1 | /// The addition operator `+`. |
2 | /// |
3 | /// Note that `Rhs` is `Self` by default, but this is not mandatory. For |
4 | /// example, [`std::time::SystemTime`] implements `Add<Duration>`, which permits |
5 | /// operations of the form `SystemTime = SystemTime + Duration`. |
6 | /// |
7 | /// [`std::time::SystemTime`]: ../../std/time/struct.SystemTime.html |
8 | /// |
9 | /// # Examples |
10 | /// |
11 | /// ## `Add`able points |
12 | /// |
13 | /// ``` |
14 | /// use std::ops::Add; |
15 | /// |
16 | /// #[derive(Debug, Copy, Clone, PartialEq)] |
17 | /// struct Point { |
18 | /// x: i32, |
19 | /// y: i32, |
20 | /// } |
21 | /// |
22 | /// impl Add for Point { |
23 | /// type Output = Self; |
24 | /// |
25 | /// fn add(self, other: Self) -> Self { |
26 | /// Self { |
27 | /// x: self.x + other.x, |
28 | /// y: self.y + other.y, |
29 | /// } |
30 | /// } |
31 | /// } |
32 | /// |
33 | /// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 }, |
34 | /// Point { x: 3, y: 3 }); |
35 | /// ``` |
36 | /// |
37 | /// ## Implementing `Add` with generics |
38 | /// |
39 | /// Here is an example of the same `Point` struct implementing the `Add` trait |
40 | /// using generics. |
41 | /// |
42 | /// ``` |
43 | /// use std::ops::Add; |
44 | /// |
45 | /// #[derive(Debug, Copy, Clone, PartialEq)] |
46 | /// struct Point<T> { |
47 | /// x: T, |
48 | /// y: T, |
49 | /// } |
50 | /// |
51 | /// // Notice that the implementation uses the associated type `Output`. |
52 | /// impl<T: Add<Output = T>> Add for Point<T> { |
53 | /// type Output = Self; |
54 | /// |
55 | /// fn add(self, other: Self) -> Self::Output { |
56 | /// Self { |
57 | /// x: self.x + other.x, |
58 | /// y: self.y + other.y, |
59 | /// } |
60 | /// } |
61 | /// } |
62 | /// |
63 | /// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 }, |
64 | /// Point { x: 3, y: 3 }); |
65 | /// ``` |
66 | #[lang = "add" ] |
67 | #[stable (feature = "rust1" , since = "1.0.0" )] |
68 | #[rustc_on_unimplemented ( |
69 | on(all(_Self = "{integer}" , Rhs = "{float}" ), message = "cannot add a float to an integer" ,), |
70 | on(all(_Self = "{float}" , Rhs = "{integer}" ), message = "cannot add an integer to a float" ,), |
71 | message = "cannot add `{Rhs}` to `{Self}`" , |
72 | label = "no implementation for `{Self} + {Rhs}`" , |
73 | append_const_msg |
74 | )] |
75 | #[doc (alias = "+" )] |
76 | pub trait Add<Rhs = Self> { |
77 | /// The resulting type after applying the `+` operator. |
78 | #[stable (feature = "rust1" , since = "1.0.0" )] |
79 | type Output; |
80 | |
81 | /// Performs the `+` operation. |
82 | /// |
83 | /// # Example |
84 | /// |
85 | /// ``` |
86 | /// assert_eq!(12 + 1, 13); |
87 | /// ``` |
88 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
89 | #[rustc_diagnostic_item = "add" ] |
90 | #[stable (feature = "rust1" , since = "1.0.0" )] |
91 | fn add(self, rhs: Rhs) -> Self::Output; |
92 | } |
93 | |
94 | macro_rules! add_impl { |
95 | ($($t:ty)*) => ($( |
96 | #[stable(feature = "rust1" , since = "1.0.0" )] |
97 | impl Add for $t { |
98 | type Output = $t; |
99 | |
100 | #[inline] |
101 | #[track_caller] |
102 | #[rustc_inherit_overflow_checks] |
103 | fn add(self, other: $t) -> $t { self + other } |
104 | } |
105 | |
106 | forward_ref_binop! { impl Add, add for $t, $t } |
107 | )*) |
108 | } |
109 | |
110 | add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
111 | |
112 | /// The subtraction operator `-`. |
113 | /// |
114 | /// Note that `Rhs` is `Self` by default, but this is not mandatory. For |
115 | /// example, [`std::time::SystemTime`] implements `Sub<Duration>`, which permits |
116 | /// operations of the form `SystemTime = SystemTime - Duration`. |
117 | /// |
118 | /// [`std::time::SystemTime`]: ../../std/time/struct.SystemTime.html |
119 | /// |
120 | /// # Examples |
121 | /// |
122 | /// ## `Sub`tractable points |
123 | /// |
124 | /// ``` |
125 | /// use std::ops::Sub; |
126 | /// |
127 | /// #[derive(Debug, Copy, Clone, PartialEq)] |
128 | /// struct Point { |
129 | /// x: i32, |
130 | /// y: i32, |
131 | /// } |
132 | /// |
133 | /// impl Sub for Point { |
134 | /// type Output = Self; |
135 | /// |
136 | /// fn sub(self, other: Self) -> Self::Output { |
137 | /// Self { |
138 | /// x: self.x - other.x, |
139 | /// y: self.y - other.y, |
140 | /// } |
141 | /// } |
142 | /// } |
143 | /// |
144 | /// assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 }, |
145 | /// Point { x: 1, y: 0 }); |
146 | /// ``` |
147 | /// |
148 | /// ## Implementing `Sub` with generics |
149 | /// |
150 | /// Here is an example of the same `Point` struct implementing the `Sub` trait |
151 | /// using generics. |
152 | /// |
153 | /// ``` |
154 | /// use std::ops::Sub; |
155 | /// |
156 | /// #[derive(Debug, PartialEq)] |
157 | /// struct Point<T> { |
158 | /// x: T, |
159 | /// y: T, |
160 | /// } |
161 | /// |
162 | /// // Notice that the implementation uses the associated type `Output`. |
163 | /// impl<T: Sub<Output = T>> Sub for Point<T> { |
164 | /// type Output = Self; |
165 | /// |
166 | /// fn sub(self, other: Self) -> Self::Output { |
167 | /// Point { |
168 | /// x: self.x - other.x, |
169 | /// y: self.y - other.y, |
170 | /// } |
171 | /// } |
172 | /// } |
173 | /// |
174 | /// assert_eq!(Point { x: 2, y: 3 } - Point { x: 1, y: 0 }, |
175 | /// Point { x: 1, y: 3 }); |
176 | /// ``` |
177 | #[lang = "sub" ] |
178 | #[stable (feature = "rust1" , since = "1.0.0" )] |
179 | #[rustc_on_unimplemented ( |
180 | message = "cannot subtract `{Rhs}` from `{Self}`" , |
181 | label = "no implementation for `{Self} - {Rhs}`" , |
182 | append_const_msg |
183 | )] |
184 | #[doc (alias = "-" )] |
185 | pub trait Sub<Rhs = Self> { |
186 | /// The resulting type after applying the `-` operator. |
187 | #[stable (feature = "rust1" , since = "1.0.0" )] |
188 | type Output; |
189 | |
190 | /// Performs the `-` operation. |
191 | /// |
192 | /// # Example |
193 | /// |
194 | /// ``` |
195 | /// assert_eq!(12 - 1, 11); |
196 | /// ``` |
197 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
198 | #[rustc_diagnostic_item = "sub" ] |
199 | #[stable (feature = "rust1" , since = "1.0.0" )] |
200 | fn sub(self, rhs: Rhs) -> Self::Output; |
201 | } |
202 | |
203 | macro_rules! sub_impl { |
204 | ($($t:ty)*) => ($( |
205 | #[stable(feature = "rust1" , since = "1.0.0" )] |
206 | impl Sub for $t { |
207 | type Output = $t; |
208 | |
209 | #[inline] |
210 | #[track_caller] |
211 | #[rustc_inherit_overflow_checks] |
212 | fn sub(self, other: $t) -> $t { self - other } |
213 | } |
214 | |
215 | forward_ref_binop! { impl Sub, sub for $t, $t } |
216 | )*) |
217 | } |
218 | |
219 | sub_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
220 | |
221 | /// The multiplication operator `*`. |
222 | /// |
223 | /// Note that `Rhs` is `Self` by default, but this is not mandatory. |
224 | /// |
225 | /// # Examples |
226 | /// |
227 | /// ## `Mul`tipliable rational numbers |
228 | /// |
229 | /// ``` |
230 | /// use std::ops::Mul; |
231 | /// |
232 | /// // By the fundamental theorem of arithmetic, rational numbers in lowest |
233 | /// // terms are unique. So, by keeping `Rational`s in reduced form, we can |
234 | /// // derive `Eq` and `PartialEq`. |
235 | /// #[derive(Debug, Eq, PartialEq)] |
236 | /// struct Rational { |
237 | /// numerator: usize, |
238 | /// denominator: usize, |
239 | /// } |
240 | /// |
241 | /// impl Rational { |
242 | /// fn new(numerator: usize, denominator: usize) -> Self { |
243 | /// if denominator == 0 { |
244 | /// panic!("Zero is an invalid denominator!" ); |
245 | /// } |
246 | /// |
247 | /// // Reduce to lowest terms by dividing by the greatest common |
248 | /// // divisor. |
249 | /// let gcd = gcd(numerator, denominator); |
250 | /// Self { |
251 | /// numerator: numerator / gcd, |
252 | /// denominator: denominator / gcd, |
253 | /// } |
254 | /// } |
255 | /// } |
256 | /// |
257 | /// impl Mul for Rational { |
258 | /// // The multiplication of rational numbers is a closed operation. |
259 | /// type Output = Self; |
260 | /// |
261 | /// fn mul(self, rhs: Self) -> Self { |
262 | /// let numerator = self.numerator * rhs.numerator; |
263 | /// let denominator = self.denominator * rhs.denominator; |
264 | /// Self::new(numerator, denominator) |
265 | /// } |
266 | /// } |
267 | /// |
268 | /// // Euclid's two-thousand-year-old algorithm for finding the greatest common |
269 | /// // divisor. |
270 | /// fn gcd(x: usize, y: usize) -> usize { |
271 | /// let mut x = x; |
272 | /// let mut y = y; |
273 | /// while y != 0 { |
274 | /// let t = y; |
275 | /// y = x % y; |
276 | /// x = t; |
277 | /// } |
278 | /// x |
279 | /// } |
280 | /// |
281 | /// assert_eq!(Rational::new(1, 2), Rational::new(2, 4)); |
282 | /// assert_eq!(Rational::new(2, 3) * Rational::new(3, 4), |
283 | /// Rational::new(1, 2)); |
284 | /// ``` |
285 | /// |
286 | /// ## Multiplying vectors by scalars as in linear algebra |
287 | /// |
288 | /// ``` |
289 | /// use std::ops::Mul; |
290 | /// |
291 | /// struct Scalar { value: usize } |
292 | /// |
293 | /// #[derive(Debug, PartialEq)] |
294 | /// struct Vector { value: Vec<usize> } |
295 | /// |
296 | /// impl Mul<Scalar> for Vector { |
297 | /// type Output = Self; |
298 | /// |
299 | /// fn mul(self, rhs: Scalar) -> Self::Output { |
300 | /// Self { value: self.value.iter().map(|v| v * rhs.value).collect() } |
301 | /// } |
302 | /// } |
303 | /// |
304 | /// let vector = Vector { value: vec![2, 4, 6] }; |
305 | /// let scalar = Scalar { value: 3 }; |
306 | /// assert_eq!(vector * scalar, Vector { value: vec![6, 12, 18] }); |
307 | /// ``` |
308 | #[lang = "mul" ] |
309 | #[stable (feature = "rust1" , since = "1.0.0" )] |
310 | #[diagnostic::on_unimplemented( |
311 | message = "cannot multiply `{Self}` by `{Rhs}`" , |
312 | label = "no implementation for `{Self} * {Rhs}`" |
313 | )] |
314 | #[doc (alias = "*" )] |
315 | pub trait Mul<Rhs = Self> { |
316 | /// The resulting type after applying the `*` operator. |
317 | #[stable (feature = "rust1" , since = "1.0.0" )] |
318 | type Output; |
319 | |
320 | /// Performs the `*` operation. |
321 | /// |
322 | /// # Example |
323 | /// |
324 | /// ``` |
325 | /// assert_eq!(12 * 2, 24); |
326 | /// ``` |
327 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
328 | #[rustc_diagnostic_item = "mul" ] |
329 | #[stable (feature = "rust1" , since = "1.0.0" )] |
330 | fn mul(self, rhs: Rhs) -> Self::Output; |
331 | } |
332 | |
333 | macro_rules! mul_impl { |
334 | ($($t:ty)*) => ($( |
335 | #[stable(feature = "rust1" , since = "1.0.0" )] |
336 | impl Mul for $t { |
337 | type Output = $t; |
338 | |
339 | #[inline] |
340 | #[track_caller] |
341 | #[rustc_inherit_overflow_checks] |
342 | fn mul(self, other: $t) -> $t { self * other } |
343 | } |
344 | |
345 | forward_ref_binop! { impl Mul, mul for $t, $t } |
346 | )*) |
347 | } |
348 | |
349 | mul_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
350 | |
351 | /// The division operator `/`. |
352 | /// |
353 | /// Note that `Rhs` is `Self` by default, but this is not mandatory. |
354 | /// |
355 | /// # Examples |
356 | /// |
357 | /// ## `Div`idable rational numbers |
358 | /// |
359 | /// ``` |
360 | /// use std::ops::Div; |
361 | /// |
362 | /// // By the fundamental theorem of arithmetic, rational numbers in lowest |
363 | /// // terms are unique. So, by keeping `Rational`s in reduced form, we can |
364 | /// // derive `Eq` and `PartialEq`. |
365 | /// #[derive(Debug, Eq, PartialEq)] |
366 | /// struct Rational { |
367 | /// numerator: usize, |
368 | /// denominator: usize, |
369 | /// } |
370 | /// |
371 | /// impl Rational { |
372 | /// fn new(numerator: usize, denominator: usize) -> Self { |
373 | /// if denominator == 0 { |
374 | /// panic!("Zero is an invalid denominator!" ); |
375 | /// } |
376 | /// |
377 | /// // Reduce to lowest terms by dividing by the greatest common |
378 | /// // divisor. |
379 | /// let gcd = gcd(numerator, denominator); |
380 | /// Self { |
381 | /// numerator: numerator / gcd, |
382 | /// denominator: denominator / gcd, |
383 | /// } |
384 | /// } |
385 | /// } |
386 | /// |
387 | /// impl Div for Rational { |
388 | /// // The division of rational numbers is a closed operation. |
389 | /// type Output = Self; |
390 | /// |
391 | /// fn div(self, rhs: Self) -> Self::Output { |
392 | /// if rhs.numerator == 0 { |
393 | /// panic!("Cannot divide by zero-valued `Rational`!" ); |
394 | /// } |
395 | /// |
396 | /// let numerator = self.numerator * rhs.denominator; |
397 | /// let denominator = self.denominator * rhs.numerator; |
398 | /// Self::new(numerator, denominator) |
399 | /// } |
400 | /// } |
401 | /// |
402 | /// // Euclid's two-thousand-year-old algorithm for finding the greatest common |
403 | /// // divisor. |
404 | /// fn gcd(x: usize, y: usize) -> usize { |
405 | /// let mut x = x; |
406 | /// let mut y = y; |
407 | /// while y != 0 { |
408 | /// let t = y; |
409 | /// y = x % y; |
410 | /// x = t; |
411 | /// } |
412 | /// x |
413 | /// } |
414 | /// |
415 | /// assert_eq!(Rational::new(1, 2), Rational::new(2, 4)); |
416 | /// assert_eq!(Rational::new(1, 2) / Rational::new(3, 4), |
417 | /// Rational::new(2, 3)); |
418 | /// ``` |
419 | /// |
420 | /// ## Dividing vectors by scalars as in linear algebra |
421 | /// |
422 | /// ``` |
423 | /// use std::ops::Div; |
424 | /// |
425 | /// struct Scalar { value: f32 } |
426 | /// |
427 | /// #[derive(Debug, PartialEq)] |
428 | /// struct Vector { value: Vec<f32> } |
429 | /// |
430 | /// impl Div<Scalar> for Vector { |
431 | /// type Output = Self; |
432 | /// |
433 | /// fn div(self, rhs: Scalar) -> Self::Output { |
434 | /// Self { value: self.value.iter().map(|v| v / rhs.value).collect() } |
435 | /// } |
436 | /// } |
437 | /// |
438 | /// let scalar = Scalar { value: 2f32 }; |
439 | /// let vector = Vector { value: vec![2f32, 4f32, 6f32] }; |
440 | /// assert_eq!(vector / scalar, Vector { value: vec![1f32, 2f32, 3f32] }); |
441 | /// ``` |
442 | #[lang = "div" ] |
443 | #[stable (feature = "rust1" , since = "1.0.0" )] |
444 | #[diagnostic::on_unimplemented( |
445 | message = "cannot divide `{Self}` by `{Rhs}`" , |
446 | label = "no implementation for `{Self} / {Rhs}`" |
447 | )] |
448 | #[doc (alias = "/" )] |
449 | pub trait Div<Rhs = Self> { |
450 | /// The resulting type after applying the `/` operator. |
451 | #[stable (feature = "rust1" , since = "1.0.0" )] |
452 | type Output; |
453 | |
454 | /// Performs the `/` operation. |
455 | /// |
456 | /// # Example |
457 | /// |
458 | /// ``` |
459 | /// assert_eq!(12 / 2, 6); |
460 | /// ``` |
461 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
462 | #[rustc_diagnostic_item = "div" ] |
463 | #[stable (feature = "rust1" , since = "1.0.0" )] |
464 | fn div(self, rhs: Rhs) -> Self::Output; |
465 | } |
466 | |
467 | macro_rules! div_impl_integer { |
468 | ($(($($t:ty)*) => $panic:expr),*) => ($($( |
469 | /// This operation rounds towards zero, truncating any |
470 | /// fractional part of the exact result. |
471 | /// |
472 | /// # Panics |
473 | /// |
474 | #[doc = $panic] |
475 | #[stable(feature = "rust1" , since = "1.0.0" )] |
476 | impl Div for $t { |
477 | type Output = $t; |
478 | |
479 | #[inline] |
480 | #[track_caller] |
481 | fn div(self, other: $t) -> $t { self / other } |
482 | } |
483 | |
484 | forward_ref_binop! { impl Div, div for $t, $t } |
485 | )*)*) |
486 | } |
487 | |
488 | div_impl_integer! { |
489 | (usize u8 u16 u32 u64 u128) => "This operation will panic if `other == 0`." , |
490 | (isize i8 i16 i32 i64 i128) => "This operation will panic if `other == 0` or the division results in overflow." |
491 | } |
492 | |
493 | macro_rules! div_impl_float { |
494 | ($($t:ty)*) => ($( |
495 | #[stable(feature = "rust1" , since = "1.0.0" )] |
496 | impl Div for $t { |
497 | type Output = $t; |
498 | |
499 | #[inline] |
500 | fn div(self, other: $t) -> $t { self / other } |
501 | } |
502 | |
503 | forward_ref_binop! { impl Div, div for $t, $t } |
504 | )*) |
505 | } |
506 | |
507 | div_impl_float! { f32 f64 } |
508 | |
509 | /// The remainder operator `%`. |
510 | /// |
511 | /// Note that `Rhs` is `Self` by default, but this is not mandatory. |
512 | /// |
513 | /// # Examples |
514 | /// |
515 | /// This example implements `Rem` on a `SplitSlice` object. After `Rem` is |
516 | /// implemented, one can use the `%` operator to find out what the remaining |
517 | /// elements of the slice would be after splitting it into equal slices of a |
518 | /// given length. |
519 | /// |
520 | /// ``` |
521 | /// use std::ops::Rem; |
522 | /// |
523 | /// #[derive(PartialEq, Debug)] |
524 | /// struct SplitSlice<'a, T> { |
525 | /// slice: &'a [T], |
526 | /// } |
527 | /// |
528 | /// impl<'a, T> Rem<usize> for SplitSlice<'a, T> { |
529 | /// type Output = Self; |
530 | /// |
531 | /// fn rem(self, modulus: usize) -> Self::Output { |
532 | /// let len = self.slice.len(); |
533 | /// let rem = len % modulus; |
534 | /// let start = len - rem; |
535 | /// Self {slice: &self.slice[start..]} |
536 | /// } |
537 | /// } |
538 | /// |
539 | /// // If we were to divide &[0, 1, 2, 3, 4, 5, 6, 7] into slices of size 3, |
540 | /// // the remainder would be &[6, 7]. |
541 | /// assert_eq!(SplitSlice { slice: &[0, 1, 2, 3, 4, 5, 6, 7] } % 3, |
542 | /// SplitSlice { slice: &[6, 7] }); |
543 | /// ``` |
544 | #[lang = "rem" ] |
545 | #[stable (feature = "rust1" , since = "1.0.0" )] |
546 | #[diagnostic::on_unimplemented( |
547 | message = "cannot calculate the remainder of `{Self}` divided by `{Rhs}`" , |
548 | label = "no implementation for `{Self} % {Rhs}`" |
549 | )] |
550 | #[doc (alias = "%" )] |
551 | pub trait Rem<Rhs = Self> { |
552 | /// The resulting type after applying the `%` operator. |
553 | #[stable (feature = "rust1" , since = "1.0.0" )] |
554 | type Output; |
555 | |
556 | /// Performs the `%` operation. |
557 | /// |
558 | /// # Example |
559 | /// |
560 | /// ``` |
561 | /// assert_eq!(12 % 10, 2); |
562 | /// ``` |
563 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
564 | #[rustc_diagnostic_item = "rem" ] |
565 | #[stable (feature = "rust1" , since = "1.0.0" )] |
566 | fn rem(self, rhs: Rhs) -> Self::Output; |
567 | } |
568 | |
569 | macro_rules! rem_impl_integer { |
570 | ($(($($t:ty)*) => $panic:expr),*) => ($($( |
571 | /// This operation satisfies `n % d == n - (n / d) * d`. The |
572 | /// result has the same sign as the left operand. |
573 | /// |
574 | /// # Panics |
575 | /// |
576 | #[doc = $panic] |
577 | #[stable(feature = "rust1" , since = "1.0.0" )] |
578 | impl Rem for $t { |
579 | type Output = $t; |
580 | |
581 | #[inline] |
582 | #[track_caller] |
583 | fn rem(self, other: $t) -> $t { self % other } |
584 | } |
585 | |
586 | forward_ref_binop! { impl Rem, rem for $t, $t } |
587 | )*)*) |
588 | } |
589 | |
590 | rem_impl_integer! { |
591 | (usize u8 u16 u32 u64 u128) => "This operation will panic if `other == 0`." , |
592 | (isize i8 i16 i32 i64 i128) => "This operation will panic if `other == 0` or if `self / other` results in overflow." |
593 | } |
594 | |
595 | macro_rules! rem_impl_float { |
596 | ($($t:ty)*) => ($( |
597 | |
598 | /// The remainder from the division of two floats. |
599 | /// |
600 | /// The remainder has the same sign as the dividend and is computed as: |
601 | /// `x - (x / y).trunc() * y`. |
602 | /// |
603 | /// # Examples |
604 | /// ``` |
605 | /// let x: f32 = 50.50; |
606 | /// let y: f32 = 8.125; |
607 | /// let remainder = x - (x / y).trunc() * y; |
608 | /// |
609 | /// // The answer to both operations is 1.75 |
610 | /// assert_eq!(x % y, remainder); |
611 | /// ``` |
612 | #[stable(feature = "rust1" , since = "1.0.0" )] |
613 | impl Rem for $t { |
614 | type Output = $t; |
615 | |
616 | #[inline] |
617 | fn rem(self, other: $t) -> $t { self % other } |
618 | } |
619 | |
620 | forward_ref_binop! { impl Rem, rem for $t, $t } |
621 | )*) |
622 | } |
623 | |
624 | rem_impl_float! { f32 f64 } |
625 | |
626 | /// The unary negation operator `-`. |
627 | /// |
628 | /// # Examples |
629 | /// |
630 | /// An implementation of `Neg` for `Sign`, which allows the use of `-` to |
631 | /// negate its value. |
632 | /// |
633 | /// ``` |
634 | /// use std::ops::Neg; |
635 | /// |
636 | /// #[derive(Debug, PartialEq)] |
637 | /// enum Sign { |
638 | /// Negative, |
639 | /// Zero, |
640 | /// Positive, |
641 | /// } |
642 | /// |
643 | /// impl Neg for Sign { |
644 | /// type Output = Self; |
645 | /// |
646 | /// fn neg(self) -> Self::Output { |
647 | /// match self { |
648 | /// Sign::Negative => Sign::Positive, |
649 | /// Sign::Zero => Sign::Zero, |
650 | /// Sign::Positive => Sign::Negative, |
651 | /// } |
652 | /// } |
653 | /// } |
654 | /// |
655 | /// // A negative positive is a negative. |
656 | /// assert_eq!(-Sign::Positive, Sign::Negative); |
657 | /// // A double negative is a positive. |
658 | /// assert_eq!(-Sign::Negative, Sign::Positive); |
659 | /// // Zero is its own negation. |
660 | /// assert_eq!(-Sign::Zero, Sign::Zero); |
661 | /// ``` |
662 | #[lang = "neg" ] |
663 | #[stable (feature = "rust1" , since = "1.0.0" )] |
664 | #[doc (alias = "-" )] |
665 | pub trait Neg { |
666 | /// The resulting type after applying the `-` operator. |
667 | #[stable (feature = "rust1" , since = "1.0.0" )] |
668 | type Output; |
669 | |
670 | /// Performs the unary `-` operation. |
671 | /// |
672 | /// # Example |
673 | /// |
674 | /// ``` |
675 | /// let x: i32 = 12; |
676 | /// assert_eq!(-x, -12); |
677 | /// ``` |
678 | #[must_use = "this returns the result of the operation, without modifying the original" ] |
679 | #[rustc_diagnostic_item = "neg" ] |
680 | #[stable (feature = "rust1" , since = "1.0.0" )] |
681 | fn neg(self) -> Self::Output; |
682 | } |
683 | |
684 | macro_rules! neg_impl { |
685 | ($($t:ty)*) => ($( |
686 | #[stable(feature = "rust1" , since = "1.0.0" )] |
687 | impl Neg for $t { |
688 | type Output = $t; |
689 | |
690 | #[inline] |
691 | #[rustc_inherit_overflow_checks] |
692 | fn neg(self) -> $t { -self } |
693 | } |
694 | |
695 | forward_ref_unop! { impl Neg, neg for $t } |
696 | )*) |
697 | } |
698 | |
699 | neg_impl! { isize i8 i16 i32 i64 i128 f32 f64 } |
700 | |
701 | /// The addition assignment operator `+=`. |
702 | /// |
703 | /// # Examples |
704 | /// |
705 | /// This example creates a `Point` struct that implements the `AddAssign` |
706 | /// trait, and then demonstrates add-assigning to a mutable `Point`. |
707 | /// |
708 | /// ``` |
709 | /// use std::ops::AddAssign; |
710 | /// |
711 | /// #[derive(Debug, Copy, Clone, PartialEq)] |
712 | /// struct Point { |
713 | /// x: i32, |
714 | /// y: i32, |
715 | /// } |
716 | /// |
717 | /// impl AddAssign for Point { |
718 | /// fn add_assign(&mut self, other: Self) { |
719 | /// *self = Self { |
720 | /// x: self.x + other.x, |
721 | /// y: self.y + other.y, |
722 | /// }; |
723 | /// } |
724 | /// } |
725 | /// |
726 | /// let mut point = Point { x: 1, y: 0 }; |
727 | /// point += Point { x: 2, y: 3 }; |
728 | /// assert_eq!(point, Point { x: 3, y: 3 }); |
729 | /// ``` |
730 | #[lang = "add_assign" ] |
731 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
732 | #[diagnostic::on_unimplemented( |
733 | message = "cannot add-assign `{Rhs}` to `{Self}`" , |
734 | label = "no implementation for `{Self} += {Rhs}`" |
735 | )] |
736 | #[doc (alias = "+" )] |
737 | #[doc (alias = "+=" )] |
738 | pub trait AddAssign<Rhs = Self> { |
739 | /// Performs the `+=` operation. |
740 | /// |
741 | /// # Example |
742 | /// |
743 | /// ``` |
744 | /// let mut x: u32 = 12; |
745 | /// x += 1; |
746 | /// assert_eq!(x, 13); |
747 | /// ``` |
748 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
749 | fn add_assign(&mut self, rhs: Rhs); |
750 | } |
751 | |
752 | macro_rules! add_assign_impl { |
753 | ($($t:ty)+) => ($( |
754 | #[stable(feature = "op_assign_traits" , since = "1.8.0" )] |
755 | impl AddAssign for $t { |
756 | #[inline] |
757 | #[track_caller] |
758 | #[rustc_inherit_overflow_checks] |
759 | fn add_assign(&mut self, other: $t) { *self += other } |
760 | } |
761 | |
762 | forward_ref_op_assign! { impl AddAssign, add_assign for $t, $t } |
763 | )+) |
764 | } |
765 | |
766 | add_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
767 | |
768 | /// The subtraction assignment operator `-=`. |
769 | /// |
770 | /// # Examples |
771 | /// |
772 | /// This example creates a `Point` struct that implements the `SubAssign` |
773 | /// trait, and then demonstrates sub-assigning to a mutable `Point`. |
774 | /// |
775 | /// ``` |
776 | /// use std::ops::SubAssign; |
777 | /// |
778 | /// #[derive(Debug, Copy, Clone, PartialEq)] |
779 | /// struct Point { |
780 | /// x: i32, |
781 | /// y: i32, |
782 | /// } |
783 | /// |
784 | /// impl SubAssign for Point { |
785 | /// fn sub_assign(&mut self, other: Self) { |
786 | /// *self = Self { |
787 | /// x: self.x - other.x, |
788 | /// y: self.y - other.y, |
789 | /// }; |
790 | /// } |
791 | /// } |
792 | /// |
793 | /// let mut point = Point { x: 3, y: 3 }; |
794 | /// point -= Point { x: 2, y: 3 }; |
795 | /// assert_eq!(point, Point {x: 1, y: 0}); |
796 | /// ``` |
797 | #[lang = "sub_assign" ] |
798 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
799 | #[diagnostic::on_unimplemented( |
800 | message = "cannot subtract-assign `{Rhs}` from `{Self}`" , |
801 | label = "no implementation for `{Self} -= {Rhs}`" |
802 | )] |
803 | #[doc (alias = "-" )] |
804 | #[doc (alias = "-=" )] |
805 | pub trait SubAssign<Rhs = Self> { |
806 | /// Performs the `-=` operation. |
807 | /// |
808 | /// # Example |
809 | /// |
810 | /// ``` |
811 | /// let mut x: u32 = 12; |
812 | /// x -= 1; |
813 | /// assert_eq!(x, 11); |
814 | /// ``` |
815 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
816 | fn sub_assign(&mut self, rhs: Rhs); |
817 | } |
818 | |
819 | macro_rules! sub_assign_impl { |
820 | ($($t:ty)+) => ($( |
821 | #[stable(feature = "op_assign_traits" , since = "1.8.0" )] |
822 | impl SubAssign for $t { |
823 | #[inline] |
824 | #[track_caller] |
825 | #[rustc_inherit_overflow_checks] |
826 | fn sub_assign(&mut self, other: $t) { *self -= other } |
827 | } |
828 | |
829 | forward_ref_op_assign! { impl SubAssign, sub_assign for $t, $t } |
830 | )+) |
831 | } |
832 | |
833 | sub_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
834 | |
835 | /// The multiplication assignment operator `*=`. |
836 | /// |
837 | /// # Examples |
838 | /// |
839 | /// ``` |
840 | /// use std::ops::MulAssign; |
841 | /// |
842 | /// #[derive(Debug, PartialEq)] |
843 | /// struct Frequency { hertz: f64 } |
844 | /// |
845 | /// impl MulAssign<f64> for Frequency { |
846 | /// fn mul_assign(&mut self, rhs: f64) { |
847 | /// self.hertz *= rhs; |
848 | /// } |
849 | /// } |
850 | /// |
851 | /// let mut frequency = Frequency { hertz: 50.0 }; |
852 | /// frequency *= 4.0; |
853 | /// assert_eq!(Frequency { hertz: 200.0 }, frequency); |
854 | /// ``` |
855 | #[lang = "mul_assign" ] |
856 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
857 | #[diagnostic::on_unimplemented( |
858 | message = "cannot multiply-assign `{Self}` by `{Rhs}`" , |
859 | label = "no implementation for `{Self} *= {Rhs}`" |
860 | )] |
861 | #[doc (alias = "*" )] |
862 | #[doc (alias = "*=" )] |
863 | pub trait MulAssign<Rhs = Self> { |
864 | /// Performs the `*=` operation. |
865 | /// |
866 | /// # Example |
867 | /// |
868 | /// ``` |
869 | /// let mut x: u32 = 12; |
870 | /// x *= 2; |
871 | /// assert_eq!(x, 24); |
872 | /// ``` |
873 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
874 | fn mul_assign(&mut self, rhs: Rhs); |
875 | } |
876 | |
877 | macro_rules! mul_assign_impl { |
878 | ($($t:ty)+) => ($( |
879 | #[stable(feature = "op_assign_traits" , since = "1.8.0" )] |
880 | impl MulAssign for $t { |
881 | #[inline] |
882 | #[track_caller] |
883 | #[rustc_inherit_overflow_checks] |
884 | fn mul_assign(&mut self, other: $t) { *self *= other } |
885 | } |
886 | |
887 | forward_ref_op_assign! { impl MulAssign, mul_assign for $t, $t } |
888 | )+) |
889 | } |
890 | |
891 | mul_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
892 | |
893 | /// The division assignment operator `/=`. |
894 | /// |
895 | /// # Examples |
896 | /// |
897 | /// ``` |
898 | /// use std::ops::DivAssign; |
899 | /// |
900 | /// #[derive(Debug, PartialEq)] |
901 | /// struct Frequency { hertz: f64 } |
902 | /// |
903 | /// impl DivAssign<f64> for Frequency { |
904 | /// fn div_assign(&mut self, rhs: f64) { |
905 | /// self.hertz /= rhs; |
906 | /// } |
907 | /// } |
908 | /// |
909 | /// let mut frequency = Frequency { hertz: 200.0 }; |
910 | /// frequency /= 4.0; |
911 | /// assert_eq!(Frequency { hertz: 50.0 }, frequency); |
912 | /// ``` |
913 | #[lang = "div_assign" ] |
914 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
915 | #[diagnostic::on_unimplemented( |
916 | message = "cannot divide-assign `{Self}` by `{Rhs}`" , |
917 | label = "no implementation for `{Self} /= {Rhs}`" |
918 | )] |
919 | #[doc (alias = "/" )] |
920 | #[doc (alias = "/=" )] |
921 | pub trait DivAssign<Rhs = Self> { |
922 | /// Performs the `/=` operation. |
923 | /// |
924 | /// # Example |
925 | /// |
926 | /// ``` |
927 | /// let mut x: u32 = 12; |
928 | /// x /= 2; |
929 | /// assert_eq!(x, 6); |
930 | /// ``` |
931 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
932 | fn div_assign(&mut self, rhs: Rhs); |
933 | } |
934 | |
935 | macro_rules! div_assign_impl { |
936 | ($($t:ty)+) => ($( |
937 | #[stable(feature = "op_assign_traits" , since = "1.8.0" )] |
938 | impl DivAssign for $t { |
939 | #[inline] |
940 | #[track_caller] |
941 | fn div_assign(&mut self, other: $t) { *self /= other } |
942 | } |
943 | |
944 | forward_ref_op_assign! { impl DivAssign, div_assign for $t, $t } |
945 | )+) |
946 | } |
947 | |
948 | div_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
949 | |
950 | /// The remainder assignment operator `%=`. |
951 | /// |
952 | /// # Examples |
953 | /// |
954 | /// ``` |
955 | /// use std::ops::RemAssign; |
956 | /// |
957 | /// struct CookieJar { cookies: u32 } |
958 | /// |
959 | /// impl RemAssign<u32> for CookieJar { |
960 | /// fn rem_assign(&mut self, piles: u32) { |
961 | /// self.cookies %= piles; |
962 | /// } |
963 | /// } |
964 | /// |
965 | /// let mut jar = CookieJar { cookies: 31 }; |
966 | /// let piles = 4; |
967 | /// |
968 | /// println!("Splitting up {} cookies into {} even piles!" , jar.cookies, piles); |
969 | /// |
970 | /// jar %= piles; |
971 | /// |
972 | /// println!("{} cookies remain in the cookie jar!" , jar.cookies); |
973 | /// ``` |
974 | #[lang = "rem_assign" ] |
975 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
976 | #[diagnostic::on_unimplemented( |
977 | message = "cannot calculate and assign the remainder of `{Self}` divided by `{Rhs}`" , |
978 | label = "no implementation for `{Self} %= {Rhs}`" |
979 | )] |
980 | #[doc (alias = "%" )] |
981 | #[doc (alias = "%=" )] |
982 | pub trait RemAssign<Rhs = Self> { |
983 | /// Performs the `%=` operation. |
984 | /// |
985 | /// # Example |
986 | /// |
987 | /// ``` |
988 | /// let mut x: u32 = 12; |
989 | /// x %= 10; |
990 | /// assert_eq!(x, 2); |
991 | /// ``` |
992 | #[stable (feature = "op_assign_traits" , since = "1.8.0" )] |
993 | fn rem_assign(&mut self, rhs: Rhs); |
994 | } |
995 | |
996 | macro_rules! rem_assign_impl { |
997 | ($($t:ty)+) => ($( |
998 | #[stable(feature = "op_assign_traits" , since = "1.8.0" )] |
999 | impl RemAssign for $t { |
1000 | #[inline] |
1001 | #[track_caller] |
1002 | fn rem_assign(&mut self, other: $t) { *self %= other } |
1003 | } |
1004 | |
1005 | forward_ref_op_assign! { impl RemAssign, rem_assign for $t, $t } |
1006 | )+) |
1007 | } |
1008 | |
1009 | rem_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } |
1010 | |