1 | //! Constants for the `f64` double-precision floating point type. |
2 | //! |
3 | //! *[See also the `f64` primitive type][f64].* |
4 | //! |
5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
6 | //! |
7 | //! For the constants defined directly in this module |
8 | //! (as distinct from those defined in the `consts` sub-module), |
9 | //! new code should instead use the associated constants |
10 | //! defined directly on the `f64` type. |
11 | |
12 | #![stable (feature = "rust1" , since = "1.0.0" )] |
13 | |
14 | use crate::convert::FloatToInt; |
15 | #[cfg (not(test))] |
16 | use crate::intrinsics; |
17 | use crate::mem; |
18 | use crate::num::FpCategory; |
19 | |
20 | /// The radix or base of the internal representation of `f64`. |
21 | /// Use [`f64::RADIX`] instead. |
22 | /// |
23 | /// # Examples |
24 | /// |
25 | /// ```rust |
26 | /// // deprecated way |
27 | /// # #[allow (deprecated, deprecated_in_future)] |
28 | /// let r = std::f64::RADIX; |
29 | /// |
30 | /// // intended way |
31 | /// let r = f64::RADIX; |
32 | /// ``` |
33 | #[stable (feature = "rust1" , since = "1.0.0" )] |
34 | #[deprecated (since = "TBD" , note = "replaced by the `RADIX` associated constant on `f64`" )] |
35 | pub const RADIX: u32 = f64::RADIX; |
36 | |
37 | /// Number of significant digits in base 2. |
38 | /// Use [`f64::MANTISSA_DIGITS`] instead. |
39 | /// |
40 | /// # Examples |
41 | /// |
42 | /// ```rust |
43 | /// // deprecated way |
44 | /// # #[allow (deprecated, deprecated_in_future)] |
45 | /// let d = std::f64::MANTISSA_DIGITS; |
46 | /// |
47 | /// // intended way |
48 | /// let d = f64::MANTISSA_DIGITS; |
49 | /// ``` |
50 | #[stable (feature = "rust1" , since = "1.0.0" )] |
51 | #[deprecated ( |
52 | since = "TBD" , |
53 | note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`" |
54 | )] |
55 | pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS; |
56 | |
57 | /// Approximate number of significant digits in base 10. |
58 | /// Use [`f64::DIGITS`] instead. |
59 | /// |
60 | /// # Examples |
61 | /// |
62 | /// ```rust |
63 | /// // deprecated way |
64 | /// # #[allow (deprecated, deprecated_in_future)] |
65 | /// let d = std::f64::DIGITS; |
66 | /// |
67 | /// // intended way |
68 | /// let d = f64::DIGITS; |
69 | /// ``` |
70 | #[stable (feature = "rust1" , since = "1.0.0" )] |
71 | #[deprecated (since = "TBD" , note = "replaced by the `DIGITS` associated constant on `f64`" )] |
72 | pub const DIGITS: u32 = f64::DIGITS; |
73 | |
74 | /// [Machine epsilon] value for `f64`. |
75 | /// Use [`f64::EPSILON`] instead. |
76 | /// |
77 | /// This is the difference between `1.0` and the next larger representable number. |
78 | /// |
79 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
80 | /// |
81 | /// # Examples |
82 | /// |
83 | /// ```rust |
84 | /// // deprecated way |
85 | /// # #[allow (deprecated, deprecated_in_future)] |
86 | /// let e = std::f64::EPSILON; |
87 | /// |
88 | /// // intended way |
89 | /// let e = f64::EPSILON; |
90 | /// ``` |
91 | #[stable (feature = "rust1" , since = "1.0.0" )] |
92 | #[deprecated (since = "TBD" , note = "replaced by the `EPSILON` associated constant on `f64`" )] |
93 | pub const EPSILON: f64 = f64::EPSILON; |
94 | |
95 | /// Smallest finite `f64` value. |
96 | /// Use [`f64::MIN`] instead. |
97 | /// |
98 | /// # Examples |
99 | /// |
100 | /// ```rust |
101 | /// // deprecated way |
102 | /// # #[allow (deprecated, deprecated_in_future)] |
103 | /// let min = std::f64::MIN; |
104 | /// |
105 | /// // intended way |
106 | /// let min = f64::MIN; |
107 | /// ``` |
108 | #[stable (feature = "rust1" , since = "1.0.0" )] |
109 | #[deprecated (since = "TBD" , note = "replaced by the `MIN` associated constant on `f64`" )] |
110 | pub const MIN: f64 = f64::MIN; |
111 | |
112 | /// Smallest positive normal `f64` value. |
113 | /// Use [`f64::MIN_POSITIVE`] instead. |
114 | /// |
115 | /// # Examples |
116 | /// |
117 | /// ```rust |
118 | /// // deprecated way |
119 | /// # #[allow (deprecated, deprecated_in_future)] |
120 | /// let min = std::f64::MIN_POSITIVE; |
121 | /// |
122 | /// // intended way |
123 | /// let min = f64::MIN_POSITIVE; |
124 | /// ``` |
125 | #[stable (feature = "rust1" , since = "1.0.0" )] |
126 | #[deprecated (since = "TBD" , note = "replaced by the `MIN_POSITIVE` associated constant on `f64`" )] |
127 | pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE; |
128 | |
129 | /// Largest finite `f64` value. |
130 | /// Use [`f64::MAX`] instead. |
131 | /// |
132 | /// # Examples |
133 | /// |
134 | /// ```rust |
135 | /// // deprecated way |
136 | /// # #[allow (deprecated, deprecated_in_future)] |
137 | /// let max = std::f64::MAX; |
138 | /// |
139 | /// // intended way |
140 | /// let max = f64::MAX; |
141 | /// ``` |
142 | #[stable (feature = "rust1" , since = "1.0.0" )] |
143 | #[deprecated (since = "TBD" , note = "replaced by the `MAX` associated constant on `f64`" )] |
144 | pub const MAX: f64 = f64::MAX; |
145 | |
146 | /// One greater than the minimum possible normal power of 2 exponent. |
147 | /// Use [`f64::MIN_EXP`] instead. |
148 | /// |
149 | /// # Examples |
150 | /// |
151 | /// ```rust |
152 | /// // deprecated way |
153 | /// # #[allow (deprecated, deprecated_in_future)] |
154 | /// let min = std::f64::MIN_EXP; |
155 | /// |
156 | /// // intended way |
157 | /// let min = f64::MIN_EXP; |
158 | /// ``` |
159 | #[stable (feature = "rust1" , since = "1.0.0" )] |
160 | #[deprecated (since = "TBD" , note = "replaced by the `MIN_EXP` associated constant on `f64`" )] |
161 | pub const MIN_EXP: i32 = f64::MIN_EXP; |
162 | |
163 | /// Maximum possible power of 2 exponent. |
164 | /// Use [`f64::MAX_EXP`] instead. |
165 | /// |
166 | /// # Examples |
167 | /// |
168 | /// ```rust |
169 | /// // deprecated way |
170 | /// # #[allow (deprecated, deprecated_in_future)] |
171 | /// let max = std::f64::MAX_EXP; |
172 | /// |
173 | /// // intended way |
174 | /// let max = f64::MAX_EXP; |
175 | /// ``` |
176 | #[stable (feature = "rust1" , since = "1.0.0" )] |
177 | #[deprecated (since = "TBD" , note = "replaced by the `MAX_EXP` associated constant on `f64`" )] |
178 | pub const MAX_EXP: i32 = f64::MAX_EXP; |
179 | |
180 | /// Minimum possible normal power of 10 exponent. |
181 | /// Use [`f64::MIN_10_EXP`] instead. |
182 | /// |
183 | /// # Examples |
184 | /// |
185 | /// ```rust |
186 | /// // deprecated way |
187 | /// # #[allow (deprecated, deprecated_in_future)] |
188 | /// let min = std::f64::MIN_10_EXP; |
189 | /// |
190 | /// // intended way |
191 | /// let min = f64::MIN_10_EXP; |
192 | /// ``` |
193 | #[stable (feature = "rust1" , since = "1.0.0" )] |
194 | #[deprecated (since = "TBD" , note = "replaced by the `MIN_10_EXP` associated constant on `f64`" )] |
195 | pub const MIN_10_EXP: i32 = f64::MIN_10_EXP; |
196 | |
197 | /// Maximum possible power of 10 exponent. |
198 | /// Use [`f64::MAX_10_EXP`] instead. |
199 | /// |
200 | /// # Examples |
201 | /// |
202 | /// ```rust |
203 | /// // deprecated way |
204 | /// # #[allow (deprecated, deprecated_in_future)] |
205 | /// let max = std::f64::MAX_10_EXP; |
206 | /// |
207 | /// // intended way |
208 | /// let max = f64::MAX_10_EXP; |
209 | /// ``` |
210 | #[stable (feature = "rust1" , since = "1.0.0" )] |
211 | #[deprecated (since = "TBD" , note = "replaced by the `MAX_10_EXP` associated constant on `f64`" )] |
212 | pub const MAX_10_EXP: i32 = f64::MAX_10_EXP; |
213 | |
214 | /// Not a Number (NaN). |
215 | /// Use [`f64::NAN`] instead. |
216 | /// |
217 | /// # Examples |
218 | /// |
219 | /// ```rust |
220 | /// // deprecated way |
221 | /// # #[allow (deprecated, deprecated_in_future)] |
222 | /// let nan = std::f64::NAN; |
223 | /// |
224 | /// // intended way |
225 | /// let nan = f64::NAN; |
226 | /// ``` |
227 | #[stable (feature = "rust1" , since = "1.0.0" )] |
228 | #[deprecated (since = "TBD" , note = "replaced by the `NAN` associated constant on `f64`" )] |
229 | pub const NAN: f64 = f64::NAN; |
230 | |
231 | /// Infinity (∞). |
232 | /// Use [`f64::INFINITY`] instead. |
233 | /// |
234 | /// # Examples |
235 | /// |
236 | /// ```rust |
237 | /// // deprecated way |
238 | /// # #[allow (deprecated, deprecated_in_future)] |
239 | /// let inf = std::f64::INFINITY; |
240 | /// |
241 | /// // intended way |
242 | /// let inf = f64::INFINITY; |
243 | /// ``` |
244 | #[stable (feature = "rust1" , since = "1.0.0" )] |
245 | #[deprecated (since = "TBD" , note = "replaced by the `INFINITY` associated constant on `f64`" )] |
246 | pub const INFINITY: f64 = f64::INFINITY; |
247 | |
248 | /// Negative infinity (−∞). |
249 | /// Use [`f64::NEG_INFINITY`] instead. |
250 | /// |
251 | /// # Examples |
252 | /// |
253 | /// ```rust |
254 | /// // deprecated way |
255 | /// # #[allow (deprecated, deprecated_in_future)] |
256 | /// let ninf = std::f64::NEG_INFINITY; |
257 | /// |
258 | /// // intended way |
259 | /// let ninf = f64::NEG_INFINITY; |
260 | /// ``` |
261 | #[stable (feature = "rust1" , since = "1.0.0" )] |
262 | #[deprecated (since = "TBD" , note = "replaced by the `NEG_INFINITY` associated constant on `f64`" )] |
263 | pub const NEG_INFINITY: f64 = f64::NEG_INFINITY; |
264 | |
265 | /// Basic mathematical constants. |
266 | #[stable (feature = "rust1" , since = "1.0.0" )] |
267 | pub mod consts { |
268 | // FIXME: replace with mathematical constants from cmath. |
269 | |
270 | /// Archimedes' constant (π) |
271 | #[stable (feature = "rust1" , since = "1.0.0" )] |
272 | pub const PI: f64 = 3.14159265358979323846264338327950288_f64; |
273 | |
274 | /// The full circle constant (τ) |
275 | /// |
276 | /// Equal to 2π. |
277 | #[stable (feature = "tau_constant" , since = "1.47.0" )] |
278 | pub const TAU: f64 = 6.28318530717958647692528676655900577_f64; |
279 | |
280 | /// The golden ratio (φ) |
281 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
282 | pub const PHI: f64 = 1.618033988749894848204586834365638118_f64; |
283 | |
284 | /// The Euler-Mascheroni constant (γ) |
285 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
286 | pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64; |
287 | |
288 | /// π/2 |
289 | #[stable (feature = "rust1" , since = "1.0.0" )] |
290 | pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64; |
291 | |
292 | /// π/3 |
293 | #[stable (feature = "rust1" , since = "1.0.0" )] |
294 | pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64; |
295 | |
296 | /// π/4 |
297 | #[stable (feature = "rust1" , since = "1.0.0" )] |
298 | pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64; |
299 | |
300 | /// π/6 |
301 | #[stable (feature = "rust1" , since = "1.0.0" )] |
302 | pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64; |
303 | |
304 | /// π/8 |
305 | #[stable (feature = "rust1" , since = "1.0.0" )] |
306 | pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64; |
307 | |
308 | /// 1/π |
309 | #[stable (feature = "rust1" , since = "1.0.0" )] |
310 | pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64; |
311 | |
312 | /// 1/sqrt(π) |
313 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
314 | pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64; |
315 | |
316 | /// 2/π |
317 | #[stable (feature = "rust1" , since = "1.0.0" )] |
318 | pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64; |
319 | |
320 | /// 2/sqrt(π) |
321 | #[stable (feature = "rust1" , since = "1.0.0" )] |
322 | pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64; |
323 | |
324 | /// sqrt(2) |
325 | #[stable (feature = "rust1" , since = "1.0.0" )] |
326 | pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64; |
327 | |
328 | /// 1/sqrt(2) |
329 | #[stable (feature = "rust1" , since = "1.0.0" )] |
330 | pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64; |
331 | |
332 | /// sqrt(3) |
333 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
334 | pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64; |
335 | |
336 | /// 1/sqrt(3) |
337 | #[unstable (feature = "more_float_constants" , issue = "103883" )] |
338 | pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64; |
339 | |
340 | /// Euler's number (e) |
341 | #[stable (feature = "rust1" , since = "1.0.0" )] |
342 | pub const E: f64 = 2.71828182845904523536028747135266250_f64; |
343 | |
344 | /// log<sub>2</sub>(10) |
345 | #[stable (feature = "extra_log_consts" , since = "1.43.0" )] |
346 | pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64; |
347 | |
348 | /// log<sub>2</sub>(e) |
349 | #[stable (feature = "rust1" , since = "1.0.0" )] |
350 | pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64; |
351 | |
352 | /// log<sub>10</sub>(2) |
353 | #[stable (feature = "extra_log_consts" , since = "1.43.0" )] |
354 | pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64; |
355 | |
356 | /// log<sub>10</sub>(e) |
357 | #[stable (feature = "rust1" , since = "1.0.0" )] |
358 | pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64; |
359 | |
360 | /// ln(2) |
361 | #[stable (feature = "rust1" , since = "1.0.0" )] |
362 | pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64; |
363 | |
364 | /// ln(10) |
365 | #[stable (feature = "rust1" , since = "1.0.0" )] |
366 | pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64; |
367 | } |
368 | |
369 | #[cfg (not(test))] |
370 | impl f64 { |
371 | /// The radix or base of the internal representation of `f64`. |
372 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
373 | pub const RADIX: u32 = 2; |
374 | |
375 | /// Number of significant digits in base 2. |
376 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
377 | pub const MANTISSA_DIGITS: u32 = 53; |
378 | /// Approximate number of significant digits in base 10. |
379 | /// |
380 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
381 | /// significant digits can be converted to `f64` and back without loss. |
382 | /// |
383 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
384 | /// |
385 | /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS |
386 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
387 | pub const DIGITS: u32 = 15; |
388 | |
389 | /// [Machine epsilon] value for `f64`. |
390 | /// |
391 | /// This is the difference between `1.0` and the next larger representable number. |
392 | /// |
393 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
394 | /// |
395 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
396 | /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS |
397 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
398 | pub const EPSILON: f64 = 2.2204460492503131e-16_f64; |
399 | |
400 | /// Smallest finite `f64` value. |
401 | /// |
402 | /// Equal to −[`MAX`]. |
403 | /// |
404 | /// [`MAX`]: f64::MAX |
405 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
406 | pub const MIN: f64 = -1.7976931348623157e+308_f64; |
407 | /// Smallest positive normal `f64` value. |
408 | /// |
409 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
410 | /// |
411 | /// [`MIN_EXP`]: f64::MIN_EXP |
412 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
413 | pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64; |
414 | /// Largest finite `f64` value. |
415 | /// |
416 | /// Equal to |
417 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
418 | /// |
419 | /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS |
420 | /// [`MAX_EXP`]: f64::MAX_EXP |
421 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
422 | pub const MAX: f64 = 1.7976931348623157e+308_f64; |
423 | |
424 | /// One greater than the minimum possible normal power of 2 exponent. |
425 | /// |
426 | /// If <i>x</i> = `MIN_EXP`, then normal numbers |
427 | /// ≥ 0.5 × 2<sup><i>x</i></sup>. |
428 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
429 | pub const MIN_EXP: i32 = -1021; |
430 | /// Maximum possible power of 2 exponent. |
431 | /// |
432 | /// If <i>x</i> = `MAX_EXP`, then normal numbers |
433 | /// < 1 × 2<sup><i>x</i></sup>. |
434 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
435 | pub const MAX_EXP: i32 = 1024; |
436 | |
437 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
438 | /// |
439 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
440 | /// |
441 | /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE |
442 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
443 | pub const MIN_10_EXP: i32 = -307; |
444 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
445 | /// |
446 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
447 | /// |
448 | /// [`MAX`]: f64::MAX |
449 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
450 | pub const MAX_10_EXP: i32 = 308; |
451 | |
452 | /// Not a Number (NaN). |
453 | /// |
454 | /// Note that IEEE 754 doesn't define just a single NaN value; |
455 | /// a plethora of bit patterns are considered to be NaN. |
456 | /// Furthermore, the standard makes a difference |
457 | /// between a "signaling" and a "quiet" NaN, |
458 | /// and allows inspecting its "payload" (the unspecified bits in the bit pattern). |
459 | /// This constant isn't guaranteed to equal to any specific NaN bitpattern, |
460 | /// and the stability of its representation over Rust versions |
461 | /// and target platforms isn't guaranteed. |
462 | #[rustc_diagnostic_item = "f64_nan" ] |
463 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
464 | pub const NAN: f64 = 0.0_f64 / 0.0_f64; |
465 | /// Infinity (∞). |
466 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
467 | pub const INFINITY: f64 = 1.0_f64 / 0.0_f64; |
468 | /// Negative infinity (−∞). |
469 | #[stable (feature = "assoc_int_consts" , since = "1.43.0" )] |
470 | pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64; |
471 | |
472 | /// Returns `true` if this value is NaN. |
473 | /// |
474 | /// ``` |
475 | /// let nan = f64::NAN; |
476 | /// let f = 7.0_f64; |
477 | /// |
478 | /// assert!(nan.is_nan()); |
479 | /// assert!(!f.is_nan()); |
480 | /// ``` |
481 | #[must_use ] |
482 | #[stable (feature = "rust1" , since = "1.0.0" )] |
483 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
484 | #[inline ] |
485 | pub const fn is_nan(self) -> bool { |
486 | self != self |
487 | } |
488 | |
489 | // FIXME(#50145): `abs` is publicly unavailable in core due to |
490 | // concerns about portability, so this implementation is for |
491 | // private use internally. |
492 | #[inline ] |
493 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
494 | pub(crate) const fn abs_private(self) -> f64 { |
495 | // SAFETY: This transmutation is fine. Probably. For the reasons std is using it. |
496 | unsafe { |
497 | mem::transmute::<u64, f64>(mem::transmute::<f64, u64>(self) & 0x7fff_ffff_ffff_ffff) |
498 | } |
499 | } |
500 | |
501 | /// Returns `true` if this value is positive infinity or negative infinity, and |
502 | /// `false` otherwise. |
503 | /// |
504 | /// ``` |
505 | /// let f = 7.0f64; |
506 | /// let inf = f64::INFINITY; |
507 | /// let neg_inf = f64::NEG_INFINITY; |
508 | /// let nan = f64::NAN; |
509 | /// |
510 | /// assert!(!f.is_infinite()); |
511 | /// assert!(!nan.is_infinite()); |
512 | /// |
513 | /// assert!(inf.is_infinite()); |
514 | /// assert!(neg_inf.is_infinite()); |
515 | /// ``` |
516 | #[must_use ] |
517 | #[stable (feature = "rust1" , since = "1.0.0" )] |
518 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
519 | #[inline ] |
520 | pub const fn is_infinite(self) -> bool { |
521 | // Getting clever with transmutation can result in incorrect answers on some FPUs |
522 | // FIXME: alter the Rust <-> Rust calling convention to prevent this problem. |
523 | // See https://github.com/rust-lang/rust/issues/72327 |
524 | (self == f64::INFINITY) | (self == f64::NEG_INFINITY) |
525 | } |
526 | |
527 | /// Returns `true` if this number is neither infinite nor NaN. |
528 | /// |
529 | /// ``` |
530 | /// let f = 7.0f64; |
531 | /// let inf: f64 = f64::INFINITY; |
532 | /// let neg_inf: f64 = f64::NEG_INFINITY; |
533 | /// let nan: f64 = f64::NAN; |
534 | /// |
535 | /// assert!(f.is_finite()); |
536 | /// |
537 | /// assert!(!nan.is_finite()); |
538 | /// assert!(!inf.is_finite()); |
539 | /// assert!(!neg_inf.is_finite()); |
540 | /// ``` |
541 | #[must_use ] |
542 | #[stable (feature = "rust1" , since = "1.0.0" )] |
543 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
544 | #[inline ] |
545 | pub const fn is_finite(self) -> bool { |
546 | // There's no need to handle NaN separately: if self is NaN, |
547 | // the comparison is not true, exactly as desired. |
548 | self.abs_private() < Self::INFINITY |
549 | } |
550 | |
551 | /// Returns `true` if the number is [subnormal]. |
552 | /// |
553 | /// ``` |
554 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
555 | /// let max = f64::MAX; |
556 | /// let lower_than_min = 1.0e-308_f64; |
557 | /// let zero = 0.0_f64; |
558 | /// |
559 | /// assert!(!min.is_subnormal()); |
560 | /// assert!(!max.is_subnormal()); |
561 | /// |
562 | /// assert!(!zero.is_subnormal()); |
563 | /// assert!(!f64::NAN.is_subnormal()); |
564 | /// assert!(!f64::INFINITY.is_subnormal()); |
565 | /// // Values between `0` and `min` are Subnormal. |
566 | /// assert!(lower_than_min.is_subnormal()); |
567 | /// ``` |
568 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
569 | #[must_use ] |
570 | #[stable (feature = "is_subnormal" , since = "1.53.0" )] |
571 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
572 | #[inline ] |
573 | pub const fn is_subnormal(self) -> bool { |
574 | matches!(self.classify(), FpCategory::Subnormal) |
575 | } |
576 | |
577 | /// Returns `true` if the number is neither zero, infinite, |
578 | /// [subnormal], or NaN. |
579 | /// |
580 | /// ``` |
581 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 |
582 | /// let max = f64::MAX; |
583 | /// let lower_than_min = 1.0e-308_f64; |
584 | /// let zero = 0.0f64; |
585 | /// |
586 | /// assert!(min.is_normal()); |
587 | /// assert!(max.is_normal()); |
588 | /// |
589 | /// assert!(!zero.is_normal()); |
590 | /// assert!(!f64::NAN.is_normal()); |
591 | /// assert!(!f64::INFINITY.is_normal()); |
592 | /// // Values between `0` and `min` are Subnormal. |
593 | /// assert!(!lower_than_min.is_normal()); |
594 | /// ``` |
595 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
596 | #[must_use ] |
597 | #[stable (feature = "rust1" , since = "1.0.0" )] |
598 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
599 | #[inline ] |
600 | pub const fn is_normal(self) -> bool { |
601 | matches!(self.classify(), FpCategory::Normal) |
602 | } |
603 | |
604 | /// Returns the floating point category of the number. If only one property |
605 | /// is going to be tested, it is generally faster to use the specific |
606 | /// predicate instead. |
607 | /// |
608 | /// ``` |
609 | /// use std::num::FpCategory; |
610 | /// |
611 | /// let num = 12.4_f64; |
612 | /// let inf = f64::INFINITY; |
613 | /// |
614 | /// assert_eq!(num.classify(), FpCategory::Normal); |
615 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
616 | /// ``` |
617 | #[stable (feature = "rust1" , since = "1.0.0" )] |
618 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
619 | pub const fn classify(self) -> FpCategory { |
620 | // A previous implementation tried to only use bitmask-based checks, |
621 | // using f64::to_bits to transmute the float to its bit repr and match on that. |
622 | // Unfortunately, floating point numbers can be much worse than that. |
623 | // This also needs to not result in recursive evaluations of f64::to_bits. |
624 | // |
625 | // On some processors, in some cases, LLVM will "helpfully" lower floating point ops, |
626 | // in spite of a request for them using f32 and f64, to things like x87 operations. |
627 | // These have an f64's mantissa, but can have a larger than normal exponent. |
628 | // FIXME(jubilee): Using x87 operations is never necessary in order to function |
629 | // on x86 processors for Rust-to-Rust calls, so this issue should not happen. |
630 | // Code generation should be adjusted to use non-C calling conventions, avoiding this. |
631 | // |
632 | // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask. |
633 | // And it may not be NaN, as it can simply be an "overextended" finite value. |
634 | if self.is_nan() { |
635 | FpCategory::Nan |
636 | } else { |
637 | // However, std can't simply compare to zero to check for zero, either, |
638 | // as correctness requires avoiding equality tests that may be Subnormal == -0.0 |
639 | // because it may be wrong under "denormals are zero" and "flush to zero" modes. |
640 | // Most of std's targets don't use those, but they are used for thumbv7neon. |
641 | // So, this does use bitpattern matching for the rest. |
642 | |
643 | // SAFETY: f64 to u64 is fine. Usually. |
644 | // If control flow has gotten this far, the value is definitely in one of the categories |
645 | // that f64::partial_classify can correctly analyze. |
646 | unsafe { f64::partial_classify(self) } |
647 | } |
648 | } |
649 | |
650 | // This doesn't actually return a right answer for NaN on purpose, |
651 | // seeing as how it cannot correctly discern between a floating point NaN, |
652 | // and some normal floating point numbers truncated from an x87 FPU. |
653 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
654 | const unsafe fn partial_classify(self) -> FpCategory { |
655 | const EXP_MASK: u64 = 0x7ff0000000000000; |
656 | const MAN_MASK: u64 = 0x000fffffffffffff; |
657 | |
658 | // SAFETY: The caller is not asking questions for which this will tell lies. |
659 | let b = unsafe { mem::transmute::<f64, u64>(self) }; |
660 | match (b & MAN_MASK, b & EXP_MASK) { |
661 | (0, EXP_MASK) => FpCategory::Infinite, |
662 | (0, 0) => FpCategory::Zero, |
663 | (_, 0) => FpCategory::Subnormal, |
664 | _ => FpCategory::Normal, |
665 | } |
666 | } |
667 | |
668 | // This operates on bits, and only bits, so it can ignore concerns about weird FPUs. |
669 | // FIXME(jubilee): In a just world, this would be the entire impl for classify, |
670 | // plus a transmute. We do not live in a just world, but we can make it more so. |
671 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
672 | const fn classify_bits(b: u64) -> FpCategory { |
673 | const EXP_MASK: u64 = 0x7ff0000000000000; |
674 | const MAN_MASK: u64 = 0x000fffffffffffff; |
675 | |
676 | match (b & MAN_MASK, b & EXP_MASK) { |
677 | (0, EXP_MASK) => FpCategory::Infinite, |
678 | (_, EXP_MASK) => FpCategory::Nan, |
679 | (0, 0) => FpCategory::Zero, |
680 | (_, 0) => FpCategory::Subnormal, |
681 | _ => FpCategory::Normal, |
682 | } |
683 | } |
684 | |
685 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
686 | /// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any |
687 | /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that |
688 | /// the bit pattern of NaNs are conserved over arithmetic operations, the result of |
689 | /// `is_sign_positive` on a NaN might produce an unexpected result in some cases. |
690 | /// See [explanation of NaN as a special value](f32) for more info. |
691 | /// |
692 | /// ``` |
693 | /// let f = 7.0_f64; |
694 | /// let g = -7.0_f64; |
695 | /// |
696 | /// assert!(f.is_sign_positive()); |
697 | /// assert!(!g.is_sign_positive()); |
698 | /// ``` |
699 | #[must_use ] |
700 | #[stable (feature = "rust1" , since = "1.0.0" )] |
701 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
702 | #[inline ] |
703 | pub const fn is_sign_positive(self) -> bool { |
704 | !self.is_sign_negative() |
705 | } |
706 | |
707 | #[must_use ] |
708 | #[stable (feature = "rust1" , since = "1.0.0" )] |
709 | #[deprecated (since = "1.0.0" , note = "renamed to is_sign_positive" )] |
710 | #[inline ] |
711 | #[doc (hidden)] |
712 | pub fn is_positive(self) -> bool { |
713 | self.is_sign_positive() |
714 | } |
715 | |
716 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
717 | /// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any |
718 | /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that |
719 | /// the bit pattern of NaNs are conserved over arithmetic operations, the result of |
720 | /// `is_sign_negative` on a NaN might produce an unexpected result in some cases. |
721 | /// See [explanation of NaN as a special value](f32) for more info. |
722 | /// |
723 | /// ``` |
724 | /// let f = 7.0_f64; |
725 | /// let g = -7.0_f64; |
726 | /// |
727 | /// assert!(!f.is_sign_negative()); |
728 | /// assert!(g.is_sign_negative()); |
729 | /// ``` |
730 | #[must_use ] |
731 | #[stable (feature = "rust1" , since = "1.0.0" )] |
732 | #[rustc_const_unstable (feature = "const_float_classify" , issue = "72505" )] |
733 | #[inline ] |
734 | pub const fn is_sign_negative(self) -> bool { |
735 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
736 | // applies to zeros and NaNs as well. |
737 | // SAFETY: This is just transmuting to get the sign bit, it's fine. |
738 | unsafe { mem::transmute::<f64, u64>(self) & 0x8000_0000_0000_0000 != 0 } |
739 | } |
740 | |
741 | #[must_use ] |
742 | #[stable (feature = "rust1" , since = "1.0.0" )] |
743 | #[deprecated (since = "1.0.0" , note = "renamed to is_sign_negative" )] |
744 | #[inline ] |
745 | #[doc (hidden)] |
746 | pub fn is_negative(self) -> bool { |
747 | self.is_sign_negative() |
748 | } |
749 | |
750 | /// Returns the least number greater than `self`. |
751 | /// |
752 | /// Let `TINY` be the smallest representable positive `f64`. Then, |
753 | /// - if `self.is_nan()`, this returns `self`; |
754 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
755 | /// - if `self` is `-TINY`, this returns -0.0; |
756 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
757 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
758 | /// - otherwise the unique least value greater than `self` is returned. |
759 | /// |
760 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
761 | /// is finite `x == x.next_up().next_down()` also holds. |
762 | /// |
763 | /// ```rust |
764 | /// #![feature(float_next_up_down)] |
765 | /// // f64::EPSILON is the difference between 1.0 and the next number up. |
766 | /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON); |
767 | /// // But not for most numbers. |
768 | /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON); |
769 | /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0); |
770 | /// ``` |
771 | /// |
772 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
773 | /// [`INFINITY`]: Self::INFINITY |
774 | /// [`MIN`]: Self::MIN |
775 | /// [`MAX`]: Self::MAX |
776 | #[unstable (feature = "float_next_up_down" , issue = "91399" )] |
777 | #[rustc_const_unstable (feature = "float_next_up_down" , issue = "91399" )] |
778 | pub const fn next_up(self) -> Self { |
779 | // We must use strictly integer arithmetic to prevent denormals from |
780 | // flushing to zero after an arithmetic operation on some platforms. |
781 | const TINY_BITS: u64 = 0x1; // Smallest positive f64. |
782 | const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff; |
783 | |
784 | let bits = self.to_bits(); |
785 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
786 | return self; |
787 | } |
788 | |
789 | let abs = bits & CLEAR_SIGN_MASK; |
790 | let next_bits = if abs == 0 { |
791 | TINY_BITS |
792 | } else if bits == abs { |
793 | bits + 1 |
794 | } else { |
795 | bits - 1 |
796 | }; |
797 | Self::from_bits(next_bits) |
798 | } |
799 | |
800 | /// Returns the greatest number less than `self`. |
801 | /// |
802 | /// Let `TINY` be the smallest representable positive `f64`. Then, |
803 | /// - if `self.is_nan()`, this returns `self`; |
804 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
805 | /// - if `self` is `TINY`, this returns 0.0; |
806 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
807 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
808 | /// - otherwise the unique greatest value less than `self` is returned. |
809 | /// |
810 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
811 | /// is finite `x == x.next_down().next_up()` also holds. |
812 | /// |
813 | /// ```rust |
814 | /// #![feature(float_next_up_down)] |
815 | /// let x = 1.0f64; |
816 | /// // Clamp value into range [0, 1). |
817 | /// let clamped = x.clamp(0.0, 1.0f64.next_down()); |
818 | /// assert!(clamped < 1.0); |
819 | /// assert_eq!(clamped.next_up(), 1.0); |
820 | /// ``` |
821 | /// |
822 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
823 | /// [`INFINITY`]: Self::INFINITY |
824 | /// [`MIN`]: Self::MIN |
825 | /// [`MAX`]: Self::MAX |
826 | #[unstable (feature = "float_next_up_down" , issue = "91399" )] |
827 | #[rustc_const_unstable (feature = "float_next_up_down" , issue = "91399" )] |
828 | pub const fn next_down(self) -> Self { |
829 | // We must use strictly integer arithmetic to prevent denormals from |
830 | // flushing to zero after an arithmetic operation on some platforms. |
831 | const NEG_TINY_BITS: u64 = 0x8000_0000_0000_0001; // Smallest (in magnitude) negative f64. |
832 | const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff; |
833 | |
834 | let bits = self.to_bits(); |
835 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
836 | return self; |
837 | } |
838 | |
839 | let abs = bits & CLEAR_SIGN_MASK; |
840 | let next_bits = if abs == 0 { |
841 | NEG_TINY_BITS |
842 | } else if bits == abs { |
843 | bits - 1 |
844 | } else { |
845 | bits + 1 |
846 | }; |
847 | Self::from_bits(next_bits) |
848 | } |
849 | |
850 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
851 | /// |
852 | /// ``` |
853 | /// let x = 2.0_f64; |
854 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
855 | /// |
856 | /// assert!(abs_difference < 1e-10); |
857 | /// ``` |
858 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
859 | #[stable (feature = "rust1" , since = "1.0.0" )] |
860 | #[inline ] |
861 | pub fn recip(self) -> f64 { |
862 | 1.0 / self |
863 | } |
864 | |
865 | /// Converts radians to degrees. |
866 | /// |
867 | /// ``` |
868 | /// let angle = std::f64::consts::PI; |
869 | /// |
870 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
871 | /// |
872 | /// assert!(abs_difference < 1e-10); |
873 | /// ``` |
874 | #[must_use = "this returns the result of the operation, \ |
875 | without modifying the original" ] |
876 | #[stable (feature = "rust1" , since = "1.0.0" )] |
877 | #[inline ] |
878 | pub fn to_degrees(self) -> f64 { |
879 | // The division here is correctly rounded with respect to the true |
880 | // value of 180/π. (This differs from f32, where a constant must be |
881 | // used to ensure a correctly rounded result.) |
882 | self * (180.0f64 / consts::PI) |
883 | } |
884 | |
885 | /// Converts degrees to radians. |
886 | /// |
887 | /// ``` |
888 | /// let angle = 180.0_f64; |
889 | /// |
890 | /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs(); |
891 | /// |
892 | /// assert!(abs_difference < 1e-10); |
893 | /// ``` |
894 | #[must_use = "this returns the result of the operation, \ |
895 | without modifying the original" ] |
896 | #[stable (feature = "rust1" , since = "1.0.0" )] |
897 | #[inline ] |
898 | pub fn to_radians(self) -> f64 { |
899 | let value: f64 = consts::PI; |
900 | self * (value / 180.0) |
901 | } |
902 | |
903 | /// Returns the maximum of the two numbers, ignoring NaN. |
904 | /// |
905 | /// If one of the arguments is NaN, then the other argument is returned. |
906 | /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; |
907 | /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. |
908 | /// This also matches the behavior of libm’s fmax. |
909 | /// |
910 | /// ``` |
911 | /// let x = 1.0_f64; |
912 | /// let y = 2.0_f64; |
913 | /// |
914 | /// assert_eq!(x.max(y), y); |
915 | /// ``` |
916 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
917 | #[stable (feature = "rust1" , since = "1.0.0" )] |
918 | #[inline ] |
919 | pub fn max(self, other: f64) -> f64 { |
920 | intrinsics::maxnumf64(self, other) |
921 | } |
922 | |
923 | /// Returns the minimum of the two numbers, ignoring NaN. |
924 | /// |
925 | /// If one of the arguments is NaN, then the other argument is returned. |
926 | /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; |
927 | /// this function handles all NaNs the same way and avoids minNum's problems with associativity. |
928 | /// This also matches the behavior of libm’s fmin. |
929 | /// |
930 | /// ``` |
931 | /// let x = 1.0_f64; |
932 | /// let y = 2.0_f64; |
933 | /// |
934 | /// assert_eq!(x.min(y), x); |
935 | /// ``` |
936 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
937 | #[stable (feature = "rust1" , since = "1.0.0" )] |
938 | #[inline ] |
939 | pub fn min(self, other: f64) -> f64 { |
940 | intrinsics::minnumf64(self, other) |
941 | } |
942 | |
943 | /// Returns the maximum of the two numbers, propagating NaN. |
944 | /// |
945 | /// This returns NaN when *either* argument is NaN, as opposed to |
946 | /// [`f64::max`] which only returns NaN when *both* arguments are NaN. |
947 | /// |
948 | /// ``` |
949 | /// #![feature(float_minimum_maximum)] |
950 | /// let x = 1.0_f64; |
951 | /// let y = 2.0_f64; |
952 | /// |
953 | /// assert_eq!(x.maximum(y), y); |
954 | /// assert!(x.maximum(f64::NAN).is_nan()); |
955 | /// ``` |
956 | /// |
957 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater |
958 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
959 | /// Note that this follows the semantics specified in IEEE 754-2019. |
960 | /// |
961 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
962 | /// operand is conserved; see [explanation of NaN as a special value](f32) for more info. |
963 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
964 | #[unstable (feature = "float_minimum_maximum" , issue = "91079" )] |
965 | #[inline ] |
966 | pub fn maximum(self, other: f64) -> f64 { |
967 | if self > other { |
968 | self |
969 | } else if other > self { |
970 | other |
971 | } else if self == other { |
972 | if self.is_sign_positive() && other.is_sign_negative() { self } else { other } |
973 | } else { |
974 | self + other |
975 | } |
976 | } |
977 | |
978 | /// Returns the minimum of the two numbers, propagating NaN. |
979 | /// |
980 | /// This returns NaN when *either* argument is NaN, as opposed to |
981 | /// [`f64::min`] which only returns NaN when *both* arguments are NaN. |
982 | /// |
983 | /// ``` |
984 | /// #![feature(float_minimum_maximum)] |
985 | /// let x = 1.0_f64; |
986 | /// let y = 2.0_f64; |
987 | /// |
988 | /// assert_eq!(x.minimum(y), x); |
989 | /// assert!(x.minimum(f64::NAN).is_nan()); |
990 | /// ``` |
991 | /// |
992 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser |
993 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
994 | /// Note that this follows the semantics specified in IEEE 754-2019. |
995 | /// |
996 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
997 | /// operand is conserved; see [explanation of NaN as a special value](f32) for more info. |
998 | #[must_use = "this returns the result of the comparison, without modifying either input" ] |
999 | #[unstable (feature = "float_minimum_maximum" , issue = "91079" )] |
1000 | #[inline ] |
1001 | pub fn minimum(self, other: f64) -> f64 { |
1002 | if self < other { |
1003 | self |
1004 | } else if other < self { |
1005 | other |
1006 | } else if self == other { |
1007 | if self.is_sign_negative() && other.is_sign_positive() { self } else { other } |
1008 | } else { |
1009 | // At least one input is NaN. Use `+` to perform NaN propagation and quieting. |
1010 | self + other |
1011 | } |
1012 | } |
1013 | |
1014 | /// Calculates the middle point of `self` and `rhs`. |
1015 | /// |
1016 | /// This returns NaN when *either* argument is NaN or if a combination of |
1017 | /// +inf and -inf is provided as arguments. |
1018 | /// |
1019 | /// # Examples |
1020 | /// |
1021 | /// ``` |
1022 | /// #![feature(num_midpoint)] |
1023 | /// assert_eq!(1f64.midpoint(4.0), 2.5); |
1024 | /// assert_eq!((-5.5f64).midpoint(8.0), 1.25); |
1025 | /// ``` |
1026 | #[unstable (feature = "num_midpoint" , issue = "110840" )] |
1027 | pub fn midpoint(self, other: f64) -> f64 { |
1028 | const LO: f64 = f64::MIN_POSITIVE * 2.; |
1029 | const HI: f64 = f64::MAX / 2.; |
1030 | |
1031 | let (a, b) = (self, other); |
1032 | let abs_a = a.abs_private(); |
1033 | let abs_b = b.abs_private(); |
1034 | |
1035 | if abs_a <= HI && abs_b <= HI { |
1036 | // Overflow is impossible |
1037 | (a + b) / 2. |
1038 | } else if abs_a < LO { |
1039 | // Not safe to halve a |
1040 | a + (b / 2.) |
1041 | } else if abs_b < LO { |
1042 | // Not safe to halve b |
1043 | (a / 2.) + b |
1044 | } else { |
1045 | // Not safe to halve a and b |
1046 | (a / 2.) + (b / 2.) |
1047 | } |
1048 | } |
1049 | |
1050 | /// Rounds toward zero and converts to any primitive integer type, |
1051 | /// assuming that the value is finite and fits in that type. |
1052 | /// |
1053 | /// ``` |
1054 | /// let value = 4.6_f64; |
1055 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
1056 | /// assert_eq!(rounded, 4); |
1057 | /// |
1058 | /// let value = -128.9_f64; |
1059 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
1060 | /// assert_eq!(rounded, i8::MIN); |
1061 | /// ``` |
1062 | /// |
1063 | /// # Safety |
1064 | /// |
1065 | /// The value must: |
1066 | /// |
1067 | /// * Not be `NaN` |
1068 | /// * Not be infinite |
1069 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
1070 | #[must_use = "this returns the result of the operation, \ |
1071 | without modifying the original" ] |
1072 | #[stable (feature = "float_approx_unchecked_to" , since = "1.44.0" )] |
1073 | #[inline ] |
1074 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
1075 | where |
1076 | Self: FloatToInt<Int>, |
1077 | { |
1078 | // SAFETY: the caller must uphold the safety contract for |
1079 | // `FloatToInt::to_int_unchecked`. |
1080 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
1081 | } |
1082 | |
1083 | /// Raw transmutation to `u64`. |
1084 | /// |
1085 | /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms. |
1086 | /// |
1087 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1088 | /// portability of this operation (there are almost no issues). |
1089 | /// |
1090 | /// Note that this function is distinct from `as` casting, which attempts to |
1091 | /// preserve the *numeric* value, and not the bitwise value. |
1092 | /// |
1093 | /// # Examples |
1094 | /// |
1095 | /// ``` |
1096 | /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! |
1097 | /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000); |
1098 | /// |
1099 | /// ``` |
1100 | #[must_use = "this returns the result of the operation, \ |
1101 | without modifying the original" ] |
1102 | #[stable (feature = "float_bits_conv" , since = "1.20.0" )] |
1103 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1104 | #[inline ] |
1105 | pub const fn to_bits(self) -> u64 { |
1106 | // SAFETY: `u64` is a plain old datatype so we can always transmute to it. |
1107 | // ...sorta. |
1108 | // |
1109 | // See the SAFETY comment in f64::from_bits for more. |
1110 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1111 | const fn ct_f64_to_u64(ct: f64) -> u64 { |
1112 | match ct.classify() { |
1113 | FpCategory::Nan => { |
1114 | panic!("const-eval error: cannot use f64::to_bits on a NaN" ) |
1115 | } |
1116 | FpCategory::Subnormal => { |
1117 | panic!("const-eval error: cannot use f64::to_bits on a subnormal number" ) |
1118 | } |
1119 | FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => { |
1120 | // SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy. |
1121 | unsafe { mem::transmute::<f64, u64>(ct) } |
1122 | } |
1123 | } |
1124 | } |
1125 | |
1126 | #[inline (always)] // See https://github.com/rust-lang/compiler-builtins/issues/491 |
1127 | fn rt_f64_to_u64(rt: f64) -> u64 { |
1128 | // SAFETY: `u64` is a plain old datatype so we can always... uh... |
1129 | // ...look, just pretend you forgot what you just read. |
1130 | // Stability concerns. |
1131 | unsafe { mem::transmute::<f64, u64>(rt) } |
1132 | } |
1133 | // SAFETY: We use internal implementations that either always work or fail at compile time. |
1134 | unsafe { intrinsics::const_eval_select((self,), ct_f64_to_u64, rt_f64_to_u64) } |
1135 | } |
1136 | |
1137 | /// Raw transmutation from `u64`. |
1138 | /// |
1139 | /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms. |
1140 | /// It turns out this is incredibly portable, for two reasons: |
1141 | /// |
1142 | /// * Floats and Ints have the same endianness on all supported platforms. |
1143 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
1144 | /// |
1145 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
1146 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
1147 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
1148 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
1149 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
1150 | /// |
1151 | /// Rather than trying to preserve signaling-ness cross-platform, this |
1152 | /// implementation favors preserving the exact bits. This means that |
1153 | /// any payloads encoded in NaNs will be preserved even if the result of |
1154 | /// this method is sent over the network from an x86 machine to a MIPS one. |
1155 | /// |
1156 | /// If the results of this method are only manipulated by the same |
1157 | /// architecture that produced them, then there is no portability concern. |
1158 | /// |
1159 | /// If the input isn't NaN, then there is no portability concern. |
1160 | /// |
1161 | /// If you don't care about signaling-ness (very likely), then there is no |
1162 | /// portability concern. |
1163 | /// |
1164 | /// Note that this function is distinct from `as` casting, which attempts to |
1165 | /// preserve the *numeric* value, and not the bitwise value. |
1166 | /// |
1167 | /// # Examples |
1168 | /// |
1169 | /// ``` |
1170 | /// let v = f64::from_bits(0x4029000000000000); |
1171 | /// assert_eq!(v, 12.5); |
1172 | /// ``` |
1173 | #[stable (feature = "float_bits_conv" , since = "1.20.0" )] |
1174 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1175 | #[must_use ] |
1176 | #[inline ] |
1177 | pub const fn from_bits(v: u64) -> Self { |
1178 | // It turns out the safety issues with sNaN were overblown! Hooray! |
1179 | // SAFETY: `u64` is a plain old datatype so we can always transmute from it |
1180 | // ...sorta. |
1181 | // |
1182 | // It turns out that at runtime, it is possible for a floating point number |
1183 | // to be subject to floating point modes that alter nonzero subnormal numbers |
1184 | // to zero on reads and writes, aka "denormals are zero" and "flush to zero". |
1185 | // This is not a problem usually, but at least one tier2 platform for Rust |
1186 | // actually exhibits an FTZ behavior by default: thumbv7neon |
1187 | // aka "the Neon FPU in AArch32 state" |
1188 | // |
1189 | // Even with this, not all instructions exhibit the FTZ behaviors on thumbv7neon, |
1190 | // so this should load the same bits if LLVM emits the "correct" instructions, |
1191 | // but LLVM sometimes makes interesting choices about float optimization, |
1192 | // and other FPUs may do similar. Thus, it is wise to indulge luxuriously in caution. |
1193 | // |
1194 | // In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled, |
1195 | // i.e. not soft-float, the way Rust does parameter passing can actually alter |
1196 | // a number that is "not infinity" to have the same exponent as infinity, |
1197 | // in a slightly unpredictable manner. |
1198 | // |
1199 | // And, of course evaluating to a NaN value is fairly nondeterministic. |
1200 | // More precisely: when NaN should be returned is knowable, but which NaN? |
1201 | // So far that's defined by a combination of LLVM and the CPU, not Rust. |
1202 | // This function, however, allows observing the bitstring of a NaN, |
1203 | // thus introspection on CTFE. |
1204 | // |
1205 | // In order to preserve, at least for the moment, const-to-runtime equivalence, |
1206 | // reject any of these possible situations from happening. |
1207 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1208 | const fn ct_u64_to_f64(ct: u64) -> f64 { |
1209 | match f64::classify_bits(ct) { |
1210 | FpCategory::Subnormal => { |
1211 | panic!("const-eval error: cannot use f64::from_bits on a subnormal number" ) |
1212 | } |
1213 | FpCategory::Nan => { |
1214 | panic!("const-eval error: cannot use f64::from_bits on NaN" ) |
1215 | } |
1216 | FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => { |
1217 | // SAFETY: It's not a frumious number |
1218 | unsafe { mem::transmute::<u64, f64>(ct) } |
1219 | } |
1220 | } |
1221 | } |
1222 | |
1223 | #[inline (always)] // See https://github.com/rust-lang/compiler-builtins/issues/491 |
1224 | fn rt_u64_to_f64(rt: u64) -> f64 { |
1225 | // SAFETY: `u64` is a plain old datatype so we can always... uh... |
1226 | // ...look, just pretend you forgot what you just read. |
1227 | // Stability concerns. |
1228 | unsafe { mem::transmute::<u64, f64>(rt) } |
1229 | } |
1230 | // SAFETY: We use internal implementations that either always work or fail at compile time. |
1231 | unsafe { intrinsics::const_eval_select((v,), ct_u64_to_f64, rt_u64_to_f64) } |
1232 | } |
1233 | |
1234 | /// Return the memory representation of this floating point number as a byte array in |
1235 | /// big-endian (network) byte order. |
1236 | /// |
1237 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1238 | /// portability of this operation (there are almost no issues). |
1239 | /// |
1240 | /// # Examples |
1241 | /// |
1242 | /// ``` |
1243 | /// let bytes = 12.5f64.to_be_bytes(); |
1244 | /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); |
1245 | /// ``` |
1246 | #[must_use = "this returns the result of the operation, \ |
1247 | without modifying the original" ] |
1248 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1249 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1250 | #[inline ] |
1251 | pub const fn to_be_bytes(self) -> [u8; 8] { |
1252 | self.to_bits().to_be_bytes() |
1253 | } |
1254 | |
1255 | /// Return the memory representation of this floating point number as a byte array in |
1256 | /// little-endian byte order. |
1257 | /// |
1258 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1259 | /// portability of this operation (there are almost no issues). |
1260 | /// |
1261 | /// # Examples |
1262 | /// |
1263 | /// ``` |
1264 | /// let bytes = 12.5f64.to_le_bytes(); |
1265 | /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]); |
1266 | /// ``` |
1267 | #[must_use = "this returns the result of the operation, \ |
1268 | without modifying the original" ] |
1269 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1270 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1271 | #[inline ] |
1272 | pub const fn to_le_bytes(self) -> [u8; 8] { |
1273 | self.to_bits().to_le_bytes() |
1274 | } |
1275 | |
1276 | /// Return the memory representation of this floating point number as a byte array in |
1277 | /// native byte order. |
1278 | /// |
1279 | /// As the target platform's native endianness is used, portable code |
1280 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
1281 | /// |
1282 | /// [`to_be_bytes`]: f64::to_be_bytes |
1283 | /// [`to_le_bytes`]: f64::to_le_bytes |
1284 | /// |
1285 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1286 | /// portability of this operation (there are almost no issues). |
1287 | /// |
1288 | /// # Examples |
1289 | /// |
1290 | /// ``` |
1291 | /// let bytes = 12.5f64.to_ne_bytes(); |
1292 | /// assert_eq!( |
1293 | /// bytes, |
1294 | /// if cfg!(target_endian = "big" ) { |
1295 | /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
1296 | /// } else { |
1297 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40] |
1298 | /// } |
1299 | /// ); |
1300 | /// ``` |
1301 | #[must_use = "this returns the result of the operation, \ |
1302 | without modifying the original" ] |
1303 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1304 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1305 | #[inline ] |
1306 | pub const fn to_ne_bytes(self) -> [u8; 8] { |
1307 | self.to_bits().to_ne_bytes() |
1308 | } |
1309 | |
1310 | /// Create a floating point value from its representation as a byte array in big endian. |
1311 | /// |
1312 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1313 | /// portability of this operation (there are almost no issues). |
1314 | /// |
1315 | /// # Examples |
1316 | /// |
1317 | /// ``` |
1318 | /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); |
1319 | /// assert_eq!(value, 12.5); |
1320 | /// ``` |
1321 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1322 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1323 | #[must_use ] |
1324 | #[inline ] |
1325 | pub const fn from_be_bytes(bytes: [u8; 8]) -> Self { |
1326 | Self::from_bits(u64::from_be_bytes(bytes)) |
1327 | } |
1328 | |
1329 | /// Create a floating point value from its representation as a byte array in little endian. |
1330 | /// |
1331 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1332 | /// portability of this operation (there are almost no issues). |
1333 | /// |
1334 | /// # Examples |
1335 | /// |
1336 | /// ``` |
1337 | /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]); |
1338 | /// assert_eq!(value, 12.5); |
1339 | /// ``` |
1340 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1341 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1342 | #[must_use ] |
1343 | #[inline ] |
1344 | pub const fn from_le_bytes(bytes: [u8; 8]) -> Self { |
1345 | Self::from_bits(u64::from_le_bytes(bytes)) |
1346 | } |
1347 | |
1348 | /// Create a floating point value from its representation as a byte array in native endian. |
1349 | /// |
1350 | /// As the target platform's native endianness is used, portable code |
1351 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
1352 | /// appropriate instead. |
1353 | /// |
1354 | /// [`from_be_bytes`]: f64::from_be_bytes |
1355 | /// [`from_le_bytes`]: f64::from_le_bytes |
1356 | /// |
1357 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1358 | /// portability of this operation (there are almost no issues). |
1359 | /// |
1360 | /// # Examples |
1361 | /// |
1362 | /// ``` |
1363 | /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big" ) { |
1364 | /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
1365 | /// } else { |
1366 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40] |
1367 | /// }); |
1368 | /// assert_eq!(value, 12.5); |
1369 | /// ``` |
1370 | #[stable (feature = "float_to_from_bytes" , since = "1.40.0" )] |
1371 | #[rustc_const_unstable (feature = "const_float_bits_conv" , issue = "72447" )] |
1372 | #[must_use ] |
1373 | #[inline ] |
1374 | pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self { |
1375 | Self::from_bits(u64::from_ne_bytes(bytes)) |
1376 | } |
1377 | |
1378 | /// Return the ordering between `self` and `other`. |
1379 | /// |
1380 | /// Unlike the standard partial comparison between floating point numbers, |
1381 | /// this comparison always produces an ordering in accordance to |
1382 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
1383 | /// floating point standard. The values are ordered in the following sequence: |
1384 | /// |
1385 | /// - negative quiet NaN |
1386 | /// - negative signaling NaN |
1387 | /// - negative infinity |
1388 | /// - negative numbers |
1389 | /// - negative subnormal numbers |
1390 | /// - negative zero |
1391 | /// - positive zero |
1392 | /// - positive subnormal numbers |
1393 | /// - positive numbers |
1394 | /// - positive infinity |
1395 | /// - positive signaling NaN |
1396 | /// - positive quiet NaN. |
1397 | /// |
1398 | /// The ordering established by this function does not always agree with the |
1399 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example, |
1400 | /// they consider negative and positive zero equal, while `total_cmp` |
1401 | /// doesn't. |
1402 | /// |
1403 | /// The interpretation of the signaling NaN bit follows the definition in |
1404 | /// the IEEE 754 standard, which may not match the interpretation by some of |
1405 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
1406 | /// |
1407 | /// # Example |
1408 | /// |
1409 | /// ``` |
1410 | /// struct GoodBoy { |
1411 | /// name: String, |
1412 | /// weight: f64, |
1413 | /// } |
1414 | /// |
1415 | /// let mut bois = vec![ |
1416 | /// GoodBoy { name: "Pucci" .to_owned(), weight: 0.1 }, |
1417 | /// GoodBoy { name: "Woofer" .to_owned(), weight: 99.0 }, |
1418 | /// GoodBoy { name: "Yapper" .to_owned(), weight: 10.0 }, |
1419 | /// GoodBoy { name: "Chonk" .to_owned(), weight: f64::INFINITY }, |
1420 | /// GoodBoy { name: "Abs. Unit" .to_owned(), weight: f64::NAN }, |
1421 | /// GoodBoy { name: "Floaty" .to_owned(), weight: -5.0 }, |
1422 | /// ]; |
1423 | /// |
1424 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
1425 | /// |
1426 | /// // `f64::NAN` could be positive or negative, which will affect the sort order. |
1427 | /// if f64::NAN.is_sign_negative() { |
1428 | /// assert!(bois.into_iter().map(|b| b.weight) |
1429 | /// .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter()) |
1430 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1431 | /// } else { |
1432 | /// assert!(bois.into_iter().map(|b| b.weight) |
1433 | /// .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter()) |
1434 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1435 | /// } |
1436 | /// ``` |
1437 | #[stable (feature = "total_cmp" , since = "1.62.0" )] |
1438 | #[must_use ] |
1439 | #[inline ] |
1440 | pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
1441 | let mut left = self.to_bits() as i64; |
1442 | let mut right = other.to_bits() as i64; |
1443 | |
1444 | // In case of negatives, flip all the bits except the sign |
1445 | // to achieve a similar layout as two's complement integers |
1446 | // |
1447 | // Why does this work? IEEE 754 floats consist of three fields: |
1448 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
1449 | // fields as a whole have the property that their bitwise order is |
1450 | // equal to the numeric magnitude where the magnitude is defined. |
1451 | // The magnitude is not normally defined on NaN values, but |
1452 | // IEEE 754 totalOrder defines the NaN values also to follow the |
1453 | // bitwise order. This leads to order explained in the doc comment. |
1454 | // However, the representation of magnitude is the same for negative |
1455 | // and positive numbers – only the sign bit is different. |
1456 | // To easily compare the floats as signed integers, we need to |
1457 | // flip the exponent and mantissa bits in case of negative numbers. |
1458 | // We effectively convert the numbers to "two's complement" form. |
1459 | // |
1460 | // To do the flipping, we construct a mask and XOR against it. |
1461 | // We branchlessly calculate an "all-ones except for the sign bit" |
1462 | // mask from negative-signed values: right shifting sign-extends |
1463 | // the integer, so we "fill" the mask with sign bits, and then |
1464 | // convert to unsigned to push one more zero bit. |
1465 | // On positive values, the mask is all zeros, so it's a no-op. |
1466 | left ^= (((left >> 63) as u64) >> 1) as i64; |
1467 | right ^= (((right >> 63) as u64) >> 1) as i64; |
1468 | |
1469 | left.cmp(&right) |
1470 | } |
1471 | |
1472 | /// Restrict a value to a certain interval unless it is NaN. |
1473 | /// |
1474 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
1475 | /// less than `min`. Otherwise this returns `self`. |
1476 | /// |
1477 | /// Note that this function returns NaN if the initial value was NaN as |
1478 | /// well. |
1479 | /// |
1480 | /// # Panics |
1481 | /// |
1482 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
1483 | /// |
1484 | /// # Examples |
1485 | /// |
1486 | /// ``` |
1487 | /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0); |
1488 | /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0); |
1489 | /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0); |
1490 | /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan()); |
1491 | /// ``` |
1492 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1493 | #[stable (feature = "clamp" , since = "1.50.0" )] |
1494 | #[inline ] |
1495 | pub fn clamp(mut self, min: f64, max: f64) -> f64 { |
1496 | assert!(min <= max, "min > max, or either was NaN. min = {min:?}, max = {max:?}" ); |
1497 | if self < min { |
1498 | self = min; |
1499 | } |
1500 | if self > max { |
1501 | self = max; |
1502 | } |
1503 | self |
1504 | } |
1505 | } |
1506 | |