MASK: u32 = 0x7f800000; |
682 | const MAN_MASK: u32 = 0x007fffff; |
683 | |
684 | match (b & MAN_MASK, b & EXP_MASK) { |
685 | (0, EXP_MASK) => FpCategory::Infinite, |
686 | (_, EXP_MASK) => FpCategory::Nan, |
687 | (0, 0) => FpCategory::Zero, |
688 | (_, 0) => FpCategory::Subnormal, |
689 | _ => FpCategory::Normal, |
690 | } |
691 | } |
692 | |
693 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
694 | /// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any |
695 | /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that |
696 | /// the bit pattern of NaNs are conserved over arithmetic operations, the result of |
697 | /// `is_sign_positive` on a NaN might produce an unexpected result in some cases. |
698 | /// See [explanation of NaN as a special value](f32) for more info. |
699 | /// |
700 | /// ``` |
701 | /// let f = 7.0_f32; |
702 | /// let g = -7.0_f32; |
703 | /// |
704 | /// assert!(f.is_sign_positive()); |
705 | /// assert!(!g.is_sign_positive()); |
706 | /// ``` |
707 | #[must_use ] |
708 | #[stable (feature = "rust1" , since = "1.0.0" )] |
709 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
710 | #[inline ] |
711 | pub const fn is_sign_positive(self) -> bool { |
712 | !self.is_sign_negative() |
713 | } |
714 | |
715 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
716 | /// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any |
717 | /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that |
718 | /// the bit pattern of NaNs are conserved over arithmetic operations, the result of |
719 | /// `is_sign_negative` on a NaN might produce an unexpected result in some cases. |
720 | /// See [explanation of NaN as a special value](f32) for more info. |
721 | /// |
722 | /// ``` |
723 | /// let f = 7.0f32; |
724 | /// let g = -7.0f32; |
725 | /// |
726 | /// assert!(!f.is_sign_negative()); |
727 | /// assert!(g.is_sign_negative()); |
728 | /// ``` |
729 | #[must_use ] |
730 | #[stable (feature = "rust1" , since = "1.0.0" )] |
731 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
732 | #[inline ] |
733 | pub const fn is_sign_negative(self) -> bool { |
734 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
735 | // applies to zeros and NaNs as well. |
736 | // SAFETY: This is just transmuting to get the sign bit, it's fine. |
737 | unsafe { mem::transmute::<f32, u32>(self) & 0x8000_0000 != 0 } |
738 | } |
739 | |
740 | /// Returns the least number greater than `self`. |
741 | /// |
742 | /// Let `TINY` be the smallest representable positive `f32`. Then, |
743 | /// - if `self.is_nan()`, this returns `self`; |
744 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
745 | /// - if `self` is `-TINY`, this returns -0.0; |
746 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
747 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
748 | /// - otherwise the unique least value greater than `self` is returned. |
749 | /// |
750 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
751 | /// is finite `x == x.next_up().next_down()` also holds. |
752 | /// |
753 | /// ```rust |
754 | /// #![feature(float_next_up_down)] |
755 | /// // f32::EPSILON is the difference between 1.0 and the next number up. |
756 | /// assert_eq!(1.0f32.next_up(), 1.0 + f32::EPSILON); |
757 | /// // But not for most numbers. |
758 | /// assert!(0.1f32.next_up() < 0.1 + f32::EPSILON); |
759 | /// assert_eq!(16777216f32.next_up(), 16777218.0); |
760 | /// ``` |
761 | /// |
762 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
763 | /// [`INFINITY`]: Self::INFINITY |
764 | /// [`MIN`]: Self::MIN |
765 | /// [`MAX`]: Self::MAX |
766 | #[unstable (feature = "float_next_up_down" , issue = "91399" )] |
767 | #[rustc_const_unstable (feature = "float_next_up_down" , issue = "91399" )] |
768 | pub const fn next_up(self) -> Self { |
769 | // We must use strictly integer arithmetic to prevent denormals from |
770 | // flushing to zero after an arithmetic operation on some platforms. |
771 | const TINY_BITS: u32 = 0x1; // Smallest positive f32. |
772 | const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff; |
773 | |
774 | let bits = self.to_bits(); |
775 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
776 | return self; |
777 | } |
778 | |
779 | let abs = bits & CLEAR_SIGN_MASK; |
780 | let next_bits = if abs == 0 { |
781 | TINY_BITS |
782 | } else if bits == abs { |
783 | bits + 1 |
784 | } else { |
785 | bits - 1 |
786 | }; |
787 | Self::from_bits(next_bits) |
788 | } |
789 | |
790 | /// Returns the greatest number less than `self`. |
791 | /// |
792 | /// Let `TINY` be the smallest representable positive `f32`. Then, |
793 | /// - if `self.is_nan()`, this returns `self`; |
794 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
795 | /// - if `self` is `TINY`, this returns 0.0; |
796 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
797 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
798 | /// - otherwise the unique greatest value less than `self` is returned. |
799 | /// |
800 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
801 | /// is finite `x == x.next_down().next_up()` also holds. |
802 | /// |
803 | /// ```rust |
804 | /// #![feature(float_next_up_down)] |
805 | /// let x = 1.0f32; |
806 | /// // Clamp value into range [0, 1). |
807 | /// let clamped = x.clamp(0.0, 1.0f32.next_down()); |
808 | /// assert!(clamped < 1.0); |
809 | /// assert_eq!(clamped.next_up(), 1.0); |
810 | /// ``` |
811 | /// |
812 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
813 | /// [`INFINITY`]: Self::INFINITY |
814 | /// [`MIN`]: Self::MIN |
815 | /// [`MAX`]: Self::MAX |
816 | #[unstable (feature = "float_next_up_down" , issue = "91399" )] |
817 | #[rustc_const_unstable (feature = "float_next_up_down" , issue = "91399" )] |
818 | pub const fn next_down(self) -> Self { |
819 | // We must use strictly integer arithmetic to prevent denormals from |
820 | // flushing to zero after an arithmetic operation on some platforms. |
821 | const NEG_TINY_BITS: u32 = 0x8000_0001; // Smallest (in magnitude) negative f32. |
822 | const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff; |
823 | |
824 | let bits = self.to_bits(); |
825 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
826 | return self; |
827 | } |
828 | |
829 | let abs = bits & CLEAR_SIGN_MASK; |
830 | let next_bits = if abs == 0 { |
831 | NEG_TINY_BITS |
832 | } else if bits == abs { |
833 | bits - 1 |
834 | } else { |
835 | bits + 1 |
836 | }; |
837 | Self::from_bits(next_bits) |
838 | } |
839 | |
840 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
841 | /// |
842 | /// ``` |
843 | /// let x = 2.0_f32; |
844 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
845 | /// |
846 | /// assert!(abs_difference <= f32::EPSILON); |
847 | /// ``` |
848 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
849 | #[stable (feature = "rust1" , since = "1.0.0" )] |
850 | #[inline ] |
851 | pub fn recip(self) -> f32 { |
852 | 1.0 / self |
853 | } |
854 | |
855 | /// Converts radians to degrees. |
856 | /// |
857 | /// ``` |
858 | /// let angle = std::f32::consts::PI; |
859 | /// |
860 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
861 | /// # #[cfg (any(not(target_arch = "x86" ), target_feature = "sse2" ))] |
862 | /// assert!(abs_difference <= f32::EPSILON); |
863 | /// ``` |
864 | #[must_use = "this returns the result of the operation, \ |
865 | without modifying the original" ] |
866 | #[stable (feature = "f32_deg_rad_conversions" , since = "1.7.0" )] |
867 | #[inline ] |
868 | pub fn to_degrees(self) -> f32 { |
869 | // Use a constant for better precision. |
870 | const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32; |
871 | self * PIS_IN_180 |
872 | } |
873 | |
874 | /// Converts degrees to radians. |
875 | /// |
876 | /// ``` |
877 | /// let angle = 180.0f32; |
878 | /// |
879 | /// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs(); |
880 | /// |
881 | /// assert!(abs_difference <= f32::EPSILON); |
882 | /// ``` |
883 | #[must_use = "this returns the result of the operation, \ |
884 | without modifying the original" ] |
885 | #[stable (feature = "f32_deg_rad_conversions" , since = "1.7.0" )] |
886 | #[inline ] |
887 | pub fn to_radians(self) -> f32 { |
888 | let value: f32 = consts::PI; |
889 | self * (value / 180.0f32) |
890 | } |
891 | |
892 | /// Returns the maximum of the two numbers, ignoring NaN. |
893 | /// |
894 | /// If one of the arguments is NaN, then the other argument is returned. |
895 | /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; |
896 | /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. |
897 | /// This also matches the behavior of libm’s fmax. |
898 | /// |
899 | /// ``` |
900 | /// let x = 1.0f32; |
901 | /// let y = 2.0f32; |
902 | /// |
903 | /// assert_eq!(x.max(y), y); |
904 | /// ``` |
905 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
906 | #[stable (feature = "rust1" , since = "1.0.0" )] |
907 | #[inline ] |
908 | pub fn max(self, other: f32) -> f32 { |
909 | intrinsics::maxnumf32(self, other) |
910 | } |
911 | |
912 | /// Returns the minimum of the two numbers, ignoring NaN. |
913 | /// |
914 | /// If one of the arguments is NaN, then the other argument is returned. |
915 | /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; |
916 | /// this function handles all NaNs the same way and avoids minNum's problems with associativity. |
917 | /// This also matches the behavior of libm’s fmin. |
918 | /// |
919 | /// ``` |
920 | /// let x = 1.0f32; |
921 | /// let y = 2.0f32; |
922 | /// |
923 | /// assert_eq!(x.min(y), x); |
924 | /// ``` |
925 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
926 | #[stable (feature = "rust1" , since = "1.0.0" )] |
927 | #[inline ] |
928 | pub fn min(self, other: f32) -> f32 { |
929 | intrinsics::minnumf32(self, other) |
930 | } |
931 | |
932 | /// Returns the maximum of the two numbers, propagating NaN. |
933 | /// |
934 | /// This returns NaN when *either* argument is NaN, as opposed to |
935 | /// [`f32::max`] which only returns NaN when *both* arguments are NaN. |
936 | /// |
937 | /// ``` |
938 | /// #![feature(float_minimum_maximum)] |
939 | /// let x = 1.0f32; |
940 | /// let y = 2.0f32; |
941 | /// |
942 | /// assert_eq!(x.maximum(y), y); |
943 | /// assert!(x.maximum(f32::NAN).is_nan()); |
944 | /// ``` |
945 | /// |
946 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater |
947 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
948 | /// Note that this follows the semantics specified in IEEE 754-2019. |
949 | /// |
950 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
951 | /// operand is conserved; see [explanation of NaN as a special value](f32) for more info. |
952 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
953 | #[unstable (feature = "float_minimum_maximum" , issue = "91079" )] |
954 | #[inline ] |
955 | pub fn maximum(self, other: f32) -> f32 { |
956 | if self > other { |
957 | self |
958 | } else if other > self { |
959 | other |
960 | } else if self == other { |
961 | if self.is_sign_positive() && other.is_sign_negative() { self } else { other } |
962 | } else { |
963 | self + other |
964 | } |
965 | } |
966 | |
967 | /// Returns the minimum of the two numbers, propagating NaN. |
968 | /// |
969 | /// This returns NaN when *either* argument is NaN, as opposed to |
970 | /// [`f32::min`] which only returns NaN when *both* arguments are NaN. |
971 | /// |
972 | /// ``` |
973 | /// #![feature(float_minimum_maximum)] |
974 | /// let x = 1.0f32; |
975 | /// let y = 2.0f32; |
976 | /// |
977 | /// assert_eq!(x.minimum(y), x); |
978 | /// assert!(x.minimum(f32::NAN).is_nan()); |
979 | /// ``` |
980 | /// |
981 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser |
982 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
983 | /// Note that this follows the semantics specified in IEEE 754-2019. |
984 | /// |
985 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
986 | /// operand is conserved; see [explanation of NaN as a special value](f32) for more info. |
987 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
988 | #[unstable (feature = "float_minimum_maximum" , issue = "91079" )] |
989 | #[inline ] |
990 | pub fn minimum(self, other: f32) -> f32 { |
991 | if self < other { |
992 | self |
993 | } else if other < self { |
994 | other |
995 | } else if self == other { |
996 | if self.is_sign_negative() && other.is_sign_positive() { self } else { other } |
997 | } else { |
998 | // At least one input is NaN. Use `+` to perform NaN propagation and quieting. |
999 | self + other |
1000 | } |
1001 | } |
1002 | |
1003 | /// Calculates the middle point of `self` and `rhs`. |
1004 | /// |
1005 | /// This returns NaN when *either* argument is NaN or if a combination of |
1006 | /// +inf and -inf is provided as arguments. |
1007 | /// |
1008 | /// # Examples |
1009 | /// |
1010 | /// ``` |
1011 | /// #![feature(num_midpoint)] |
1012 | /// assert_eq!(1f32.midpoint(4.0), 2.5); |
1013 | /// assert_eq!((-5.5f32).midpoint(8.0), 1.25); |
1014 | /// ``` |
1015 | #[unstable (feature = "num_midpoint" , issue = "110840" )] |
1016 | pub fn midpoint(self, other: f32) -> f32 { |
1017 | const LO: f32 = f32::MIN_POSITIVE * 2.; |
1018 | const HI: f32 = f32::MAX / 2.; |
1019 | |
1020 | let (a, b) = (self, other); |
1021 | let abs_a = a.abs_private(); |
1022 | let abs_b = b.abs_private(); |
1023 | |
1024 | if abs_a <= HI && abs_b <= HI { |
1025 | // Overflow is impossible |
1026 | (a + b) / 2. |
1027 | } else if abs_a < LO { |
1028 | // Not safe to halve a |
1029 | a + (b / 2.) |
1030 | } else if abs_b < LO { |
1031 | // Not safe to halve b |
1032 | (a / 2.) + b |
1033 | } else { |
1034 | // Not safe to halve a and b |
1035 | (a / 2.) + (b / 2.) |
1036 | } |
1037 | } |
1038 | |
1039 | /// Rounds toward zero and converts to any primitive integer type, |
1040 | /// assuming that the value is finite and fits in that type. |
1041 | /// |
1042 | /// ``` |
1043 | /// let value = 4.6_f32; |
1044 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
1045 | /// assert_eq!(rounded, 4); |
1046 | /// |
1047 | /// let value = -128.9_f32; |
1048 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
1049 | /// assert_eq!(rounded, i8::MIN); |
1050 | /// ``` |
1051 | /// |
1052 | /// # Safety |
1053 | /// |
1054 | /// The value must: |
1055 | /// |
1056 | /// * Not be `NaN` |
1057 | /// * Not be infinite |
1058 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
1059 | #[must_use = "this returns the result of the operation, \ |
1060 | without modifying the original" ] |
1061 | #[stable (feature = "float_approx_unchecked_to" , since = "1.44.0" )] |
1062 | #[inline ] |
1063 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
1064 | where |
1065 | Self: FloatToInt<Int>, |
1066 | { |
1067 | // SAFETY: the caller must uphold the safety contract for |
1068 | // `FloatToInt::to_int_unchecked`. |
1069 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
1070 | } |
1071 | |
1072 | /// Raw transmutation to `u32`. |
1073 | /// |
1074 | /// This is currently identical to `transmute::<f32, u32>(self)` on all platforms. |
1075 | /// |
1076 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1077 | /// portability of this operation (there are almost no issues). |
1078 | /// |
1079 | /// Note that this function is distinct from `as` casting, which attempts to |
1080 | /// preserve the *numeric* value, and not the bitwise value. |
1081 | /// |
1082 | /// # Examples |
1083 | /// |
1084 | /// ``` |
1085 | /// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! |
1086 | /// assert_eq!((12.5f32).to_bits(), 0x41480000); |
1087 | /// |
1088 | /// ``` |
1089 | #[must_use = "this returns the result of the operation, \ |
1090 | without modifying the original" ] |
1091 | #[stable (feature = "float_bits_conv" , since = "1.20.0" )] |
1092 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1093 | #[inline ] |
1094 | pub const fn to_bits(self) -> u32 { |
1095 | // SAFETY: `u32` is a plain old datatype so we can always transmute to it. |
1096 | // ...sorta. |
1097 | // |
1098 | // It turns out that at runtime, it is possible for a floating point number |
1099 | // to be subject to a floating point mode that alters nonzero subnormal numbers |
1100 | // to zero on reads and writes, aka "denormals are zero" and "flush to zero". |
1101 | // This is not a problem per se, but at least one tier2 platform for Rust |
1102 | // actually exhibits this behavior by default. |
1103 | // |
1104 | // In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled, |
1105 | // i.e. not soft-float, the way Rust does parameter passing can actually alter |
1106 | // a number that is "not infinity" to have the same exponent as infinity, |
1107 | // in a slightly unpredictable manner. |
1108 | // |
1109 | // And, of course evaluating to a NaN value is fairly nondeterministic. |
1110 | // More precisely: when NaN should be returned is knowable, but which NaN? |
1111 | // So far that's defined by a combination of LLVM and the CPU, not Rust. |
1112 | // This function, however, allows observing the bitstring of a NaN, |
1113 | // thus introspection on CTFE. |
1114 | // |
1115 | // In order to preserve, at least for the moment, const-to-runtime equivalence, |
1116 | // we reject any of these possible situations from happening. |
1117 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1118 | const fn ct_f32_to_u32(ct: f32) -> u32 { |
1119 | match ct.classify() { |
1120 | FpCategory::Nan => { |
1121 | panic!("const-eval error: cannot use f32::to_bits on a NaN" ) |
1122 | } |
1123 | FpCategory::Subnormal => { |
1124 | panic!("const-eval error: cannot use f32::to_bits on a subnormal number" ) |
1125 | } |
1126 | FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => { |
1127 | // SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy. |
1128 | unsafe { mem::transmute::<f32, u32>(ct) } |
1129 | } |
1130 | } |
1131 | } |
1132 | |
1133 | #[inline (always)] // See https://github.com/rust-lang/compiler-builtins/issues/491 |
1134 | fn rt_f32_to_u32(x: f32) -> u32 { |
1135 | // SAFETY: `u32` is a plain old datatype so we can always... uh... |
1136 | // ...look, just pretend you forgot what you just read. |
1137 | // Stability concerns. |
1138 | unsafe { mem::transmute(x) } |
1139 | } |
1140 | // SAFETY: We use internal implementations that either always work or fail at compile time. |
1141 | unsafe { intrinsics::const_eval_select((self,), ct_f32_to_u32, rt_f32_to_u32) } |
1142 | } |
1143 | |
1144 | /// Raw transmutation from `u32`. |
1145 | /// |
1146 | /// This is currently identical to `transmute::<u32, f32>(v)` on all platforms. |
1147 | /// It turns out this is incredibly portable, for two reasons: |
1148 | /// |
1149 | /// * Floats and Ints have the same endianness on all supported platforms. |
1150 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
1151 | /// |
1152 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
1153 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
1154 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
1155 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
1156 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
1157 | /// |
1158 | /// Rather than trying to preserve signaling-ness cross-platform, this |
1159 | /// implementation favors preserving the exact bits. This means that |
1160 | /// any payloads encoded in NaNs will be preserved even if the result of |
1161 | /// this method is sent over the network from an x86 machine to a MIPS one. |
1162 | /// |
1163 | /// If the results of this method are only manipulated by the same |
1164 | /// architecture that produced them, then there is no portability concern. |
1165 | /// |
1166 | /// If the input isn't NaN, then there is no portability concern. |
1167 | /// |
1168 | /// If you don't care about signalingness (very likely), then there is no |
1169 | /// portability concern. |
1170 | /// |
1171 | /// Note that this function is distinct from `as` casting, which attempts to |
1172 | /// preserve the *numeric* value, and not the bitwise value. |
1173 | /// |
1174 | /// # Examples |
1175 | /// |
1176 | /// ``` |
1177 | /// let v = f32::from_bits(0x41480000); |
1178 | /// assert_eq!(v, 12.5); |
1179 | /// ``` |
1180 | #[stable (feature = "float_bits_conv" , since = "1.20.0" )] |
1181 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1182 | #[must_use ] |
1183 | #[inline ] |
1184 | pub const fn from_bits(v: u32) -> Self { |
1185 | // It turns out the safety issues with sNaN were overblown! Hooray! |
1186 | // SAFETY: `u32` is a plain old datatype so we can always transmute from it |
1187 | // ...sorta. |
1188 | // |
1189 | // It turns out that at runtime, it is possible for a floating point number |
1190 | // to be subject to floating point modes that alter nonzero subnormal numbers |
1191 | // to zero on reads and writes, aka "denormals are zero" and "flush to zero". |
1192 | // This is not a problem usually, but at least one tier2 platform for Rust |
1193 | // actually exhibits this behavior by default: thumbv7neon |
1194 | // aka "the Neon FPU in AArch32 state" |
1195 | // |
1196 | // In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled, |
1197 | // i.e. not soft-float, the way Rust does parameter passing can actually alter |
1198 | // a number that is "not infinity" to have the same exponent as infinity, |
1199 | // in a slightly unpredictable manner. |
1200 | // |
1201 | // And, of course evaluating to a NaN value is fairly nondeterministic. |
1202 | // More precisely: when NaN should be returned is knowable, but which NaN? |
1203 | // So far that's defined by a combination of LLVM and the CPU, not Rust. |
1204 | // This function, however, allows observing the bitstring of a NaN, |
1205 | // thus introspection on CTFE. |
1206 | // |
1207 | // In order to preserve, at least for the moment, const-to-runtime equivalence, |
1208 | // reject any of these possible situations from happening. |
1209 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1210 | const fn ct_u32_to_f32(ct: u32) -> f32 { |
1211 | match f32::classify_bits(ct) { |
1212 | FpCategory::Subnormal => { |
1213 | panic!("const-eval error: cannot use f32::from_bits on a subnormal number" ) |
1214 | } |
1215 | FpCategory::Nan => { |
1216 | panic!("const-eval error: cannot use f32::from_bits on NaN" ) |
1217 | } |
1218 | FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => { |
1219 | // SAFETY: It's not a frumious number |
1220 | unsafe { mem::transmute::<u32, f32>(ct) } |
1221 | } |
1222 | } |
1223 | } |
1224 | |
1225 | #[inline (always)] // See https://github.com/rust-lang/compiler-builtins/issues/491 |
1226 | fn rt_u32_to_f32(x: u32) -> f32 { |
1227 | // SAFETY: `u32` is a plain old datatype so we can always... uh... |
1228 | // ...look, just pretend you forgot what you just read. |
1229 | // Stability concerns. |
1230 | unsafe { mem::transmute(x) } |
1231 | } |
1232 | // SAFETY: We use internal implementations that either always work or fail at compile time. |
1233 | unsafe { intrinsics::const_eval_select((v,), ct_u32_to_f32, rt_u32_to_f32) } |
1234 | } |
1235 | |
1236 | /// Return the memory representation of this floating point number as a byte array in |
1237 | /// big-endian (network) byte order. |
1238 | /// |
1239 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1240 | /// portability of this operation (there are almost no issues). |
1241 | /// |
1242 | /// # Examples |
1243 | /// |
1244 | /// ``` |
1245 | /// let bytes = 12.5f32.to_be_bytes(); |
1246 | /// assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]); |
1247 | /// ``` |
1248 | #[must_use = "this returns the result of the operation, \ |
1249 | without modifying the original" ] |
1250 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1251 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1252 | #[inline ] |
1253 | pub const fn to_be_bytes(self) -> [u8; 4] { |
1254 | self.to_bits().to_be_bytes() |
1255 | } |
1256 | |
1257 | /// Return the memory representation of this floating point number as a byte array in |
1258 | /// little-endian byte order. |
1259 | /// |
1260 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1261 | /// portability of this operation (there are almost no issues). |
1262 | /// |
1263 | /// # Examples |
1264 | /// |
1265 | /// ``` |
1266 | /// let bytes = 12.5f32.to_le_bytes(); |
1267 | /// assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]); |
1268 | /// ``` |
1269 | #[must_use = "this returns the result of the operation, \ |
1270 | without modifying the original" ] |
1271 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1272 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1273 | #[inline ] |
1274 | pub const fn to_le_bytes(self) -> [u8; 4] { |
1275 | self.to_bits().to_le_bytes() |
1276 | } |
1277 | |
1278 | /// Return the memory representation of this floating point number as a byte array in |
1279 | /// native byte order. |
1280 | /// |
1281 | /// As the target platform's native endianness is used, portable code |
1282 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
1283 | /// |
1284 | /// [`to_be_bytes`]: f32::to_be_bytes |
1285 | /// [`to_le_bytes`]: f32::to_le_bytes |
1286 | /// |
1287 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1288 | /// portability of this operation (there are almost no issues). |
1289 | /// |
1290 | /// # Examples |
1291 | /// |
1292 | /// ``` |
1293 | /// let bytes = 12.5f32.to_ne_bytes(); |
1294 | /// assert_eq!( |
1295 | /// bytes, |
1296 | /// if cfg!(target_endian = "big" ) { |
1297 | /// [0x41, 0x48, 0x00, 0x00] |
1298 | /// } else { |
1299 | /// [0x00, 0x00, 0x48, 0x41] |
1300 | /// } |
1301 | /// ); |
1302 | /// ``` |
1303 | #[must_use = "this returns the result of the operation, \ |
1304 | without modifying the original" ] |
1305 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1306 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1307 | #[inline ] |
1308 | pub const fn to_ne_bytes(self) -> [u8; 4] { |
1309 | self.to_bits().to_ne_bytes() |
1310 | } |
1311 | |
1312 | /// Create a floating point value from its representation as a byte array in big endian. |
1313 | /// |
1314 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1315 | /// portability of this operation (there are almost no issues). |
1316 | /// |
1317 | /// # Examples |
1318 | /// |
1319 | /// ``` |
1320 | /// let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]); |
1321 | /// assert_eq!(value, 12.5); |
1322 | /// ``` |
1323 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1324 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1325 | #[must_use ] |
1326 | #[inline ] |
1327 | pub const fn from_be_bytes(bytes: [u8; 4]) -> Self { |
1328 | Self::from_bits(u32::from_be_bytes(bytes)) |
1329 | } |
1330 | |
1331 | /// Create a floating point value from its representation as a byte array in little endian. |
1332 | /// |
1333 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1334 | /// portability of this operation (there are almost no issues). |
1335 | /// |
1336 | /// # Examples |
1337 | /// |
1338 | /// ``` |
1339 | /// let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]); |
1340 | /// assert_eq!(value, 12.5); |
1341 | /// ``` |
1342 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1343 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1344 | #[must_use ] |
1345 | #[inline ] |
1346 | pub const fn from_le_bytes(bytes: [u8; 4]) -> Self { |
1347 | Self::from_bits(u32::from_le_bytes(bytes)) |
1348 | } |
1349 | |
1350 | /// Create a floating point value from its representation as a byte array in native endian. |
1351 | /// |
1352 | /// As the target platform's native endianness is used, portable code |
1353 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
1354 | /// appropriate instead. |
1355 | /// |
1356 | /// [`from_be_bytes`]: f32::from_be_bytes |
1357 | /// [`from_le_bytes`]: f32::from_le_bytes |
1358 | /// |
1359 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1360 | /// portability of this operation (there are almost no issues). |
1361 | /// |
1362 | /// # Examples |
1363 | /// |
1364 | /// ``` |
1365 | /// let value = f32::from_ne_bytes(if cfg!(target_endian = "big" ) { |
1366 | /// [0x41, 0x48, 0x00, 0x00] |
1367 | /// } else { |
1368 | /// [0x00, 0x00, 0x48, 0x41] |
1369 | /// }); |
1370 | /// assert_eq!(value, 12.5); |
1371 | /// ``` |
1372 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1373 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1374 | #[must_use ] |
1375 | #[inline ] |
1376 | pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self { |
1377 | Self::from_bits(u32::from_ne_bytes(bytes)) |
1378 | } |
1379 | |
1380 | /// Return the ordering between `self` and `other`. |
1381 | /// |
1382 | /// Unlike the standard partial comparison between floating point numbers, |
1383 | /// this comparison always produces an ordering in accordance to |
1384 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
1385 | /// floating point standard. The values are ordered in the following sequence: |
1386 | /// |
1387 | /// - negative quiet NaN |
1388 | /// - negative signaling NaN |
1389 | /// - negative infinity |
1390 | /// - negative numbers |
1391 | /// - negative subnormal numbers |
1392 | /// - negative zero |
1393 | /// - positive zero |
1394 | /// - positive subnormal numbers |
1395 | /// - positive numbers |
1396 | /// - positive infinity |
1397 | /// - positive signaling NaN |
1398 | /// - positive quiet NaN. |
1399 | /// |
1400 | /// The ordering established by this function does not always agree with the |
1401 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example, |
1402 | /// they consider negative and positive zero equal, while `total_cmp` |
1403 | /// doesn't. |
1404 | /// |
1405 | /// The interpretation of the signaling NaN bit follows the definition in |
1406 | /// the IEEE 754 standard, which may not match the interpretation by some of |
1407 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
1408 | /// |
1409 | /// # Example |
1410 | /// |
1411 | /// ``` |
1412 | /// struct GoodBoy { |
1413 | /// name: String, |
1414 | /// weight: f32, |
1415 | /// } |
1416 | /// |
1417 | /// let mut bois = vec![ |
1418 | /// GoodBoy { name: "Pucci" .to_owned(), weight: 0.1 }, |
1419 | /// GoodBoy { name: "Woofer" .to_owned(), weight: 99.0 }, |
1420 | /// GoodBoy { name: "Yapper" .to_owned(), weight: 10.0 }, |
1421 | /// GoodBoy { name: "Chonk" .to_owned(), weight: f32::INFINITY }, |
1422 | /// GoodBoy { name: "Abs. Unit" .to_owned(), weight: f32::NAN }, |
1423 | /// GoodBoy { name: "Floaty" .to_owned(), weight: -5.0 }, |
1424 | /// ]; |
1425 | /// |
1426 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
1427 | /// |
1428 | /// // `f32::NAN` could be positive or negative, which will affect the sort order. |
1429 | /// if f32::NAN.is_sign_negative() { |
1430 | /// assert!(bois.into_iter().map(|b| b.weight) |
1431 | /// .zip([f32::NAN, -5.0, 0.1, 10.0, 99.0, f32::INFINITY].iter()) |
1432 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1433 | /// } else { |
1434 | /// assert!(bois.into_iter().map(|b| b.weight) |
1435 | /// .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter()) |
1436 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1437 | /// } |
1438 | /// ``` |
1439 | #[stable (feature = "total_cmp" , since = "1.62.0" )] |
1440 | #[must_use ] |
1441 | #[inline ] |
1442 | pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
1443 | let mut left = self.to_bits() as i32; |
1444 | let mut right = other.to_bits() as i32; |
1445 | |
1446 | // In case of negatives, flip all the bits except the sign |
1447 | // to achieve a similar layout as two's complement integers |
1448 | // |
1449 | // Why does this work? IEEE 754 floats consist of three fields: |
1450 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
1451 | // fields as a whole have the property that their bitwise order is |
1452 | // equal to the numeric magnitude where the magnitude is defined. |
1453 | // The magnitude is not normally defined on NaN values, but |
1454 | // IEEE 754 totalOrder defines the NaN values also to follow the |
1455 | // bitwise order. This leads to order explained in the doc comment. |
1456 | // However, the representation of magnitude is the same for negative |
1457 | // and positive numbers – only the sign bit is different. |
1458 | // To easily compare the floats as signed integers, we need to |
1459 | // flip the exponent and mantissa bits in case of negative numbers. |
1460 | // We effectively convert the numbers to "two's complement" form. |
1461 | // |
1462 | // To do the flipping, we construct a mask and XOR against it. |
1463 | // We branchlessly calculate an "all-ones except for the sign bit" |
1464 | // mask from negative-signed values: right shifting sign-extends |
1465 | // the integer, so we "fill" the mask with sign bits, and then |
1466 | // convert to unsigned to push one more zero bit. |
1467 | // On positive values, the mask is all zeros, so it's a no-op. |
1468 | left ^= (((left >> 31) as u32) >> 1) as i32; |
1469 | right ^= (((right >> 31) as u32) >> 1) as i32; |
1470 | |
1471 | left.cmp(&right) |
1472 | } |
1473 | |
1474 | /// Restrict a value to a certain interval unless it is NaN. |
1475 | /// |
1476 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
1477 | /// less than `min`. Otherwise this returns `self`. |
1478 | /// |
1479 | /// Note that this function returns NaN if the initial value was NaN as |
1480 | /// well. |
1481 | /// |
1482 | /// # Panics |
1483 | /// |
1484 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
1485 | /// |
1486 | /// # Examples |
1487 | /// |
1488 | /// ``` |
1489 | /// assert!((-3.0f32).clamp(-2.0, 1.0) == -2.0); |
1490 | /// assert!((0.0f32).clamp(-2.0, 1.0) == 0.0); |
1491 | /// assert!((2.0f32).clamp(-2.0, 1.0) == 1.0); |
1492 | /// assert!((f32::NAN).clamp(-2.0, 1.0).is_nan()); |
1493 | /// ``` |
1494 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1495 | #[stable (feature = "clamp" , since = "1.50.0" )] |
1496 | #[inline ] |
1497 | pub fn clamp(mut self, min: f32, max: f32) -> f32 { |
1498 | assert!(min <= max, "min > max, or either was NaN. min = {min:?}, max = {max:?}" ); |
1499 | if self < min { |
1500 | self = min; |
1501 | } |
1502 | if self > max { |
1503 | self = max; |
1504 | } |
1505 | self |
1506 | } |
1507 | } |
1508 | |